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Abstract. Explainable Artificial Intelligence (XAI) has become increas-
ingly significant for improving the interpretability and trustworthiness of
machine learning models. While saliency maps have stolen the show for
the last few years in the XAI field, their ability to reflect models’ internal
processes has been questioned. Although less in the spotlight, example-
based XAI methods have continued to improve. It encompasses methods
that use examples as explanations for a machine learning model’s predic-
tions. This aligns with the psychological mechanisms of human reasoning
and makes example-based explanations natural and intuitive for users to
understand. Indeed, humans learn and reason by forming mental repre-
sentations of concepts based on examples.

This paper provides an overview of the state-of-the-art in natural
example-based XAI, describing the pros and cons of each approach.
A “natural” example simply means that it is directly drawn from the
training data without involving any generative process. The exclusion
of methods that require generating examples is justified by the need
for plausibility which is in some regards required to gain a user’s trust.
Consequently, this paper will explore the following family of methods:
similar examples, counterfactual and semi-factual, influential instances,
prototypes, and concepts. In particular, it will compare their seman-
tic definition, their cognitive impact, and added values. We hope it will
encourage and facilitate future work on natural example-based XAI.

Keywords: Explainability · XAI · Survey · Example-based ·
Case-based · Counterfactuals · Semi-factuals · Influence Functions ·
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1 Introduction

With the ever-growing complexity of machine learning models and their large dif-
fusion, understanding models’ decisions and behavior became a necessity. There-
fore, explainable artificial intelligence (XAI), the field that aims to understand
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Fig. 1. Natural example-based explanation formats with respect to the query and the
decision boundary. We can see similar examples are the closest elements to the query,
while counterfactuals and semi-factuals are on either side of the point of the decision
boundary the closest to the query. Prototypes are representative of each class in a dense
zone of the dataset and the influential instance bends the decision boundary.

and clarify models, flourished with a huge diversity of methods. Several tax-
onomies have been proposed to differentiate between methods, with common
components identified [2,4,50]: i) Local vs global: Local methods explain spe-
cific model decisions (in this case, the model’s input is called the studied sam-
ple or query), while global methods provide insight into overall model behav-
ior. ii) Post-hoc vs intrinsic vs explainable by-design: Post-hoc methods are
applied to trained models, while by-design methods produce inherently explain-
able models. Intrinsic methods take into account model training without affecting
the final state. iii) Black-box vs white-box: White-box methods require access
to model weights/gradients. iv) Explanation formats which include: attribu-
tion methods [33,104], concepts [35,66], surrogate models [67,96], rule-based
explanations [114], natural language explanations [19], dependencies [40,49], and
example-based explanations [57,113].

Nonetheless, no matter the taxonomy of a method, its explanations are aimed
at humans, hence, they should exploit the vast literature in philosophy, psy-
chology, and cognitive science on how humans generate, understand, and react
to explanations [79]. The psychology literature argued that, in everyday life,
humans use examples as references to understand, explain something, or demon-
strate their arguments [17,32,38,79,100]. Afterward, through user studies in the
XAI field [35,51,61], researchers validated that example-based explainability pro-
vides better explanations over several other formats where example-based XAI
corresponds to a family of methods where explanations are represented by or
communicated through samples, or part of samples like crops.

However, previous surveying works on example-based XAI are either cursory
as they survey XAI in general [2,4] or focus on a specific subset such as factual
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methods [26,28,102] or contrastive explanations [59,84,113]. In fact, example-
based explainability can be divided into several sub-formats with many similari-
ties. As such, covering them together allows conclusions from sub-fields of the lit-
erature to serve one another. Thus, we believe a single work thoroughly mapping,
describing, and analyzing each example-based XAI sub-format will benefit the
field. Besides, this survey will only cover natural example-based explainability
methods – i.e methods where examples are training samples and are not gener-
ated. Indeed, to generate high-dimensional data points, methods essentially rely
on deep neural networks [6,62]. Nevertheless, for most high dimensional data,
such approaches fail to ensure that generated examples are plausible and belong
to the manifold (subspace of the input space where samples follow the data
distribution), and examples need to be realistic for humans to interpret them
[18]. Therefore, natural examples have two advantages, they do not use a model
to explain another model which eases their acceptance, and natural examples
are plausible by definition. In addition, apart from formats with only generative
methods (such as feature visualizations [91]), we do not set aside any formats
of example-based XAI as they may all bring new perspectives to others. Lastly,
to navigate through the different formats we use the semantic definition of each
format as it highlights the differences between formats. In some cases, examples
from different formats may be the same sample, hence, clear semantic definitions
are necessary to interpret examples.

Explanations in example-based explainability are all data points but there
exist different semantic meanings to a given example. Depending on the relation
between the example, the query, and the model, the information provided by
the example will differ. The semantic definition of an example and the kind of
insight it provides divide the example-based format into sub-groups, which are
presented in Fig. 1. This overview is organized around those sub-groups (also
called formats), this work will unfold as follows:

The first format is similar examples (or factuals) (Sect. 2), for the model,
they are the closest elements to the query. Factuals give confidence in the pre-
diction or explain misclassification, but they are limited to the close range of
the considered sample. To provide insight into the model behavior on a larger
zone around the query, counterfactuals and semi-factuals (Sects. 3.1 and 3.2)
are more adapted. They are respectively the closest and the farthest samples on
which the model makes a different and similar prediction. They are mainly used
in classification, give insight into the decision boundary, and are complementary
if paired. While they give an idea of the limit, they do not provide insights on
how one could bend the decision boundaries of the model by altering the train-
ing data. This is addressed through influential instances (Sect. 4), the training
samples with the highest impact on the model’s state. In addition, contrary to
previously listed example-based formats, influential instances are not limited to
local explanations. Indeed, one can extract the most influential instances for the
model in general. Another global explanation format is Prototypes (Sect. 5),
which are a set of samples representative of either the dataset or a class. Most of
the time they are selected without relying on the model and give an overview of
the dataset, but some models are designed through prototypes, thus explainable
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by design. Concepts (Sect. 6), a closely-related format, is also investigated.
A concept is the abstraction of the common elements between samples – e.g.
for trees, the concepts could be trunk, branch, and leaf. To communicate such
concepts, if they are not labeled, the easiest way is through examples of such
concepts (often part of samples such as patches).

Thus we could summarize the contributions of this paper as follows: i) To
the best of our knowledge, we are the first to compile natural example-based
explainability literature in a survey. Previous works either covered the whole
XAI literature with a superficial analysis of example-based XAI or focused on a
given sub-format of example-based XAI. ii) For each format we provide simple
definitions, semantic meaning, key methods, their comparison, their pros and
cons, and examples, and pros and cons. We additionally ground formats into
social sciences and depict their cognitive added values when possible. iii) We
explore, classify, and describe available methods in each natural example-based
XAI format. We highlight common points and divergences for the reader to
understand each method easily, with a focus on key methods (see Table 1)

1.1 Notations

Throughout the paper, methods will explain a machine learning model h : X →
Y, with X and Y being respectively the input and output domain. Especially, this
model is parameterized by the weights θ ∈ Θ ⊆ R

d. If not specified otherwise, h
is trained on a training dataset Dtrain ⊂ (X ×Y) of size n with the help of a loss
function l : (X ,Y, Θ) → R. We denote a sample by the tuple z = (x, y)| x ∈
X , y ∈ Y. When an index subscript as i or j is added, e.g. zi, it is assumed
that zi belongs to the training dataset. If the subscript “test” is added, ztest,
the sample does not belong to the training data. When there is no subscript,
the sample can either be or not in the training data. Finally, the empirical risk
function is denoted as L(θ) := 1

n

∑
(x,y)∈Dtrain

l(x, y, θ) = 1
n

∑
zj∈Dtrain

l(zj , θ),
the parameters that minimized this empirical risk as θ∗ := arg minθL(θ) and an
estimator of θ∗ is denoted θ̂.

2 Similar Examples

In the XAI literature, similar examples, also referred to as factuals (see Fig. 2),
are often used as a way to provide intuitive and interpretable explanations.
The core idea is to retrieve the most similar, or the closest, elements in the
training set to a sample under investigation ztest and to use them as a way to
explain a model’s output. Specifically, Case-Based Reasoning (CBR) is of par-
ticular interest as it mimics the way humans draw upon past experiences to
navigate novel situations [38,100]. For example, when learning to play a new
video game, individuals do not typically begin from a complete novice level.
Instead, they rely on their pre-existing knowledge and skills in manipulating
game controllers and draw upon past experiences with similar video games to
adapt and apply strategies that have been successful in the past. As described
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by Aamodt and Plaza [1], a typical CBR cycle can be delineated by four fun-
damental procedures: i) RETRIEVE: Searching for the most analogous case or
cases, ii) REUSE: Employing the information and expertise extracted from that
case to address the problem, iii) REVISE: Modifying the proposed solution as
necessary, iv) RETAIN: Preserving the pertinent aspects of this encounter that
could be beneficial for future problem-solving endeavors. In addition to being
intuitive, the cases retrieved by a CBR system for a given prediction are natural
explanations for this output.

While CBR systems are a must-know in the XAI literature, we will not
review them as they have already been well analyzed, reviewed, motivated, and
described many times [26,28,102]. Instead, the focus here is on case-based expla-
nations (CBE) [102]. CBE are methods that use CBR to explain other systems,
also referred to as twin systems [57,60]. In particular, explanations of the system
under inspection are generally the outcomes of the RETRIEVE functionality of
the twinned CBR system, which oftentimes relies on k-nearest neighbor (k-NN)
retrieval [24]. The idea behind k-NN is to retrieve the k most similar training
samples (cases) to a test sample ztest.

2.1 Factual Methods

One of the main challenges with CBE methods is to define similarity. Indeed,
there are many ways of defining similarity measures, and different approaches
are appropriate for different representations of a training sample [28]. Generally,
CBR systems assume that similar input features are likely to produce similar out-
comes. Thus, using a distance metric defined on those input features engenders
a similarity measure: the closer the more similar they are. One of the simplest
is the unweighted Euclidean distance:

dist(z, z′) = ||x − x′||2 | z = (x, y) ∈ (X × Y) (1)

However, where – i.e. in which space – the distance is computed does have
major implications. As pointed out by Hanawa et al. [46], the input space does
not seem to bring pieces of information on the internal working of the model
under inspection but provides more of a data-centric analysis. Thus, recent meth-
ods rely instead on either computing the distance in a latent space or weighting
features for the k-NN algorithm [31].

Computing distance in a latent space is one possibility to include the model
in the similarity measure which is of utmost importance if we want to explain
it, as pointed out by Caruana et al. [20]. Consequently, they suggested applying
the Euclidean distance on the last hidden units h−1 of a trained Deep Neural
Network (DNN) as a similarity that considers the model’s predictions:

distDNN (z, z′) = ||h−1(x) − h−1(x′)||2 | z = (x, y) ∈ (X × Y) (2)

Similarly, for convolutional DNN, Papernot and McDaniel [92], and Sani et
al. [98] suggested conducting the k-NN search in the latent representation of the
network and using the cosine similarity distance.
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Weighting features is another popular paradigm in CBE. For instance, Shin
et al. [106] proposed various global weighting schemes – i.e. methods in which
the weights assigned to each input’s feature remain constant across all samples as
in Eq. (3) – where the weights are computed using the trained network to reveal
the input features that were the most relevant for the network’s prediction.

distfeatures weights(z, z′) = ||w(θ̂)T (x − x′)||2 | z = (x, y) ∈ (X × Y) (3)

Alternatively, Park et al. [93] examined local weighting by considering
varying feature weights across the instance space. However, their approach is
not post-hoc for DNN. Besides, Nugent et al. [89] also focused on local weighting
and proposed a method that can be applied to any black-box model. However,
their method involves generating multiple synthetic datasets around a specific
sample, which may not be suitable for explaining a large number of samples
or high-dimensional inputs. In the same line of work, Kenny and Keane [60,61]
proposed COLE, by suggesting the direct k-NN search in the attribution space –
i.e computing saliency maps [7,107,110] for all instances and performing a k-NN
search in the resulting dataset of attributions. By denoting c(θ̂, z) the attribution
map of the sample z for the model parameterized by θ̂ gives:

distCOLE(z, z′) = ||c(θ̂, z) − c(θ̂, z′)||2 (4)

They used three saliency map techniques [7,107,110] but nothing prevents
one to leverage any other saliency map techniques. However, we should also
point out that Fel et al. [34] questioned attribution methods’ ability to truly
capture the internal process of DNN. Additionally in [61], Kenny and Keane
proposed to use the Hadamard product of the gradient times the input features
as a contribution score in the case of DNN with non-linear outputs.

2.2 Conclusions on Similar Examples

Presenting similar examples to an end-user as an explanation for a model’s out-
comes has been shown through user studies [53,114] and psychology [32] to be
generally more convincing than other approaches. However, the current limi-
tations of similarity-based XAI are still significant. For instance, computing a
relevant distance between ztest and every training data point becomes compu-
tationally prohibitive for large datasets. Thankfully, there are efficient search
techniques available, as mentioned in the paper by Bhatia et al. [14].

Furthermore, where the distance is computed does have major implications
[46]. Consequently, authors have suggested different feature spaces or weighting
schemes to investigate, but their relevance to reflect the inner workings of a
model remains questionable. In addition, it is still unclear in the literature if
one approach prevails over others. In this regard, it is relevant to point out
that psychological studies [32,78,88,112] underscore the importance of shared
features, overall resemblance, context, and the interplay between perceptual and
conceptual factors in similarity judgments. In fact, we can point out that none
of the current factual methods leverage all those aspects at once.
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Finally, considering the position of retrieved similar examples in relation to
a model’s decision boundaries is crucial for relevant explanations. Neglecting
this can confuse users if factual examples contradict the model’s prediction.
Contrastive explanations address this issue and are discussed in Sect. 3.

3 Contrastive Explanations

Contrastive explanations are a class of explanation that provides the conse-
quences of another plausible reality, the repercussion of changes in the model’s
input [17,113]. More simply, they are explanations where we modify the input
and observe the reaction of the model’s prediction, the modified input is returned
as the explanation and its meaning depends on the model’s prediction of it.
Those methods are mainly post-hoc methods applied to classification models.
This includes i) counterfactuals (CF): an imagined alternative to reality about
the past, sometimes expressed as “if only ...” or “what if ...” [17], ii) semi-factuals
(SF): an imagined alternative that results in the same outcome as reality, some-
times expressed as “even if ...” [17], and iii) adversarial examples (perturbations
or attacks) (AP): inputs formed by applying small but intentionally worst-case
perturbations to examples from the dataset, such that the perturbed input results
in the model outputting an incorrect answer with high confidence [41]. Examples
of those three formats are provided in Fig. 2 from Kenny and Keane [62].

AP and CF are both perturbations with an expected change in the prediction,
they only differ in the goal as CF attempt to provide an explanation of the
model’s decision while AP are mainly used to evaluate robustness. In fact, AP
can be considered CF [115], and for robust models, AP methods can generate
interpretable CF [105]. Nonetheless, AP are hardly perceptible perturbations
designed to fool the model [111], therefore, they are generative and those methods
will not be further detailed in this work. Then, we can generalize SF and CF ,
with a given distance dist, and the examples conditioned space Xcond(f,x) ⊂ X :

CF (xtest) := arg min
x∈Xcond(f,xtest)|h(x) �=h(xtest)

dist(xtest, x) (5)

SF (xtest) := arg max
x∈Xcond(f,xtest)|h(x)=h(xtest)

dist(xtest, x) (6)

For natural CF and SF, the input space is conditioned to the training set,
Xcond(f,xtest) = Xtrain. While for AP, there is no condition on the input space,
in Eq. (5), Xcond(f,xtest) = X . The distance and the condition of the input space
are the key differences between CF and SF methods.

This section discusses both counterfactuals and semi-factuals as they are
often treated together in the literature [17,25,42,62]. The literature for both
formats is large in social sciences and in XAI for generative methods, hence we
will extract key findings before presenting natural example-based methods.
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Fig. 2. Illustration of factuals, SF, and CF from Kenny and Keane [62]. The factual
makes us understand the misclassification, while SF and CF show us how far or close
the decision boundary is. Min-edit represents the AP, as differences are not visible.

3.1 Counterfactuals

The social science grounding of counterfactuals is deep, either in philosophy,
or psychology. Indeed, the search for CF’s semantic definition goes back a long
time [13,44,72], and historically revolves around the notion of cause and effect,
sometimes called facts and foils [75,79]. Then, Halpern and Pearl [44] argued that
providing the cause of an event answers the question “Why?” and thus, provides
a powerful explanation. Moreover, the philosophical literature argued that CF
allow us to communicate and understand the causal relation between facts and
foils [72,79]. Psychology also possesses a rich literature regarding CF [17,97],
which has continued to evolve in recent years [18,59,80] thanks to the arrival of
CF in XAI through Wachter et al. [115]. Humans’ natural use of counterfactuals
in many situations was highlighted by Byrne [17]: From amusing fantasy to
logical support, they explain the past, prepare the future, modulate emotional
experience, and support moral judgments. Furthermore, when people encounter
CF they have both the counterfactual and the factual in mind [18]. The insights
from philosophy and psychology [18,80] have shown the pertinence and potential
of CF as well as SF for XAI. To match such promises, CF in XAI need to verify
the definitions and properties of CF typically employed by humans.

Expected properties for natural CF can be extrapolated from conclusions
and discovered properties in XAI for generated CF even though the literature
on natural CF is slim. Such desirable properties for CF, derived from social
sciences, could be summarized as follows: i) plausibility [58,59,113]: CF should
be as realistic as possible; ii) validity [84]: if the model’s prediction on CF
differ from the prediction on the query (see the definition (5)); iii) sparsity [58,
84,113]: the number of features that were changed between CF and the query
should be as little as possible; iv) diversity [54,84]: if several CF are proposed,
they should be different from each other; v) actionability [58,113]: the method
should allow the user to select features, to modify and specify immutable ones;
vi) proximity [54,58,59,84]: CF should be as close as possible to the query.



32 A. Poché et al.

Counterfactuals Methods: Keane et al. [59] argued that nearest unlike neigh-
bors (NUN) [27] a derivative of nearest neighbors [24], are the ancestors of coun-
terfactuals in XAI. NUN are the nearest element to the query that belongs to
a different class. They are natural CF when the class is given by the model
prediction. Natural counterfactuals and semi-factuals are faced with the same
discussions around similarity as factuals section. However, here, the similarity
should take into account sparsity.

NUN were first used in XAI by Doyle et al. [29,90] but not as an explanation,
only to find SF. The only method to the best of our knowledge that uses NUN
as explanations is KLEOR from Cummins and Bridge [25], they provided it as
a complement to SF explanations to give intuition on the decision boundary.
Nonetheless, they highlighted that the decision boundary might be much more
complex than what the SF and CF pairs can reveal. Indeed, a line between SF
and CF may intersect the decision boundary several times, which can lead to
explanations that are not always faithful. Furthermore, Keane et al. [59] argued
that “good natural counterfactuals are hard to find” as the dataset’s low density
may prevent sparse and proximal natural CF.

Counterfactuals as known in XAI were introduced by Wachter et al. [115],
and flourished through generative methods as shown by the numerous surveys
[54,84,113]. Two periods emerge: one focused on interpretable tabular data [113],
and the other on complex data like images [6,62]. While generating plausible
instances for the first period was not an issue it remains challenging for the
second, even with diffusion models [6]. More research is needed to explore natural
counterfactuals with their inherent plausibility [59,113]. Moreover, adversarial
perturbations proved that for non-robust DNN, a generated example close to a
natural instance is not necessarily plausible.

To conclude on counterfactuals, their large literature produced expected
properties with deep social science grounding. Such desiderata highlight the pros
and cons between generative and natural CF. Indeed, for high dimensional data,
the reader is faced with the choice of simple and plausible natural CF or proximal
and sparse generated CF through a model explaining another model.

3.2 Semi-factuals

SF literature is most of the time included in the CF literature be it in philosophy
[42], psychology [17], or XAI [25,62]. In fact, SF, “even if ...” are semantically
close to CF, “what if ...” [5,13,42], (see Eqs. (5) and (6)). However, psychology
has demonstrated that human reactions differ between CF and SF. While CF
strengthen the causal link between two elements, SF reduce it [18], CF increase
fault and blame in a moral judgment while SF diminish it.

Expected properties for CF and SF were inspired by social science, hence,
because of their close semantic definition, many properties are common between
both: SF should also respect their definition in Eq. (6) (validity), then to
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make the comparison possible and relevant they should aim towards plausibil-
ity [5], sparsity [5], diversity, and actionability. Nonetheless, the psycholog-
ical impact of CF and SF differ, hence there are also SF properties that contrast
with CF properties. The difference between equations (5) and (6) – i.e. arg min
vs arg max – suggests that to replace CF’s proximity, SF should be the farthest
from the studied sample, while not crossing the decision boundary [25]. As such,
we propose the decision boundary closeness as a necessary property, and a
metric to evaluate it could be the distance between SF and SF’s NUN. Finally,
SF should not go in any direction from the studied sample but aim toward the
closest decision boundary. Therefore, it should be aligned with NUN [25,29,90],
this property was not named, we suggest calling it counterfactual alignment.

Semi-factuals methods were first reviewed in XAI by a recent survey from
Aryal and Keane [5]. They divided SF methods and history into four parts. The
first three categories consist of one known method that will illustrate them:

• SF based on feature-utility, Doyle et al. [29] discovered that similar exam-
ples may not be the best explanations and suggested giving examples farther
from the studied sample. To find the best explanation case, dist in Eq. (6) is
a utility evaluation based on features difference.

• NUN-related SF, Cummins and Bridge [25] proposed KLEOR where
Eq. (6)’s dist is based on NUN similarity. Then, they penalize this distance
to make sure the SF are between the query and nearest unlike neighbors.

• SF near local-region boundaries, Nugent et al. [90] approximate the deci-
sion boundary of the model in the neighborhood of the studied sample through
input perturbations (like LIME [96]). Then SF are given by the points that
are the closest to the decision boundary.

• The modern era: post-2020 methods, inspired by CF methods, many
generative methods emerged in recent years [55,62].

To conclude, semi-factuals are a natural evolution of factuals. Moreover,
their complementarity with counterfactuals was exposed through the literature,
first to find and evaluate SF, then to provide a range to the decision boundary.
Finally, generative and natural SF possess the same pros and cons as CF ones.

Even though contrastive explanations bring insights into a model’s behavior,
it has no impact on the current model situation, what led to this state, or how
to change it. Contrastively, influential instances (see Sect. 4) extract the samples
with the most influence on the model’s training. Removing such samples from
the training set will have a huge impact on the resulting model.

4 Influential Examples

Influential instances could be defined as instances more likely to change a model’s
outcome if they were not in the training dataset. Furthermore, such measures
of influence provide one with information on “in which direction” the model
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decision would have been affected if that point was removed. Being able to trace
back to the most influential training samples for a given test sample ztest has
been a topic of interest mainly for example-based XAI.

4.1 Influential Instances Methods

Influence functions originated from robust statistics in the early 70 s. In
essence, they evaluate the change of a model’s parameters as we up-weight a
training sample by an infinitesimal amount [45]: θ̂ε,zj

:= arg minθL(θ)+εl(zj , θ).
One way to estimate the change in a model’s parameters of a single training sam-
ple would be to perform Leave-One-Out (LOO) retraining, that is, to train the
model again with the sample of interest being held out of the training dataset.
However, repeatedly re-training the model to exactly retrieve the parameters’
changes could be computationally prohibitive, especially when the dataset size
and/or the number of parameters grows. As removing a sample zj can be linearly
approximated by up-weighting it by ε = − 1

n , computing influence helps to esti-
mate the change of a model’s parameters if a specific training point was removed.
Thus, by making the assumption that the empirical risk L is twice-differentiable
and strictly convex with respect to the model’s parameters θ making the Hessian
Hθ̂ := 1

n

∑
zi∈Dtrain

∇2
θl(zi, θ̂) positive definite, Cook and Weisberg [23] proposed

to compute the influence of zj on the parameters θ̂ as:

I(zj) := −H−1

θ̂
∇θl(zj , θ̂) (7)

Later, Koh and Liang [68] popularized influence functions in the machine
learning community as they took advantage of auto-differentiation frameworks
to efficiently compute the hessian for DNN and derived Eq. (7) to formulate the
influence of up-weighting a training sample zj on the loss at a test point ztest:

IF(zj , ztest) := −∇θl(ztest, θ̂)T H−1

θ̂
∇θl(zj , θ̂) (8)

This formulation opens its way into example-based XAI as it compares to the
study of finding the nearest neighbors of ztest in the training dataset – i.e. the
most similar examples (Sect. 2) – with two major differences though: i) points
with high training loss are given more influence revealing that outliers can domi-
nate the model parameters [68], and ii) H−1

θ̂
measures what Koh and Liang called:

the resistance of the other training points to the removal of zj [68]. However, it
should be noted that hessian computation remains a significant challenge, that
could be alleviated with common techniques [3,77,101]. By normalizing Eq. (8),
Barshan et al. [10] further added stability to the formulation.

Oftentimes, we are not only interested in individual instance influence but in
the influence of a group of training samples (e.g. mini-batch effect, multi-source
data, etc.). Koh et al. [69] suggested that using the sum of individual influences
as the influence of the group constitutes a good proxy to rank those groups in
terms of influence. Basu et al. [12] on their side suggested using a second-order
approximation to capture possible cross-correlations but they specified it is most
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likely impracticable for DNN. In a later work, Basu et al. [11] concluded that
influence function estimates for DNN are fragile as the assumptions on which
they rely, being near optimality and convexity, do not hold in general for DNN.

LOO approximation is one of the previously mentioned motivations behind
influence estimates as it avoids the prohibitive LOO retraining required for every
sample in the training data. Thus, some authors proposed approaches that opti-
mize the number of LOO retraining necessary to get a grasp on a sample’s
influence such as Feldman and Zhang [36]. Although this significantly reduces
the number of retraining compared to naive LOO retraining, it still requires a
significant amount of them. Recently, a new approach that relates to influence
functions and involves training many models, was introduced with data models
[52,99] which we do not review here.

As Basu et al. [11] pointed out, there is a discrepancy between LOO approx-
imation and influence function estimates, especially for DNN. However, Bae et
al. [9] claimed that this discrepancy is due to influence functions approaching
what they call the proximal Bregman response function (PBRF), rather than
approximating the LOO retraining, which does not interfere with their ability
to perform the task they were thought for, especially XAI. Thus, they suggested
evaluating the quality of influence estimates by comparing them to the PBRF
rather than LOO retraining as it was done until now.

Influence computation that relies on kernels is another paradigm to find
the training examples that are the most responsible for a given set of predictions.
For instance, Khanna et al. [63] proposed an approach that relies on Fisher’s ker-
nels and they related it to the one from Koh and Liang [68] as a generalization of
the latter under certain assumptions. Yeh et al. [117] also suggested an approach
that leverages kernels but this time they relied on the representer theorem [103].
That allows them to focus on explaining only the pre-activation prediction layer
of a DNN for classification tasks. In addition, their influence scores, called rep-
resenter values, provide supplementary information, with positive representer
values being excitatory and negative values being inhibitory. However, this app-
roach requires introducing an L2 regularizer during optimization, which can
prevent post-hoc analysis if not responsible for training. Additionally, Sui et
al. [109] argued that this approach provides more of a class-level explanation
rather than an instance-level explanation. To address this issue and the L2 reg-
ularizer problem, they proposed a method that involves hessian computation
on the classification layer, with only the associated computational cost. How-
ever, the ability to retrieve relevant samples when investigating only the final
prediction layer was questioned by Feldmann and Zhang [36], who found that
memorization does not occur in the last layer.

Tracing the training process has been another research field to compute
influence scores. It relies on the possibility to replay the training process by
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saving some checkpoints of our model parameters, or states, and reloading them
in a post-hoc fashion [22,47,95]. In contrast to the previous approaches, they
rely neither on being near optimality nor being strongly convex, which is more
realistic when we consider the reality of DNN. However, they require handling
the training procedure to save the different checkpoints, potentially numerous,
hence they are intrinsic methods, which in practice is not always feasible.

4.2 Conclusions on Influential Instances

Influential techniques can provide both global and local explanations to enhance
model performance. Global explanations allow for the identification of training
samples that significantly shape decision boundaries or outliers (see Fig. 1), aid-
ing in data curation. On the other hand, local explanations offer guidance for
altering the model in a desired way (see Fig. 3). Although they have been com-
pared to similar examples and have been shown to be more relevant to the model
[46], they are more challenging to interpret and their effectiveness for trustwor-
thiness is unclear. Further research, particularly user studies, is necessary to
determine their ability to take advantage of human cognitive processes.

Fig. 3. Figure taken from F. Liu [95]: A tracing process for estimating influence, TracIn,
applied on ImageNet. The first column is composed of the test sample, the next three
columns display the training examples that have the most positive value of influence
score while the last three columns point out the training examples with the most
negative values of influence score. (fr-bulldog: french-bulldog)

5 Prototypes

Prototypes are a set of representative data instances from the dataset, while crit-
icisms are data instances that are not well represented by those prototypes [64].
Figure 4 shows examples of prototypes and criticisms from Imagenet dataset.
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Fig. 4. Figure taken from [64]: Learned prototypes and criticisms from Imagenet
dataset (two types of dog breeds)

5.1 Prototype Methods

Prototypes and criticism can be used to add data-centric interpretability, post-
hoc interpretability, or to build an interpretable model [83]. The data-centric
approaches will be briefly introduced.

Prototypes for Data-Centric Interpretability: Clustering algorithms that
return actual data points as cluster centers such as k-medoids methods [56,87]
could be used to better understand the data distribution. We can consider the
cluster centers as prototypes.

The abundance of large datasets has renewed the interest in the data sum-
marization methods [8,73,74,82,108], which consist of finding a small subset of
data points that covers a large dataset. The subset elements can be considered
prototypes. Additionally, we found data summarization methods based on the
Maximum Mean Discrepancy (MMD), such as MMD-critic [64] and Protodash
[43], that learn both prototypes and criticisms.

Prototypes for Post-hoc Interpretability: Most prototype methods are
data-centric that provide no information on the model. However, such meth-
ods can be computed in a meaningful search space for the model as done with
similar examples Sect. 2.1 and give global explanations with the model vision of
the dataset. Similarly, local explanations can be extracted by comparing studied
samples to the closest prototypes in the search space. But to our knowledge,
only one method explores such a possibility. Filho et al. [37] proposed M-PEER
(Multiobjective Prototype-based Explanation for Regression) method that finds
the prototypes using both the training data and the model output. It optimizes
the error of the explainable model and the fidelity and interpretability metrics.

Prototype-Based Models Interpretable by Design: After data-centric and
post-hoc methods, there are methods that construct prototype-based models.
Those models are interpretable by design because they provide a set of pro-
totypes that make sense for the model, those methods are mainly designed for
classification. An interpretable classifier learns a set of prototypes Pc ⊆ {(x, y) ∈
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Dtrain|y = c}. Each Pc captures the full variability of class c while avoiding con-
fusion with other classes. The learned prototypes are then used by the model to
classify the input. We identified three types of prototype-based classifiers:

• Classifiers resolving set cover problems select convex sets that cover
each class with prototypes to represent it. Various types of convex sets such
as boxes, balls, convex hulls, and ellipsoids can be used. Class Cover Catch
Digraphs (CCCD) [76] and ProtoSelect [15] used balls where the centers were
considered prototypes. Then, the nearest-prototype rule is used to classify
the data points. CCCD finds, for each class c, a variable number of balls that
cover all points of class c and no points of other classes. Its radius is chosen
as large as possible. However, even within large classes, there can still be a
lot of interesting within-class variability that should be taken into account
when selecting the prototypes. To overcome this limitation, ProtoSelect used
a fixed radius across all points, to allow the selection of multiple prototypes
for large classes, and they also allow wrongly covered and non-covered points.
They simultaneously minimize three elements: i) the number of prototypes;
ii) the number of uncovered points; iii) the number of wrongly covered points.

• Classifiers using Bayesian models for explanation, Kim et al. [65] pro-
posed the Bayesian Case Model (BCM) that extends Latent Dirichlet Allo-
cation [16]. In BCM, the idea is to divide the data into s clusters. For each
cluster, a prototype is defined as the sample that maximizes the subspace
indicators that characterize the cluster. When a sample is given to BCM, this
last one yield a vector of probability to belong to each of the s clusters which
can be used for classification. Thus, the classifier uses as an input a vector
of dimension s, which allows the use of simpler models due to dimensionality
reduction. In addition, the prototype of the most likely cluster can then be
used as an explanation.

• Classifiers based on neural networks learn to select prototypes defined
in the latent space, which are used for the classification. This lead to a model
that is more interpretable than a standard neural network since the reason-
ing process behind each prediction is “transparent”. Learning Vector Quan-
tization (LVQ) [70] is widely used for generating prototypes as weights in
a neural network. However, the use of generated prototypes reduces their
interpretability. ProtoPNet [21] also stocks prototypes as weights and trains
them, but projects them to training samples patches representation during
training. Given an input image, its patches are compared to each prototype,
the resulting similarity scores are then multiplied by the learned class con-
nections of each prototype. ProtoPNet has been extended to time series data
via ProSeNet [81], or with a more interpretable structure with ProtoTree [86]
and HPNet [48]. Instead of using linear bag-of-prototypes, ProtoTree and
HPNet used hierarchically organized prototypes to classify images. ProtoTree
improves upon ProtoPNet by using a decision tree which provides an easy-
to-interpret global explanation and can be used to locally explain a single
prediction. Each node in this tree contains a prototype (as defined by Pro-
toPNet) and the similarity scores between image patches and the prototypes



Natural Example-Based Explainability: A Survey 39

are used to determine the routing through the tree. Decision-making is there-
fore similar to human reasoning [86]. Nauta et al. [85] proposed a method
called “This Looks Like That, Because” to understand prototypes similari-
ties. This method allows checking why the model considered two examples
as similar. For instance, it is possible that a human thinks that the common
point between two examples is their color, while the model uses their shape.
The method modifies some characteristics of the input image, such as hue, or
shape, to observe how the similarity score changes. This allows us to measure
the importance of each of these characteristics.

5.2 Conclusions on Prototypes

Most prototype methods are data-centric, but we have seen that applying such
methods in a meaningful space for the model can bring post-hoc global and local
explanations. Nonetheless, a second part of the literature constructs prototype-
based classifiers explainable by design, those methods are promising and produce
models with natural reasoning but adapting a new model to such architecture
can be prohibitive.

6 Concept-Based XAI

Prototype-based models compare prototypical parts, e.g. patches, and the stud-
ied sample to make the classification. The idea of parts is not new to the liter-
ature, the part-based explanation field, developed for fine-grained classification,
is able to detect semantically significant parts of images. The first part-based
model required labeled parts for training and can be considered object detec-
tion with a semantic link between the detected objects. Afterward, unsuper-
vised methods such as OPAM [94] or Particul [116] emerged, those methods still
learned classification in a supervised fashion, but no labels were necessary for
part identification. In fact, the explanation provided by this kind of method can
be assimilated into concept-based explanations. A concept is an abstraction of
common elements between samples, as an example Fig. 5 shows the visualization
of six different concepts that the CRAFT method [35] associated with the given
image. To understand parts or concepts, the method uses examples and supposes
that with a few examples, humans are able to identify the concept.

6.1 Concepts Methods

Like in part-based XAI, the first concept-based method used labeled concepts.
Kim et al. [66] introduced concept activation vectors (CAV) to represent concepts
using a model latent space representation of images. Then, they design a post-
hoc method, TCAV [66] based on CAV to evaluate an image correspondence
to a given concept. Even though it seems promising, this method requires prior
knowledge of the relevant concepts, along with a labeled dataset of the associated
concepts, which is costly and prone to human biases.
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Fig. 5. Illustration from Fel et al. [35]. Natural examples in the colored boxes define
a concept. Purple box: could define the concept of “chainsaw”. Blue box: could
define the concept of “saw’s motor”. Red box: could define the concept of “jeans”.
(Color figure online)

Fortunately, recent works have been conducted to automate the concept dis-
covery in the training dataset without humans in the loop. For instance, ACE,
proposed by Ghobarni et al. [39], employs a semantic segmentation technique on
images belonging to a specific class of interest and use an Inception-V3 neural
network to compute activations of an intermediate model layer for these seg-
ments. The resulting activations are then clustered to form a set of prototypes,
which they refer to as “concepts”. However, the presence of background segments
in these concepts requires a post-processing clean-up step to remove irrelevant
and outlier concepts. Zhang et al. [118] proposed an alternative approach to
solving the unsupervised concept discovery problem through matrix factoriza-
tions [71] in the networks’ latent spaces. However, such methods operate at the
convolutional kernel level, which may lead to concepts based on shape and/or
ignore more abstract concepts.

As an answer, Fel et al. [35] proposed CRAFT, which uses Non-Negative
Matrix Factorization [71] for concept discovery. In addition to filling in the blank
of previous approaches, their method provides an explicit link between the con-
cepts’ global and local explanations (Fig. 5). While their approach alleviates the
previously mentioned issues, the retrieved concepts are not always interpretable.
Nonetheless, their user study proved the pertinence of the method.

6.2 Conclusions on Concepts

Concept-based explanations allow post-hoc global and local explanations, by
understanding the general concepts associated with a given class and the con-
cepts used for a decision. We draw attention to methods that do not require
expert knowledge to find out relevant concepts as they are prone to human bias.
Even though automated concept discovery is making tremendous progress, the
interpretation of such concepts and their ability to gain users’ trust stay ques-
tionable as very few user studies have been conducted on the subject.
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Table 1. Comparison table between the different natural example-based formats and
methods. NA: Not applicable, FGCV: Fine-grained computer vision

SIMILAR EXAMPLES Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Distance Weighting

Caruana et al. [20] 1999 Local Post-hoc DNN Euclidean None

Shin et al. [106] 2000 Local Post-hoc DNN Euclidean Global

Park et al. [93] 2004 Local Intrinsic DNN Euclidean Local

Nugent et al. [89] 2005 Local Post-hoc None Euclidean Local

Sani et al. [98] 2017 Local Post-hoc Deep CNN Cosine similarity Local

Papernot and McDaniel [92] 2018 Local Post-hoc Deep CNN Cosine similarity Local

Cole [60] [61] 2019 Local Post-hoc None Euclidean Local with attributions

CONTRASTIVE EXPLANATIONS Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Semi-factual group of method

Doyle et al. [29,30] 2004 Local Post-hoc None SF based on feature-utility

NUN [25,27,29] 2006 Local Post-hoc None Natural CF

KLEOR [25] 2006 Local Post-hoc None NUN-related SF

Nugent et al. [90] 2009 Local Post-hoc None Local-region boundaries

INFLUENTIAL INSTANCES Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Requires model’s gradients

Koh and Liang [68] 2017 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Khanna and al. [63] 2018 Local Post-hoc Requires an access to the function and gradient-oracles Yes

Yeh and al. [117] 2018 Local Intrinsic Work for classification neural networks with regularization Yes

Hara and al. [47] 2019 Local Intrinsic Models trained with SGD, saving intermediate checkpoints Yes

Koh and Liang [69] 2019 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Basu and al. [12] 2019 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Barshan and al. [10] 2020 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Feldman and Zhang [36] 2020 Global Intrinsic Requires to train numerous models on subsampled datasets No

Pruthi and al. [95] 2020 Local Intrinsic Requires saving intermediate checkpoints Yes

Sui and al. [109] 2021 Local Post-hoc Work for classification neural networks Yes

Chan and al. [22] 2021 Both Intrinsic Requires saving intermediate checkpoints Yes

PROTOTYPES Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Task Other

CCCD [76] 2003 Both NA by-design Classification Set cover

ProtoSelect [15] 2011 Both NA by-design Classification Set cover

Kim et al. [65] 2019 Both NA by-design, tabular Classification Bayesian-based

ProtoPNet [21] 2019 Both NA by-design, FGCV Classification Neural network

ProSeNet [81] 2019 Both NA by-design, sequences Classification Neural network

ProtoTree [86] 2021 Both NA by-design, FGCV Classification Neural network

M-PEER [37] 2023 Both Post-hoc No Regression NA

CONCEPTS Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Need labeled concepts Concepts format

OPAM [94] 2017 Global NA By-design, FGCV Yes part-based

TCAV [66] 2018 Global Post-hoc Neural network Yes same as input

ACE [39] 2019 Global Post-hoc Neural network No segmented parts

Zhang et al. [118] 2021 Global Post-hoc Neural network No segmented parts

CRAFT [35] 2022 Global Post-hoc Neural network No crops

Particul [116] 2017 Global NA By-design, FGCV Yes part-based

7 Conclusions and Discussions

This paper explored explainability literature about natural example-based
explainability and provided a general social science justification for example-
based XAI. We described each kind of explanation possible through samples.
For each possibility, we reviewed what explanation they bring, then classified
and presented the major methods. We summarize all explored methods in Table
1. We saw that all those methods are based on a notion of similarity. As such,
for them to explain the model, the similarity between instances should take
into account the model. There are two ways of doing it: project the instances
in a meaningful space for the model and/or weight instances. Hence, similarity
definitions from factuals (Sect. 2.1) can be ported to other formats and social
science groundings could also be shared. However, if the training data is sparse
in the search space, finding cases with good properties for a given format may
be challenging.

Among the formats, contrastive explanations, prototypes, and concept exam-
ples can be generated, which brings competition to non-generative methods.
We argue that both generative and natural examples have their pros and cons.
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Indeed, natural examples are simple to compute and ensure plausibility while
generated examples can be more proximal and sparse but require a model to
explain another model (see Sect. 3.1 for properties definitions).

We have illustrated that the different example-based formats bring different
kinds of explanations, and each one has its own advantages, Fig. 1 shows their
diversity, have their scope of application, and complementarity. To summarize
those advantages non-exhaustively: i) Factuals give confidence in the decisions of
the model and are pertinent in AI-assisted decisions. ii) For classification, con-
trastive explanations give local insight into the decision boundary. iii) Influential
instances explain how samples influenced the model training. iv) Prototypes and
concepts give information on the whole model behavior, but may also be used
to explain decisions. Nonetheless, like all explanations, we cannot be sure that
humans will have a correct understanding of the model or the decision. Further-
more, there is no consensus on how to ensure a given method indeed explains the
decisions or inner workings of the model. Moreover, for example-based explain-
ability, the data is used as an explanation, hence, without profound knowledge of
the dataset, humans will not be able to draw conclusions through such explana-
tions. Therefore, the evaluation of example-based methods should always include
a user study, which are scarce in this field and in XAI in general, especially with
the lack of availability and consensus around quantitative metrics to evaluate
example-based explanations. Finally, we hope our work will motivate, facilitate
and help researchers to keep on developing the field of XAI and in particular,
natural example-based XAI and to address the identified challenges.
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