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Preface

This is an exciting time to be a researcher in eXplainable Artificial Intelligence (xAI),
a scholar’s discipline that has undergone significant growth and development over the
past few years. xAI has evolved from a mere topic within Artificial Intelligence (AI) to
a multidisciplinary, interdisciplinary and transdisciplinary fermenting field of research.
AI-driven technologies, Machine Learning (ML) and specifically Deep Learning (DL)
applications have entered our everyday lives and society, with exponential, incessant
growth. These have been successfully applied in various real-world contexts such as
finance, education and healthcare, just to mention a few. The reasons are the great capa-
bility of these technologies to learn patterns from complex, non-linearmulti-dimensional
data, thus enabling the design of solutions for real-world problems such as forecasting,
recommendation, classification, prediction anddata generation.However, these solutions
are often too opaque, non-transparent and non-interpretable, with a negative impact on
the explainability of their inferences and outputs. As a consequence, this has led regula-
tors and policymakers to increase pressure for the design of AI-based technologies that
are better aligned with humans and our rights and that do not have a negative effect on
society. This call for transparency, interpretability and ethics has made xAI an active and
necessary research area. As a consequence, many reviews are published every year, and
an abundance of theoretical and practical contributions are appearing every month, some
application-dependent, some method or discipline-specific, and some context-agnostic.
Similarly, various workshops around the world are organised by independent scholars at
larger events, each focused on certain aspects of the explainability of AI-based systems.
Unfortunately, these are scattered, often organised at a national level, thus attracting only
local scholars. This motivated the creation of a larger event, the first World Conference
on eXplainable Artificial Intelligence (xAI 2023). The aim was and is to bring together
researchers, academics and professionals from different disciplines, and to promote the
sharing and discussion of knowledge, new perspectives, experiences and innovations in
xAI.

Against the initial expectations whereby a few dozen authors and attendees were
forecasted, xAI 2023 broke several records. Firstly, more than 220 articles were sub-
mitted to the different tracks. Secondly, authors and attendees were from more than 35
countries, making this conference a truly world event. Thirdly, the acceptance rate of
submitted articles was already relatively low (~40%), despite this being only the first
edition of, hopefully, a long series of conferences, with 94 manuscripts being accepted.
It is thus a great privilege to present the proceedings of the first World Conference on
eXplainable Artificial Intelligence, held in Belem, Lisbon, Portugal, from the 26th to
the 28th of July at the beautiful Cultural Congress Center of Belem. Split over three
volumes, this book aggregates a collection of the best contributions received and pre-
sented at xAI 2023, describing recent developments in the context of theoretical and
practical models, methods and techniques in eXplainable Artificial Intelligence. The
accepted articles were selected through a strict, single-blind peer-review process. Each
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article received at least three reviews from scholars in academia and industry, with 99%
of them holding a PhD in an area relevant to the topics of the conference. The general
chair of the conference, along with the programme committee chairs, carefully selected
the top contributions by ranking articles across several objective criteria and evaluating
and triangulating the qualitative feedback left by the 188 international reviewers. The
reviewing process was intensive, and it ensured that xAI 2023 adhered to the highest
standards of quality. All accepted contributions are included in these proceedings and
were invited to give oral presentations. Besides the main technical track, several special
tracks were introduced, each proposed and chaired by one or more scholars, to allow the
identification of highly innovative areas within the larger field of eXplainable Artificial
Intelligence. Special track chairs were encouraged to be innovative in designing their
topics to attract relevant scholars worldwide. Similarly, a parallel track was designed to
give a chance to scholars to submit novel late-breaking pieces of work that are specific
in-progress research studies relevant to xAI, and present them as posters during the main
event. A demo track was also organised, providing a mechanism for scholars to demo
software prototypes on explainability or real-world applications of explainable AI-based
systems. A doctoral consortium was organised, with lectures delivered by renowned sci-
entists to PhD scholars who submitted their doctoral proposals on future research related
to eXplainable Artificial Intelligence. A separate programme committee was set up for
the late-breaking work, demo and doctoral consortium tracks.

Finally, a panel discussion was held with renowned scholars in xAI and all in all,
the 1st World Conference on eXplainable Artificial Intelligence offered a truly multi-
disciplinary view while inspiring the attendees to come up with solid recommendations
to tackle hot-topic challenges of current technologies built with Artificial Intelligence.
As the Monument of the Discoveries, right outside the conference centre, celebrates the
Portuguese Age of Discovery during the 15th and 16th centuries, xAI 2023 symbolises
a new mechanism for exploring and presenting novel directions for the design of the
explainable intelligent systems of the future that are transparent, sustainable and ethical
and have a positive impact on humans.

Luca Longo
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Abstract. Deep learning (DL) models achieve remarkable performance
in classification tasks. However, models with high complexity can not be
used in many risk-sensitive applications unless a comprehensible expla-
nation is presented. Explainable artificial intelligence (xAI) focuses on
the research to explain the decision-making of AI systems like DL. We
extend a recent method of Class Activation Maps (CAMs) which visual-
izes the importance of each feature of a data sample contributing to the
classification. In this paper, we aggregate CAMs from multiple samples
to show a global explanation of the classification for semantically struc-
tured data. The aggregation allows the analyst to make sophisticated
assumptions and analyze them with further drill-down visualizations.
Our visual representation for the global CAM illustrates the impact of
each feature with a square glyph containing two indicators. The color of
the square indicates the classification impact of this feature. The size of
the filled square describes the variability of the impact between single
samples. For interesting features that require further analysis, a detailed
view is necessary that provides the distribution of these values. We pro-
pose an interactive histogram to filter samples and refine the CAM to
show relevant samples only. Our approach allows an analyst to detect
important features of high-dimensional data and derive adjustments to
the AI model based on our global explanation visualization.

Keywords: Explainable AI · Feature Importance · Visualization

1 Introduction

Machine learning has progressed from simple algorithms to highly complex mod-
els. While early approaches could be interpreted easily, new and more sophisti-
cated models are difficult to explain. The architecture of simple models, e.g., deci-
sion trees, is comprehensible and its decision-making process can be explained by
the decision path in the tree. More recent deep learning (DL) models based neural
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networks outperform simple models in many areas such as medicine, autonomous
robots and vehicles, speech, audio and image processing. These DL models are
constructed by many nested and interconnected neurons that are able to identify
complex patterns in data. However, just the model performance is not sufficient
for risk-sensitive applications. Transparency and trust in the models are consid-
ered very important not only for ML developers but also for the domain experts
who use these models. Therefore, more attention is put into research on how
to explain complex artificial intelligence (AI) approaches. Explainable artificial
intelligence (xAI) focuses on techniques and algorithms to provide high-quality
interpretable, human-understandable explanations of AI decisions. This builds
trust in the models, helps to better understand the models, and allows to evaluate
the models by domain experts. Based on this, a higher accuracy and correctness
of models is achievable.

The decision explanations can be described locally, providing an explanation
for a particular classified sample, as well as globally, describing the importance
of the features as a whole. One of these techniques is called class activation
map (CAM) and has its origin in image classification. The CAM approach is
restricted to convolutional neural networks (CNN) with a global average pooling
(GAP) layer after the last convolutional layer and has the advantage of a local
explanation that is directly calculated from the trained CNN model. A CAM
visualizes the impacting regions of an image that led to the specific classification
by linearly combining activation maps (also called feature maps) on the last layer
with the weights of the last fully connected layer corresponding to a target class
neuron.

We transfer this approach to semantically structured data and extend it
to aggregated CAMs with an interactive visualization approach. Semantically
structured data has a predefined structure where the order or position of each
information unit is fixed. For example, the header information for network pack-
ets has a defined structure. Because the data is semantically structured, an
aggregation of CAMs is feasible and we can derive global information about the
classification. Our approach scales well with high-dimensional data and provides
an overview visualization and an interactive histogram to filter relevant parts to
improve the analysis.

Our visualization design is based on the established visualization mantra
by Shneiderman [49]: “Overview first, zoom and filter, details on demand”. The
goal is to provide an overview for a global explanation of the features that
had a strong or weak impact on the classification for a particular class. This
overview is calculated on the basis of the aggregated CAMs. Then, the analyst
can select single features that are interesting and view the distribution of impacts
for all samples for this feature in a histogram. Finally, the histogram can be
interactively used as a filter to exclude or select parts of the CAM samples and
show a refined aggregation visualization. The iterative approach of a drill-down
can be leveraged to refine a CAM and the underlying patterns it reveals, enabling
further examination and analysis. Overall, our contributions are:
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1. An aggregation approach for CAMs as a global explanation technique for the
classification of semantically structured data.

2. A visualization design to show two key indicators for a fast overview of the
global explainability of a class.

3. An interactive approach to filter relevant samples to create a more detailed
level of explainability.

2 Related Work

We group the work that is related. We first discuss xAI approaches, before we
look at related work that proposes visual techniques.

2.1 Explainable AI

There is a wide range of different methods for xAI [5,37,53]. In this section, we
will review the most common methods, that are also intended for a local expla-
nation, and through the extensions can also be used for a global explanation.

One of the established methods is local interpretable model-agnostic expla-
nations (LIME) [44]. This approach builds local surrogate models that are inter-
pretable with the goal to approximate the individual predictions of the under-
lying complex model. In this approach, new data points are created consisting
of perturbed samples and the corresponding predictions of the black box model.
These newly generated samples are weighted based on the closeness to the corre-
sponding point. Then LIME trains an interpretable model on this new dataset.
Based on this interpretable model, the prediction of the black box model is
explained. In this approach, an approximated model is built for the local expla-
nations but it does not have to be a reliable global explanation. Furthermore,
LIME indicates the instability of the explanations [4].

Another approach inspired by Shapley [48] applied in cooperative game the-
ory and has been adapted for use in xAI to attribute the contribution of each
feature to an individual prediction. The goal of Shapley values is to estimate the
contributions to the final model outcome from each feature separately among all
possible feature combinations while preserving the sum of contributions being
equal to the final outcome. The calculation of Shapley values is only feasible for
low-dimensional data. For multi-dimensional data KernelSHAP and TreeSHAP
were presented by Lundberg et al. [34] to compute approximated Shapley val-
ues. The KernelSHAP is a kernel-based estimation approach for Shapley values
inspired by local surrogate models from the aforementioned proposed LIME app-
roach [44]. The TreeSHAP reduces the computational complexity but works only
with tree-based ML models such as decision trees, random forests and gradient
boosted trees. Based on the work of Lundberg et al. [34] some further mod-
ified KernelSHAP variants of this method were proposed [1] which considers
feature dependencies in data. These approaches provide impact values for each
feature for an individual sample prediction. The global impact is determined
also by averaging the absolute Shapley values per feature in the data, similar to
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our approach. Then the resulting values can be plotted in a bar chart, sorted by
decreasing impact. However, the variability among the absolute Shapley values is
not considered. Furthermore, the Shapley values of all samples can be visualized
in the so-called summary plot, which illustrates the distribution of the Shapley
values per feature. In this plot, the y-axis is determined by feature name and
the Shapley values of each sample are located on the x-axis. These visualizations
are used only to explain the model decisions for one class.

Methods like LIME or SHAP are based on an explanation by learning an
interpretable approximated model locally around the prediction. Our approach
is based on a method that is extracted directly from the learned model which is
applied to CNN models and is called Class Activation Map (CAM) [65]. CAM is
an explanation technique used in computer vision to interpret and understand
the decisions made by convolutional neural networks (CNNs) using global aver-
age pooling (GAP) for image classification tasks. CAM provides a saliency map
of impacting regions of an image that contributed most to the prediction of a
particular class. The GAP is performed on the convolutional feature maps from
the last layer. These resulting values are used as features for a fully-connected
layer that produces the desired output layer. We obtain the resulting CAM by
summing convolutional feature maps multiplied by the back-projected weights
of the output layer. The use of CAM was applied to the time series data [61] as
well as to network data [16]. For this type of data, it is meaningful to leave one
dimension of the kernels at 1 since the input data samples represent a vector. In
work by Cherepanov et al. [16], the CAMs were already aggregated by averaging
to analyze the global differences between the network application classes. In their
work, network experts were interviewed. They said that a single CAM is simple
and intuitive to understand and fits within the alignment of the hexadecimal
representation of PCAPs. In this work, we extend the visualization of aggrega-
tion and also provide several methods for an analyst to build the resulting CAM
for a global explanation.

2.2 Visualization

Information visualization plays a crucial role in assisting, controlling, refining,
and comparing for various domain and ML experts at different stages of an
ML pipeline [15,20,24,33,46]. From the beginning of this pipeline, these visual-
ization approaches can be used to facilitate the understanding of complex raw
data. Visualization of data [59], and data transformation [21], allow experts to
gain insight, identify patterns, and uncover relationships [47]. For selecting a fit-
ting algorithm, visualization methods provide a valuable means of comparison.
Experts can interactively benchmark the performance of different algorithms,
allowing them to make informed decisions based on their specific needs and
goals [42,51]. In this way, experts can select the most appropriate algorithm for
their tasks, promoting efficient and effective analysis. The information visual-
ization and visual analytics research fields propose a number of approaches that
cover these points [13,50]. Furthermore, visualization facilitates the fine-tuning
of parameters for various methods. By visually evaluating the impact of different
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parameter settings on the results, ML experts can optimize the performance of
their chosen algorithms [14]. This iterative process empowers users to refine and
enhance their models, leading to improved accuracy and reliability. There are also
some approaches that visually explain how some ML methods work [58,63,64].
Finally, visualization serves as a means to represent the results of analyses and
predictions made by models. It enables domain experts to communicate and com-
prehend the outcomes and diagnose the model and identify problems effectively
as proposed in work by Collaris et al. [17]. Additionally, the integration of xAI
techniques into visualization empowers domain analysts to understand the pre-
dictions made by models in a transparent and interpretable manner [16,22,52].
This ensures that users can trust and comprehend the decision-making process
of the model, enhancing their confidence in the results [13].

In the past heatmaps were mostly used for CAM visualization, hence, we
highlight related work from the visualization and machine learning communi-
ties. First, we show visualizations for CAMs and then compare them to high-
dimensional heatmap visualizations for other application domains. With that,
we explain the advantages and shortcomings of these approaches and provide a
design rationale based on the findings.

CAMs and their visualization originated from the image classification
domain, where the goal is to show which pixels lead to the detection of an
object in an image. Therefore, the image is overlayed with a semi-transparent
heatmap using a rainbow color map [65]. Orange and red colors show a high
recognition rate while purple and blue show no signal. Recent approaches show
how these visualizations are used extensively to explain and improve the recog-
nition models [29,39,62]. While this visualization method has its benefits, all
of the approaches use a rainbow color map. Research in the visualization and
cognition community showed that this color map has a lack of perceptual order-
ing, often misleading the interpretation [8]. The data domain for CAMs can be
normalized to a range around zero, e.g. −1 to +1, where −1 is an indicator that
this feature does not represent a class and +1 is a clear indicator for a class.
Research has shown that for this diverging data domain, certain colors are more
suitable for human perception [26]. One of these is for example the blue to red
color map with a neutral white in the middle. Based on this we adapted our
visualization of CAMs. This color map is also often used in high-dimensional
heatmap visualization in other research domains [7]. For structured data, multi-
ple approaches have shown a matrix-styled heatmap, highlighting the separation
of single features [36]. For such high-dimensional visualizations interactive fea-
tures like selecting, sorting and filtering are very important [23]. Other works
from the visualization community extended the matrix heatmap visualization
with additional visual indicators besides color [7,45] or extended it to hexagonal
maps [55]. Based on these approaches we used the size of the filled rectangle
in a matrix cell to visualize another quantitative value. This improves the fast
overview of the data and is beneficial for our use case of aggregated global CAMs
as we can also show the variability of the aggregation.
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Finally, the interactivity of such an aggregated visualization is important [49].
The user has to be able to focus the analysis on relevant parts of the data and see
the raw data to understand the aggregation. We designed the visual-interactive
approach based on the established visualization mantra.

Based on the related work we extend the CAM visualization and add new
interactive elements to improve the analysis workflow. According to the best of
our knowledge, none of the recent approaches aggregate CAMs and visualize
them the way we do in this paper.

3 Approach

3.1 Semantically Structured Data

Semantically structured data is a special form of structured data where the order
or position of each information unit is fixed. Consequently, it becomes feasible to
aggregate local explanations in the form of CAMs for each information unit or
feature across multiple samples. One example of this is network traffic data that
has a specific protocol header information with a fixed order of units. Images on
the contrary are not semantically structured because an object can be at different
parts of the image. A difference to structured high-dimensional data is that
semantically structured data should not be resorted for the visualization because
neighborhood information is lost. Our approach is applicable if the aggregated
features with the same semantic have the same position among all samples.

3.2 Technical Background

The CAM technique originated from image classification in the field of computer
vision. In the case of images, each pixel is considered as input. The goal of the
method is to highlight regions of an image sample that had the highest impact
on the classification of the predicted class. The CAMs are extracted from a
CNN model. Our approach focuses on semantically structured data in general.
Therefore, we process each unit of transformed data as an input to the model.
For example, if a sample is represented in bytes, each byte is considered as input.
The kernels are not suitable with the second dimension greater than 1. Because
the input sample is considered as an 1D vector and not as an image, where the
upper and lower neighboring pixels can be related to each other. In the case of
an 1D vector, only the neighboring properties in the same axis might be related
to each other. For this reason, 1D kernels are applied with different lengths
for CNN in our approach. Global average pooling (GAP) is performed on the
feature maps from the last convolutional layer. Then, the resulting values after
GAP are connected to the final fully-connected layer that produces the desired
classification output. This structure allows us to construct a CAM by projecting
back the weights of the output layer on the convolutional feature maps. In this
way, we calculate the resulting CAM as a sum of all convolutional feature maps
of the last convolutional layer multiplied by the weights of the output layer. The
calculation of CAM is illustrated in Fig. 1a.
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Fig. 1. (a) represents the calculation of a CAM for the local explanation of a
sample. A CAM is obtained by taking the output of the last convolutional layer of
the CNN and applying global average pooling (GAP) to reduce the spatial dimensions
of the feature map to a single value per channel. This results in a feature vector that
represents the importance of each channel in the final prediction. The feature vector is
then passed through a softmax activation to obtain the class probabilities. The weighted
sum of the feature maps, where the weights are the class probabilities, is then computed
to obtain the final heatmap. (b) represents our approach to aggregating the CAMs
for a specific class. The result of the aggregation is represented by two indicators.
The first one aggregates the impact values for a feature, which is represented by the
coloring. For the second the variability is calculated, which is represented by the size
of a grid.

3.3 Aggregation of CAMs

The next step is to aggregate the CAMs of each predicted class. A number of
CAMs of the same class are collected into an array. The result is a 2D array in
which each row represents a CAM (horizontal axis) and each column represents
the impact of the feature in a CAM (vertical axis). Our next task is to build an
aggregated CAM that represents all these CAMs considering the values of the
vertical axis as well as the variability among them. This procedure is shown in
Fig. 1b.
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We aggregate the values along the vertical axis to describe the importance of
each feature with a single value, building the global CAM in the process. For this,
we provide multiple methods for the aggregation. The result of these methods
can represent different aspects of the impact distribution in the classification
analysis. One of these methods is the calculation of the mean which can be
used to assess the overall average of the distribution. An alternative method is
the median of the CAM values. This serves a similar purpose but is less prone
to be influenced by extreme values, that might be outliers. When two or more
peaks in the density of the impact distribution exist, methods for calculating the
global mode of a density are meaningful. For this, we apply the kernel density
estimation method and take the most frequent value of the density [6].

In a potential application, it is reasonable to provide all these aggregation
methods since they enable different types of analysis for users. Additionally, we
calculate a second indicator that represents the variability of the feature impacts
between all CAMs for the individual class. This value is used to assess if the
range of the impact values is significantly predominant between all local CAMs
of the considered class or the opposite, the values are highly spread out. As the
indicator of variability, we implemented and tested variance, standard deviation,
entropy, and the Gini coefficient. Before the calculation is applied, we normalize
the values to [0, 1] to achieve comparability between the resulting variability
values. After the calculation, in the case of variance and standard deviation,
the results are normalized again to [0, 1] because the resulting value can be
in the range of 0 to 0.25 or 0.5 respectively. This is done to ensure the same
value domains for all variability indicators. After testing these four variability
measures, we found that the values calculated through entropy spanned the value
range more evenly and thus were best suited for our dataset. However, all these
variability measures describe different characteristics of variability and therefore
should all be included as a user parameter in a potential application.

3.4 Visualization

Getting a better global understanding of CNN model decisions in classification
tasks is the main goal of this work. Visualizing numerical and statistical data
has proven to enhance the capability of humans to understand complex subjects.
This is the reason why visualizing the impact values and their distribution is an
essential part of our approach. We utilize visualizations to provide an overview
over large amounts of data points while simultaneously allowing the user to
detect interesting patterns at a glance. For the visualization of distributions box
plots or violin plots are commonly used [27]. However, while these plots work
great to display and compare multiple distributions of values, they only work
for the comparison of relatively few distributions. Since for our use case, a com-
parison of a hundred or more distributions is necessary we decided to propose
a different solution. To make the visualization scale better for our needs we
map the distributions to two indicators, it is aggregation and variability, before
visualizing them. Further, we suggest interactive visualizations that reveal addi-
tional information about underlying data and its distributions on demand. This
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Fig. 2. Overview of visual mapping of the two indicators. The color represents the
aggregated feature impact values while the size illustrates the variability of the impact
distribution.

allows the analysts to drill-down and explore interesting regions of our explain-
ability approach to gain a more robust understanding of the model behavior. In
detail, we start with a visualization of the global aggregated CAMs including
their variability values. For this, we transform the long one-dimensional vector
of aggregated impact values into lines that we align on top of each other. This
results in a structure similar to a text passage in a book where the features are
ordered from left to right in a line and the vertical orientation of the lines is from
top to bottom. Each grid cell in this visualization contains a square patch that
represents two values, the aggregation and the variability, which we presented
in the previous Sect. 3.2. We map the aggregated impact value for the feature
importance to color. This way, it enables the analysts to efficiently detect pat-
terns or regions in the long vector that are either contributing the most to the
prediction of a class or are notable for other reasons. We choose a divergent color
map as seen in Fig. 2 which maps features with the highest aggregated values
to the color red, the features with the smallest aggregated value to blue, and
the ones in the center of the value range to white. This coloring choice clearly
indicates the most and least impactful features for the classification while also
highlighting features where the model provides mixed results. We also consid-
ered classical color maps often used in the machine learning community like jet,
viridis and turbo [8,31,43]. We discarded the former because of its issues regard-
ing the brightness profile and the unsuitability for color-blind people. The latter
two, while providing a higher distinguishability between values due to the use of
a wider range of colors, could not satisfy our need to highlight the values directly
in the center of the value range. Therefore, our choice was to implement a diverg-
ing color map, that keeps the colors familiar in the machine learning community
at the start and the end of the spectrum. This design choice was also motivated
by the work of Moreland [38] which reflects on the construction of diverging
color maps. The white color in the center of the spectrum represents distribu-
tions where blue and red values in the features CAMs have a similar presence
or mutually aggregate to a neutral value. Investigating the impact distributions
of such mixed cells might yield insights into the prediction mechanisms of the
model. The second parameter, the impact variability value, is mapped on the
size of the square patch which is centered in each grid cell. An alternative visual
representation that we considered for the representation of the impact variability
was a bar plot. It supports the comparison of cells that are one-dimensionally
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orientated. However, we discarded this option because for the alignment of cells
in 2D the benefits of a bar plot versus a square representation are mitigated. Fur-
ther, the bar charts, starting at the bottom of each cell, created visual disorder,
especially for the representation of a large amount of aggregated impact values.
The centering of the square patches avoids this negative effect (see Fig. 2). It
is important to define a minimum size for the squares, to still see the color of
the aggregation values represented. This way analysts can inspect the impact
values of the feature regardless of their variability. Further, we choose the size of
the squares based on their area to accommodate the quadratic interdependency
of the side length to area of the squares. This leads to a perceptually intuitive
mapping of the numeric values to the visual representation. To display the actual
values of the aggregation and variability, a tooltip should be provided, that can
be accessed by hovering over one of the grid cells.

Fig. 3. Visual-interactive drill-down: Clicking on a colored cell in the grid shows
the histogram of impact values in this cell. A range selection control allows filtering
of the samples that then are used to display a CAM based on the aggregation of the
selected subset. This interaction can be iteratively repeated.

Users can interactively select the aggregation and variability measures. This
way, they can configure the visualization outputs to their analysis needs. To
investigate distributions of interesting impact value aggregations the analysts
can click on the corresponding cell. This interaction shows a histogram plot of
the aggregated impact values as depicted in Fig. 3. Here, the analysts can explore
the distribution characteristics and interactively select regions of the distribution
with a range selector control. This interaction can be meaningful for features,
where the histogram indicates multiple modes in the impact value distribution.
Multiple modes suggest, that the same feature entails different impact indicators
which is an interesting case worth analyzing. Selecting a range of the distribution
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provides a view of a sub-global CAM that has identical visual properties as the
initially shown global CAM. This sub-global CAM is aggregated based on the
samples that correspond to the selection in the histogram as shown in Fig. 3.
Viewing such sub-global CAMs can help the analyst to understand if certain
features in this class are not relevant for all samples or on the contrary relevant.
The process of drilling down the aggregated CAMs can be iteratively repeated
until the displayed CAM is only based on a single sample. Finally, interactive
annotations of the inspected cells allow the analysts to mark cells during their
exploration of the CAMs. This way, interesting cells can be highlighted, while
cells that did not contribute to the understanding of the model could be discarded
by marking them as not relevant for the prediction.

4 Usage Scenario

In this usage scenario, we describe how a network domain expert can exploit
our proposed approach of aggregated CAMs for global explanations of predicted
application classes by a CNN model. The classification of network data has
received wide attention both in the scientific community and in the industry.
Classifying network data is important for network security, network monitoring
and management, traffic analysis, resource optimization, and cost management.
Accurate classification of network data provides insights into the nature of net-
work traffic, enabling organizations to ensure network security, optimize network
performance, and effectively manage network resources. For this reason, there
is a wide variety of approaches for network traffic classification, including solu-
tions based on deep learning [11,40,41,57]. Since certain decisions based on these
traffic classifications can be made, an explanation of the predictions is necessary.
xAI enables transparency, interpretability, fairness, accountability, and security
of AI systems, as well as increases trust from network experts [9,18,25]. Fur-
thermore, through the explanations network experts can verify the correctness
and robustness of the model. By incorporating their feedback ML experts can
improve the model.

In our scenario, ML experts provide a model for network analysts. The model
is based on a CNN architecture that performs best for network traffic data [2,
32]. The applied model has a similar structure as described in previous related
work [16,32]. The CNN consists of the following feature map dimensions in the
hidden layers: 16, 32, 64, 128, 128, 128 with stride size of 1 and 1D kernel size
of 5, followed by GAP and a fully connected layer with the same number of
outputs as application classes in the dataset. The CNN model was trained using
the categorical cross entropy as loss function and Adam optimizer. The model
is trained on the ISCX VPN-nonVPN dataset which is a widely used dataset in
network classification research [10,28,60]. This dataset suffers from severe class
imbalance, with the FTPS class having a significantly higher number of samples
(7872K) compared to the AIM class (only 5K samples). To address this issue,
we apply random undersampling to balance the classes [19], aiming to have
approximately 5K samples per class, following a similar approach used in the
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work of Lotfollahi et al. [16,32]. In the data preprocessing phase, the Ethernet
header is removed, source and destination IP addresses are masked to 0.0.0.0
and the shorter samples are padded to a fixed size of 1500 bytes [16,32]. We
train the model until it achieves solid performance - on the training dataset: F1:
93.4 Recall: 93.5, Precision: 93.7, and on the test dataset F1: 92.8 Recall: 92.8,
Precision: 93.0.

Pattern Observation. With the integration of the classification and its expla-
nations in tools similar to Wireshark [12,56], the experts are able to see the
impact of each byte for the prediction of an application class. A single CAM
illustrates a local explanation of a classification. This explanation is useful for a
closer examination of individual network packets. While local explanations pro-
vide a finer-grained understanding of the model predictions on individual sam-
ples, global explanations generalize to a broader overview of the model behavior.
With our approach, we aim to explain a class globally by aggregating the CAMs
for a particular class. The global representation allows the analyst to see the
differences between the classes and deduce insight from them. The first indi-
cator in our visualization is the color, which tells how many bytes in a PCAP
contribute to a class prediction. The second indicator is the size of the square,
that reflects the variability of the impact values in the distribution. The average
of impact values for the first indicator and for the second entropy are the most
representative on the dataset.

The resulting global CAM with our provided visualization allows analysts to
easily detect the impact of each feature. The analysis of large red cells is the
first step in the global CAM examination, as the analyst first confirms if the
system is in line with his expert knowledge about network packets. The patterns
represent the significant bytes of the packets of this class. The analyst examines
distinct CAMs and starts to identify patterns among the application classes.
She observes that certain bytes or byte ranges have different patterns of high-
importance features (red cells). In Fig. 4b four patterns of four distinct classes
are represented. Some application classes share similar patterns of byte impor-
tance, indicating potential similarities in their network traffic behaviors, such as
the 10–12th bytes in three classes except the last one (Fig. 4b). These refer to
the protocol and header checksum in the IP header. The first information can
be quickly verified because specific applications use UDP, while others use TCP
protocol. Every verification that an expert can confirm through his knowledge
strengthens his confidence in the AI system. It is apparent that also other impor-
tant bytes in the UDP or TCP header are significant for the classification. Next,
the analyst examines the involved bytes in the header which represent the port
number. Because they are also significant to the application class the analyst
can confirm that the system is correct in this case, which again raises the trust
in the system. Now more questionable impact values are analyzed. Certain bytes
located at the beginning of payloads are significant for classification as seen in
Fig. 4b in the third CAM visualization. This indicates information presenting the
header of the corresponding application which is investigated further, by using
the distribution histogram to reduce the data to relevant parts. The resulting
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patterns are analyzed by the expert and provide a comprehensive understanding
of the data as well as the behavior of the model. Important features and conse-
quently their data content can be identified and reviewed and specific decisions
can be deployed for the network based on the findings.

Fig. 4. (a) A single CAM (10× 150 dimensional) that represents a classified PCAP
sample, the encrypted part of the CAM is cut out due to the size and irrelevance on clas-
sification. (b) Four aggregated CAMs represent distinct application classes of PCAPs.
The aggregated CAMs are shortened to a smaller dimension since the encrypted part
of PCAPs in the CAMs is always irrelevant for the predictions.

Drill-Down Exploration. For multi-peak impact value distributions, it is use-
ful to refine the aggregated CAMs. Specific impact distributions within a class
can potentially cancel out each other through aggregation. Cells that might con-
tain such interference can be identified by the size of the squares. This is because
smaller squares indicate a strong variability of impact values between the local
CAMs. For example, if a feature of a class is significant in many samples, but, in
others, this feature is not relevant for the classification. For instance, this can be
information in the header that is not present in all network packages of a class.
In this case, the network expert refines a global CAM for a class interactively
based on a cell of interest with a smaller square. By selecting this cell it is useful
to see the distribution of CAM impact values (see Fig. 5). If the visualization of
the CAM values shows multiple modes in the distribution, it is meaningful to
separate them from each other. The expert can filter the histogram by selecting
a unique mode. The selection of the unique mode provides a uniform distribution
of the impact values. In this way, the local explanations are selected where this
feature was impacting. This allows the expert to filter out these packets with
different impact features and investigate and compare their data content.
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Fig. 5. An expert refines the global CAM for an application class (ICQ) by examining
the distribution of impact values by eliminating particular CAMs.

Model Improvement. An individual CAM and aggregated CAMs are valuable
in different contexts, and a combination of both provides a more comprehensive
understanding of the model’s behavior, strengths, and limitations. Using the
local CAM as well as the global aggregated CAMs allows analysts to check the
expectations of classifications through their expertise. In the process of using the
model, its correctness and performance can be verified. In this way, the weak-
nesses of the classifications can be identified. There are potential weaknesses,
such as the difficulty to distinguish certain classes from each other. Particular
features of the input data could be misleading, such as the IP address, which is
often eliminated from the input so as not to bias it [16,32]. This avoids overfit-
ting, moreover, IP addresses have a high volatility, which would invalidate the
model immediately. Furthermore, in the case of encrypted files, it is apparent
that including the full 1500 bytes in the classification is not useful since the
CAMs show that the encrypted part of the PCAPs is irrelevant for the classifi-
cation of all PCAPs (see Fig. 4a). Thus, the analyst can keep the model much
smaller in terms of the input data and consequently in terms of the total number
of model parameters. The constant innovations and changes of the applications
can also cause a change in the data characteristics of network traffic, called
data drift [3]. When data drift occurs, the model performance may become less
accurate or reliable. The explainability that clarifies classifications to an analyst
helps to diagnose the reasons for model performance degradation and provides
insight into the factors that contribute to data drift. In summary, aggregated
CAMs help to diagnose, explain, and evaluate machine learning models, thereby
enabling ML experts together with network analysts to maintain the reliability,
correctness, and trustworthiness of a model.
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5 Discussion and Future Work

Local CAMs provide an explanation of classification for one sample. With our
approach, it is possible to aggregate CAMs generalizing a global explainability
for each class. Our proposed visualization for the resulting CAM, the significant
values are visualized taking into account also the variance among the CAM values
for each feature. Our visualization allows a user to quickly discover impacting
features in high-dimensional data. The resulting CAMs for each class represent
the impacting values. Thus, it is possible to detect the most important features of
a class and also to compare the patterns of these classes. However, our approach
is limited to the CNN models trained on the semantically structured data, since
the position of the features plays a significant role for the aggregation.

A future research direction might be to compare the CAMs with a distance
measure. A resulting CAM is a two-dimensional vector, so by the distance mea-
sures also the similarities among the CAMs could be calculated. An investigation
into which metric would be suitable for this is also interesting. The vectors of a
CAM could also be weighted according to the importance of the impacting value
or the variance between the values.

The patterns in a CAM may not always be easy to understand, which may
prevent the extraction of simple patterns for each class. For example, Fig. 6
illustrates three classes from the UJIIndoorLoc dataset [54], in which the classes
are distinguishable in terms of impacting features, however, the patterns appear
to be too complex. The patterns have many impact features that are spread
in an unstructured way in the aggregated CAM. Such patterns can possibly
consist of different interferences in the aggregation caused by multiple modes
in the impact distributions. Further, CAM refinement is suitable for this. The
illustrated impact features in the global CAM reduce the possible starting points
of selection for a CAM refinement. However, this remains as not a simple problem
and does not guarantee the best result after a user’s modification. It can also
happen that the impacting properties are the same in distinct classes because
they only show the position in the data and the content in this position must be
examined by the user.

It would also be possible to sort the properties according to the feature
impact value for further inspection if the data allows such a reordering. That
way, correlating features would appear at similar locations, enhancing mental
map building within the user, and therefore potentially ease the sense-making
process. However, not all data can be sorted in this way. For network data such
as PCAPs, each byte is an input into the CNN model and particular segments
consist of multiple bytes [35].

There is also an option to use our visualization approach to illustrate the
correlation between the impact values of gathered local CAMs. The collection of
CAMs represents a matrix (number of impact values x number of CAMs), this
collection can also be used to construct a correlation matrix that represents the
correlation between the impact values. The correlation matrix would have the
size number of impact values x number of impact values. In this way, the correla-
tions between the impact values in the CAMs can be obtained. The correlations
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Fig. 6. Aggregated CAMs for three distinct classes of the UJIIndoorLoc dataset [54].

matrix can also be visualized with our proposed visualization where the colors
represent the positive or negative correlation value and the size represents the
absolute correlation value. The correlation may possibly indicate which features
have a synergetic effect on the model behavior.

In our ongoing research, we plan to further advance our proposed approach
of aggregated CAMs by integrating it into a practical application that caters
to the specific needs of domain experts. NetCapVis [16,56], an application from
our previous work is especially suitable for this. There, we already evaluated
the visualization of single CAMs for PCAP data with network experts. The
results were overwhelmingly positive. We plan to integrate and evaluate our
proposed approach with this application to confirm if experts can benefit from
the global CAMs and their interactive refinement, allowing the classification to
be interpreted and explained. We will seek their perspectives on the usefulness
of the explanations in understanding network traffic patterns. Specific aspects
that will be evaluated include:

– Interpretability: the extent to which the global explanations are under-
standable and interpretable by network experts, allowing them to gain
insights into the underlying factors influencing the classification of different
application classes.

– Relevance: the relevance of the explanations to the domain knowledge and
expertise of the network experts, ensuring that the explanations align with
their expectations and provide valuable insights specific to their field.

– Actionability: the practical utility of the explanations in enabling the net-
work experts to take proactive actions, such as implementing targeted secu-
rity measures, refining network configurations, or detecting and mitigating
potential security threats effectively. This enables to validate and improve
the resulting model by ML experts.

– Usability: including its interactivity, we aim to ensure that it provides a
seamless and user-friendly experience for network experts.

We also plan to conduct evaluations to measure its potential for enhancing trust,
transparency, and accountability in AI systems. For this purpose, we will con-
duct controlled experiments, field observation and interviews, and performance



Towards the Visualization of Aggregated Class Activation Maps 19

evaluations [30]. By gathering feedback from network experts, we aim to gain a
better understanding of the strengths and weaknesses of our global explanation
approach and identify areas for improvement. The insights gained from this eval-
uation will help us refine our approach to better meet the needs and expectations
of domain experts and finally provide an intuitive user-friendly interactive end
solution.

6 Conclusion

In this paper, we presented an aggregation approach for CAMs that serves
as a global explanation technique for the classification of semantically struc-
tured data. Our visualization design provides two key indicators, namely feature
impact and variability, allowing for a quick overview of the global explainabil-
ity of a class. Furthermore, the interactive approach to filter relevant samples
enables a more detailed and granular level of explainability, empowering users
to delve deeper into the decision-making process of the model. We demonstrated
the practical applicability of our approach by presenting a usage scenario with
real data on a trained CNN model. Together, these advancements in aggregated
CAMs offer a comprehensive and interpretable solution for the global explain-
ability of predictions made by a CNN model, enhancing transparency and trust
in its decision-making.
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Abstract. Explainable Artificial Intelligence (XAI) has become increas-
ingly significant for improving the interpretability and trustworthiness of
machine learning models. While saliency maps have stolen the show for
the last few years in the XAI field, their ability to reflect models’ internal
processes has been questioned. Although less in the spotlight, example-
based XAI methods have continued to improve. It encompasses methods
that use examples as explanations for a machine learning model’s predic-
tions. This aligns with the psychological mechanisms of human reasoning
and makes example-based explanations natural and intuitive for users to
understand. Indeed, humans learn and reason by forming mental repre-
sentations of concepts based on examples.

This paper provides an overview of the state-of-the-art in natural
example-based XAI, describing the pros and cons of each approach.
A “natural” example simply means that it is directly drawn from the
training data without involving any generative process. The exclusion
of methods that require generating examples is justified by the need
for plausibility which is in some regards required to gain a user’s trust.
Consequently, this paper will explore the following family of methods:
similar examples, counterfactual and semi-factual, influential instances,
prototypes, and concepts. In particular, it will compare their seman-
tic definition, their cognitive impact, and added values. We hope it will
encourage and facilitate future work on natural example-based XAI.

Keywords: Explainability · XAI · Survey · Example-based ·
Case-based · Counterfactuals · Semi-factuals · Influence Functions ·
Prototypes · Concepts

1 Introduction

With the ever-growing complexity of machine learning models and their large dif-
fusion, understanding models’ decisions and behavior became a necessity. There-
fore, explainable artificial intelligence (XAI), the field that aims to understand
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Fig. 1. Natural example-based explanation formats with respect to the query and the
decision boundary. We can see similar examples are the closest elements to the query,
while counterfactuals and semi-factuals are on either side of the point of the decision
boundary the closest to the query. Prototypes are representative of each class in a dense
zone of the dataset and the influential instance bends the decision boundary.

and clarify models, flourished with a huge diversity of methods. Several tax-
onomies have been proposed to differentiate between methods, with common
components identified [2,4,50]: i) Local vs global: Local methods explain spe-
cific model decisions (in this case, the model’s input is called the studied sam-
ple or query), while global methods provide insight into overall model behav-
ior. ii) Post-hoc vs intrinsic vs explainable by-design: Post-hoc methods are
applied to trained models, while by-design methods produce inherently explain-
able models. Intrinsic methods take into account model training without affecting
the final state. iii) Black-box vs white-box: White-box methods require access
to model weights/gradients. iv) Explanation formats which include: attribu-
tion methods [33,104], concepts [35,66], surrogate models [67,96], rule-based
explanations [114], natural language explanations [19], dependencies [40,49], and
example-based explanations [57,113].

Nonetheless, no matter the taxonomy of a method, its explanations are aimed
at humans, hence, they should exploit the vast literature in philosophy, psy-
chology, and cognitive science on how humans generate, understand, and react
to explanations [79]. The psychology literature argued that, in everyday life,
humans use examples as references to understand, explain something, or demon-
strate their arguments [17,32,38,79,100]. Afterward, through user studies in the
XAI field [35,51,61], researchers validated that example-based explainability pro-
vides better explanations over several other formats where example-based XAI
corresponds to a family of methods where explanations are represented by or
communicated through samples, or part of samples like crops.

However, previous surveying works on example-based XAI are either cursory
as they survey XAI in general [2,4] or focus on a specific subset such as factual
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methods [26,28,102] or contrastive explanations [59,84,113]. In fact, example-
based explainability can be divided into several sub-formats with many similari-
ties. As such, covering them together allows conclusions from sub-fields of the lit-
erature to serve one another. Thus, we believe a single work thoroughly mapping,
describing, and analyzing each example-based XAI sub-format will benefit the
field. Besides, this survey will only cover natural example-based explainability
methods – i.e methods where examples are training samples and are not gener-
ated. Indeed, to generate high-dimensional data points, methods essentially rely
on deep neural networks [6,62]. Nevertheless, for most high dimensional data,
such approaches fail to ensure that generated examples are plausible and belong
to the manifold (subspace of the input space where samples follow the data
distribution), and examples need to be realistic for humans to interpret them
[18]. Therefore, natural examples have two advantages, they do not use a model
to explain another model which eases their acceptance, and natural examples
are plausible by definition. In addition, apart from formats with only generative
methods (such as feature visualizations [91]), we do not set aside any formats
of example-based XAI as they may all bring new perspectives to others. Lastly,
to navigate through the different formats we use the semantic definition of each
format as it highlights the differences between formats. In some cases, examples
from different formats may be the same sample, hence, clear semantic definitions
are necessary to interpret examples.

Explanations in example-based explainability are all data points but there
exist different semantic meanings to a given example. Depending on the relation
between the example, the query, and the model, the information provided by
the example will differ. The semantic definition of an example and the kind of
insight it provides divide the example-based format into sub-groups, which are
presented in Fig. 1. This overview is organized around those sub-groups (also
called formats), this work will unfold as follows:

The first format is similar examples (or factuals) (Sect. 2), for the model,
they are the closest elements to the query. Factuals give confidence in the pre-
diction or explain misclassification, but they are limited to the close range of
the considered sample. To provide insight into the model behavior on a larger
zone around the query, counterfactuals and semi-factuals (Sects. 3.1 and 3.2)
are more adapted. They are respectively the closest and the farthest samples on
which the model makes a different and similar prediction. They are mainly used
in classification, give insight into the decision boundary, and are complementary
if paired. While they give an idea of the limit, they do not provide insights on
how one could bend the decision boundaries of the model by altering the train-
ing data. This is addressed through influential instances (Sect. 4), the training
samples with the highest impact on the model’s state. In addition, contrary to
previously listed example-based formats, influential instances are not limited to
local explanations. Indeed, one can extract the most influential instances for the
model in general. Another global explanation format is Prototypes (Sect. 5),
which are a set of samples representative of either the dataset or a class. Most of
the time they are selected without relying on the model and give an overview of
the dataset, but some models are designed through prototypes, thus explainable
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by design. Concepts (Sect. 6), a closely-related format, is also investigated.
A concept is the abstraction of the common elements between samples – e.g.
for trees, the concepts could be trunk, branch, and leaf. To communicate such
concepts, if they are not labeled, the easiest way is through examples of such
concepts (often part of samples such as patches).

Thus we could summarize the contributions of this paper as follows: i) To
the best of our knowledge, we are the first to compile natural example-based
explainability literature in a survey. Previous works either covered the whole
XAI literature with a superficial analysis of example-based XAI or focused on a
given sub-format of example-based XAI. ii) For each format we provide simple
definitions, semantic meaning, key methods, their comparison, their pros and
cons, and examples, and pros and cons. We additionally ground formats into
social sciences and depict their cognitive added values when possible. iii) We
explore, classify, and describe available methods in each natural example-based
XAI format. We highlight common points and divergences for the reader to
understand each method easily, with a focus on key methods (see Table 1)

1.1 Notations

Throughout the paper, methods will explain a machine learning model h : X →
Y, with X and Y being respectively the input and output domain. Especially, this
model is parameterized by the weights θ ∈ Θ ⊆ R

d. If not specified otherwise, h
is trained on a training dataset Dtrain ⊂ (X ×Y) of size n with the help of a loss
function l : (X ,Y, Θ) → R. We denote a sample by the tuple z = (x, y)| x ∈
X , y ∈ Y. When an index subscript as i or j is added, e.g. zi, it is assumed
that zi belongs to the training dataset. If the subscript “test” is added, ztest,
the sample does not belong to the training data. When there is no subscript,
the sample can either be or not in the training data. Finally, the empirical risk
function is denoted as L(θ) := 1

n

∑
(x,y)∈Dtrain

l(x, y, θ) = 1
n

∑
zj∈Dtrain

l(zj , θ),
the parameters that minimized this empirical risk as θ∗ := arg minθL(θ) and an
estimator of θ∗ is denoted θ̂.

2 Similar Examples

In the XAI literature, similar examples, also referred to as factuals (see Fig. 2),
are often used as a way to provide intuitive and interpretable explanations.
The core idea is to retrieve the most similar, or the closest, elements in the
training set to a sample under investigation ztest and to use them as a way to
explain a model’s output. Specifically, Case-Based Reasoning (CBR) is of par-
ticular interest as it mimics the way humans draw upon past experiences to
navigate novel situations [38,100]. For example, when learning to play a new
video game, individuals do not typically begin from a complete novice level.
Instead, they rely on their pre-existing knowledge and skills in manipulating
game controllers and draw upon past experiences with similar video games to
adapt and apply strategies that have been successful in the past. As described
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by Aamodt and Plaza [1], a typical CBR cycle can be delineated by four fun-
damental procedures: i) RETRIEVE: Searching for the most analogous case or
cases, ii) REUSE: Employing the information and expertise extracted from that
case to address the problem, iii) REVISE: Modifying the proposed solution as
necessary, iv) RETAIN: Preserving the pertinent aspects of this encounter that
could be beneficial for future problem-solving endeavors. In addition to being
intuitive, the cases retrieved by a CBR system for a given prediction are natural
explanations for this output.

While CBR systems are a must-know in the XAI literature, we will not
review them as they have already been well analyzed, reviewed, motivated, and
described many times [26,28,102]. Instead, the focus here is on case-based expla-
nations (CBE) [102]. CBE are methods that use CBR to explain other systems,
also referred to as twin systems [57,60]. In particular, explanations of the system
under inspection are generally the outcomes of the RETRIEVE functionality of
the twinned CBR system, which oftentimes relies on k-nearest neighbor (k-NN)
retrieval [24]. The idea behind k-NN is to retrieve the k most similar training
samples (cases) to a test sample ztest.

2.1 Factual Methods

One of the main challenges with CBE methods is to define similarity. Indeed,
there are many ways of defining similarity measures, and different approaches
are appropriate for different representations of a training sample [28]. Generally,
CBR systems assume that similar input features are likely to produce similar out-
comes. Thus, using a distance metric defined on those input features engenders
a similarity measure: the closer the more similar they are. One of the simplest
is the unweighted Euclidean distance:

dist(z, z′) = ||x − x′||2 | z = (x, y) ∈ (X × Y) (1)

However, where – i.e. in which space – the distance is computed does have
major implications. As pointed out by Hanawa et al. [46], the input space does
not seem to bring pieces of information on the internal working of the model
under inspection but provides more of a data-centric analysis. Thus, recent meth-
ods rely instead on either computing the distance in a latent space or weighting
features for the k-NN algorithm [31].

Computing distance in a latent space is one possibility to include the model
in the similarity measure which is of utmost importance if we want to explain
it, as pointed out by Caruana et al. [20]. Consequently, they suggested applying
the Euclidean distance on the last hidden units h−1 of a trained Deep Neural
Network (DNN) as a similarity that considers the model’s predictions:

distDNN (z, z′) = ||h−1(x) − h−1(x′)||2 | z = (x, y) ∈ (X × Y) (2)

Similarly, for convolutional DNN, Papernot and McDaniel [92], and Sani et
al. [98] suggested conducting the k-NN search in the latent representation of the
network and using the cosine similarity distance.
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Weighting features is another popular paradigm in CBE. For instance, Shin
et al. [106] proposed various global weighting schemes – i.e. methods in which
the weights assigned to each input’s feature remain constant across all samples as
in Eq. (3) – where the weights are computed using the trained network to reveal
the input features that were the most relevant for the network’s prediction.

distfeatures weights(z, z′) = ||w(θ̂)T (x − x′)||2 | z = (x, y) ∈ (X × Y) (3)

Alternatively, Park et al. [93] examined local weighting by considering
varying feature weights across the instance space. However, their approach is
not post-hoc for DNN. Besides, Nugent et al. [89] also focused on local weighting
and proposed a method that can be applied to any black-box model. However,
their method involves generating multiple synthetic datasets around a specific
sample, which may not be suitable for explaining a large number of samples
or high-dimensional inputs. In the same line of work, Kenny and Keane [60,61]
proposed COLE, by suggesting the direct k-NN search in the attribution space –
i.e computing saliency maps [7,107,110] for all instances and performing a k-NN
search in the resulting dataset of attributions. By denoting c(θ̂, z) the attribution
map of the sample z for the model parameterized by θ̂ gives:

distCOLE(z, z′) = ||c(θ̂, z) − c(θ̂, z′)||2 (4)

They used three saliency map techniques [7,107,110] but nothing prevents
one to leverage any other saliency map techniques. However, we should also
point out that Fel et al. [34] questioned attribution methods’ ability to truly
capture the internal process of DNN. Additionally in [61], Kenny and Keane
proposed to use the Hadamard product of the gradient times the input features
as a contribution score in the case of DNN with non-linear outputs.

2.2 Conclusions on Similar Examples

Presenting similar examples to an end-user as an explanation for a model’s out-
comes has been shown through user studies [53,114] and psychology [32] to be
generally more convincing than other approaches. However, the current limi-
tations of similarity-based XAI are still significant. For instance, computing a
relevant distance between ztest and every training data point becomes compu-
tationally prohibitive for large datasets. Thankfully, there are efficient search
techniques available, as mentioned in the paper by Bhatia et al. [14].

Furthermore, where the distance is computed does have major implications
[46]. Consequently, authors have suggested different feature spaces or weighting
schemes to investigate, but their relevance to reflect the inner workings of a
model remains questionable. In addition, it is still unclear in the literature if
one approach prevails over others. In this regard, it is relevant to point out
that psychological studies [32,78,88,112] underscore the importance of shared
features, overall resemblance, context, and the interplay between perceptual and
conceptual factors in similarity judgments. In fact, we can point out that none
of the current factual methods leverage all those aspects at once.
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Finally, considering the position of retrieved similar examples in relation to
a model’s decision boundaries is crucial for relevant explanations. Neglecting
this can confuse users if factual examples contradict the model’s prediction.
Contrastive explanations address this issue and are discussed in Sect. 3.

3 Contrastive Explanations

Contrastive explanations are a class of explanation that provides the conse-
quences of another plausible reality, the repercussion of changes in the model’s
input [17,113]. More simply, they are explanations where we modify the input
and observe the reaction of the model’s prediction, the modified input is returned
as the explanation and its meaning depends on the model’s prediction of it.
Those methods are mainly post-hoc methods applied to classification models.
This includes i) counterfactuals (CF): an imagined alternative to reality about
the past, sometimes expressed as “if only ...” or “what if ...” [17], ii) semi-factuals
(SF): an imagined alternative that results in the same outcome as reality, some-
times expressed as “even if ...” [17], and iii) adversarial examples (perturbations
or attacks) (AP): inputs formed by applying small but intentionally worst-case
perturbations to examples from the dataset, such that the perturbed input results
in the model outputting an incorrect answer with high confidence [41]. Examples
of those three formats are provided in Fig. 2 from Kenny and Keane [62].

AP and CF are both perturbations with an expected change in the prediction,
they only differ in the goal as CF attempt to provide an explanation of the
model’s decision while AP are mainly used to evaluate robustness. In fact, AP
can be considered CF [115], and for robust models, AP methods can generate
interpretable CF [105]. Nonetheless, AP are hardly perceptible perturbations
designed to fool the model [111], therefore, they are generative and those methods
will not be further detailed in this work. Then, we can generalize SF and CF ,
with a given distance dist, and the examples conditioned space Xcond(f,x) ⊂ X :

CF (xtest) := arg min
x∈Xcond(f,xtest)|h(x) �=h(xtest)

dist(xtest, x) (5)

SF (xtest) := arg max
x∈Xcond(f,xtest)|h(x)=h(xtest)

dist(xtest, x) (6)

For natural CF and SF, the input space is conditioned to the training set,
Xcond(f,xtest) = Xtrain. While for AP, there is no condition on the input space,
in Eq. (5), Xcond(f,xtest) = X . The distance and the condition of the input space
are the key differences between CF and SF methods.

This section discusses both counterfactuals and semi-factuals as they are
often treated together in the literature [17,25,42,62]. The literature for both
formats is large in social sciences and in XAI for generative methods, hence we
will extract key findings before presenting natural example-based methods.
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Fig. 2. Illustration of factuals, SF, and CF from Kenny and Keane [62]. The factual
makes us understand the misclassification, while SF and CF show us how far or close
the decision boundary is. Min-edit represents the AP, as differences are not visible.

3.1 Counterfactuals

The social science grounding of counterfactuals is deep, either in philosophy,
or psychology. Indeed, the search for CF’s semantic definition goes back a long
time [13,44,72], and historically revolves around the notion of cause and effect,
sometimes called facts and foils [75,79]. Then, Halpern and Pearl [44] argued that
providing the cause of an event answers the question “Why?” and thus, provides
a powerful explanation. Moreover, the philosophical literature argued that CF
allow us to communicate and understand the causal relation between facts and
foils [72,79]. Psychology also possesses a rich literature regarding CF [17,97],
which has continued to evolve in recent years [18,59,80] thanks to the arrival of
CF in XAI through Wachter et al. [115]. Humans’ natural use of counterfactuals
in many situations was highlighted by Byrne [17]: From amusing fantasy to
logical support, they explain the past, prepare the future, modulate emotional
experience, and support moral judgments. Furthermore, when people encounter
CF they have both the counterfactual and the factual in mind [18]. The insights
from philosophy and psychology [18,80] have shown the pertinence and potential
of CF as well as SF for XAI. To match such promises, CF in XAI need to verify
the definitions and properties of CF typically employed by humans.

Expected properties for natural CF can be extrapolated from conclusions
and discovered properties in XAI for generated CF even though the literature
on natural CF is slim. Such desirable properties for CF, derived from social
sciences, could be summarized as follows: i) plausibility [58,59,113]: CF should
be as realistic as possible; ii) validity [84]: if the model’s prediction on CF
differ from the prediction on the query (see the definition (5)); iii) sparsity [58,
84,113]: the number of features that were changed between CF and the query
should be as little as possible; iv) diversity [54,84]: if several CF are proposed,
they should be different from each other; v) actionability [58,113]: the method
should allow the user to select features, to modify and specify immutable ones;
vi) proximity [54,58,59,84]: CF should be as close as possible to the query.
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Counterfactuals Methods: Keane et al. [59] argued that nearest unlike neigh-
bors (NUN) [27] a derivative of nearest neighbors [24], are the ancestors of coun-
terfactuals in XAI. NUN are the nearest element to the query that belongs to
a different class. They are natural CF when the class is given by the model
prediction. Natural counterfactuals and semi-factuals are faced with the same
discussions around similarity as factuals section. However, here, the similarity
should take into account sparsity.

NUN were first used in XAI by Doyle et al. [29,90] but not as an explanation,
only to find SF. The only method to the best of our knowledge that uses NUN
as explanations is KLEOR from Cummins and Bridge [25], they provided it as
a complement to SF explanations to give intuition on the decision boundary.
Nonetheless, they highlighted that the decision boundary might be much more
complex than what the SF and CF pairs can reveal. Indeed, a line between SF
and CF may intersect the decision boundary several times, which can lead to
explanations that are not always faithful. Furthermore, Keane et al. [59] argued
that “good natural counterfactuals are hard to find” as the dataset’s low density
may prevent sparse and proximal natural CF.

Counterfactuals as known in XAI were introduced by Wachter et al. [115],
and flourished through generative methods as shown by the numerous surveys
[54,84,113]. Two periods emerge: one focused on interpretable tabular data [113],
and the other on complex data like images [6,62]. While generating plausible
instances for the first period was not an issue it remains challenging for the
second, even with diffusion models [6]. More research is needed to explore natural
counterfactuals with their inherent plausibility [59,113]. Moreover, adversarial
perturbations proved that for non-robust DNN, a generated example close to a
natural instance is not necessarily plausible.

To conclude on counterfactuals, their large literature produced expected
properties with deep social science grounding. Such desiderata highlight the pros
and cons between generative and natural CF. Indeed, for high dimensional data,
the reader is faced with the choice of simple and plausible natural CF or proximal
and sparse generated CF through a model explaining another model.

3.2 Semi-factuals

SF literature is most of the time included in the CF literature be it in philosophy
[42], psychology [17], or XAI [25,62]. In fact, SF, “even if ...” are semantically
close to CF, “what if ...” [5,13,42], (see Eqs. (5) and (6)). However, psychology
has demonstrated that human reactions differ between CF and SF. While CF
strengthen the causal link between two elements, SF reduce it [18], CF increase
fault and blame in a moral judgment while SF diminish it.

Expected properties for CF and SF were inspired by social science, hence,
because of their close semantic definition, many properties are common between
both: SF should also respect their definition in Eq. (6) (validity), then to
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make the comparison possible and relevant they should aim towards plausibil-
ity [5], sparsity [5], diversity, and actionability. Nonetheless, the psycholog-
ical impact of CF and SF differ, hence there are also SF properties that contrast
with CF properties. The difference between equations (5) and (6) – i.e. arg min
vs arg max – suggests that to replace CF’s proximity, SF should be the farthest
from the studied sample, while not crossing the decision boundary [25]. As such,
we propose the decision boundary closeness as a necessary property, and a
metric to evaluate it could be the distance between SF and SF’s NUN. Finally,
SF should not go in any direction from the studied sample but aim toward the
closest decision boundary. Therefore, it should be aligned with NUN [25,29,90],
this property was not named, we suggest calling it counterfactual alignment.

Semi-factuals methods were first reviewed in XAI by a recent survey from
Aryal and Keane [5]. They divided SF methods and history into four parts. The
first three categories consist of one known method that will illustrate them:

• SF based on feature-utility, Doyle et al. [29] discovered that similar exam-
ples may not be the best explanations and suggested giving examples farther
from the studied sample. To find the best explanation case, dist in Eq. (6) is
a utility evaluation based on features difference.

• NUN-related SF, Cummins and Bridge [25] proposed KLEOR where
Eq. (6)’s dist is based on NUN similarity. Then, they penalize this distance
to make sure the SF are between the query and nearest unlike neighbors.

• SF near local-region boundaries, Nugent et al. [90] approximate the deci-
sion boundary of the model in the neighborhood of the studied sample through
input perturbations (like LIME [96]). Then SF are given by the points that
are the closest to the decision boundary.

• The modern era: post-2020 methods, inspired by CF methods, many
generative methods emerged in recent years [55,62].

To conclude, semi-factuals are a natural evolution of factuals. Moreover,
their complementarity with counterfactuals was exposed through the literature,
first to find and evaluate SF, then to provide a range to the decision boundary.
Finally, generative and natural SF possess the same pros and cons as CF ones.

Even though contrastive explanations bring insights into a model’s behavior,
it has no impact on the current model situation, what led to this state, or how
to change it. Contrastively, influential instances (see Sect. 4) extract the samples
with the most influence on the model’s training. Removing such samples from
the training set will have a huge impact on the resulting model.

4 Influential Examples

Influential instances could be defined as instances more likely to change a model’s
outcome if they were not in the training dataset. Furthermore, such measures
of influence provide one with information on “in which direction” the model



34 A. Poché et al.

decision would have been affected if that point was removed. Being able to trace
back to the most influential training samples for a given test sample ztest has
been a topic of interest mainly for example-based XAI.

4.1 Influential Instances Methods

Influence functions originated from robust statistics in the early 70 s. In
essence, they evaluate the change of a model’s parameters as we up-weight a
training sample by an infinitesimal amount [45]: θ̂ε,zj

:= arg minθL(θ)+εl(zj , θ).
One way to estimate the change in a model’s parameters of a single training sam-
ple would be to perform Leave-One-Out (LOO) retraining, that is, to train the
model again with the sample of interest being held out of the training dataset.
However, repeatedly re-training the model to exactly retrieve the parameters’
changes could be computationally prohibitive, especially when the dataset size
and/or the number of parameters grows. As removing a sample zj can be linearly
approximated by up-weighting it by ε = − 1

n , computing influence helps to esti-
mate the change of a model’s parameters if a specific training point was removed.
Thus, by making the assumption that the empirical risk L is twice-differentiable
and strictly convex with respect to the model’s parameters θ making the Hessian
Hθ̂ := 1

n

∑
zi∈Dtrain

∇2
θl(zi, θ̂) positive definite, Cook and Weisberg [23] proposed

to compute the influence of zj on the parameters θ̂ as:

I(zj) := −H−1

θ̂
∇θl(zj , θ̂) (7)

Later, Koh and Liang [68] popularized influence functions in the machine
learning community as they took advantage of auto-differentiation frameworks
to efficiently compute the hessian for DNN and derived Eq. (7) to formulate the
influence of up-weighting a training sample zj on the loss at a test point ztest:

IF(zj , ztest) := −∇θl(ztest, θ̂)T H−1

θ̂
∇θl(zj , θ̂) (8)

This formulation opens its way into example-based XAI as it compares to the
study of finding the nearest neighbors of ztest in the training dataset – i.e. the
most similar examples (Sect. 2) – with two major differences though: i) points
with high training loss are given more influence revealing that outliers can domi-
nate the model parameters [68], and ii) H−1

θ̂
measures what Koh and Liang called:

the resistance of the other training points to the removal of zj [68]. However, it
should be noted that hessian computation remains a significant challenge, that
could be alleviated with common techniques [3,77,101]. By normalizing Eq. (8),
Barshan et al. [10] further added stability to the formulation.

Oftentimes, we are not only interested in individual instance influence but in
the influence of a group of training samples (e.g. mini-batch effect, multi-source
data, etc.). Koh et al. [69] suggested that using the sum of individual influences
as the influence of the group constitutes a good proxy to rank those groups in
terms of influence. Basu et al. [12] on their side suggested using a second-order
approximation to capture possible cross-correlations but they specified it is most
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likely impracticable for DNN. In a later work, Basu et al. [11] concluded that
influence function estimates for DNN are fragile as the assumptions on which
they rely, being near optimality and convexity, do not hold in general for DNN.

LOO approximation is one of the previously mentioned motivations behind
influence estimates as it avoids the prohibitive LOO retraining required for every
sample in the training data. Thus, some authors proposed approaches that opti-
mize the number of LOO retraining necessary to get a grasp on a sample’s
influence such as Feldman and Zhang [36]. Although this significantly reduces
the number of retraining compared to naive LOO retraining, it still requires a
significant amount of them. Recently, a new approach that relates to influence
functions and involves training many models, was introduced with data models
[52,99] which we do not review here.

As Basu et al. [11] pointed out, there is a discrepancy between LOO approx-
imation and influence function estimates, especially for DNN. However, Bae et
al. [9] claimed that this discrepancy is due to influence functions approaching
what they call the proximal Bregman response function (PBRF), rather than
approximating the LOO retraining, which does not interfere with their ability
to perform the task they were thought for, especially XAI. Thus, they suggested
evaluating the quality of influence estimates by comparing them to the PBRF
rather than LOO retraining as it was done until now.

Influence computation that relies on kernels is another paradigm to find
the training examples that are the most responsible for a given set of predictions.
For instance, Khanna et al. [63] proposed an approach that relies on Fisher’s ker-
nels and they related it to the one from Koh and Liang [68] as a generalization of
the latter under certain assumptions. Yeh et al. [117] also suggested an approach
that leverages kernels but this time they relied on the representer theorem [103].
That allows them to focus on explaining only the pre-activation prediction layer
of a DNN for classification tasks. In addition, their influence scores, called rep-
resenter values, provide supplementary information, with positive representer
values being excitatory and negative values being inhibitory. However, this app-
roach requires introducing an L2 regularizer during optimization, which can
prevent post-hoc analysis if not responsible for training. Additionally, Sui et
al. [109] argued that this approach provides more of a class-level explanation
rather than an instance-level explanation. To address this issue and the L2 reg-
ularizer problem, they proposed a method that involves hessian computation
on the classification layer, with only the associated computational cost. How-
ever, the ability to retrieve relevant samples when investigating only the final
prediction layer was questioned by Feldmann and Zhang [36], who found that
memorization does not occur in the last layer.

Tracing the training process has been another research field to compute
influence scores. It relies on the possibility to replay the training process by
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saving some checkpoints of our model parameters, or states, and reloading them
in a post-hoc fashion [22,47,95]. In contrast to the previous approaches, they
rely neither on being near optimality nor being strongly convex, which is more
realistic when we consider the reality of DNN. However, they require handling
the training procedure to save the different checkpoints, potentially numerous,
hence they are intrinsic methods, which in practice is not always feasible.

4.2 Conclusions on Influential Instances

Influential techniques can provide both global and local explanations to enhance
model performance. Global explanations allow for the identification of training
samples that significantly shape decision boundaries or outliers (see Fig. 1), aid-
ing in data curation. On the other hand, local explanations offer guidance for
altering the model in a desired way (see Fig. 3). Although they have been com-
pared to similar examples and have been shown to be more relevant to the model
[46], they are more challenging to interpret and their effectiveness for trustwor-
thiness is unclear. Further research, particularly user studies, is necessary to
determine their ability to take advantage of human cognitive processes.

Fig. 3. Figure taken from F. Liu [95]: A tracing process for estimating influence, TracIn,
applied on ImageNet. The first column is composed of the test sample, the next three
columns display the training examples that have the most positive value of influence
score while the last three columns point out the training examples with the most
negative values of influence score. (fr-bulldog: french-bulldog)

5 Prototypes

Prototypes are a set of representative data instances from the dataset, while crit-
icisms are data instances that are not well represented by those prototypes [64].
Figure 4 shows examples of prototypes and criticisms from Imagenet dataset.
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Fig. 4. Figure taken from [64]: Learned prototypes and criticisms from Imagenet
dataset (two types of dog breeds)

5.1 Prototype Methods

Prototypes and criticism can be used to add data-centric interpretability, post-
hoc interpretability, or to build an interpretable model [83]. The data-centric
approaches will be briefly introduced.

Prototypes for Data-Centric Interpretability: Clustering algorithms that
return actual data points as cluster centers such as k-medoids methods [56,87]
could be used to better understand the data distribution. We can consider the
cluster centers as prototypes.

The abundance of large datasets has renewed the interest in the data sum-
marization methods [8,73,74,82,108], which consist of finding a small subset of
data points that covers a large dataset. The subset elements can be considered
prototypes. Additionally, we found data summarization methods based on the
Maximum Mean Discrepancy (MMD), such as MMD-critic [64] and Protodash
[43], that learn both prototypes and criticisms.

Prototypes for Post-hoc Interpretability: Most prototype methods are
data-centric that provide no information on the model. However, such meth-
ods can be computed in a meaningful search space for the model as done with
similar examples Sect. 2.1 and give global explanations with the model vision of
the dataset. Similarly, local explanations can be extracted by comparing studied
samples to the closest prototypes in the search space. But to our knowledge,
only one method explores such a possibility. Filho et al. [37] proposed M-PEER
(Multiobjective Prototype-based Explanation for Regression) method that finds
the prototypes using both the training data and the model output. It optimizes
the error of the explainable model and the fidelity and interpretability metrics.

Prototype-Based Models Interpretable by Design: After data-centric and
post-hoc methods, there are methods that construct prototype-based models.
Those models are interpretable by design because they provide a set of pro-
totypes that make sense for the model, those methods are mainly designed for
classification. An interpretable classifier learns a set of prototypes Pc ⊆ {(x, y) ∈
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Dtrain|y = c}. Each Pc captures the full variability of class c while avoiding con-
fusion with other classes. The learned prototypes are then used by the model to
classify the input. We identified three types of prototype-based classifiers:

• Classifiers resolving set cover problems select convex sets that cover
each class with prototypes to represent it. Various types of convex sets such
as boxes, balls, convex hulls, and ellipsoids can be used. Class Cover Catch
Digraphs (CCCD) [76] and ProtoSelect [15] used balls where the centers were
considered prototypes. Then, the nearest-prototype rule is used to classify
the data points. CCCD finds, for each class c, a variable number of balls that
cover all points of class c and no points of other classes. Its radius is chosen
as large as possible. However, even within large classes, there can still be a
lot of interesting within-class variability that should be taken into account
when selecting the prototypes. To overcome this limitation, ProtoSelect used
a fixed radius across all points, to allow the selection of multiple prototypes
for large classes, and they also allow wrongly covered and non-covered points.
They simultaneously minimize three elements: i) the number of prototypes;
ii) the number of uncovered points; iii) the number of wrongly covered points.

• Classifiers using Bayesian models for explanation, Kim et al. [65] pro-
posed the Bayesian Case Model (BCM) that extends Latent Dirichlet Allo-
cation [16]. In BCM, the idea is to divide the data into s clusters. For each
cluster, a prototype is defined as the sample that maximizes the subspace
indicators that characterize the cluster. When a sample is given to BCM, this
last one yield a vector of probability to belong to each of the s clusters which
can be used for classification. Thus, the classifier uses as an input a vector
of dimension s, which allows the use of simpler models due to dimensionality
reduction. In addition, the prototype of the most likely cluster can then be
used as an explanation.

• Classifiers based on neural networks learn to select prototypes defined
in the latent space, which are used for the classification. This lead to a model
that is more interpretable than a standard neural network since the reason-
ing process behind each prediction is “transparent”. Learning Vector Quan-
tization (LVQ) [70] is widely used for generating prototypes as weights in
a neural network. However, the use of generated prototypes reduces their
interpretability. ProtoPNet [21] also stocks prototypes as weights and trains
them, but projects them to training samples patches representation during
training. Given an input image, its patches are compared to each prototype,
the resulting similarity scores are then multiplied by the learned class con-
nections of each prototype. ProtoPNet has been extended to time series data
via ProSeNet [81], or with a more interpretable structure with ProtoTree [86]
and HPNet [48]. Instead of using linear bag-of-prototypes, ProtoTree and
HPNet used hierarchically organized prototypes to classify images. ProtoTree
improves upon ProtoPNet by using a decision tree which provides an easy-
to-interpret global explanation and can be used to locally explain a single
prediction. Each node in this tree contains a prototype (as defined by Pro-
toPNet) and the similarity scores between image patches and the prototypes
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are used to determine the routing through the tree. Decision-making is there-
fore similar to human reasoning [86]. Nauta et al. [85] proposed a method
called “This Looks Like That, Because” to understand prototypes similari-
ties. This method allows checking why the model considered two examples
as similar. For instance, it is possible that a human thinks that the common
point between two examples is their color, while the model uses their shape.
The method modifies some characteristics of the input image, such as hue, or
shape, to observe how the similarity score changes. This allows us to measure
the importance of each of these characteristics.

5.2 Conclusions on Prototypes

Most prototype methods are data-centric, but we have seen that applying such
methods in a meaningful space for the model can bring post-hoc global and local
explanations. Nonetheless, a second part of the literature constructs prototype-
based classifiers explainable by design, those methods are promising and produce
models with natural reasoning but adapting a new model to such architecture
can be prohibitive.

6 Concept-Based XAI

Prototype-based models compare prototypical parts, e.g. patches, and the stud-
ied sample to make the classification. The idea of parts is not new to the liter-
ature, the part-based explanation field, developed for fine-grained classification,
is able to detect semantically significant parts of images. The first part-based
model required labeled parts for training and can be considered object detec-
tion with a semantic link between the detected objects. Afterward, unsuper-
vised methods such as OPAM [94] or Particul [116] emerged, those methods still
learned classification in a supervised fashion, but no labels were necessary for
part identification. In fact, the explanation provided by this kind of method can
be assimilated into concept-based explanations. A concept is an abstraction of
common elements between samples, as an example Fig. 5 shows the visualization
of six different concepts that the CRAFT method [35] associated with the given
image. To understand parts or concepts, the method uses examples and supposes
that with a few examples, humans are able to identify the concept.

6.1 Concepts Methods

Like in part-based XAI, the first concept-based method used labeled concepts.
Kim et al. [66] introduced concept activation vectors (CAV) to represent concepts
using a model latent space representation of images. Then, they design a post-
hoc method, TCAV [66] based on CAV to evaluate an image correspondence
to a given concept. Even though it seems promising, this method requires prior
knowledge of the relevant concepts, along with a labeled dataset of the associated
concepts, which is costly and prone to human biases.
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Fig. 5. Illustration from Fel et al. [35]. Natural examples in the colored boxes define
a concept. Purple box: could define the concept of “chainsaw”. Blue box: could
define the concept of “saw’s motor”. Red box: could define the concept of “jeans”.
(Color figure online)

Fortunately, recent works have been conducted to automate the concept dis-
covery in the training dataset without humans in the loop. For instance, ACE,
proposed by Ghobarni et al. [39], employs a semantic segmentation technique on
images belonging to a specific class of interest and use an Inception-V3 neural
network to compute activations of an intermediate model layer for these seg-
ments. The resulting activations are then clustered to form a set of prototypes,
which they refer to as “concepts”. However, the presence of background segments
in these concepts requires a post-processing clean-up step to remove irrelevant
and outlier concepts. Zhang et al. [118] proposed an alternative approach to
solving the unsupervised concept discovery problem through matrix factoriza-
tions [71] in the networks’ latent spaces. However, such methods operate at the
convolutional kernel level, which may lead to concepts based on shape and/or
ignore more abstract concepts.

As an answer, Fel et al. [35] proposed CRAFT, which uses Non-Negative
Matrix Factorization [71] for concept discovery. In addition to filling in the blank
of previous approaches, their method provides an explicit link between the con-
cepts’ global and local explanations (Fig. 5). While their approach alleviates the
previously mentioned issues, the retrieved concepts are not always interpretable.
Nonetheless, their user study proved the pertinence of the method.

6.2 Conclusions on Concepts

Concept-based explanations allow post-hoc global and local explanations, by
understanding the general concepts associated with a given class and the con-
cepts used for a decision. We draw attention to methods that do not require
expert knowledge to find out relevant concepts as they are prone to human bias.
Even though automated concept discovery is making tremendous progress, the
interpretation of such concepts and their ability to gain users’ trust stay ques-
tionable as very few user studies have been conducted on the subject.



Natural Example-Based Explainability: A Survey 41

Table 1. Comparison table between the different natural example-based formats and
methods. NA: Not applicable, FGCV: Fine-grained computer vision

SIMILAR EXAMPLES Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Distance Weighting

Caruana et al. [20] 1999 Local Post-hoc DNN Euclidean None

Shin et al. [106] 2000 Local Post-hoc DNN Euclidean Global

Park et al. [93] 2004 Local Intrinsic DNN Euclidean Local

Nugent et al. [89] 2005 Local Post-hoc None Euclidean Local

Sani et al. [98] 2017 Local Post-hoc Deep CNN Cosine similarity Local

Papernot and McDaniel [92] 2018 Local Post-hoc Deep CNN Cosine similarity Local

Cole [60] [61] 2019 Local Post-hoc None Euclidean Local with attributions

CONTRASTIVE EXPLANATIONS Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Semi-factual group of method

Doyle et al. [29,30] 2004 Local Post-hoc None SF based on feature-utility

NUN [25,27,29] 2006 Local Post-hoc None Natural CF

KLEOR [25] 2006 Local Post-hoc None NUN-related SF

Nugent et al. [90] 2009 Local Post-hoc None Local-region boundaries

INFLUENTIAL INSTANCES Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Requires model’s gradients

Koh and Liang [68] 2017 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Khanna and al. [63] 2018 Local Post-hoc Requires an access to the function and gradient-oracles Yes

Yeh and al. [117] 2018 Local Intrinsic Work for classification neural networks with regularization Yes

Hara and al. [47] 2019 Local Intrinsic Models trained with SGD, saving intermediate checkpoints Yes

Koh and Liang [69] 2019 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Basu and al. [12] 2019 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Barshan and al. [10] 2020 Both Post-hoc L twice-differentiable and strictly convex w.r.t. θ Yes

Feldman and Zhang [36] 2020 Global Intrinsic Requires to train numerous models on subsampled datasets No

Pruthi and al. [95] 2020 Local Intrinsic Requires saving intermediate checkpoints Yes

Sui and al. [109] 2021 Local Post-hoc Work for classification neural networks Yes

Chan and al. [22] 2021 Both Intrinsic Requires saving intermediate checkpoints Yes

PROTOTYPES Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Task Other

CCCD [76] 2003 Both NA by-design Classification Set cover

ProtoSelect [15] 2011 Both NA by-design Classification Set cover

Kim et al. [65] 2019 Both NA by-design, tabular Classification Bayesian-based

ProtoPNet [21] 2019 Both NA by-design, FGCV Classification Neural network

ProSeNet [81] 2019 Both NA by-design, sequences Classification Neural network

ProtoTree [86] 2021 Both NA by-design, FGCV Classification Neural network

M-PEER [37] 2023 Both Post-hoc No Regression NA

CONCEPTS Year Global/Local Post-hoc/Intrinsic Model or data-type specificity Need labeled concepts Concepts format

OPAM [94] 2017 Global NA By-design, FGCV Yes part-based

TCAV [66] 2018 Global Post-hoc Neural network Yes same as input

ACE [39] 2019 Global Post-hoc Neural network No segmented parts

Zhang et al. [118] 2021 Global Post-hoc Neural network No segmented parts

CRAFT [35] 2022 Global Post-hoc Neural network No crops

Particul [116] 2017 Global NA By-design, FGCV Yes part-based

7 Conclusions and Discussions

This paper explored explainability literature about natural example-based
explainability and provided a general social science justification for example-
based XAI. We described each kind of explanation possible through samples.
For each possibility, we reviewed what explanation they bring, then classified
and presented the major methods. We summarize all explored methods in Table
1. We saw that all those methods are based on a notion of similarity. As such,
for them to explain the model, the similarity between instances should take
into account the model. There are two ways of doing it: project the instances
in a meaningful space for the model and/or weight instances. Hence, similarity
definitions from factuals (Sect. 2.1) can be ported to other formats and social
science groundings could also be shared. However, if the training data is sparse
in the search space, finding cases with good properties for a given format may
be challenging.

Among the formats, contrastive explanations, prototypes, and concept exam-
ples can be generated, which brings competition to non-generative methods.
We argue that both generative and natural examples have their pros and cons.
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Indeed, natural examples are simple to compute and ensure plausibility while
generated examples can be more proximal and sparse but require a model to
explain another model (see Sect. 3.1 for properties definitions).

We have illustrated that the different example-based formats bring different
kinds of explanations, and each one has its own advantages, Fig. 1 shows their
diversity, have their scope of application, and complementarity. To summarize
those advantages non-exhaustively: i) Factuals give confidence in the decisions of
the model and are pertinent in AI-assisted decisions. ii) For classification, con-
trastive explanations give local insight into the decision boundary. iii) Influential
instances explain how samples influenced the model training. iv) Prototypes and
concepts give information on the whole model behavior, but may also be used
to explain decisions. Nonetheless, like all explanations, we cannot be sure that
humans will have a correct understanding of the model or the decision. Further-
more, there is no consensus on how to ensure a given method indeed explains the
decisions or inner workings of the model. Moreover, for example-based explain-
ability, the data is used as an explanation, hence, without profound knowledge of
the dataset, humans will not be able to draw conclusions through such explana-
tions. Therefore, the evaluation of example-based methods should always include
a user study, which are scarce in this field and in XAI in general, especially with
the lack of availability and consensus around quantitative metrics to evaluate
example-based explanations. Finally, we hope our work will motivate, facilitate
and help researchers to keep on developing the field of XAI and in particular,
natural example-based XAI and to address the identified challenges.
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Abstract. Explainable artificial intelligence (AI) has drawn a lot of attention
recently since AI systems are being employed more often across a variety of
industries, including education. Building trust and increasing the efficacy of AI
systems in educational settings requires the capacity to explain how they make
decisions. This article provides a comprehensive review of the current level of
explainable AI (XAI) research and its application to education. We begin with
the challenges of XAI in education, the complexity of AI algorithms, and the
necessity for transparency and interpretability. Furthermore, we discuss the obsta-
cles involved with using AI in education, and explore several solutions, including
human-AI collaboration, explainability techniques, and ethical and legal frame-
works. Subsequently, we debate about the importance of developing new compe-
tencies and skills among students and educators to interact with AI effectively, as
well as howXAI impacts politics and government. Finally, we provide recommen-
dations for additional research in this field and suggest potential future directions
for XAI in educational research and practice.

Keywords: Explainable AI · XAI · AI in education · Implications · Ethical
considerations · Future directions

1 Introduction

Use of artificial intelligence (AI) in education is growing, from customized learning
platforms to automated grading systems. As the use of AI increases in more sensitive
areas, many questions arise regarding the openness and accountability of these systems
(Samek &Müller, 2019). Making AI systems more visible and intelligible to humans is
the goal of the burgeoning discipline of explainable AI, or XAI (Gunning et al., 2019).
XAI is particularly important in areas where AI system decisions can have a big impact
on students’ learning results and educational prospects (Nagahisarchoghaei et al., 2023).
Therefore, researchers have been investigating approaches to designing and implement-
ing explainable AI systems in education (Holzinger et al., 2018; Laato et al., 2022) and
exploring the ethical implications of their use (Laupichler et al., 2023). The research in
XAI in education is vast and scattered around deferent themes and issues surrounding
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the topic. Throughout the review, we analyzed more than 200 research papers on the
topic and identified that most of the studies focus on one of the four identified areas of
research: 1) Application of AI in education; 2) Issues with AI implementation in educa-
tion; 3) AI tools for education; and 4) Ethical issues and regulatory frameworks with AI
implementation in education. We developed a framework around these themes to steer
this study, thus in we will follow the framework provided in Fig. 1 to address the issues
and challenges associated with XAI in education.

Fig. 1. Framework for analyzing XAI in Educational setting. (Authors’ own work)

By definition, XAI is the ability of AI systems to provide explanations for their
actions and decisions in a way that is understandable to humans. This is a significant
field of research because conventionalAI systems are frequently viewed as “black boxes”
that make decisions using complicated mathematical models (Baum et al., 2022). Partic-
ularly in domains like education where decisions can have significant effects, this lack
of transparency and interpretability can lead to suspicion and skepticism of AI systems.
Therefore, by making AI systems more transparent, interpretable, and accountable, XAI
aims to address these challenges (Nandi & Pal, 2022). There are various ways in which
explainable AI (XAI) is relevant to education. Firstly, XAI can aid teachers in explain-
ing to students how AI systems generate their recommendations or decisions, thereby
enhancing the efficiency and personalization of learning experiences for individual stu-
dents (J. Kim et al., 2022; Nandi & Pal, 2022). XAI can aid in the creation of efficient
and personalized learning environments for students (Gunning, 2019). Secondly, XAI
can assist in creating ethical and responsible AI educational systems by identifying and
correcting any biases or unfairness in the decision-making process (Saeed & Omlin,
2023) and can contribute to the impartiality and fairness of AI-driven educational sys-
tems (Samek & Müller, 2019). Educators and policymakers can identify and rectify
any biases or discriminatory behaviors in AI systems by making these systems more
transparent and interpretable. Overall, XAI has the potential to transform education by
enhancing the effectiveness, dependability, and ethics of AI systems (Holzinger et al.,
2018; Laato et al., 2022; Laupichler et al., 2023; Nagahisarchoghaei et al., 2023).
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2 Background and Context

2.1 Brief History of AI and its Application in Education

The application of artificial intelligence (AI) in education has a long history. According
to a study conducted by Meacham, humans have started to search for ways to recreate
our mental processes as early as 1763 when Thomas Bayes develops Bayesian infer-
ence. After more than 7 decades we have the next invention, “the analytical engine”
developed by Charles Babbage to conduct mathematical computations. In 1955 for the
first time the term AI is used in scientific conference held in Hanover, New Hampshire
(Meacham, 2021). These are all events that have led to the development and adoption
of AI in education. We can divide the adoption of AI into two phases, depending on
the technology they use. Early research in the 1980s investigated the capabilities of AI
for natural language processing (NLP), computer vision, and speech recognition. In the
1990s, the groundwork was laid for more sophisticated AI applications in education with
the development of common foundational technologies, which paves the road for the
beginning of the second phase. The second phase started with the expansion of AI appli-
cation in education during the 2000s because of the adoption of machine learning and
deep learning algorithms and continues to this date. With the potential to extend access
to education, improve learning outcomes, and improve the overall quality and efficacy
of educational systems, AI now is widely recognized as a key catalyst for educational
innovation and transformation.

First Phase: Early research on AI was focused on using AI to develop adaptive learn-
ing platforms and intelligent tutoring systems. These systems were developed to offer
students individualized feedback and support based on their unique needs and perfor-
mance. The Intelligent Tutoring System (ITS), created in the 1970s by academics at the
University of Illinois, was one of the first AI-driven educational systems. It used a rule-
based expert system to give feedback and advice to students in algebra and computer
programming (Woolf, 2010). The Cognitive Tutor and the ALEKS systems, which used
machine learning algorithms to customize education to each student’s learning prefer-
ences, were developed by researchers in the decades that followed (Baker & Inventado,
2014; Yakubu & Abubakar, 2022; Zhang, 2021).

SecondPhase: With the advent ofmachine learning and deep learning algorithms in the
2000s, applications of AI in education expanded, encompassing anything from chatbots
and virtual assistants to personalized learning platforms and automated grading schemes
(Cavanagh et al., 2020). For instance, the renowned online learning site Khan Academy
employs machine learning algorithms to customize its content and recommendations
based on the interests and learning progress of its users (Khan Academy, n.d.). Similar to
this, organizations like Coursera andUdacity employAI-powered systems for automated
grading and feedback, which can lessen teachers’ workloads and increase the accuracy
and speed of grading (Baker & Inventado, 2014). However, the application of AI in
education also brings up significant issues about the accountability and transparency of
these systems, as well as the requirement to guarantee their effectiveness, fairness, and
morality. In response to these worries, the discipline of explainable AI (XAI) has arisen,
with a focus on creating AI systems that are open, understandable, and answerable to
people (Zeide, 2019).
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The demand for AI in education is being driven by rising investments in AI and
EdTech by both the public and private sectors, as well as by the growing use of edu-
tainment. This is one of the reasons that global spending on artificial intelligence (AI),
including software, hardware, and services for AI-centric systems, is expected to reach
$154 billion in 2023, up 26.9% from the amount spent in 2022, according to a new fore-
cast from the International Data Corporation (IDC) Worldwide Artificial Intelligence
Spending Guide (Needham, Mass, 2023). The size of the global market for AI in educa-
tion was estimated at USD 2.75 billion in 2023 and is projected to increase at a CAGR
of 36.0% from 2022 to 2030 (Grand View Research, 2021).

2.2 Current State of AI Adoption in Education and the Challenges

Depending on the environment and educational level, the application of AI in education
varies widely (Boyd-Graber et al., 2012). The extensive use of AI in higher education
has made it possible for massive open online courses (MOOCs) to be given via platforms
like Coursera, Udacity, and edX (Liyanagunawardena et al., 2013). While AI-powered
systems have also been used to raise student engagement and retention, predictive ana-
lytics and earlywarning systems have been utilized to identify students who are at danger
of dropping out or falling behind (Kizilcec et al., 2017). The use of AI in K–12 edu-
cation, however, is still in its infancy, with the majority of applications concentrating
on personalized learning and adaptive evaluation (Baker & Inventado, 2014). There are
concerns about the effectiveness and scalability of these systems, as well as the potential
unintended consequences, such as reduced human interaction and bias reinforcement
(Holmes & Porayska-Pomsta, 2022).

The difficulties in implementing AI in education are numerous, ranging from tech-
nical problems like data security and privacy to ethical and social issues like algorithmic
bias and interactions between humans andAI (Holmes&Porayska-Pomsta, 2022).Many
AI systems lack interpretability and transparency, which can make it difficult for teach-
ers and students to understand how these systems make decisions and respond (Walger
et al., 2023). This can cause people to lose faith in technology and doubt its usefulness.
Another issue is that many jobs, including assessment and grading, require human judg-
ment and expertise, necessitating human monitoring and intervention in AI-powered
educational systems (Liyanagunawardena et al., 2013). For AI to be used in education
responsibly and ethically, educators, policymakers, researchers, and students must work
together (Kizilcec et al., 2017).

The integration of artificial intelligence (AI) in education is expected to increase in
the coming years due to advances in AI technology and the demand for flexible and per-
sonalized learning (Chen, 2022; Whalley et al., 2021). However, the implementation of
AI in education requires a nuanced approach that considers the complexity and diversity
of educational settings and emphasizes human-centered design (Blikstein, 2013; Vap-
nik & Izmailov, 2019). Effective integration of AI into education requires a multidisci-
plinary strategy that draws on expertise from computer science, education, psychology,
and sociology (Raji et al., 2021; Xia & Li, 2022; Yadav et al., 2022). Understanding
the effects of AI-powered educational systems on learning results, student engagement,
and other crucial factors will require more investigation and evaluation (Kizilcec et al.,
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2017; Zawacki-Richter et al., 2019). Ultimately, AI in education should complement
rather than replace human intelligence (Dabbagh & Kitsantas, 2012).

A study conducted by HolonIQ, that surveys 464 institutions across both 2019 and
2022 Aug-Sep survey show that compared to 14% in 2019, 25% report successful AI
investment and deployment in 2022. AI is slowlymoving from being considered to being
implemented with 44% of respondents having AI on their short to medium-term objec-
tives. Similarly, the percentage of respondents who say AI is “on the radar” but aren’t
planning any actions has dropped from 24% in 2019 to 14% in 2022. The main three
reasons for adopting AI for these institutions remain are improving learner outcomes
(75% of respondents), cost savings due to automation (45% of respondents) and disrupt-
ing the market (43% of respondents) (HolonIQ, 2023). Moreover, the same report also
highlights that more educational institutions are now claiming to have identified all of
the potential AI prospects (40% in 2022 against 27% in 2019).This, on the other hand,
leads to institutions not being prepared for the growing complexity and capabilities of
the AI tools themselves, which demand new and different talent from both inside and
outside the organization. Moreover, this complexity requires a shift in the mindset from
only adopting AI to understanding it as well.

2.3 The Necessity of Explainable AI in the Educational Context

The goal of XAI is to create AI systems that can explain their decisions and behav-
iors clearly and understandable to people. As AI-powered systems are used for a range
of functions, including personalized learning, evaluation, and student support, XAI is
becoming more significant in the context of education (Manhiça et al., 2023; Zawacki-
Richter et al., 2019). These systems frequently rely their judgments on intricate algo-
rithms and models that are challenging for people to comprehend, which can breed
mistrust and misunderstanding (Xu et al., 2021).

Several factors influence the need for XAI in the educational setting. As educational
systems that utilize AI, particularly in areas such as student evaluation and grading,
raise concerns about potential biases and ethical consequences, an increasing number of
people are becoming anxious (Khosravi et al., 2022). It might be difficult to identify and
reduce bias and guarantee justice and equity in educational outcomes if these systems
are opaque and difficult to understand (4 Huang, Daumé III, & Boyd-Graber, 2017). By
providing feedback and insights that can enlighten and direct human decision-making,
XAI can help to enhance the efficacy of AI-driven educational systems, resulting inmore
effective and personalized learning opportunities for students (Liyanagunawardena et al.,
2013).

Furthermore, XAI has the potential to support collaboration and interaction between
humans and AI rather than displacing human judgment and knowledge. Educators and
students can collaborate with AI systems to improve outcomes by making them more
accessible and intelligible. For instance, XAI can assist teachers in determining how a
particular AI-powered tutoring system is interacting with a student and provide recom-
mendations for enhancing the learning process (Ouyang et al., 2022). Some of the main
concepts commonly found in literature for XAI are summarized in Table 1 below.
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Table 1. Summary of the key concepts and benefits of XAI in education

Concept of
explainable AI in
education

Reasons for its
importance

Benefits Authors

Develop AI systems
that can explain their
decisions and actions
in a way that is
understandable and
transparent to humans

Growing concern
about potential biases
and ethical
implications of
AI-powered
educational systems,
and the need to
improve their
effectiveness

Promotes human-AI
collaboration and
interaction, helps to
ensure transparency,
fairness, and
effectiveness of AI
systems

(Doshi-Velez & Kim,
2017; Gilpin et al.,
2018; Samek et al.,
2017)

Usage of AI-powered
systems for
personalized learning,
assessment, and
student support

Lack of transparency
and explainability in
AI systems can lead
to a lack of trust and
understanding

Can help educators to
understand how
AI-powered systems
are working with
students and suggest
adjustments to the
learning process

(Brusilovsky et al.,
2022; Holstein et al.,
2019; Islam et al.,
2022; Khosravi et al.,
2022; Kolchenko,
2018)

Usage of XAI detect
and mitigate bias and
ensure fairness and
equity in educational
outcomes

XAI can provide
feedback and insights
that can inform and
guide human
decision-making

Leads to more
personalized and
effective learning
experiences for
students

(Buolamwini &
Gebru, 2018; Lipton,
2018; Mittelstadt,
2019)

Source: Authors’ own work

3 Key Themes and Issues

3.1 The Importance of Transparency and Accountability in AI-Powered
Educational Systems

The significance of openness and responsibility in AI-driven educational systems is
another major theme connected to explainable AI in education (Amer-Yahia, 2022; Zhai
et al., 2021). For educators and students to understand how decisions are being made and
make sure that these decisions are in line with educational aims and values, it is critical
that AI systems used in education are transparent and easily understandable. In areas like
student assessment and grading, where AI-powered systems can have major effects on
students’ academic performance and opportunities, transparency and accountability are
especially essential. It can be challenging to identify prejudice, lessen it, and guarantee
fair and equal educational outcomes in the absence of transparency and accountability
(Dillenbourg & Jermann, 2010).

Making sure there is openness and accountability in educational systems powered
by AI is not without its difficulties. The interpretation of AI models and algorithms
can be difficult and sophisticated, even for subject-matter experts. Both educators and
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pupils may find it difficult to understand the decision-making process and to identify any
potential biases or errors in the system as a result. Additionally, it can be challenging to
ensure that AI-powered systems are open and accountable because there are sometimes
no defined rules or criteria governing their usage in education. Finally, there is a need to
strike a balance between the advantages of educational systems powered by AI and any
associated hazards and moral ramifications.

3.2 Ensuring AI Models are Fair and Unbiased

The literature indicates that maintaining fairness and objectivity in AI-powered educa-
tional systems is a complicated problem. Bias can be introduced in AI models due to
various factors, including prior discriminatory tendencies or a lack of consideration for
the diversity of learners and their backgrounds. Biased AI models can result in unfair
or unequal outcomes for learners, such as biased recommendations or unjust grading
(Bojarski et al., 2016; Esteva et al., 2017; Holmes & Porayska-Pomsta, 2022). One
issue is that biases could be unnoticeable and challenging to spot, particularly if they
are present in the data used to train the model. Additionally, it could be challenging to
decide what an AI model is expected to do in a particular circumstance due to different
interpretations of fairness. Promoting diversity and inclusivity in AI development teams
helps to ensure that models are developed with a knowledge of the various requirements
and experiences of learners (Ouyang et al., 2022). Table 2 outlines some of the major
obstacles to prove that AI models are impartial and fair, such as previous discriminatory
trends in data, a lack of diversity and inclusivity in AI development teams, and conflict-
ing notions of what constitutes justice. The table also identifies opportunities to address
these issues.

Table 2. Key issues and challenges associated with ensuring that AI models used in education
are fair and unbiased

Key Theme Issues Challenges Opportunities Authors

Need to ensure
that AI models
are fair and
unbiased

- Historical
patterns of
discrimination in
data

- Difficulty in
detecting subtle
biases

- Use of
bias-detection
tools and
techniques

(Buolamwini &
Gebru, 2018;
Kelley et al.,
2022)

- Lack of
diversity and
inclusivity in AI
development
teams

- Determining
what constitutes
a fair AI model

- Ensuring
diversity and
inclusivity in AI
development
teams

(Erin Green
et al., 2022;
Veale et al.,
2018)

- Competing
definitions of
fairness

- Addressing
ethical concerns
and potential
trade-offs of
fairness

- Developing clear
guidelines and
standards for
fairness in AI
models

(Dwork et al.,
2015; Kleinberg
et al., 2018)

Source: Authors’ own work
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3.3 The Challenge of Balancing the Benefits of AI with the Risks and Limitations
of the Technology

Another topic connected to XAI in education is the challenge of creating a balance
between the benefits of AI and the risks and limitations of technology. By boosting
student engagement, automating administrative duties, and personalizing learning expe-
riences, AI can completely transform education. The use ofAI in education is notwithout
concerns, however, including the possibility of data breaches, the danger of over-reliance
on technology, and the absence of transparency and accountability in some AI-driven
educational systems. The risks and restrictions associated with AI in education must be
addressed thoughtfully and proactively to fully reap their benefits. Table 3 below can be
a helpful tool for organizing and presenting information about the challenges, risks, and
limitations associated with using AI in education, as well as strategies for addressing
them.

Table 3. Challenges, risks, and limitations associated with using AI in education

Challenge/Risk/Limitation Strategies for Addressing

Data breaches and privacy concerns - Adopting strong data protection policies and
protocols
- Regularly auditing and monitoring systems
for potential vulnerabilities
- Ensuring compliance with relevant data
protection regulations

Over-reliance on technology - Balancing the use of technology with other
teaching methods and approaches
- Encouraging critical thinking and creativity in
students
- Fostering a culture of digital literacy and
responsible technology use

Lack of transparency and accountability in
AI-powered systems

- Implementing explainable AI models that can
provide clear explanations for their decisions
and recommendations
- Ensuring that AI models are regularly audited
and tested for biases and fairness
- Providing training and support to teachers and
other stakeholders to understand and use
AI-powered systems effectively

Source: (adapted from (Kumari et al., 2023) and (Vilone & Longo, 2020))

3.4 The Role of Human Oversight in Ensuring the Ethical and Responsible Use
of AI in Education

The importance of human oversight in ensuring the ethical and responsible use of AI is
another significant issue related to explainable AI in education. AI can improve learning
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outcomes and experiences, but it cannot take the place of human teachers and mentors.
To make sure that all students’ needs and interests are taken into consideration, human
oversight is necessary. In order to prevent bias and discrimination, not only AI mod-
els must be ethical, accountable, and responsible, but also teachers should possess the
knowledge and experience required to use AI-powered educational systems successfully
and to give pupils the direction and assistance they need (Artificial Intelligence - OECD,
n.d.; Herman, 2017;Kasneci et al., 2023). Table 4 highlights the important tasks and obli-
gations of stakeholders involved in guaranteeing the moral and appropriate application
of AI in education:

Table 4. Roles and responsibilities of parties involved in AI in education

Stakeholder Roles and Responsibilities

AI developers - Designing and developing AI models that are transparent,
explainable, and free from bias and discrimination
- Regularly testing and auditing AI models to ensure their
fairness and accuracy

Educators - Providing appropriate guidance and support to students using
AI-powered educational systems
- Ensuring that AI-powered systems are used in an ethical and
responsible manner
- Being aware of the limitations and risks of AI-powered
systems and balancing their use with other teaching methods

Students - Using AI-powered educational systems responsibly and
ethically
- Providing feedback on the effectiveness and appropriateness
of AI-powered systems

Policymakers and regulators - Developing policies and regulations that promote the ethical
and responsible use of AI in education
- Ensuring that AI-powered systems are transparent,
accountable, and fair
- Promoting transparency and accountability in the use of AI in
education

Source: Authors’ own work

3.5 Examples and Case Studies to Illustrate XAI in Education

Examples and case studies can assist in illuminating some of the problems and diffi-
culties related to the application of explainable AI in education. AI-powered grading
systems can raise concerns regarding accuracy and fairness. A study by ProPublica
in 2019 showed that a well-known automated essay scoring system used in many US
schools unfairly penalized Black students. Even when the essays were of comparable
quality, the system was found to be biased toward white students compared to Black
students (MacGillis, 2020). AI-powered individualized learning platforms that adjust to
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the unique requirements and preferences of pupils can suffer from the ability to reinforce
prejudice and injustice. For instance, the AI model may make inaccurate assumptions
and suggestions based on the student’s color, gender, or socioeconomic position if it is
trained on data that was not representative of the student community.

A case study of the use of AI in education featured IBM’s “Project Debater” AI
system, which was created to debate with human opponents. In 2019, a live debate
took place between Project Debater and a top debater on the topic of whether preschool
tuition should be subsidized. While the AI system was able to provide well-researched
arguments and counterarguments, it was also criticized for its lack of emotional intelli-
gence and originality compared to its human opponent (IBM Research, n.d.). Moreover,
the focus of the majority of the research on automated essay grading is maximizing
the agreement with the human rater, which considering that human judgments could be
influenced, makes these fairly problematic (Amorim et al., 2018). Personalized learning
systems have also issues especially moving from the traditional “one size fits all” to a
personalize format of learning, and the question of inequality does not go away; on the
contrary, it gets more obvious than ever (Bhutoria, 2022). On the other hand, through
suggested tactics from the literature like the use of rubrics, exemplars, and peer review,
the adaptive learning system RiPPLE can assist in developing evaluative judgment in
large-class situations (Khosravi et al., 2020) as well as can be utilized to enhance the
learner model’s prediction ability in comparison to more conventional learner models
(Abdi et al., 2020). Another tool such as AcaWriter (example) which is writing and
learning analytics tool, can be very effective in an educational setting only if teachers
are active participants in the co-design of a student-facing writing analytics tool (Shibani
et al., 2020). FUMA, alternatively, is a case study in the promotion of global and local
explanations in AI systems to understand the decision-making process of AI models and
how the system works, but since the systems are overly complex, it is difficult for users
to understand the explanations. Same with TeamWork Analytics, which emphasizes
teamwork and collaboration while promoting accountability, trust, and sensemaking in
AI-powered educational systems, can yield great success, however misunderstandings
may result from incomplete explanations, making this amajor drawback (Khosravi et al.,
2022).

The topics and concerns surrounding explainable AI in education are complex and
multifaceted (Bostrom & Yudkowsky, 2018). To build trust in AI-powered educational
systems, transparency and accountability are essential, and creating equitable learning
environments requires ensuring fairness and eliminating bias (Veale et al., 2018). Ethical
decision-making and humanoversight are necessary to ensure thatAI is used in education
to complement human instructors, rather than replace them (Tadepalli et al., 2017). Case
studies and examples in Table 5 above illustrate these concepts and issues and provide
insight into the best practices and potential challenges for implementing explainable AI
in the classroom.
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Table 5. Examples and Case Studies

Theme/Example/Case Study Key Theme/Issue

Automated Essay-Scoring System
Bias

Theme Fairness and Accuracy, Bias in
Training Data

Personalized Learning Systems Theme Bias and Inequality,
Individualization vs.
Standardization

Project Debater by IBM Example/CaseStudy Role of Human Oversight,
Emotion and Originality vs.
Well-Researched Arguments

RiPPLE Example Accountability and trust, AI
literacy, Agency, Comparison,
Local explanations, Content-based
recommender systems, Elo rating
system, Disengagement

AcaWriter Example Agency, Trust, AI literacy, Local
explanations, Comparisons,
Rule-based NLP, Narrowness of
rules-based systems, Context
sensitivity

FUMA Case Study Trust, Sensemaking, Global
explanations, Local explanations,
Clustering, Classification,
User-centered design, Overly
complexed models, May not
benefit all students

TeamWork Analytics Case Study Accountability and Trust, Agency,
Sensemaking, Rule-based
learning, Co-design, Incomplete
explanations, Dysfunctional
behaviour

Source: Authors own work and extended list from (Khosravi et al., 2022)

4 Current Approaches to Explainable AI in Education

4.1 Algorithmic Transparency and Interpretability

The transparency and interpretability of the underlying algorithms are necessary for the
explainability of AI models used in education (Bischl et al., 2017). Making interpretable
models that produce outcomes that humans can easily understand and explain is one way
to achieve algorithmic transparency (Doshi-Velez &Kim, 2017). No matter how sophis-
ticated or intricate a model is, model-agnostic interpretability techniques allow it to be
explained (Ribeiro et al., 2016). Some of thesemethods include SHapleyAdditive exPla-
nations (SHAP), feature importance ratings, and partial dependence plots (Lundberg &
Lee, 2017).
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To ensure transparency and trustworthiness of AI systems deployed in education,
researchers and educators are exploring methods for making AI model training data
more open and accountable, as well as creating transparent and interpretable models
(Salloum et al., 2020). This requires ensuring that the data used in training the models is
accurate, unbiased, and free from flaws or contradictions. To address these challenges,
techniques such as bias detection and correction and data augmentation may be utilized
(Farrow, 2023; B. Kim et al., 2020).

4.2 Human-AI Collaboration and Hybrid Models

The difficulty of explainable AI (XAI) in education is being addressed by hybrid models
and human-AI collaboration. (Ehsan et al., 2022). These models enable a more effective
and open learning environment by fusing the strengths of bothAI and human intelligence.

Fig. 2. Human-AI model. Adapted from (Zheng et al., 2017)

Students and teachers can have a better understanding of how AI systems make
decisions and grow to trust their results through human-AI collaboration (Liu, 2021).
In addition to providing educators with real-time feedback, hybrid models have the
potential to provide adaptable learning experiences that are catered to each student’s
unique needs (Ratliff, 2019).

The development of systems that allow teachers to employ AI technologies to
improve their teaching methods is one way to encourage human-AI collaboration in
the educational setting (Bhutoria, 2022; Ehsan et al., 2022; Shibani et al., 2020). For
example, AI-powered grading solutions can help educators save time and provide more
personalized feedback to students (Aditomo et al., 2013). Another strategy is to create
tutoring software driven by AI that can adjust to each student’s specific learning pref-
erences and needs while still providing feedback and explanations that are on par with
those offered by human instructors. These initiatives could raise student interest, drive,
and academic performance.

Interest in hybrid models that include both human and artificial intelligence is devel-
oping in educational settings (Akour et al., 2022). For instance, some academics are
looking into the application of “human-in-the-loop” models (Fig. 2 above), in which ini-
tial decisions are made by AI systems and then assessed and changed by human experts.
Other hybrid models blend artificial and human intelligence to provide predictions and
explanations that are more accurate and reliable than those created using either approach
alone. This approach enables a compromise between the speed and precision of AI and
the complex decision-making skills of humans. Another kind of hybrid model combines
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the intelligence of humans andmachines to give explanations and forecasts that are more
reliable and accurate than those produced by either technique alone (Epstein et al., 2022)
(Table 6).

Table 6. Examples of Human-AI Collaboration and Hybrid Models in Education

Approach Description

AI-powered grading tools Tools that use AI to assist teachers in grading
and providing feedback to students

AI-powered tutoring systems Systems that use AI to provide personalized and
adaptive tutoring to students, while also
providing human-like explanations and
feedback

Human-in-the-loop models Models where initial decisions made by AI
systems are reviewed and adjusted by human
experts

Hybrid models combining AI and human
intelligence

Models that combine AI and human
intelligence to generate more accurate and
reliable explanations and predictions

Source: Authors’ own work

In summary, these models are key strategies for achieving superior results in edu-
cation. These approaches are aimed at improving teaching and learning outcomes by
providing personalized and adaptive tutoring, accurate grading and feedback, and more
reliable explanations and predictions.

4.3 Explainability Techniques and Tools

In the field of education, explainability techniques and tools are a collection of tech-
nologies that aim to shed light on the decision-making processes of AI systems. These
tools make it possible for academics and researchers to go inside an AI system and find
any biases or faults that might have been introduced during training. Partial dependence
plots, feature importance ratings, and SHapley Additive exPlanations (SHAP) are some
of the explainability techniques and tools that are most frequently used in education
(Goodwin et al., 2022; Moon et al., 2022). The following are some of the explainability
strategies and resources that are most frequently utilized in education:

1. Local Interpretable Model-Agnostic Explanations (LIME): This is a technique that
allows users to generate explanations for individual predictions made by a model,
making it easier to understand how the model arrived at its decisions.

2. Counterfactual Explanations: To explain the results of a model, this strategy entails
creating alternative scenarios. Using this, one can determine what would have
happened if certain factors had been changed.

3. SHAP (SHapley Additive exPlanations): This is a tool that assigns a value to each
feature in amodel, indicating howmuch that feature contributed to the final prediction.
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4. Model Cards for Model Reporting: This is a standardized format for documenting the
performance and behavior of an AI model, making it easier for users to understand
its strengths and limitations.

The approaches and resources as depicted inTable 7below, canbeusedby researchers
and educators to improve the transparency and understanding of AI systems, as well as
their general effectiveness in the educational setting.

Table 7. Overview of Explainability Techniques and Tools in Education

Technique/Tool Description Use Examples Limitations Benefits

LIME A local
model-agnostic
interpretability
method that
explains the
predictions of any
classifier by
approximating it
locally with an
interpretable
model

To explain
individual
predictions made
by an AI model

Explaining why an
AI system
recommended a
certain course of
action to a student,
or why it identified
a specific error in a
student’s work

May not be
effective in
explaining
complex models or
large datasets

Provides simple
and intuitive
explanations for
AI model
predictions

SHAP A method that
quantifies the
contribution of
each feature to a
prediction across
the entire dataset

To determine the
relative
importance of
different features
in an AI model

Determining which
features are most
relevant in
predicting a
student’s
performance, or
identifying which
aspects of a course
are most important
for student success

Can be
computationally
expensive and may
not always provide
clear or actionable
insights

Enables
educators to
understand how
AI models are
making
predictions and
identify areas for
improvement

LRP A layer-wise
relevance
propagation
technique that
identifies the
contribution of
each input feature
to the final output
of a neural
network

To provide
detailed
information on
how an AI model
arrived at its
output

Identifying which
inputs were most
relevant in making
a decision, or
understanding how
a particular input
affects the final
output

Can be difficult to
implement and
may not work well
with all types of
neural networks

Provides a more
granular level of
explanation for
AI models,
enabling
educators to
identify potential
biases or errors

Model Cards A structured
framework for
documenting key
information about
an AI model,
including its
intended use,
performance, and
limitations

To provide a
high-level
overview of an AI
model’s
capabilities and
limitations

Sharing
information about
an AI model with
stakeholders, such
as educators,
policymakers, and
students

Requires manual
input and may not
capture all relevant
information about
a model

Enables greater
transparency and
accountability in
AI models, and
facilitates
informed
decision-making
by stakeholders

Source: Authors own work (Adapted from (Aditya, 2022))
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Table 7 provides an overview of four explainability techniques and tools used in edu-
cation, including LIME, SHAP, LRP, and Model Cards. These tools are used to explain
the predictions made by AI models, assess the relative weights of various model fea-
tures, pinpoint the contributions of each input feature to a neural network’s output, and
offer a high-level overview of an AI model’s strengths and weaknesses. Despite their
limitations, these tools help educators understand how AI models are making predic-
tions and spot potential biases or errors, which can increase AI model transparency and
accountability and help stakeholders make well-informed decisions.

4.4 Ethical and Regulatory Frameworks for AI in Education

The growing use of AI in education has created a need for ethical and regulatory frame-
works to ensure responsible and ethical implementation of the technology. A study
conducted by Nguyen et.al. Provides a thematic analysis of ethical principles for artifi-
cial intelligence in education, including here governance and stewardship, transparency
and accountability, sustainability, privacy, security and safety, inclusiveness and human
centered AI in education (Nguyen et al., 2023). The use of AI in education raises ques-
tions about how this will affect key human rights concerns, therefore there is a need to
develop further the ethical and legal frameworks that will handle these concerns (Fig. 3).

Fig. 3. Framework for Artificial Intelligence in Education. Adapted from (Hwang et al., 2020)

The ethical and legal frameworks for AI in education are summarized in Table 8
below. It emphasizes the significance of these frameworks in ensuring that AI-powered
educational systems adhere to accepted moral and academic norms, safeguard students’
and other stakeholders’ rights to privacy and data protection, avoid bias and discrim-
ination, and encourage responsible AI governance and supervision. Examples of per-
tinent restrictions, advantages, and regulations are provided in each framework. Gain-
ing stakeholders’ trust by comprehending and putting these concepts into practice can
help to ensure that AI in education is employed in a safe, moral, and efficient manner.
These frameworks are designed to address concerns about data security, fairness, bias,
and transparency in AI-based educational systems (Nguyen et al., 2023). Strategies for
achieving this goal include developing ethical guidelines and rules for the responsible
use of AI in education, as well as organizations or other systems to regulate and supervise
its usage. The initiatives to develop frameworks seek to increase public trust in AI-driven
educational systems and ensure that the technology is used for the benefit of students
and society as a whole (Sharma et al., 2022).
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Table 8. Use, limitations, and benefits of regulatory and ethical frameworks

Ethical and
Regulatory
Frameworks for AI in
Education

Use Examples Limitations Benefits

Accreditation and
Standards for AI in
Education

Ensure that
AI-powered
educational systems
meet established
ethical and quality
standards

IMS Global Learning
Consortium, European
Union’s General Data
Protection Regulation
(GDPR)

Can be rigid and slow
to adapt to new
technology

Ensures that AI
systems in education
are safe, ethical, and
effective

Data Protection and
Privacy Regulations

Protect the privacy and
data rights of students
and other stakeholders

Family Educational
Rights and Privacy
Act (FERPA),
Children’s Online
Privacy Protection Act
(COPPA)

Can limit the amount
and type of data that
can be collected and
used for AI models

Maintains trust and
confidence in AI
systems in education
and protects sensitive
information

Bias and
Discrimination
Prevention

Ensure that AI models
are fair and unbiased
towards all students,
regardless of their
race, gender, or other
personal
characteristics

Equity Literacy
Institute’s “Equity
Audit” framework,
Stanford’s Fairness
Indicators

Can be challenging to
identify and eliminate
all potential biases in
AI models

Promotes equity and
inclusivity in
education, and helps
to reduce the risk of
harm or
discrimination

Responsible AI
Governance and
Oversight

Ensure that AI
systems in education
are developed and
deployed in an ethical
and responsible
manner

IEEE Global Initiative
on Ethics of
Autonomous and
Intelligent Systems,
Partnership on AI

Can be difficult to
enforce and ensure
compliance across
different organizations
and jurisdictions

Encourages
transparency,
accountability, and
responsible use of AI
in education, and
helps to build trust
with stakeholders

Source: Authors’ own work

5 Implications and Future Directions

5.1 The Need for New Skills and Competencies for Educators and Learners

To effectively engagewithAI andmachine learning, educators and studentsmust acquire
new skills and competencies as these technologies continue to advance. Education pro-
fessionals need to become familiar with the underlying algorithms and techniques uti-
lized by these systems to fully harness the potential of explainable AI. They must also be
able to critically assess the output of these systems and understand their limitations. In
addition, students must be prepared to interact with AI in their educational experiences
and have the necessary digital literacy skills to utilize and comprehend these tools (Laato
et al., 2022). Even in the survey conducted by HolonIQ, the lack of talent with appropri-
ate skill sets for AI work remain the highest barrier for adoption of AI in education, with
53% of respondents pointing that as major reason, accompanied by 50% of respondents
saying that they are under-resources for AI (HolonIQ, 2023).

Table summarizing the skills and competencies needed to effectively interact with
technologies in the educational context is provided in Table 9 below.
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Table 9. Needed skills and competencies.

Skill/Competency Description

Digital Literacy The ability to effectively use digital technologies to locate, evaluate, create,
and communicate information. This includes understanding how to use
devices, software, and digital tools

Critical Thinking The ability to analyze and evaluate information, arguments, and evidence
in order to form well-reasoned conclusions and make informed decisions.
This includes identifying biases and assumptions, evaluating sources, and
drawing logical conclusions

Problem Solving The ability to identify, analyze, and solve complex problems in a variety of
contexts. This includes using critical thinking skills to identify the root
cause of problems, generating and evaluating potential solutions, and
selecting the best course of action

Collaboration The ability to work effectively with others in a variety of contexts. This
includes communicating clearly and respectfully, sharing knowledge and
expertise, and working towards shared goals

Adaptability The ability to be flexible and adapt to new situations and technologies. This
includes being willing to learn new skills, embracing change, and being
open to new ideas and ways of doing things

Source: Authors’ own work

These abilities and skills are essential for both teachers and students to effectively
connect with technologies in the educational context. As technology advances and
becomes more prevalent in classrooms, people must have the skills and knowledge
necessary to use these tools effectively and morally.

5.2 Potential Future Directions for Research and Practice in Explainable AI
in Education

As the field of explainable AI in education continues to evolve, it is helpful to identify
potential future research and practice directions (Minh et al., 2022). The development
of more complex algorithms that can more accurately reflect the complexity of the
learning process and offer thorough reasons for their judgments is one approach that
is an option. The investigation of novel hybrid model approaches, in which human and
AI systems work together more successfully and fluidly, is another direction. Ongoing
studies are required on the ethical and legal frameworks to ensure that AI is used in
education in ethical, transparent, and egalitarian (Holmes & Porayska-Pomsta, 2022).
Finally, to provide them with the knowledge and skills necessary to navigate this fast-
changing environment, educators, administrators, and policymakers must continue to
pursue professional development. Based on the examination of more than 200 studies
in this field, as well as analysis of reports and frameworks in XAI in education, we have
recognized five areas of potential work to be conducted in this field as listed in Table 10
below.
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Table 10. Future directions for research and practice in explainable AI in education

Potential Future Directions Description what the research could involve

Integration of AI with social and emotional
learning (SEL)

AI systems that can help students develop
social and emotional skills, such as empathy
and self-awareness

Personalized learning through adaptive AI AI systems that can adapt to each student’s
learning style, pace, and interests, and provide
personalized recommendations for learning
materials and activities

Enhancing teacher professional development
with AI

AI systems that provide personalized
recommendations for training and resources
based on the teacher’s individual needs and
performance. This could involve developing AI
systems that can analyze teacher performance
and provide feedback and support in real-time

Leveraging AI for educational assessment Develop new forms of educational assessment:
automated essay grading, adaptive testing, and
predictive analytics. This could involve
developing AI systems that can analyze student
performance data to provide insights into their
learning and suggest personalized interventions

Ensuring ethical and responsible use of AI in
education

Future research and practice in explainable AI
in education should continue to prioritize
ethical and responsible use of AI in educational
settings. This could involve developing
frameworks for ethical and responsible use of
AI in education, as well as tools for monitoring
and regulating the use of AI in educational
systems

Source: Authors’ own work

The table outlines probable future directions for research and practice in explainable
AI in education, such as the creation of more reliable and accurate models, the develop-
ment of standards and best practices, the investigation of new AI applications in educa-
tion, and the fusion of AI with other innovative technologies. The table also emphasizes
the significance of cross-disciplinary cooperation, moral considerations, and continual
assessment and monitoring of AI’s effects on education. Some recommendations for
future practice in explainable AI in education:

• Development of more user-friendly and accessible interfaces for educators and
learners to understand and interpret AI-generated recommendations and decisions.

• Carrying out more empirical studies on the effectiveness of different explainability
techniques and tools in improving the understanding and trust of AI in education.

• Designing and implementation of ethical and regulatory frameworks that address the
unique challenges of AI in education, such as student privacy and data security.
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The development and application of explainable AI in education can be advanced in
a responsible, moral, and efficient manner by adhering to these suggestions.

6 Conclusion

In this review, we focused on the issues and problems relating to explainable AI in educa-
tion. We discussed the challenges of implementing AI, the importance of explainability,
and the need for human oversight. Moreover, we looked at current strategies for improv-
ing explainability, such as the interoperability and transparency of algorithms, human-AI
collaboration, and ethical and regulatory frameworks. Likewise, we drew attention to the
need for teachers and students to acquire new skills and knowledge as well as provided
the implications for governance and policy. We concluded by highlighting the impor-
tance of continued research and development in explainable AI in education to warrant
that XAI is utilized responsibly and ethically. We argue that future work should con-
centrate on interdisciplinary collaboration, user-centered and context-specific solution
design, and transparency and ethical concerns promotion.

References

Abdi, S., Khosravi, H., Sadiq, S.: Modelling learners in crowdsourcing educational systems. In:
Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS,
vol. 12164, pp. 3–9. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_1

Aditomo, A., Goodyear, P., Bliuc, A.-M., Ellis, R.A.: Inquiry-based learning in higher education:
principal forms, educational objectives, and disciplinary variations. Stud. High. Educ. 38(9),
1239–1258 (2013)

Aditya, B.: Applied Machine Learning Explainability Techniques: MakeMLModels Explainable
and Trustworthy for Practical Applications Using LIME, SHAP, and More. Packt Publishing
Ltd. (2022)

Akour, I.A.,Al-Maroof, R.S.,Alfaisal, R., Salloum, S.A.:A conceptual framework for determining
metaverse adoption in higher institutions of gulf area: an empirical study using hybrid SEM-
ANN approach. Comput. Educ.: Artif. Intell. 3, 100052 (2022)

Amer-Yahia, S.: Towards AI-powered data-driven education. Proc. VLDB Endow. 15(12), 3798–
3806 (2022)

Amorim, E., Cançado, M., Veloso, A.: Automated essay scoring in the presence of biased ratings.
In: Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp. 229–237 (2018)

Artificial intelligence—OECD. (n.d.). https://www.oecd.org/digital/artificial-intellige
nce/.Accessed 26 Apr 2023

Baker, R., Inventado, P.: Educational data mining and learning analytics, pp. 61–75 (2014). https://
doi.org/10.1007/978-1-4614-3305-7_4

Baum, K., Mantel, S., Schmidt, E., Speith, T.: From responsibility to reason-giving explainable
artificial intelligence. Philos. Technol. 35(1), 12 (2022). https://doi.org/10.1007/s13347-022-
00510-w

Bhutoria, A.: Personalized education and artificial intelligence in the united states, china, and
India: a systematic review using a human-in-the-loop model. Comput. Educ.: Artif. Intell. 3,
100068 (2022). https://doi.org/10.1016/j.caeai.2022.100068

https://doi.org/10.1007/978-3-030-52240-7_1
https://www.oecd.org/digital/artificial-intelligence/
https://doi.org/10.1007/978-1-4614-3305-7_4
https://doi.org/10.1007/s13347-022-00510-w
https://doi.org/10.1016/j.caeai.2022.100068


Explainable Artificial Intelligence in Education 67

Bischl, B., et al.: Openml benchmarking suites. ArXiv Preprint ArXiv:1708.03731 (2017)
Blikstein, P.: Gears of our childhood: constructionist toolkits, robotics, and physical computing,

past and future. In: Proceedings of the 12th International Conference on Interaction Design
and Children, pp. 173–182 (2013)

Bojarski, M., et al.: End to end learning for self-driving cars. ArXiv Preprint ArXiv:1604.07316
(2016)

Bostrom, N., Yudkowsky, E.: The Ethics of artificial intelligence, pp. 57–69 (2018). https://doi.
org/10.1201/9781351251389-4

Boyd-Graber, J., Satinoff, B., He, H., Daumé, I.: Besting the quiz master: crowdsourcing
incremental classification games, p. 1301 (2012)

Brusilovsky, P., Sosnovsky, S., Thaker, K.: The return of intelligent textbooks. AI Mag. 43(3),
337–340 (2022)

Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gen-
der classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91
(2018)

Cavanagh, T., Chen, B., Lahcen, R.A.M., Paradiso, J.R.: Constructing a design framework and
pedagogical approach for adaptive learning in higher education: a practitioner’s perspective.
Int. Rev. Res. Open Distrib. Learn. 21(1), 173–197 (2020)

Chen, Z.: Artificial intelligence-virtual trainer: innovative didactics aimed at personalized training
needs. J. Knowl. Econ. 1–19 (2022)

Dabbagh, N., Kitsantas, A.: Personal learning environments, social media, and self-regulated
learning: a natural formula for connecting formal and informal learning. Internet High. Educ.
15(1), 3–8 (2012). https://doi.org/10.1016/j.iheduc.2011.06.002

Dillenbourg, P., Jermann, P.: Technology for classroom orchestration. New Sci. Learn.: Cogn.
Comput. Collab. Educ. 525–552 (2010)

Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv:
1702.08608 (2017). https://doi.org/10.48550/arXiv.1702.08608

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A.: The reusable holdout:
preserving validity in adaptive data analysis. Science 349(6248), 636–638 (2015)

Ehsan, U., et al.: Human-centered explainable AI (HCXAI): beyond opening the black-box of AI.
In: CHI Conference on Human Factors in Computing Systems Extended Abstracts, pp. 1–7
(2022)

Epstein, Z., Foppiani, N., Hilgard, S., Sharma, S., Glassman, E., Rand, D.: Do explanations
increase the effectiveness of AI-crowd generated fake news warnings? In: Proceedings of the
International AAAI Conference on Web and Social Media, vol. 16, pp. 183–193 (2022)

Green, E., Chia, R., Singh, D.: AI ethics and higher education—good practice and guidance for
educators, learners, and institutions. Globethics.net (2022)

Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks.
Nature 542(7639), 115–118 (2017)

Farrow, R.: The possibilities and limits of XAI in education: a socio-technical perspective. Learn.
Media Technol. 1–14 (2023)

Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an
overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018)

Goodwin, N.L., Nilsson, S.R., Choong, J.J., Golden, S.A.: Toward the explainability, transparency,
and universality of machine learning for behavioral classification in neuroscience. Curr. Opin.
Neurobiol. 73, 102544 (2022)

Grand View Research. AI In Education Market Size & Share Report, 2022–2030,
p. 100 (2021). https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-
ai-education-market-report

https://arxiv.org/abs/1708.03731
https://arxiv.org/abs/1604.07316
https://doi.org/10.1201/9781351251389-4
https://doi.org/10.1016/j.iheduc.2011.06.002
http://arxiv.org/abs/1702.08608
https://doi.org/10.48550/arXiv.1702.08608
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-education-market-report


68 B. A. Chaushi et al.

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.-Z.: XAI—explainable artificial
intelligence. Sci. Robot. 4(37), eaay7120 (2019)

Herman, B.: The promise and peril of human evaluation for model interpretability. ArXiv Preprint
ArXiv:1711.07414 (2017)

Holmes, W., Porayska-Pomsta, K.: The Ethics of Artificial Intelligence in Education: Practices,
Challenges, and Debates. Taylor & Francis (2022)

HolonIQ. Artificial Intelligence in Education. 2023 Survey Insights (2023). https://www.holoniq.
com/notes/artificial-intelligence-in-education-2023-survey-insights

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik, M., Wallach, H.: Improving fairness in
machine learning systems: what do industry practitioners need? In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, pp. 1–16 (2019)

Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M.: Current advances, trends and challenges
of machine learning and knowledge extraction: from machine learning to explainable AI. In:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol.
11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1
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Abstract. Causal attribution aided by counterfactual reasoning is
recognised as a key feature of human explanation. In this paper we
propose a post-hoc contrastive explanation framework for reinforcement
learning (RL) based on comparing learned policies under actual environ-
mental rewards vs. hypothetical (counterfactual) rewards. The frame-
work provides policy-level explanations by accessing learned Q-functions
and identifying intersecting critical states. Global explanations are gen-
erated to summarise policy behaviour through the visualisation of sub-
trajectories based on these states, while local explanations are based on
the action-values in states. We conduct experiments on several grid-world
examples. Our results show that it is possible to explain the difference
between learned policies based on Q-functions. This demonstrates the
potential for more informed human decision-making when deploying poli-
cies and highlights the possibility of developing further XAI techniques
in RL.

Keywords: Explainable reinforcement learning · Contrastive
explanations · Counterfactuals · Visual explanations

1 Introduction

The aim of explainable AI planning (XAIP) and explainable reinforcement learn-
ing (XRL) is to help end-users better understand agent behaviour (e.g. learned
policies) and how that behaviour relates to the environment (i.e. transition prob-
abilities and rewards) [6,12,15]. Contrastive explanations are a particular app-
roach to explainable AI (XAI) that seek to answer contrastive why-questions,
with the aim of identifying the causes of one event (called the fact) relative to
the causes of another (called the foil in the counterfactual case, meaning that
the event did not occur in the actual world) [26]. Miller [31,32] emphasised the
importance of contrastive explanations in explainable AI (XAI) based a sur-
vey of the relevant literature from philosophy and social science. Many recent
studies have explored different aspects of contrastive explanations in XAIP and
XRL [16,35,49].
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One possibility for contrastive explanations in XRL is to compare a learned
policy under actual environmental rewards versus a learned policy under hypo-
thetical (counterfactual) rewards. Such comparisons have analogies in several
areas of RL. For example, preference-based RL [8,20,27] seeks to learn a pol-
icy that is optimal with respect to altered rewards that combine environmen-
tal rewards with human preferences. If a policy is learned under both kinds of
rewards, then it opens the possibility of explaining one policy with respect to
the other by way of contrast. An interesting research challenge then is how to
generate contrastive explanations for RL to help humans better understand the
impact of actual rewards on learned agent behaviour.

In this paper, we develop a framework for contrastive explanations in RL
that compares the policy learned under actual rewards against policies learned
under different counterfactual rewards. The actual reward configuration is just
the actual rewards, while each counterfactual reward configuration is a partial
alteration of the actual rewards. We assume that all policies are otherwise trained
under the same conditions (e.g. same hyperparameters, same training steps). We
adopt a post-hoc XAI paradigm to provide two types of contrastive explanation:

1. Global explanation: This type of explanation focuses on providing overall
policy explanations about an agent’s behaviour. It provides insights into how
these policies behave in general by visualising (sub-)trajectories, and how
decisions are made in some states among the configurations.

2. Local explanation: This type of explanation addresses the question, “Why
was action a chosen in state s rather than action a′?” It provides more fine-
grained information based on the action-value function in each configuration,
allowing for a better understanding of agent behaviour.

The rest of this paper is organised as follows. Section 2 reviews related lit-
erature about explanation in XAIP and XRL. Section 3 formulates the main
structure of contrastive explanation, and Sect. 4 offers illustrative explanation
and further analysis on the cases. The last section offers conclusions, discussions
and future works.

2 Related Work

Explainable AI (XAI) has obtained significant attention in recent years, driven
by the advancement and wide application of machine learning and AI systems
especially in decision making [23,40,44]. The systems pose challenges for trust-
worthiness if they simply employ more powerful and flexible models, albeit at
the expense of model interpretability and transparency [12,30,33]. The com-
plexity of the systems, as well as the difficulty explaining an agent’s behaviour
in planning and RL, have been acknowledged by many research papers [5,6,55]
which further assessed the necessity of XAI for planning and RL. In this part,
we review some literature that is closely related to the topics in XRL.

Policy Summarisation in RL. Policy summarisation has been a subject of much
research in XAIP and XRL [24,45], which improves interpretability and pro-
vides an explanation regarding the agent’s policy behaviour. One approach is
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the use of trajectory visualisation, which involves summarising the agent’s pol-
icy by extracting important trajectories from simulations. For example, in [1],
the authors discussed the design and implementation of the HIGHLIGHTS algo-
rithm, which used state importance and the state diversity criteria for choosing
the trajectories from the replay buffer. This approach was further extended in
[18], which integrated saliency maps to local explanation through the visuali-
sation of trajectories. In robotics and control, [17] utilises example trajectories
to enable users to better anticipate the behaviours or goals of robots. Follow-
ing this, [24] enhanced the example trajectories extraction by optimising an
inverse reinforcement learning or imitation learning problem. Another approach
to policy summarisation is generating an abstracted or hierarchical explanation
through learned models or data about the policy. For instance, in [47], authors
generated policy-level explanations for RL, which used a Markov chain to rep-
resent abstracted states and their transitions based on the training data. In
[43], authors proposed a framework for learning hierarchical policies in multi-
task RL that can learn human instructions and generate an explanation of its
decisions by learned instructions back to humans. Similarly, in [54], authors
proposed a policy abstraction method through an extended model of MDP for
deep Q-networks. Besides, many prior studies have demonstrated effectiveness
revealing an agent behaviour through trajectory visualisation and policy abstrac-
tion [3,19,34]. These works provide solid support for trajectory visualisation
that serves as an effective approach to policy summarisation and explaining the
agent’s behaviour. Building upon this foundation, we extend these methods by
incorporating contrastive explanations.

Critical States and Key Moments for Explanation in RL. [16] suggested that
the essence of the policy relies on a few critical states or the corresponding
agent’s actions on those states, and proposed approaches for computing critical
states based on the action-value function and the policy function. Similarly, [22]
explored the importance of a state with the variance of its learning action-value
function on states. Another study by [41] proposed a method which extracted
key moments of the agent’s decision with statistical information of the agents,
delivered visual summaries and offered user studies of the performance. The
authors further extracted key elements of interestingness from an agent’s learning
experience in [42], and presented a global and visual summarisation of agent
behaviour based on elements including frequency and sequence. From another
aspect, counterfactual state, which was proposed in [36] captured the key states
that an agent chose a different action with minimal change to the input of
the policy networks. Deep generative models were used to create counterfactual
states and present visual counterfactual explanations to users on Atari games in
this work. Recent research integrated generating counterfactuals in latent space
with gradient-driven methods [53]. In the domain of robust RL, the detection of
critical states against adversarial attacks adopted this metric [25]. Other studies
[11,13,54] focused on the identification and visualisation of the salience of state
features for Atari agents, which could be considered a metric of critical states.
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Explanation via Rewards or Value Functions in RL. Notably, the contrasting
descriptions were provided for users’ queries related to predefined state transi-
tions and expected reward outcomes of the agent [49]. This approach did not
directly answer the contrastive questions on the agent’s behaviour, but trans-
formed the questions and provided answers by explaining the learned value func-
tions instead. Similar to [14], the proposed method introduced contrastive expla-
nations regarding the simulated outcomes of the rollouts based on two policies
(the agent policy and the foil policy). The construction of the fact and foil in
these papers, and the scheme for contrastive explanation are heuristics, which
partially motivated the contrastive explanation for the difference in reward con-
figurations in our work. The framework in [10] provided a policy evaluation
method on the action-value function that identified the influence of state transi-
tions by removing some transition data. According to [29], contrastive explana-
tions were generated by action influence models which involved causal relation-
ship of rewards and actions. [21] introduced an explanation framework based on
reward decomposition, in which it is assumed that rewards can be decomposed
into vector-like rewards with semantic meaning. It is extended in a user-study
for real-time strategy games in [2], generated explanations for outcomes that
agents intended to achieve in tabular RL approaches [52]. [28] further utilised
reward decomposition to build a learnable framework for robotics.

From a boarder aspect of XRL, some works have considered aspects of
user needs, such as personalised explanations [46] and the complexity of con-
trastiveness [35]. We refer readers to see systematic overview of topics in XRL
[37,48,51,56].

3 Generating Contrastive Explanations for Two Policies

3.1 Preliminaries

In this work we consider infinite-horizon, discounted reward Markov Decision
Processes (MDPs) [38,39]. An MDP is a tuple M = (S,A, P,R, γ) where S is a
finite set of states, A is a finite set of actions, P : S ×A → Δ(S) is a (stochastic)
transition function where Δ(S) is the set of probability distributions over S,
R : S × A × S → R is a reward function, and γ ∈ [0, 1) is a discount factor. The
transition function P says if action a is executed in state s then the system will
transition to state s′ with probability P (s, a, s′), where P (s, a, s′) denotes the
probability of reaching state s′ according to distribution P (s, a). The optimal
value function V � is defined for each s ∈ S as:

V �(s) = max
a∈A

∑

s′∈S

P (s, a, s′) [R(s, a, s′) + γV �(s′)] (1)

and the optimal action-value function Q� is defined for each a ∈ A as:

Q�(s, a) =
∑

s′∈S

P (s, a, s′) [R(s, a, s′) + γV �(s′)] (2)
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Fig. 1. A grid-world scenario.

A policy is a function π : S → A. The optimal policy π� can be extracted directly
from the optimal action-value function, i.e. for each s ∈ S:

π�(s) = argmaxa∈AQ�(s, a) (3)

In planning (where P and R are known) a well-known approach to finding
the optimal value function is value iteration [4]. In RL (where P and R are
unknown) a well-known approach to finding the optimal action-value function is
Q-learning [50]. In our proposed method, we assume access to both the learned
policy and the learned action-value function as optimal functions defined in
Eq. (2) and (3), which allows us to generate explanations from the decision-
making processes of the agent. We consider MDPs with different reward functions
Ri as Mi = (S,A, P,Ri, γ). The optimal policy, optimal value function and
optimal action-value function on Mi are marked as π�

i , V �
i (s) and Q�

i (s, a).

Environment Description: A Demo of Grid-World. We consider a simple
case with a 7×4 grid-world (Fig. 1). Four actions, UP, DOWN, LEFT, RIGHT,
are available at each state with a random action rate with 0.1.1 To reach the
final destinations (G0 and G1 in green blocks) with the same positive reward,
the agent (red triangle) has to avoid the absorbing states, the lava cells (orange),
with a reward of 0. The agent initialises at one of the four cells on the far-left
side of the lava, and every action taken receives a penalty of −0.01.

3.2 Identifying Critical States from Q-Functions

Critical states are defined as states where small changes can significantly affect
the agent’s behaviour, and they have been shown to be reliable indicators of an
1 With 90% probability the agent moves one cell in the direction specified by the

action (i.e. the action succeeds), or with 5% probability each the agent moves one
cell either clockwise or anti-clockwise relative to the direction specified by the action
(i.e. the action fails). This grid-world was implemented by Minigrid [7].
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Fig. 2. An illustration of explanation process. Global explanation: agent (red triangle)
starts at a state, an example (full) trajectory and/or sub-trajectory are visualised.
Local explanation: local explanations are provided with a window on states of interest
by interacting with the explainer, and with more information explained on the agent’s
state. (Color figure online)

agent’s decision-making process [16]. One of the most commonly used metrics
for defining critical states is the difference between the maximum and average
action values of a state above a predetermined threshold. Let Ci denote the set
of critical states under the optimal policy π� for a given MDP. We refer this
metric as Max-mean [16],

Ci =

{
s ∈ S |

(
max Q�

i (s, a) − 1
|A|

∑

a

Q�
i (s, a)

)
> τ

}
. (4)

The number of critical states can vary depending on the reward function of
the MDP. By changing the threshold τ according to the user’s needs and the
environmental reward function, the number of critical states can be adjusted
accordingly. If there are K MDPs, we can denote the set of intersected states
among these MDPs as CI = ∩K

i=1Ci.
One of the commonly used metrics for the max-mean metric is the difference

between the maximum and minimum action-values from the action-value func-
tion [1]. Another study by [22] explores the importance of a state by examining
the variance of its action-value function at states during learning. We consider
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(a) Critical states (blue) with one re-
ward function.

(b) Critical states (purple) with a dif-
ferent reward function.

(c) The intersected critical states (red)
of two reward functions.

Fig. 3. Critical states from two different reward functions, and the intersected critical
states which hint the important states in common of the two configurations.

these as variants of the Max-mean approach. We acknowledge that further eval-
uation of these methods through user studies is necessary to determine their
efficacy in generating useful explanations of agents. A survey of related work on
critical states and key moments is provided in Sect. 2, and we offered analysis in
Sect. 5.3.

Before presenting more details, we provide an overview of how our methodol-
ogy (referred to as the explainer) generates explanations for users (referred to as
the explainee). The explainer initiates the process by generating critical states
based on the specific questions of the explainee. Critical states are generated as
a series of intersecting critical states if there are multiple policies. These critical
states are then represented visually as contrastive trajectories. Each trajectory
records the sequence of state-action pairs an agent takes, beginning from each
critical state during simulations. Additionally, to provide further details to the
user, the explainee can pause the visualisation and inquire about states of inter-
est. In the event of such queries, the explainer presents contrastive explanations
on different learned policies, including the feasible actions that can be executed,
the relevant action values from those states, along with the optimal actions of
each policy.
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3.3 Global Explanation by Using Critical States

Firstly, the explainer presents a number of states based on a default threshold
τ of the metric in Eq. (4). These states are then used as inputs to the explainer,
and Monte Carlo simulations are initiated in parallel, recording the state-action
pairs until termination states are reached (i.e., absorbing states or predefined
maximum length of recording). We refer a full trajectory as a trajectory rollout
history in which agent starts from the initial state of the environment and termi-
nates until the agent reaches termination states. A sub-trajectory is a trajectory
rollout history in which agent starts from the critical states and reaches termina-
tion states. To provide a comprehensive global explanation on states, we visualise
full trajectories or partial trajectories rollouts (illustrated in Fig. 2). Finally, the
corresponding trajectories with the maximal probability for the counterfactual
reward function within the sample space are presented to the user either as
videos or images with all the state-action pairs highlighted in contrast. These
trajectories serve as contrastive global explanations, allowing the explainee to
observe, comprehend the agent’s behaviour and compare agents with respect to
their reward functions in each configuration.

3.4 Local Explanation and Contrastive Explanation Based
on Action-Values

If the users have further queries regarding how the policy acts on specific states,
we visualise based on the states in question by displaying optimal actions and
action-values of those states. We leverage the learned action-value function to
generate local explanations for the agent’s decision-making. For instance as
shown in Fig. 5a and 5d, the action RIGHT is the optimal action as the explainee
observe that it has the highest value. The explainer displays the relative impor-
tance of each action at a given state based on its action-value, and provides a
more interpretable and informative explanation for the agent’s decision.

We provide contrastive explanations on critical states in each reward config-
uration, highlighting the differences between the learned policies and their corre-
sponding action-values. Specifically, we contrastively display the different critical
states presented in the reward configuration based on the metric in Eq. (4). The
intersected critical states are highlighted (for instance, in red in Fig. 3) to draw
the attention of explainees to the potential significance of the states across multi-
ple configurations. In our proposed framework, the explainee can choose specific
states of interest, and the explainer will then display all the actions taken by
agents and the action-values pairs from agents in a contrastive manner across
different reward configurations. This allows the explainee to observe the differ-
ent action-values pairs associated with the same action, and possible different
optimal actions in a given state for better understanding of agents’ behaviour.
In addition, we can further enhance the local explanations by considering the
uncertainty of the agent’s action-value estimation.
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4 Experiments

We consider two variants of this grid-world named GW+ and GW− (see in Fig. 1)
where the reward functions are set as:

– GW+: The agent will receive a reward of +1 at G0 (6,4) and a reward of +3
at G1 (6,0).

– GW−: The agent will receive a reward of +3 at G0 (6,4) and a reward of +1
at G1 (6,0).

(a) A learned policy in GW+. (b) A learned policy in GW−.

Fig. 4. Illustration of grid-world by Q-learning in GW+ and GW− (blue and purple).
(Color figure online)

The purpose of the setting is to give an illustrative example where reward
functions are the only part vary and the transition functions in the MDPs
remain the same. We designed such two intuitive reward functions under which
Q-learning is used to learn policies. Specifically, we ran the algorithm on two
grid-worlds denoted as GW+ and GW−, respectively, with a discount factor of
0.99 and learning rate of 0.01. The Q-tables are initialised with values N (0, 1)
and 14000 episodes. After the training process we output the Q-table as the
learned action-value function.

We identify the critical states from each Q table and compute their intersec-
tion set CI, which provides a simple illustration of policy behaviour. To compute
the critical states, we utilised the Max-mean method in Eq. (4) and set a pre-
determined parameter of τ = 80 for better illustration. The resulting critical
states for GW+ and GW− are shown in Fig. 3. There were five intersected crit-
ical states, and we selected three of them for illustration: (0,3), (2,1), and (4,2).

To provide a global explanation, we report the learned policies for GW+

and GW− in Fig. 4a and Fig. 4b, respectively, along with the optimal actions at
each state indicated by arrows. We then present further global and contrastive
explanations based on a sample of simulations shown in blue and purple colours
in Fig. 5a, 5b, and 5c. The corresponding states are highlighted in the images.
The explainees can observe that the agent’s decisions starting from certain states
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(a) Sub-trajectory from
(0,3).

(b) Sub-trajectory from
(2,1).

(c) Sub-trajectory from
(4,2).

(d) Local information on
(0,3).

(e) Local information on
(2,1).

(f) Local information on
(4,2).

Fig. 5. An example of contrastive explanation on three critical states. 5a–5c: Global
contrastive explanation on agents in GW+ (blue) and GW− (purple). 5d–5f: Local
contrastive explanation on actions in GW+ and GW−. (Color figure online)

can lead to completely different goal states which reveals the importance of
understanding critical states and their impact on the overall policy behaviour.
For example, in Fig. 5b, this figure illustrates two trajectories which are legible
to the explainees in the presence of two possible goal states of the agent and
the avoidance of lava states. If the agent starts at the left position next to the
lava grid, with one policy, it takes the action UP and LEFT, then executed a
series of action of RIGHT and eventually reaches the goal state on the top-right
(G1 ). With a different policy, it takes the action LEFT and DOWN, and then
provides another series of actions that reaches the goal state of bottom-right
(G0 ). We observe at least two agent behaviours: the behaviour of reaching
different goal states, and the behaviour of stepping away from the lava grid.
From the perspective of the explainees’ mental models, we wish they would
attribute causes of the difference of reward configurations themselves from these
behaviours, with possibly further observation on the local explanation of action-
values. Though the visual explanation does not directly tell the explainees the
actual factors on how and why the reward differs, it illustrates an explicable
trajectory that help them comprehend the objectives of the agent’s behaviours.
Similar explanations apply to Fig. 5a and Fig. 5c.
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Local and contrastive explanation are shown in Fig. 5d, 5e, and 5f. Providing
action-values and optimal actions for each state in contrast contributes to a more
comprehensive explanation of global contrastive explanation with trajectories.
The explainee can observe differences among the action-values across actions,
which could help explainees comprehend why the agent chose the learned action
(highlighted in black) over the other three actions (shown in grey). For instance,
in Fig. 5e, it has been demonstrated that the action UP is the optimal action
for one agent, the blue agent, as it yields the highest action-value of 129.9. On
the other hand, for the second agent, the purple agent, the optimal action is
LEFT, with a corresponding optimal action-value of 245.9. The difference in
optimal actions aid the explainees in attributing causal factors, e.g., why the
agent ultimately reaches distinct goal states.

5 Conclusion and Discussion

In this study, we addressed the problem of explanation in RL by comparing
policies based on their action-value functions where the policies are learned under
different reward functions. Our proposed methods generating global and local
explanations through trajectories based on intersected critical states. We further
showed our explanation successfully demonstrating the contrastive behaviour by
an example from Q-learning in a grid-world.

5.1 Discussion of Research Questions

In this subsection, we discuss our research questions and the knowledge con-
tributed to the XAI community in this paper. The utilisation of counterfactual
rewards within XRL is to address two broader and significant research questions:

Research Question 1: Casual attribution via counterfactual reasoning.
Suppose that an action X has been learned by an agent and the explainees asked
“why X?” as the action may look unexpected or weird. Humans are believed to
answer such questions by identifying causes through counterfactual reasoning. In
RL, the learned action in each state depends on characteristics of the underlying
MDP, which consists of a transition function and a reward function. A reasonable
cause in RL then might reference characteristics of the transition function and/or
reward function that led to action X having been learned. An important question
would be: what characteristics of the transition function and/or reward function
are most relevant to the action X having been learned? In this paper, we limit our
focus to the reward function. The objective of simulating hypothetical rewards
is not to imply that X would not have been learned in the absence of the actual
reward function. Instead, its purpose is to facilitate counterfactual reasoning in
humans, enabling them to attribute characteristics of the actual reward function
as causes for X having been learned. We focus on predefined hypothetical reward
functions, but our objective remains the same: as an aid to understand the actual
reward function and its impact on learned actions.
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Research Question 2: Casual contrastive explanations. Suppose Research
Question 1 has been answered and the explainees are able to attribute character-
istics of the actual reward function as causes for X having been learned. Suppose
again that the explainees proposed some other action Y which would have been
normal/expected, and asked “why X rather than Y?” According to the ques-
tion, action Y was not learned by the agent, so the explainees are not able to
attribute characteristics of the actual reward function as causes for Y having
been learned. Instead, we need a hypothetical reward function, and specifically
one where Y would have been learned with all the settings being equal (i.e., the
same transition function, hyper-parameters, and training steps etc.) However,
if we have those causes, then we can answer the question by focusing on the
aspects where the actual and hypothetical causes differ. In the paper we do not
directly address Research Question 2, but we do lay some groundwork on how
it could be addressed, mainly due to the need to construct hypothetical reward
functions, but also in the need for visual comparisons. However, a major differ-
ence is that the hypothetical reward function is now significant; it must ensure
that Y is learned, all else being equal. The same criteria may be reasonable for
choosing hypothetical reward functions under Research Question 1.

5.2 Discussion of Findings

This paper contributions to the field of XRL in the sense that it addresses a
previously unexplored question improving the users’ comprehension of the agent
behaviour through the construction of a hypothetical reward function. Specif-
ically, we use the learned policies on both the hypothetical and actual reward
functions to enable users to engage in counterfactual reasoning on the discrepan-
cies existed between these reward functions. The proposed method offers a viable
and natural means of addressing contrastive questions and limit the information
scope to identification of critical states and trajectory visualisation. The metric
used for critical states in this study builds upon a prior research. The visualisa-
tions presented in this paper leverage the established groundwork of trajectory
visualisation methods, which have proven to be an effective approach to sum-
marising policies and an agent’s behaviour. We emphasise the importance of
co-use for explaining the difference of reward functions: contrastive explanations
visually based on trajectories and utilisation of action-values.

5.3 Limitations and Future Work

While this paper primarily focuses on computational methods rather than user
studies, it is important to acknowledge the need for a user study to evaluate the
effectiveness of the visual explanations provided and the validity under specific
conditions. We recognise the significance of conducting a comprehensive user
study as part of future work. We also provide possible future improvement on
the following topics.

Critical States Identification. One limitation observed is the absence of user
evaluation regarding the metrics employed for critical states identification. While
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the action-values can reveal the optimal action(s) that are preferred over alter-
native actions, future work should focus on providing explanations from the
underlying reasons supporting such preferences, e.g., an epistemic perspective
of certainty/uncertainty of the agent. Furthermore, in addition to computing
critical states based on the action-value or value function, we posit that a sim-
ilar metric can be applied to the policy function and potentially extended to
continuous action spaces.

Textual Explanation and Interactive Interface. The proposed method pri-
marily provide visual comparisons to facilitate casual attribution by humans,
however, this could fail when the visualisation does not meet human’s expecta-
tion. We recognise this limitation, and textual-based and question-based expla-
nations could be used in enhancing the potential cognitive process by explainees
in future work. The inclusion of an interactive interface is targeted to consider
the needs and preferences in explanation for users [35,46]. For instance, providing
users with the capability to specify the desired number of critical states or cer-
tain type of metric they wish to view, particularly in situations where there may
be an overwhelming number of states to consider. Moreover, particular attention
would be given to prioritising the presentation of trajectory explanations that
involve disagreement perceived by the explainees.

System Design. The proposed method exhibits limitations when applied to
complex environments. The method heavily relies on an accurate model or
simulator to generate trajectories supposing that the agent can be positioned
in arbitrary states. Alternative solutions would be to compute critical states
through pre-recording trajectories or employing episodic memory of an agent [9]
in future work. While the computational cost increases when multiple policies
need to be trained for real-world applications, the training of contrastive policies
can be conducted in parallel. And in most scenarios, we believe that a limited
form of contrastive explanations can be achieved sufficiently with only two poli-
cies. Furthermore, exploring the explanation of potential policy randomness and
environmental uncertainty (e.g., random effects and transitions induced by the
environment or random actions taken by the agent) is identified as a promising
future direction.
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ICANN 2020. LNCS, vol. 12396, pp. 366–378. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61609-0 29

https://github.com/Farama-Foundation/Minigrid
https://doi.org/10.1007/978-3-030-35288-2_6
https://doi.org/10.1007/978-3-030-31423-1_9
https://doi.org/10.1007/978-3-030-61609-0_29
https://doi.org/10.1007/978-3-030-61609-0_29


86 X. Liu et al.

23. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey.
Int. J. Robot. Res. 32, 1238–1274 (2013)

24. Lage, I., Lifschitz, D., Doshi-Velez, F., Amir, O.: Exploring computational user
models for agent policy summarization. In: IJCAI 2019, pp. 1401–1407 (2019)

25. Lin, Y.C., Hong, Z.W., Liao, Y.H., Shih, M.L., Liu, M.Y., Sun, M.: Tactics of
adversarial attack on deep reinforcement learning agents. In: IJCAI 2017, pp. 3756–
3762 (2017)

26. Lipton, P., Knowles, D.: Contrastive Explanations, p. 247–266. Royal Institute of
Philosophy Supplements, Cambridge University Press (1991)

27. Liu, R., Bai, F., Du, Y., Yang, Y.: Meta-reward-net: implicitly differentiable reward
learning for preference-based reinforcement learning. In: NeurIPS 2022, vol. 35, pp.
22270–22284 (2022)

28. Lu, W., Magg, S., Zhao, X., Gromniak, M., Wermter, S.: A closer look at reward
decomposition for high-level robotic explanations. arXiv abs/2304.12958 (2023)

29. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement
learning through a causal lens. In: AAAI 2020, pp. 2493–2500 (2020)

30. Marcus, G., Davis, E.: Rebooting AI: Building Artificial Intelligence We Can Trust.
Pantheon Books, USA (2019)

31. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

32. Miller, T.: Contrastive explanation: a structural-model approach. Knowl. Eng. Rev.
36, e14 (2021)

33. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understand-
ing deep neural networks. arXiv abs/1706.07979 (2017)

34. Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., Rezende, D.J.: Towards inter-
pretable reinforcement learning using attention augmented agents. In: NeurIPS
2019, pp. 12360–12369 (2019)

35. Narayanan, S., Lage, I., Doshi-Velez, F.: (when) are contrastive explanations of
reinforcement learning helpful? arXiv abs/2211.07719 (2022)

36. Olson, M.L., Khanna, R., Neal, L., Li, F., Wong, W.K.: Counterfactual state expla-
nations for reinforcement learning agents via generative deep learning. Artif. Intell.
295, 103455 (2021)

37. Puiutta, E., Veith, E.M.S.P.: Explainable reinforcement learning: a survey. arXiv
abs/2005.06247 (2020)

38. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. In: Wiley Series in Probability and Statistics (1994)

39. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pear-
son (2020)

40. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a
learned model. Nature 588, 604–609 (2019)

41. Sequeira, P., Gervasio, M.: Interestingness elements for explainable reinforcement
learning: understanding agents’ capabilities and limitations. Artif. Intell. 288,
103367 (2020)

42. Sequeira, P., Hostetler, J., Gervasio, M.T.: Global and local analysis of interest-
ingness for competency-aware deep reinforcement learning. arXiv abs/2211.06376
(2022)

43. Shu, T., Xiong, C., Socher, R.: Hierarchical and interpretable skill acquisition in
multi-task reinforcement learning. In: ICLR 2018 (2018)

44. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354–359 (2017)



Contrastive Explanations for RL via Counterfactual Rewards 87

45. Sreedharan, S., Srivastava, S., Kambhampati, S.: TLDR: policy summarization for
factored SSP problems using temporal abstractions. In: ICAPS 2020, vol. 30, pp.
272–280 (2020)

46. Sreedharan, S., Srivastava, S., Kambhampati, S.: Using state abstractions to com-
pute personalized contrastive explanations for AI agent behavior. Artif. Intell. 301,
103570 (2021)

47. Topin, N., Veloso, M.: Generation of policy-level explanations for reinforcement
learning. In: AAAI 2019, pp. 2514–2521 (2019)

48. Vouros, G.A.: Explainable deep reinforcement learning: state of the art and chal-
lenges. ACM Comput. Surv. 55(5) (2022)

49. Waa, J., Diggelen, J., Bosch, K., Neerincx, M.: Contrastive explanations for rein-
forcement learning in terms of expected consequences. In: IJCAI 2018 - Explainable
Artificial Intelligence (XAI) Workshop (2018)

50. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)
51. Wells, L., Bednarz, T.: Explainable AI and reinforcement learning-a systematic

review of current approaches and trends. Front. Artif. Intell. 4 (2021)
52. Yau, H., Russell, C., Hadfield, S.: What did you think would happen? Explaining

agent behaviour through intended outcomes. In: NeurIPS 2020, vol. 33, pp. 18375–
18386 (2020)

53. Yeh, E., Sequeira, P., Hostetler, J., Gervasio, M.T.: Outcome-guided counterfactu-
als for reinforcement learning agents from a jointly trained generative latent space.
arXiv abs/2207.07710 (2022)

54. Zahavy, T., Ben-Zrihem, N., Mannor, S.: Graying the black box: understanding
DQNs. In: ICML 2016, pp. 1899–1908 (2016)
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Abstract. In recent years, Explainable AI (xAI) attracted a lot of atten-
tion as various countries turned explanations into a legal right. xAI algo-
rithms enable humans to understand the underlying models and explain
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lyzed and improved beyond the accuracy metric by, e.g., debugging the
learned pattern and reducing unwanted biases. However, the widespread
use of xAI and the rapidly growing body of published research in xAI
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overwhelming and make it difficult for practitioners to choose the correct
xAI algorithm for their specific use case. This problem is further exac-
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explaining a model. To make the benchmark results easily accessible, we
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1 Introduction

Explainable AI (xAI) algorithms are a set of approaches toward understand-
ing black-box models. In recent years, xAI algorithms helped debug manifold
issues in ML models, such as exposing underlying wrong patterns in classify-
ing objects [1] or highlighting inequality and bias in decisions [2]. Moreover,
given its essential impact on society, legislation in several countries now includes
the “Right to explanation” [3] fulfilled by the various xAI tools available in the
literature.

Different Implementations. It is difficult to define the best xAI solution given the
number of known evaluation metrics. In addition, the long evolutionary history
of specific xAI algorithms makes it even more difficult to evaluate each version.
The Shapley values are an excellent example of this challenge. Sundararajan et
al. stated that “. . . the functional forms of the Shapley value. . . are sufficiently
complex as to prevent direct understanding. . . ” [4]. Indeed, going through the
theoretical background of Shapley values [5], its multiple approximations [6,7],
generalizations [4,8] and final implementations [9,10] adapted to the AI field
might mislead the end-user on the capability of the available tools.

Resulting Challenges. The variable requirements and implementations of the xAI
algorithms might lead to data scientists facing considerable difficulties in accu-
rately evaluating each xAI algorithm and remaining up-to-date on its evolution.
This issue yields a clearly visible symptom known as the illusion of explanatory
depth [11] in interpreting xAI results [12] as it has been confirmed that data
scientists are prone to misuse interpretability tools [13].

Solutions and Recommendations. Many researchers did address this question by
stressing the importance of structuring and documenting xAI algorithms [14,15],
i.e., by highlighting the target end-users of the algorithm, its capabilities, limi-
tations, and vulnerabilities. Finally, they recommend using quantitative metrics
to make claims about explainability. Miller (2019) proposed a seminal paper
on how to structure an explanation. He emphasized the importance of human-
interpretable explanations and the use of natural language complemented by
visualizations where appropriate. He also highlighted the need to consider the
social and ethical implications of AI explanations. Miller’s recommendations
have been influential in shaping the field of Explainable AI and continue to guide
researchers and practitioners toward developing more transparent and account-
able AI systems. Overall, the solutions and recommendations put forward by
researchers aim to increase the transparency, accountability, and trust in AI
systems, particularly with regard to their decision-making processes [16].

Functional Testing as a Solution to Stated Recommendations. Functional testing
aims to verify the end-user’s requirement on the xAI algorithm by performing
end-to-end tests in a black-box fashion. In other words, every functional test
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applies the xAI algorithm on a frozen AI model to verify if the output corre-
sponds to the explanation expected by data scientists. A functional test could
verify that the explanation accurately reflects the AI model (Fidelity), that it is
not sensitive to adversarial attacks (Fragility), that it is stable to small variations
in the model (Stability), or that it can effectively handle high dimensional data
(Stress). Functional testing remains, unfortunately, sparsely used in literature
and, thus, provides only a partial evaluation.

Research Questions. Given the unsolved burden of evaluating and correctly
choosing xAI algorithms, we propose Compare-xAI that mitigates these two
issues (non-unified benchmark for xAI algorithms and the illusion of explana-
tory depth during the interpretation of results) by addressing three research
questions:

1. What are the dimensions to consider while testing an xAI algorithm from a
data scientist practitioner’s perspective?

2. How to score xAI algorithms despite the multitude of evaluation dimensions?
3. How to compare and choose between similar xAI algorithms?

The paper is structured as follows: First, we provide a comprehensive review of
the existing literature on xAI evaluation methods, including functional tests and
portability tests. We also discuss the challenges associated with navigating the
vast array of available tests. Second, we present a benchmark for xAI algorithms
and examine Miller’s recommendations on how to present explanations. In the
Methods and Findings section, we address three research questions concerning
the dimensions to consider while testing an xAI algorithm, how to score xAI
algorithms simply, and how to compare and choose between similar xAI algo-
rithms. Finally, we discuss the limitations of our approach and suggest areas for
future work, including design-related and implementation-related limitations.

2 Related Work

This section is a survey for xAI evaluation methods. It contains examples con-
trasting the difference between functional tests and portability tests. Following
that, we examine some early attempts to regroup them into surveys or bench-
marks.

2.1 xAI Evaluation Methods: Functional Tests vs Portability Tests

Researchers in the xAI field often propose a new method along with a set of
functional or portability tests that outline the contrast between former work
and their contribution.

Functional Tests. Functional testing is a popular testing technique for software
engineers. The following definition is adapted from the software engineering field
to our intended usage in machine learning [17]. Functional tests are created by
testers without specific knowledge of the algorithm’s internal modules, i.e., not
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the developers themselves. Therefore, the algorithm is considered a black-box
and is executed from end to end. Each functional test is intended to verify
an end-user requirement on the xAI algorithm rather than a specific internal
module. Thus, functional tests share the advantage of being able to test different
algorithms. On the other hand, failed tests do not inform about the location of
the errors but rather attribute it to the entire algorithm. Functional tests for xAI
algorithms usually exploit tabular synthetic data and few input features, e.g.,
considering a simple AND function. The xAI algorithm is expected to detect
symmetry between the two binary features [9]. Simple examples showcase the
undeniable limit of certain xAI algorithms. Nevertheless, specific tests could use
real-world data. A good example is the MNIST dataset [18] which proved that
certain xAI algorithms are attributing high importance to dummy pixels [19]:
Since edge pixels are always black, a multi-layer perceptron will learn not to rely
on these constant pixels. Consequently, the xAI algorithm should confirm that
the AI model does not use these pixels. Papers proposing new xAI algorithms
remain too short to list all known tests. In addition, some of the highlighted issues
may be fixed without being subsequently noted in the respective publications.

Portability Tests. Portability tests for xAI algorithms evaluate real-world models
and demonstrate the robustness of the xAI algorithm against multiple challenges
at once (noise, correlated inputs, large inputs, etc.). They are used to claim
the potential broad usage of one xAI algorithm rather than demonstrating the
quality of the explanation. For example, Tsang et al. proved the portability of
their proposed xAI across recommendation tasks by testing on that kind of AI
model [20].

Navigating the Ocean of Tests Remains itself a Huge Challenge. First, many
examples in the literature are portability tests which make the comparison
between xAI algorithms complex. Second, tests could be redundant to empha-
size the frequent occurrence of an issue, e.g., testing interaction detection with
different transparent models [20]. Third, researchers could argue the correctness
of specific functional tests’ ground truth, e.g., causal explanation of the Shapley
values [21] has been considered false in certain research [4].

Given the tremendous amount of xAI algorithms and dedicated metrics, sur-
veys [22–27] have trouble providing an in-depth analysis of each algorithm and
cannot cope with ongoing implementation updates. Nevertheless, Molnar’s online
book distinguishes itself with a continuously updated survey about xAI [28]. The
initiative of a real-time survey faced great success and acceptance from the data
science community.

2.2 Benchmarks for xAI Algorithms

There are specialized benchmarks in the literature, like the SVEA bench-
mark [29]. The latter focuses on computer vision tasks and proposes faster
evaluations based on the small MNIST-1D dataset [30]. The ERASER bench-
mark [31] is centered on interpretability in NLP models using human-annotated
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rationales. Another benchmark utilizes exclusively human evaluation to assess
xAI algorithms on real-world tasks [32]. On the one hand, benchmarking an xAI
algorithm using computer vision and NLP models permits measuring the real
success of an xAI tool in helping end-users even though human evaluation could
be considered subjective and more costly to obtain. On the other hand, evalua-
tion using real-world tasks does not allow debugging the xAI algorithm, i.e., two
algorithms might fail to explain one black-box model for two different reasons.

xAI-Bench [33] evaluates each xAI algorithm on five metrics. Faithfulness
measures the Pearson correlation between the feature importance and the
approximate marginal contribution of each feature. Of course, one could argue
that the ground truth explanation of a model could be slightly different from
the marginal contribution of each feature on the observed dataset. The same
argument holds for the monotonicity, infidelity, and GT-Shapley metrics. They
define a ground truth output, which should be closely matched by the xAI algo-
rithms. A specific xAI algorithm should be preferred over other xAI approaches,
if its output better aligns with the ground truth. In contrast, functional tests
discussed in previous paragraphs evaluate the correctness of the output using a
pattern (not an exact ground truth). Therefore, Our paper focuses on functional
tests using patterns as evaluation methods. The fifth metric used in xAI-Bench
is remove-and-retrain (ROAR). It involves a re-evaluation of the model, which
could alter the evaluation. Another critical factor affecting the algorithms’ scores
and ranking is the data distribution. The authors did circumvent the issue by
testing on different distributions. However, it remains difficult to decide if the
algorithm is failing this specific test or if it is generally sensitive to the data dis-
tribution. xAI-Bench is an excellent initiative to benchmark the correctness of
an xAI algorithm, except that it does not allow for easy debugging and does not
propose any final ranking of the xAI algorithm to help practitioners and laymen
quickly pick the right tool. Property-based testing of black-box functions [34] pro-
vides an alternative to functional testing of xAI algorithms. Instead of applying
the xAI algorithm to a synthetic scenario to observe its behavior, property-based
testing approximates the dynamics of the method. This approximation can then
be examined to find scenarios where the xAI algorithm deviates from the desired
behavior. However, to get a good approximation of the tested methods, many
different scenarios must be created to examine the method’s behavior and obtain
a reliable approximation, which is very time-consuming.

Altruist citemollas2022altruist presents a method for generating argumen-
tative explanations through local interpretations of predictive models. Chrysos-
tomou and Aletras [35] focus on improving the faithfulness of attention-based
explanations for text classification tasks. Lastly, Hamamoto and Egi [36] propose
a model-agnostic ensemble-based explanation correction method leveraging the
Rashomon effect.

BASED-XAI [37] proposes one novel fidelity test that assesses the proposed
ranking of the features. The test is adapted to five datasets and three xAI algo-
rithms. Guidotti et al. [38] also primarily focus on fidelity tests on synthetic
data and local feature importance. EvalXAI [39], on the other hand, focuses on
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Fragility tests, i.e., adversarial attacks. The goal of Compare-xAI is to unify func-
tional tests for xAI algorithms into an all-in-one multi-dimensional benchmark
that encompasses fidelity, fragility, stability, and stress tests. This work allows
data scientist practitioners to assess xAI algorithms on different test types but
also with the same setup and parameters.

The Quantus toolkit [40] is an open-source library designed for evaluating
the quality and reliability of neural network explanations, specifically. CLEVR-
XAI [41] also focuses on evaluating neural networks, specifically. The work by Du
et al. [42] is dedicated to the attribution of predictions in RNNs using additive
decomposition. OpenXAI [43] is a broader benchmark which uses systemati-
cally logistic regression and neural networks models on each test. Compare-xAI
tends to include various ML models like decision trees, neural networks, gradient
boosting trees, and even user-defined black-box functions to reproduce specific
pitfalls.

2.3 Miller’s Recommendation on How to Present Explanations

In his seminal paper “Explanation in Artificial Intelligence: Insights from the
Social Sciences”, Miller (2019) advocates for the use of human-interpretable
explanations in AI systems [16]. Miller argues that AI systems should provide
explanations that are not only technically accurate but also understandable to
human users. Miller recommends the use of natural language explanations, com-
plemented by visualizations where appropriate, to increase the transparency and
accountability of AI systems. He also highlights the importance of considering
the social and ethical implications of AI explanations, including issues of fairness
and bias. Miller’s work has been influential in shaping the field of Explainable AI
and his recommendations continue to be widely cited and adopted by researchers
and practitioners.

Following the analysis of related work, Sect. 3 details how our proposed
benchmark addresses the highlighted issues.

3 Methods and Findings

We compare various xAI algorithms through different functional tests to under-
stand their respective advantage and pitfalls. The flowchart illustrated in Fig. 1
provides a concise summary of the research questions that will be analyzed in
the subsequent sections.

3.1 RQ1: What are the Dimensions to Consider While Testing
an xAI Algorithm from a Data Scientist Practitioner’s
Perspective?

The selection of tests to be used to analyze the performance of the xAI algorithm
is not trivial. First, we need to determine which aspects of the xAI algorithm
we want to test. Then, we need to find a set of tests that sufficiently cover the
aspects of the xAI algorithm that we need to evaluate.
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Fig. 1. The flowchart of the Compare-xAI Benchmark.

Method. We select the following research papers describing popular xAI
algorithms [1,5,7,9,19,20,33,44–46], see Appendix B for more details about
each algorithm. We select the functional tests in each of these papers. We
broaden the range of selected tests by including additional ones from the related
work [4,21,47–49], see Appendix A. Then, we apply the functional tests to all
xAI-methods.

Findings. The significance of xAI algorithms has increased substantially
through the incorporation of additional use cases and the generalization of each
xAI algorithm to a wider range of machine learning models. This has been accom-
panied by an increase in expectations for xAI algorithms. However, this increase
is not without problems. Indeed, it became more likely for xAI algorithms to
not output the explanation expected by the data scientist practitioners. For this
reason, a multitude of functional tests was created. We propose to categorize
shortlisted functional tests into four common groups, sparsely adopted in liter-
ature [9,50–52] to ensure that the proposed benchmark covers a large variety of
end-user requirements. In the following, we will introduce the four test categories
using functional tests implemented in the Compare-xAI benchmark as concrete
examples.

Fidelity answers the question of whether the xAI explanation faithfully repro-
duces the dynamics of the underlying model [51]. It is also named Faithfulness
in certain related work [42,51,53]. The Cough and Fever [9] functional test
examines the Fidelity by training a regression tree on a synthetic dataset,
where the two input features are symmetric. The xAI algorithm should detect
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this symmetry and assign equal importance to the two features. Similarly, the
Cough and Fever 10 90 [9] functional test utilizes a regression tree trained
on asymmetric features. Here the xAI algorithm should detect this asymme-
try and assign the importance to the features accordingly. Fidelity is also
named faithfulness [51], or consistency [9].

Fragility reflects how vulnerable the xAI algorithm is against adversarial
attacks. For example, Attackers can exploit xAI algorithms based on feature
perturbation by lowering the importance of certain features [52]. This vul-
nerability is exploited by the Fooling Perturbation Algorithm. We use a
functional test based on the COMPAS dataset [54], where the xAI algorithm
must correctly assign the highest importance to the feature Race, despite the
attack by the Fooling Perturbation algorithm.

Stability evaluates whether the explanation provided by the xAI algorithm is
too sensitive to minor variations in the underlying model or data. Common
weaknesses of xAI algorithms with respect to stability are due to data distri-
bution. Statistical dependencies [7], correlated features [13,33], and random
noise [4] can all lead to unstable xAI algorithm results. How susceptible an
xAI algorithm is to instability can be tested, for example, with the test family
x0 plus x1 [48,49]. In the first test case, the binary features of the synthetic
dataset are statistically independent and have equal importance. We investi-
gate how much changing the data distribution from uniform to non-uniform
affects the result of the xAI algorithm. In the second test case, we again change
the distribution from uniform to non-uniform, but this time the binary fea-
tures are statistically dependent. In both test cases, the xAI algorithm should
correctly assign equal importance to the two features despite the change in
the underlying data distribution.

Stress examines whether the xAI algorithm scales gracefully with a higher num-
ber of parameters, for example, a higher number of input features [19], of
tokens [7], of data points, etc. An example of an implemented stress test is
using the MNIST dataset [19]. In this functional test, an MLP is trained on
images of hand-drawn digits, each with 784 pixels (a high number of input fea-
tures). A subset of these pixels are dummy pixels, i.e., they are not important
for the prediction of the trained model. The xAI algorithm should correctly
identify these dummy pixels. The final test result is the ratio between the
correctly detected dummy pixels and the actual number of dummy pixels.

The functional tests presented here serve as an example for the reader to easily
understand the four categories but are only a subset of the tests we employ in
our benchmark. We refer the reader to Appendix A for an exhaustive list of all
included tests, as well as their functionality and hyperparameters. Since fidelity
is the most straightforward property to test, we note that most of the functional
tests presented in the literature aim to test the xAI algorithms for their fidelity
to the black-box model. Since we take the functional tests for this study from
the literature, Compare-xAI reflects this imbalance, and most of the tests in our
study fall into the fidelity category.
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3.2 RQ2: How to Score xAI Algorithms in a Simple Way Despite
the Multitude of Evaluation Dimensions?

Method. We propose to standardize the final score of each test to a range from
zero to one. We obtain the benchmark results by applying the set of functional
tests to each xAI algorithm, following the setup described in the answer to the
first research question.

Table 1. Summary of the benchmark’s results.

Score Fidelity Fragility Stability Stress Time per Test Completed
xAI algorithm [%] [%] [%] [%] [Seconds] Tests

Random 48 06 11 50 0.0075 11

Permutation 73 56 99 55 9 11

Permutation_Partition 73 56 99 55 12 11

Partition 73 56 99 50 7 11

Tree_Shap_Approx 50 100 74 0.0057 8

Exact_Shapley_Values 73 56 99 1906 11

Tree_Shap 60 100 99 0.0004 8

Saabas 100 100 73 0.0012 8

Kernel_Shap 100 56 99 100 121 10

Sage 66 100 93 100 18 9

Lime 82 100 99 100 259 10

Maple 33 56 100 55 56 11

Joint_Shapley 42 48 98 1947 11

Findings. We present the average results obtained in each of the test cate-
gories by each xAI algorithm in our study in Table 1. Missing scores indicate
that an explainer is either not able to complete any of the functional tests in
that category or the time limit is exceeded. A failure in applying an explainer
on a functional test is caused by mismatches between the family of AI mod-
els, a specific explainer is able to explain, or the dataset structure used by the
functional test.

First, considering all implemented tests without filtering, none of the xAI
algorithms did obtain the perfect score. Second, we can distinguish clusters of
xAI algorithms by looking at their scores. This clustering reflects the original
structure of these xAI algorithms. For example, the biggest cluster is formed by
permutation-based algorithms. On average, an xAI algorithm is eligible for 10
tests (±1) depending on its portability.

Figure 2 visualizes the findings of Table 1 in an easy to understand man-
ner. The spidergram is divided into the same four categories as the Table 1 of
Fidelity, Fragility, Stability and Stress test, while also including the category
of Portability. We define the Portability of an xAI algorithm as the number of
test which it can successfully complete without encountering errors or exceeding
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Fig. 2. Spidergram Performance Analysis of Indexed xAI Algorithms

the time limit. The Portability of an xAI algorithm is therefore a crucial aspect
of its performance. This spidergram thus offers a multi-dimensional view of the
performance and robustness of the xAI algorithms under consideration.

3.3 RQ3: How to Compare and Choose Between Similar xAI
Algorithms?

The preliminary results of the Compare xAI benchmark confirm that there is no
clear state of the art and that choosing the appropriate xAI algorithm requires
additional effort. Therefore, the question arises: how data science practitioners
should select an xAI algorithm according to their needs?

Method. We take the raw scores from the experiment we conducted according
to the protocol we described in the first two research questions and analyze them
for practical guidance for data science practitioners.

Findings

Different Portability. The literature presents a spectrum of xAI algorithms, each
with varying degrees of specialization. Model-specific xAI algorithms, such as
Tree SHAP [9], are tailored to specific AI models or explanation types. On
the other hand, more versatile methods like Kernel SHAP [7] are designed to
be compatible with a variety of AI models and can generate multiple types
of explanations. This versatility stems from their model-agnostic nature, which
allows them to elucidate the dynamics of a black box model solely based on its
inputs and outputs. However, the expected format of input variables can differ
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among model-agnostic xAI algorithms, potentially limiting the number of tests
they can perform and thus their overall portability.

Comparing Model-Specific and Model-Agnostic xAI Algorithms. One would
expect model-specific xAI algorithms to have higher average scores and lower
average time per test than model-agnostic xAI algorithms, but to be limited
in the number of tests they can perform. This intuition is not supported by
our study. We see that the two model-specific xAI algorithms, Tree SHAP and
Approximated Tree SHAP, are among the fastest algorithms and can also per-
form the least number of tests. However, they do not perform the best in the tests
they can perform. Model-agnostic xAI algorithms like Kernel SHAP are able to
outperform various model-specific algorithms and can perform more tests. Still,
Kernel SHAP takes an average of 121 s to run each test, which is six orders of
magnitude slower than Tree SHAP. A data scientist should therefore choose a
model-specific xAI algorithm for the black-box model under study if execution
time is of great importance for their specific use case.

Divide and Conquer: Ensembles of xAI-Methods Perform Better. We find that
different xAI-methods often have different strengths and weaknesses. However,
these weaknesses cannot be reliably predicted before applying the xAI algorithm.
Data scientists should therefore apply multiple xAI algorithms when seeking an
explanation for the behavior of their models and derive their conclusions from
the joint outputs of the xAI-methods. This can be seen with the xAI algorithms
Kernel SHAP and Sage, as an example. Kernel SHAP outperforms Sage in the
categories of Fidelity, Stability, and Stress tests. However, Sage strongly out-
performs Kernel SHAP in the category of Fragility. A data science practitioner
should therefore consult multiple xAI algorithms to gain a conclusive overview
of the model’s underlying behavior. The divide and conquer strategy can be
achieved through one of the following strategies. Ensemble Techniques: This
approach involves applying multiple xAI methods to the same model or data
and combining their outputs. The rationale is that different xAI methods may
excel in different areas, and by using an ensemble of methods, one can leverage
their strengths and compensate for their weaknesses.

Aggregation Techniques: These techniques involve taking the outputs of mul-
tiple xAI methods (or multiple runs of the same method) and aggregating them
to produce a single explanation. The aggregation can be done in various ways,
such as by taking the average, the median, or by using more complex methods
like weighted averaging or voting.

Meta-Explanation Techniques: These techniques involve using one xAI
method to explain the outputs of another xAI method. For example, one could
use a simpler, more interpretable model (like a decision tree or a linear model)
to approximate the explanations produced by a more complex, less interpretable
model (like a deep neural network). The simpler model’s explanations then serve
as a “meta-explanation” of the complex model’s explanations.
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More Compute Does Not Necessarily Imply Better Performance. Consistent with
recent empirical findings in machine learning research, one would expect the per-
formance of xAI algorithms to scale with their computational demands. However,
we find no statistically significant correlation between the average time per test
completion and the average score per test for the xAI algorithms. Nonetheless,
the xAI algorithm that achieved the highest score for the functional tests, Ker-
nel SHAP, takes an average of 121 s to complete each test, making it the fourth
slowest xAI algorithm in our study.

Contrasting Findings of xAI Benchmarks. In comparing our results to existing
benchmarks, it is evident that Compare-xAI takes a different approach from the
related work. However, there are some xAI algorithms and metrics that we share
in common with other studies.

For instance, both Compare-xAI and OpenXAI evaluated the performance
of SHAP and LIME. Nevertheless, their findings diverged. OpenXAI concluded
that LIME outperformed SHAP in the listed experiments, whereas Compare-
xAI’s results demonstrated that SHAP performed better on average in functional
tests. These contrasting outcomes underscore the differences in approach and the
challenge of defining a clear state-of-the-art in the xAI field.

Interestingly, both BasedXAI and Compare-xAI agree on SHAP’s superior
performance, despite employing different evaluation approaches. On the other
hand, EvalXAI benchmarked the fragility of xAI algorithms through adversarial
attacks. They revealed that LIME proved to be the most robust algorithm,
particularly in image-related tasks. Confirming these findings, Compare-xAI also
affirms the resilience of LIME against adversarial attacks based on its own set
of tests.

Overall, the varying results and agreements among Compare-xAI, OpenXAI,
BasedXAI, and EvalXAI shed light on the intricacies of the xAI field and the
challenges inherent in establishing a definitive state-of-the-art.

4 Limitations and Future Work

Compare-xAI’s weaknesses are classified into design-related and implementation-
related limitations.

Design-Related Limitations. Compare-xAI is a benchmark made exclusively of
quantitative metrics. It is objective as it does not include tests based on human
evaluation. A common example of a necessary human evaluation is the study of
the human mental model like the investigation of users’ preferred explanation
style [55]). Another example is the study of information overload, e.g., xAI’s
additional output information like the confidence interval [19]. Mainly, empirical
studies are challenging to quantify [16] and integrate into an objective score.
These and other non-quantifiable advantages/disadvantages will be included in
the description we provide, of the xAI algorithm, in the future.

The second limitation is the study of hyper-parameters. Around half of the
xAI algorithms used in this experiment have at least one binary parameter.
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Only some of them have clear instructions on how to fine-tune their parameters.
We, therefore, do not perform any manual hyperparameter tuning and leave it
for future work. Nevertheless, certain xAI algorithms adapt their parameters
internally given each task by relying on the model’s structure, the dataset size,
and the ML task.

Implementation-Related Limitations. The provided proof of concept includes, for
now, 11 tests. Currently, none of them cover RL, GAN, unsupervised learning
tasks, or rule-based explanations. The tested form of output is also limited to
feature importance (local and global explanation). Testing feature interaction is
still under development.

Despite the stated limitations, Compare-xAI should fulfill its primary objec-
tives: first, assisting laymen in selecting the right xAI algorithm, and second,
guiding researchers, practitioners, and laymen to avoid common mistakes in
interpreting the output of the model by knowing in advance, the potential pitfalls
of these popular xAI algorithms.

5 Conclusion

Explaining AI poses a delicate challenge, and the potential for misuse by end-
users necessitates reliable and comprehensive evaluation tools [13]. In this con-
text, Compare-xAI emerges as a unique and valuable benchmark. Its distinct
contributions lie in its simplicity, scalability, ability to integrate any dataset and
ML model, and, most importantly, its focus on the user’s expected explana-
tion. By addressing the pitfalls highlighted in surveys of xAI algorithms through
concrete functional tests, Compare-xAI provides a robust evaluation framework.

With 13 post-hoc xAI algorithms, 11 tests, and 42 research papers currently
indexed, Compare-xAI offers a unified benchmark that accurately reproduces
experiments. Through a rigorous selection protocol, it effectively highlights the
contrast between theoretical foundations and practical implementations, making
the limitations of each method transparent. Additionally, Compare-xAI employs
a simple and intuitive scoring method to absorb the vast quantity of xAI-related
papers and mitigate human errors in interpreting xAI outputs. Its aim is to
unify post-hoc xAI evaluation methods into a multi-dimensional benchmark
while offering valuable insights into the strengths and weaknesses of different
approaches.

Broader Impact

Compare-xAI holds tremendous potential across various use cases. It serves as
an invaluable debugging tool for individual xAI algorithms and has the capacity
to evolve into a global benchmark. While it may not provide a complete sort-
ing of xAI algorithms, it successfully clusters comparable algorithms, enabling
practitioners to efficiently filter and select the most suitable options while being
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fully aware of their limitations. This empowers end-users to avoid over-trusting
algorithm outputs and steer clear of common mistakes in model explanations.

Furthermore, Compare-xAI facilitates detailed scoring and supports
researchers in addressing specific questions regarding the performance and cover-
age of xAI algorithms. It assists in identifying failure cases, exploring alternative
solutions, and highlighting areas where no xAI algorithm adequately addresses
the problem. By continuously re-evaluating indexed xAI algorithms, Compare-
xAI ensures an up-to-date benchmark of the state-of-the-art, fostering advance-
ments and improvements in the field.

Beyond being a benchmark, Compare-xAI serves as a comprehensive and
standardized analysis of related work. It also functions as an evaluation method
for new research papers in xAI, promoting rigor and providing a framework for
assessing novel contributions. Overall, Compare-xAI significantly enhances the
evaluation and understanding of xAI algorithms, contributing to the advance-
ment and responsible deployment of AI systems in various domains.
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A Tests

For the proof-of-concept, the following list of tests is considered. Note that some
tests count twice as they test both feature importance and feature attribution.

cough_and_fever answers the following question: Can the xAI algorithm
detect symmetric binary input features?. The trained model’s equation is
[Cough AND Fever]*80. The test utilize XGBRegressor model trained on a
synthetic uniform distribution dataset (total size: 20000). The test pro-
cedure is as follows: train a model such that its response to the two features is
exactly the same. The xAI algorithm should detect symmetric features (equal
values) and allocate them equal importance. The score is calculated as fol-
lows: 1 if the xAI detect the two features are symmetric. 0 if the difference
in importance is above one unit. The test is classified in the fidelity cate-
gory because it is a simple tree model that demonstrate inconsistencies in
explanation [9].

cough_and_fever_10_90 answers the following question: Can the xAI algo-
rithm detect that ’Cough’ feature is more important than ’Fever’?. The trained
model’s equation is [Cough AND Fever]*80 + [Cough]*10. Cough should be
more important than Fever globally. Locally for the case (Fever = yes, Cough
= yes) the feature attribution of Cough should be more important. The test
utilize XGBRegressor model trained on a synthetic uniform distribu-
tion dataset (total size: 20000). The test procedure is as follows: train a
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model with two features with unequal impact on the model. The feature with
a higher influence on the output should be detected more important. The
score is calculated as follows: Return 1 if Cough is more important other-
wise 0. The test is classified in the fidelity category because it is a simple
tree model that demonstrate inconsistencies in explanation due to the tree
structure [9].

x0_plus_x1_distrib_non_uniform_stat_indep answers the following
question: Is the xAI able to explain the model correctly despite a non-uniform
distribution of the data?. The test demonstrate the effect of data distribu-
tion/causal inference. The test utilize XGBRegressor model trained on a
non-uniform and statistically independent dataset (total size: 10000).
The test procedure is as follows: Check if the explanation change when the
distribution change. Check if non-uniform distributions affect the explana-
tion. The score is calculated as follows: returns 1 if the two binary features
obtain the same importance. The test is classified in the stability category
because it assesses the impact of slightly changing the inputs [48].

x0_plus_x1_distrib_uniform_stat_dep answers the following question:
Is the xAI able to explain the model correctly despite a statistically-dependent
distribution of the data?. The test demonstrate the effect of data distribu-
tion/causal inference. The example was given in both [49] and [48]. The
test utilize XGBRegressor model trained on a uniform and statistically
dependent dataset (total size: 10000). The test procedure is as follows: Check
if the explanation change when the distribution change. Check if statistically
dependent distributions affect the explanation. The score is calculated as fol-
lows: returns 1 if the two binary features obtain the same importance. The
test is classified in the stability category because To assess the impact of
changing the inputs of f... This way, we are able to talk about a hypothetical
scenario where the inputs are changed compared to the true features [48].

mnist answers the following question: Is the xAI able to detect all dummy (con-
stant and useless) pixels?. The xAI algorithm should detect that important
pixels are only in the center of the image. The test utilize an MLP model
trained on the MNIST dataset (total size: 70000). The test procedure is as
follows: simply train and explain the MLP model globally for every pixel. The
score is calculated as follows: Return the ratio of constant pixels detected as
dummy divided by the true number of constant pixels. The test is classified
in the stress category because of the high number of input features. The test
is adapted from [19].

fooling_perturbation_alg answers the following question: Is the xAI affected
by an adversarial attack against perturbation-based algorithms?. Model-
agnostic xAI algorithms that use feature perturbation methods might be vul-
nerable to this attack. The adversarial attack exploits a vulnerability to lower
the feature importance of a specific feature. Setup: Let’s begin by examin-
ing the COMPAS data set. This data set consists of defendant information
from Broward County, Florida. Let’s suppose that some adversary wants to
mask biased or racist behavior on this data set. The test utilizes a custom
function model trained on the COMPAS dataset (total size: 4629). The test

https://www.openml.org/d/554
https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
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procedure is as follows: The xAI algorithms need to explain the following
corrupted model (custom function): if the input is from the dataset then the
output is from a biased model. if not then the output is from a fair model. The
score is calculated as follows: Return 1 if Race is the most important feature
despite the adversarial attack. The score decreases while its rank decrease.
The test is classified in the fragility category because fragility includes all
adversarial attacks [47].

counterexample_dummy_axiom answers the following question: Is the xAI
able to detect unused input features?. This is a counter-example used in litera-
ture to verify that SHAP CES do not satisfy the dummy axiom while BSHAP
succeeds in this test. The test utilizes a custom function model trained on a
synthetic dataset (total size: 20000). The test procedure is as follows: Train
a model with one extra feature B that is dummy. The score is calculated as
follows: returns 1 if the dummy feature B obtains a null importance. The test
is classified in the fidelity category because assigning an importance of zero
to a dummy feature reflects the model behavior (Fidelity) but also helps the
data scientist to quickly understand the model.

a_and_b_or_c answers the following question: Can the xAI algorithm detect
that input feature ’A’ is more important than ’B’ or ’C’?. This is a baseline
test that the xAI should succeed in all cases. Model: A and (B or C). Goal:
make sure that A is more important than B, C. Noise effect: even if the model
output is not exactly equal to 1 still we expect the xai to give a correct answer.
The test utilize XGBRegressor model trained on a synthetic dataset (total
size: 20000). The test procedure is as follows: The model learns the following
equation: A and (B or C). The explanation should prove that A is more
important. The score is calculated as follows: If A is the most important
feature then return 1. If A is the 2nd most important feature then return 0.5
i.e. 1- (1/nb of feature more important than A). If A is the last one: return 0
(completely wrong). The test is classified in the fidelity category because of
the same reason as cough and fever 10–90: A’s effect on the output is higher
than B or C.

correlated_features answers the following question: Can the xAI algorithm
detect, that two of three input features are perfectly correlated?. This is a
fragility test, which attacks the xAI algorithm by introducing a third fea-
ture ’C’ which is perfectly correlated with feature ’B’. The test utilizes a
XGBRegressor model trained on a synthetic dataset with three input
features (total size: 20000). The test procedure is as follows: The model is
trained on a synthetic dataset with the three input features ’A’, ’B’ and ’C’,
of which ’B’ and ’C’ are perfectly correlated. The xAI algorithm should detect
this correlation and only assign non-zero importance to one of the two corre-
lated features. The score is calculated as follows: Since we do not care about
which correlated feature is assigned the non zero importance value, we emply
following scoring metric: 1-(min(B, C)/max(B, C)). This function assigns a
value of zero if the assigned importance of the correlated features is equal,
and 1 if one of the features is assigned an importance of zero. The test is
classified in the fragility category because it tests the xAI algorithms ability
to adjust to perfect correlation in the input features.
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B xAI Algorithms

archipelago [20] separate the input features into sets. all features inside a
set interact and there is no interaction outside a set. ArchAttribute is an
interaction attribution method. ArchDetect is the corresponding interaction
detector. The xAI algorithm is model agnostic i.e. it can explain any AI model.
The xAI algorithm can output the following explanations: Feature interaction
(local explanation).

baseline_random [33] Output a random explanation. It is not a real
explainer. It helps measure the baseline score and processing time. The xAI
algorithm is model agnostic i.e. it can explain any AI model. The xAI algo-
rithm can output the following explanations: Feature attribution (local expla-
nation), Feature importance (global explanation), Feature interaction (local
explanation).

exact_shapley_values [5] is a permutation-based xAI algorithm following
a game theory approach: Iteratively Order the features randomly, then add
them to the input one at a time following this order, and calculate their
expected marginal contribution [4]. The output is unique given a set of con-
strains defined in the original paper. The xAI algorithm is model agnostic
i.e. it can explain any AI model. The xAI algorithm can output the following
explanations: Feature importance (global explanation). The following infor-
mation are required by the xAI algorithm:, A reference dataset (input only),
The model’s predict function

kernel_shap [7] it approximates the Shapley values with a constant noise [48].
The xAI algorithm is model agnostic i.e. it can explain any AI model. The
xAI algorithm can output the following explanations: Feature attribution
(local explanation), Feature importance (global explanation). The following
information are required by the xAI algorithm:, A reference dataset (input
only), The model’s predict function

lime [1] it explains the model locally by generating an interpretable model
approximating the original one. The xAI algorithm is model agnostic i.e. it
can explain any AI model. The xAI algorithm can output the following expla-
nations: Feature attribution (local explanation), Feature importance (global
explanation). The following information are required by the xAI algorithm:,
A reference dataset (input only), The model’s predict probability function,
Nature of the ML task (regression/classification), The model’s predict func-
tion

maple [44] is a supervised neighborhood approach that combines ideas from
local linear models and ensembles of decision trees [44]. The xAI algorithm is
model agnostic i.e. it can explain any AI model. The xAI algorithm can output
the following explanations: Feature attribution (local explanation), Feature
importance (global explanation). The following information are required by
the xAI algorithm:, AI model’s structure, A reference dataset (input only),
The train set, The model’s predict function

partition [7] Partition SHAP approximates the Shapley values using a hier-
archy of feature coalitions. The xAI algorithm is model agnostic i.e. it can
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explain any AI model. The xAI algorithm can output the following expla-
nations: Feature attribution (local explanation), Feature importance (global
explanation). The following information are required by the xAI algorithm:,
A reference dataset (input only), The model’s predict function

permutation is a shuffle-based feature importance. It permutes the input data
and compares it to the normal prediction The xAI algorithm is model agnostic
i.e. it can explain any AI model. The xAI algorithm can output the follow-
ing explanations: Feature attribution (local explanation), Feature importance
(global explanation). The following information are required by the xAI algo-
rithm:, input features, A reference dataset (input only), The model’s predict
function

permutation_partition is a combination of permutation and partition algo-
rithm from shap. The xAI algorithm is model agnostic i.e. it can explain any
AI model. The xAI algorithm can output the following explanations: Feature
attribution (local explanation), Feature importance (global explanation). The
following information are required by the xAI algorithm:, input features, A
reference dataset (input only), The model’s predict function

saabas explain tree based models by decomposing each prediction into bias and
feature contribution components The xAI algorithm can explain tree-based
models. The xAI algorithm can output the following explanations: Feature
attribution (local explanation), Feature importance (global explanation). The
following information are required by the xAI algorithm:, AI model’s structure

sage [19] Compute feature importance based on Shapley value but faster. The
features that are most critical for the model to make good predictions will
have large importance and only features that make the model’s performance
worse will have negative values.
Disadvantage: The convergence of the algorithm depends on 2 parameters:
‘thres‘ and ‘gap‘. The algorithm can be trapped in a potential infinite loop
if we do not fine tune them. The xAI algorithm is model agnostic i.e. it can
explain any AI model. The xAI algorithm can output the following expla-
nations: Feature importance (global explanation). The following information
are required by the xAI algorithm:, True output of the data points to explain,
A reference dataset (input only), The model’s predict function

shap_interaction [45] SI: Shapley Interaction Index. The xAI algorithm is
model agnostic i.e. it can explain any AI model. The xAI algorithm can output
the following explanations: Feature interaction (local explanation).

shapley_taylor_interaction [46] STI: Shapley Taylor Interaction Index.
The xAI algorithm is model agnostic i.e. it can explain any AI model. The xAI
algorithm can output the following explanations: Feature interaction (local
explanation).

tree_shap [9] accurately compute the shap values using the structure of the
tree model. The xAI algorithm can explain tree-based models. The xAI algo-
rithm can output the following explanations: Feature attribution (local expla-
nation), Feature importance (global explanation). The following information
are required by the xAI algorithm:, AI model’s structure, A reference dataset
(input only)
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tree_shap_approximation is a faster implementation of shap reserved for
tree based models. The xAI algorithm can explain tree-based models. The xAI
algorithm can output the following explanations: Feature attribution (local
explanation), Feature importance (global explanation). The following infor-
mation are required by the xAI algorithm:, AI model’s structure, A reference
dataset (input only)

joint_shapley is an extension of the axioms and intuitions of Shapley values
proposed by [56]. This xAI algorithm creates a powerset up to a user specified
power k of all the input features and computes the average Shapley values for
all different subsets. This leads to a more accurate attribution of importance
for each input feature, but significantly increases the run-time.

C Test Results

Table 2 contains test results without using any filter. Tests is the number of
completed tests. Time is the average execution time per test. It informs the
user about the relative difference in execution time between algorithms.

Table 2. Results for all Tests

Test cough cough_
10_90

counter-
example

a_and_b_
or_c

non_uniform_
dep

uniform_
dep

non_uniform_
indep

fooling_
pertubation

corr.
features

mnist nb_features Time per
Test

Explainer [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] (Seconds)

Random 0 100 0 0 0 0 34 11 0 100 0 0.01
Permutation 20 100 100 100 100 100 100 11 11 100 100 9.90
Permutation_Partition 20 100 100 100 100 100 100 11 11 100 100 12.40
Partition 19 100 100 100 100 100 100 11 0 100 100 7.32
Tree_Shap_Approximation 0 100 100 65 59 100 100 0.01
Exact_Shapley_Values 19 100 100 100 100 100 100 11 0 0 100 1906.04
Tree_Shap 20 100 100 100 100 100 100 0.00
Saabas 100 100 100 62 60 100 0 100 0.00
Kernel_Shap 100 100 100 100 100 100 100 11 100 100 121.73
Sage 0 100 100 93 89 98 100 100 18.38
Lime 49 100 98 0 99 100 100 0 100 100 259.81
Maple 100 0 0 50 100 100 100 11 11 100 100 56.61
Joint_Shapley 61 0 67 100 98 98 99 0 0 0 96 1947.94
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Abstract. Explainable artificial intelligence (XAI) provides explana-
tions for not interpretable machine learning (ML) models. While many
technical approaches exist, there is a lack of validation of these techniques
on real-world datasets. In this work, we present a use-case of XAI: an ML
model which is trained to estimate electrification rates based on mobile
phone data in Senegal. The data originate from the Data for Develop-
ment challenge by Orange in 2014/15. We apply two model-agnostic,
local explanation techniques and find that while the model can be veri-
fied, it is biased with respect to the population density. We conclude our
paper by pointing to the two main challenges we encountered during our
work: data processing and model design that might be restricted by cur-
rently available XAI methods, and the importance of domain knowledge
to interpret explanations.

Keywords: explainable AI · Use-case · Mobile Phone Data · Global
South

1 Introduction

Explainable AI (XAI) provides techniques to better understand machine learning
(ML) models. This is motivated by their lack of transparency, and an increased
use of these models in resource allocation problems that critically affect indi-
viduals, such as hiring, credit rating, or in public administration.1 While many
XAI methods have been proposed, there is a certain lack of work that uses these
methods on real-world data and thus confirms their relevance [20].

In this work, we present a use-case of XAI: we train an ML model to estimate
electrification rates in Senegal, and evaluate it using two popular XAI techniques.
The estimation of such socio-economic indicators can support policy planning
1 https://algorithmwatch.org/en/automating-society-2020/.
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and is assumed to be a less costly and time-consuming alternative to traditional
approaches such as collecting census or survey data. Policy planning involves
considerable amounts of resources, thus, requires transparency and accountabil-
ity. We draw on a dataset of mobile phone data, collected in 2013 and provided
during the Data for Development challenge by Orange in 2014/15. We combine
it with extracts from the 2013 census in Senegal, and estimate the electrification
rate around single cell tower locations.

The contribution of our work is twofold: first, we show how XAI methods can
be used to verify an ML model, and that our model is biased w.r.t. population
densities. In our case, verifying means showing that the model indeed relies on
features that relate to the predicted outcome, as given by domain knowledge.
Thus, we confirm the relevance of XAI techniques. Second, we point towards two
challenges of deploying XAI in practice that emerged during this work: pipeline
design, and domain knowledge.

The paper is structured as follows: Sect. 2 provides the relevant background,
Sect. 3 information on the dataset, followed by a description of the experiments
in Sect. 4. Results are discussed in Sect. 5, followed by the limitations in Sect. 6.
We conclude our paper in Sect. 7.2

2 Background and Related Work

2.1 Explainable AI

The field of explainable AI can be distinguished along three dimensions: black- vs
white-box approaches, local vs global, and model-agnostic vs model-specific [11].
The term white-box refers to models that are interpretable, or explainable-by-
design, while a black-box (BB) model is not interpretable, or accessible, e.g., due
to intellectual property rights. The majority of used ML models belong to the
latter, and it is exactly for those models that we have to design explanation
techniques. These explanations can be distinguished by scale. Local techniques
explain the prediction for a single data instance (often an individual, in our
case a single cell phone tower). Here, prominent approaches are LIME [25] and
SHAP [16]. Opposed to this, global approaches tackle a full explanation of the
system, often by fitting an interpretable surrogate model. One example is the
TREPAN algorithm [8], building a single decision tree over a neural network.
Last, we differentiate between approaches that work on any (model-agnostic)
or only one (model-specific) model. LIME [25] and SHAP [16] are considered
model-agnostic, TREPAN [8] model-specific. A full survey of approaches can be
found elsewhere, e.g., [2,11,18]. The latter includes a full chapter on interpretable
(white-box) models.

LIME (Local Interpretable Model-Agnostic Explanations) [25]. This method
uses a randomly generated neighborhood, weighted according to a distance and

2 The code of the project can be found here: https://github.com/lstate/explainabil
ity-in-practice.git.

https://github.com/lstate/explainability-in-practice.git
https://github.com/lstate/explainability-in-practice.git
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a kernel function, to fit a linear regression around the data instance in focus. This
regression approximates the decision boundary, and its weights are interpreted as
the importance of the features. A positive importance pushes the (here) classifier
towards the predicted class, while a negative pulls it away and towards one of
the other classes. Therefore, both the sign and magnitude of the importance
matter.

SHAP (SHapley Additive exPlanations) [16]. Explanations are based on a game-
theoretic approach, and provide for each feature its contribution towards the
predicted outcome. Contributions are not only specific to an instance but also
to the (here) class. If we sum over all contributions w.r.t. to a class C, and add
this value on top of the expected value EC(f(x)), we reach the predicted value
of our model f(x), which in turn determines the class (the highest value wins).
Therefore, the sign and magnitude of a feature contribution matter as well.

Shortcomings LIME and SHAP. Both methods have some well-known shortcom-
ings. We refer here to a few: regarding LIME, an open issue is the (mathematical)
definition of a neighborhood as well as its robustness [4,18]. SHAP, on the other
hand, has a well-defined mathematical background. Issues are its computational
complexity and (for KernelSHAP) feature dependencies that are not considered.

2.2 Mobile Phone Data and Electrification

Mobile phones are a rich source of information, providing details about time,
length and location of calls and other data. Combined with the fact that mobile
phone penetration is generally high,3 this opens possibilities for research, public
policy, infrastructure planning, etc. Predicting socio-economic indicators from
remotely accessible data is popular, and we observe an interest in using such
data in countries of the Global South, where it might be a less costly and time-
consuming alternative to traditional approaches such as collecting census or sur-
vey data. Different indicators can be predicted, and they vary based on available
data and methods. Based on mobile phone data, examples are the estimation
of socio-economic status and welfare indicators, literacy rate, population densi-
ties, and electric consumption [6,27,28]. For approaches using additional data
sources, an example is the estimation of poverty measures [24,29]. In many cases,
these studies are framed within the 17 SDGs.4

In this work, we focus on the estimation of electrification rates using mobile
phone data. Relevant studies that investigate the relation of electricity and other
indicators such as mobile connectivity or volume of visitors in Senegal are [13,26].
What is novel to our work is that we do not only estimate electrification rates,
but we use XAI methods to understand these estimations and evaluate them. As
such, we present a use-case of XAI, with a focus on the Global South. A recent
survey on XAI projects centered around the Global South [22] showed that while

3 https://ourworldindata.org/grapher/mobile-cellular-subscriptions-per-100-people.
4 https://sdgs.un.org/goals.

https://ourworldindata.org/grapher/mobile-cellular-subscriptions-per-100-people
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the body of work in the field of XAI is growing rapidly, only 16 of the surveyed
papers relate to the Global South (approx. 18,000 papers on the topic of XAI,
in the same time span), with only one technical study that has similar focus and
design as ours (focus on interpretable poverty mapping) [14].

3 Dataset

3.1 Mobile Phone Data

We use mobile phone data provided in the form of pre-aggregated call detail
records (CDR), which were made available during the second Data for Develop-
ment challenge launched by Orange in 2014/15. The original data were collected
by Sonatel (Société Nationale des Télécommunications du Sénégal), which is the
leading telecommunication company in Senegal (market share of 65% in 2013).
CDRs are generated for billing purposes and are proprietary.

Senegal is a sub-Saharan country, located in the Northern Hemisphere near
the Equator, on the West Coast of Africa. It covers 196,712 km2. In 2013, the
year when the data were collected, the population count approached 14M.5 The
original dataset contains more than 9 million individual mobile phone numbers,
with an hourly resolution. Sonatel anonymized the data, Orange pre-aggregated
and processed it further. The resulting dataset holds (cell) tower-to-tower activ-
ity, for calls (including call length) and text messages separately. Spatial coverage
between call and text message data is different, text message data less available
in the Eastern part of Senegal (see also appendix, Sect.A.1). These areas fall
together with areas that are less electrified which might suggest a connection
between access to electricity, poverty rate, literacy, and text message activity
(see [13] for a study on the impact of access to electricity). All details on the
dataset can be found here [19].

Table 1. Features and abbreviations. The type of an event (number of calls, call length
or number of text messages) will be indicated by subscripts (CN, CL, SN, respectively).

te number of events within Voronoi cell (synonymously used: total events)

out number of outgoing events

in number of incoming events

dc degree centrality

cc closeness centrality

out/in ratio of outgoing over incoming events

We process this base data according to the following steps: 1) building one
network per data type, amounting to three networks in total (number of calls, call
length and number of text messages). Cell towers form the network nodes, and
are labeled according to the electrification rate; 2) extracting each six features
5 https://data.worldbank.org/country/senegal.

https://data.worldbank.org/country/senegal
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per network, amounting to a tabular dataset of a 1587 × 18; 3) binning the
resulting dataset to create an ordered classification problem of 10 classes; 4)
sub-sampling due to an imbalance of the dataset.

Regarding the network construction (step 1), we proceed as follows: we build
a directed, weighted communication network from the data, based on the overall
activity of 2013, i.e. with no resolution over time. While cell towers form the
nodes, edges are created based on the activity in the network. Per cell tower
(outgoing site in the original dataset) we aggregate over the receiving tower
(incoming site in the original dataset) and sum over respective events, for exam-
ple the number of calls between those two towers, and ignore thereby the time
stamp. The total number of events per connection, and in the full year 2013,
determines the weight of the edge. This will lead to a full matrix. It has ele-
ments on its main diagonal, as calls/messages appear also within a Voronoi cell.
Also, it is not symmetric as the number of outgoing and incoming calls/messages
between two cell towers is generally not the same. We repeat this network con-
struction for all three types of data (call numbers, call length and message data).
Cell tower locations are used to map the activity spatially, we rely on a Voronoi
cell tessellation. The electrification rate of each of the Voronoi cells is assigned
based on the 2013 census in Senegal.

Regarding the second step, the extracted features are listed in Table 1, they
form the final tabular dataset. The number of events within a Voronoi cell, as
well as outgoing and incoming events, are helpful for a general understanding
of the activity in the network. Centrality measures are added as they are basic
measures of communication networks. Further, centrality measures and the ratio
between outgoing and incoming events are inspired by [27].

Steps 3 and 4 refer already to data preparation and are therefore discussed
in Sect. 4.1.

3.2 Electrification Data

Electrification rate, population count, and population density originate from
the 2013 census in Senegal [3]. Pre-processing is identical to Salat et al. [26].
The census contains questions about the source of lighting for each household
and therefore informs us of stable access to electricity. In the context of this
study, stable access means access either to the main power grid or to photo-
voltaic systems that benefit from the year-round high solar irradiation in the
country. The electrification rate of each census unit (commune) is given by the
ratio between the total number of households with stable access and the total
household count. We assume a homogeneous distribution of the population inside
each commune, therefore the electrification rate of a Voronoi cell is given by the
average electrification rate of all intersected communes weighted by the area of
intersection. Salat et al. [26] report that the resulting electrification rates were
in good agreement with the fine-grained nighttime lights intensity provided by
NOAA [21]. The supporting shapefile containing the geographic boundaries and
population counts at commune level was provided alongside another previous
study [27].
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Fig. 1. Electrification rate as computed from census data, plotted over the Voronoi cell
tessellation.

Figure 1 shows electrification rates in Senegal. Higher rates are observed
around major cities: Dakar, the Capital, in the Western most part of the country,
Saint-Louis in the North West, and the culturally significant city of Touba in the
center. The electrification rates are also high along the more densely populated
Northern/Eastern borders with Mauritania. This follows closely the electric grid
of Senegal, discussed in [17]. We, therefore, observe a correlation between areas
with a high electrification rate and a high density of cell towers.

4 Experiments

4.1 Preparation

Each row in the pre-processed tabular dataset (corresponding to a Voronoi
cell/cell tower) is labeled by its electrification rate (for the pre-processing, see
Sect. 3.1). We bin the data such that it holds 10 classes, ordered by electrification
rate, and with a bin size of 0.1 ([0, 0.1) electrification rate for class 0, [0.1, 0.2)
electrification rate for class 1, etc.). The resulting distribution is skewed towards
higher values.6 We subsample elements of class 9 (electrification rate [0.9, 1]),
for the training sets only. We sample such that numbers in class 9 are reduced
to the average count over all classes. Thus, we predict the electrification rate (as
class), based on 18 features. We randomly split the dataset to create a training
and a test set for the ML classifiers (ratio 7 : 3), and split the test set to create
a training and a test set for the explanations (ratio 7 : 3).

4.2 Models

Classification. We train a set of different ML standard models to estimate elec-
trification rates, the best-performing model will be the basis for all future exper-
iments. This is based on the assumption that only this model would be used
6 The ratio between instances in class 9 and the full dataset before subsampling is
imb = 33%.
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in deployment. However, investigating the explanations for the remaining ML
models could also provide valuable insights, and remains for future work.

First, we train a decision tree (DT), a random forest model (RF) contain-
ing 100 decision trees, and an extreme gradient boosting model (XGB) with
default parameters. We use default parameters to ensure better reproducibility.
Additionally, we run a simple test on the following ML models: a logistic regres-
sion (LOG), an AdaBoost classifier (ADA), a support vector machine (SVC),
a multi-layer perceptron (MLP) and a Gaussian Naive Bayes model (BAY), all
using default parameters. We compute the accuracy, the mean absolute error
(MAE), and the ratio between the MAE and its maximum (MAEmax = 9).

Explanations. We compute local, model-agnostic explanations based on LIME
and SHAP. A basic assumption of local XAI methods is that it is generally
easier to approximate the decision boundary of a complex model locally and thus
provide more faithful – i.e. better – explanations, than at the global level [25]. We
particularly choose LIME and SHAP for the following reasons: both methods,
including their shortcomings (see Sect. 2.1), are well known in the community.7

Methods are also easily accessible and rely on interpretable features [18].
As LIME needs to compute some basic data features to generate explanations,

it has to be initialized on the explanation training set. We use LIME tabular,
retrieve the five most important features (d = 5), and use default parameters.
Explanations are computed once over the given sets. Evaluations of explanations
are computed over the explanation test set. For SHAP, we use the tree explainer,
as we focus on the random forest model, and also default parameters.

4.3 Urban and Rural Areas

We hypothesize that the ML model predicts electrification rates with different
accuracy for rural and urban areas, i.e. that the model is biased w.r.t to the
population density. Therefore, we identify these regions in the test datasets and
calculate the disaggregated accuracy values. Further, we compute the disaggre-
gated explanations. We identify urban regions based on a population density
p > 1000/km2, as previously done in [26], otherwise as rural.

5 Results

5.1 Classification

Best performance is achieved by the random forest model (acc = 0.516,MAE =
0.972, see Table 2). However, excluding ADA and BAY, all models perform
similarly well (extended results can be found in the appendix, Sect.A.2). As
the classification is ordered, an MAE around one means that on average, the
electrification rate is wrongly estimated by 0.1, which is acceptable. Note that
while we need a sufficiently high performance of our models to proceed, the focus
of this paper is not on model performance.
7 12.7M downloads of LIME python package, 63M downloads of SHAP python pack-

age, retrieved on 6th of April 2022 https://pepy.tech.

https://pepy.tech
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Table 2. Classification results. The higher the accuracy (acc) the better, the lower the
MAE the better. Best values are underlined.

model acc MAE MAE/MAEmax accurban accrural

DT 0.428 1.258 0.140 0.714 0.247

RF 0.516 0.972 0.108 0.854 0.301

XGB 0.491 1.027 0.114 0.789 0.301

5.2 Explanations

Fig. 2. Average importance (left, LIME) or contribution (right, SHAP) of a feature
w.r.t. the predicted class. Both plots computed for RF classifier. Reminder of notation:
Table 1.

We display results in Fig. 2, where we plotted the average importance (left,
LIME) and the average contribution (right, SHAP) w.r.t. the predicted class.
Both for LIME and SHAP, features based on text message data are highly rel-
evant. This is especially prominent for outgoing and incoming events and the
degree centrality and for class 9. Only in the case of LIME, we observe small
negative values (e.g., total events based on call length, for class 9). The impor-
tance, and high contribution of text message data for the prediction is in line
with the observation that text message activity could be correlated with the elec-
trification rate (see also Sect. 3.1). As such, the information provided by this type
of data is highly relevant for the model, providing cues to better discriminate.

For SHAP, we also computed the average over feature contributions w.r.t. all
possible output classes (see Fig. 3). Why do we observe negative contributions
for low classes? For a single data instance, features based on text message data
generally push the model towards the predicted class (high positive contribution)
but at the same time away from the other classes (high negative contribution),
together they form the set of possible output classes. This effect is more promi-
nent for data instances from higher classes. Positive contributions are particu-
larly high for high classes, while negative contributions are high for low classes.
Opposed, in Fig. 2, right, for better comparability with LIME, we only plotted
contribution w.r.t. to the predicted class (and not all possible output classes),
thus only positive contributions appear.
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Fig. 3. Average contribution of a feature w.r.t. the possible output class.

Both methods confirm that the model relies on features that indeed relate
to the predicted outcome. While a more in-depth analysis of the model and
explanations is needed, this is a first good result.

We note that displayed values are only averages, thus positive and negative
relevance values w.r.t. the same feature and class can cancel each other out.
Nevertheless, they provide an informative summary of the model behavior.

Comparing LIME and SHAP. While both approaches produce some measure
of feature relevance, the methods are different, thus the meaning of a feature
relevance is not the same (see also Sect. 2.1). On one hand, if we study Fig. 2, we
find only small differences. SHAP, on the other hand, can give us some additional
information, if we consider the full output (see Fig. 3). However, in our particular
case, it does entail no surprising insights. Therefore, while we acknowledge the
mathematical basis of SHAP as an advantage, we cannot make a strong argument
in favor of it, and against LIME.

5.3 Urban and Rural Areas

Disaggregated accuracy values are displayed in Table 2, and in the appendix in
Sect. A.2. Excluding the AdaBoost model, the accuracy for rural areas is always
lower than the accuracy as computed for the full test set, and the opposite is the
case for urban areas. This difference in accuracy means that the model is biased
w.r.t. to the population density.

We also computed disaggregated explanations, depicted in Fig. 4. They con-
firm the general relevance of features based on text message data for the pre-
diction, as demonstrated already in the general case (previous section). Unsur-
prisingly, they show a different distribution of classes: while urban areas belong
to class 6 or higher, rural areas span all classes. This is also reflected in the
relevance of the features based on text message data, we observe the highest
importance values, or contributions, as provided by LIME, or SHAP, respec-
tively, for different classes, and depending on whether we look at urban or rural
sub-populations. We further observe that the feature importance values, or fea-
ture contributions, are consistently higher in magnitude for the urban compared
to rural sub-population. This supports our finding that the model is biased w.r.t.
the population density.
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Fig. 4. Explanations by sub-population, w.r.t. predicted class: for urban regions (left)
and rural regions (right), based on LIME (top row) or SHAP (lower row).

In Fig. 5, we show the explanations as provided by SHAP, w.r.t to all pos-
sible output classes, and disaggregated by sub-population. Similar to what we
observed already in the previous section, we find in this case positive and negative
values. As urban areas are tied to higher electrification classes, and rural areas
to lower electrification classes, positive and negative values are correlated with
opposing classes. Again, magnitudes are generally higher for urban compared to
rural areas.

Fig. 5. Explanations by sub-population, w.r.t. possible output classes as provided by
SHAP: for urban regions (left), and rural regions (right).

6 Limitations

Although the data come from a network provider who is the market leader (65%
in 2013), they are not fully representative of the population. A good starting
point to investigate this further is the work by Pestre et al. [23]. Salat et al. [26]
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point towards other biases, for example, due to a shift from the mobile phone net-
work to relying increasingly on internet platforms such as Facebook. Accounting
for these biases, including further work on the bias w.r.t. population density is a
next step. Also, we would like to apply other XAI methods such as LORE [10] to
the ML model to understand whether we can extract some additional informa-
tion. Another important extension is to run the explanations across all trained
models and compare them with each other to understand better why there is a
difference in performance.

Data used in this work are proprietary and private. It is connected to indi-
viduals (their mobile phones) and to be processed only under their consent. It
was provided in an anonymized form and further aggregated to safeguard indi-
viduals. Being proprietary, the data cannot be shared beyond the project. An
alternative could be relying on other open-source data, such as satellite imagery,
which have already been proven useful for similar projects. While being funda-
mentally different from mobile phone data, extending the XAI use-case to these
data is a valuable path to follow.

The data we used originate from Senegal, a country of the Global South.
Being situated in Western Europe, we should critically reflect on how this might
perpetuate power relationships [1]. While our focus is on providing a use-case
of XAI, and to primarily verify a specific ML model that can estimate electrifi-
cation rates in Senegal, we acknowledge the importance of local knowledge and
domain expertise when evaluating data, and specifically when drawing policy
implications [1,15].

7 Conclusion

In this work, after showing that electrification rates can be estimated from mobile
phone data, we applied two local, model-agnostic explanation tools to verify our
model. Both explanations perform well and agree with each other on stressing
the relevance of text message data for the predicted outcome. They confirm
the general validity of the model. We also showed that our model is biased
w.r.t. to population densities. Thus, areas located in rural areas receive an unfair
prediction, i.e. are more likely to be linked to a wrong electrification rate.

While the prediction of socio-economic indicators from remotely accessible
data is not novel in itself, it is of high relevance, e.g., to support policy planning.
Verifying such a model using XAI techniques is certainly important, and novel.
This is complementary to the fact that there are generally few use-cases applying
an XAI method on a real-world problem, most of them centered around the
Global North [22].

Our analysis showed that XAI methods can be useful to verify an ML model
in practice. However, we would like to caution against using these tools blindly,
and summarize the challenges that emerged during our work as follows:
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Pipeline Design. If the aim is to use an XAI method, data processing and choos-
ing the model tasks are limited by the fact that most XAI methods focus on
tabular, image or text data, and on classification problems. Adapting a problem
to this could lead to a loss of information and lower prediction accuracy. Thus,
efforts should be made to provide explanations for other task and data types
(such as LASTS [12] for time series data, and beyond).

Domain Knowledge. While an isolated XAI method can be very useful for debug-
ging purposes, domain knowledge is necessary to draw real-world connections,
and eventually verify the model via the explanation. In our work, an example of
such knowledge is the distribution of text message activity over Senegal. While
domain knowledge needs to be available in the first place, it is usually external to
the explanation. A direct integration into XAI methods via symbolic approaches
could be therefore highly useful [5,7].

The work presented in this paper relies on a static network. We initially kept a
second version of the dataset in the form of time series. Details on these experi-
ments, including the trained ML model and explanations based on LASTS [12]
can be found in the AppendixA.3. The time series data posed several challenges,
among others, a high need of computing resources, few XAI approaches to use
and compare, and a considerably higher amount of domain knowledge required
for the interpretation of the data. For these reasons, we decided to continue
working on the network data and leave the time series data for future work.
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A Appendix

A.1 Data Distribution

Figure 6 shows the distribution of available call data (left panel) and text message
data (right panel). While both data are more dense in the Western part of
Senegal, text message data are specifically sparse in the Eastern part of the
country.

https://nobias-project.eu/
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Fig. 6. Spatial distribution of available data. Left panel: call data, right panel: text
message data. Colored points reference to cell tower locations. Call data based on CN.
Plots based on time series data, outgoing.

A.2 Additional Results

Additional results for the prediction of the electrification rate are shown in
Table 3. This second set of models is also trained with default parameters.

Further, we present a confusion matrix of the best performing model (RF,
Fig. 7).

Table 3. Classification results. The higher the accuracy (acc) the better, the lower the
MAE the better.

model acc MAE MAE/MAEmax accurban accrural

LOG 0.463 1.331 0.148 0.778 0.264

ADA 0.195 1.463 0.162 0.119 0.243

SVC 0.465 1.296 0.144 0.784 0.264

MLP 0.455 1.138 0.126 0.741 0.274

BAY 0.294 1.604 0.178 0.384 0.236

Fig. 7. Confusion matrix for the random forest model (accuracy of 0.516, MAE of
0.972, best performing model.
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A.3 Time Series Data

In this section, we briefly describe the work on time series data.

Data Processing. A time series S = s1..sT consists of T = 24 × 12 ordered
data points, each being the monthly average of the aggregated number of events
per hour, such that st, t ∈ 1..24 represent the monthly average of the aggregated
number of events per hour in January (“daily activity curve” for January), etc.
Events are separated by direction (incoming or outgoing). Thus, per cell tower,
we create six time series. We refer to the TS dataset based on number of calls
as CN, based on length of calls as CL and based on number of text messages as
SN, and use out/in for outgoing/incoming activity, respectively. We standardize
each of the time series separately by applying the min-max scaler as provided
by sklearn. Data labeling and subsampling applies as above. Data partitioning
follows [12].

We find that text message data is heavily imbalanced, and that the dataset
is smaller than the other datasets. Thus, we exclude this data from the time
series analysis.

The variational autoencoder that is used in the explanation as displayed
below, is trained for k = 50 dimensions and over e = 500 epochs. We used the
“out CL” data and model for explanations as it provides the smallest MAE.

Classification. To classify based on time series data, we use ROCKET (Ran-
dOm Convolutional KErnel Transform) [9], a method based on random con-
volutional kernels for feature extraction and linear classification. Results are
displayed in Table 4.

Explanations. Figure 8 shows a sample explanation by LASTS [12]. Explana-
tions are provided in visual form and as rule, the latter can be read off the plot.
The time series belongs to class 4, i.e. has an electrification rate between 0.4
and 0.5, and is correctly classified by the model. In the left panel, the factual
rule is plotted against the original time series. The number above the shapelet
indicates its index. The rule reads as follows: “If shapelet no. 12 is contained
in the time series, then it is classified as class 4.” This is mirrored by the rule

Table 4. Classification results. The higher the accuracy the better, the lower the MAE
the better.

data acc MAE MAE/MAEmax

out CN 0.605 0.758 0.084

out CL 0.600 0.637 0.071

in CN 0.601 0.761 0.085

in CL 0.532 0.814 0.090
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Fig. 8. Local explanation by LASTS, shapelet-based, out CL data. Explained time
series belongs to class 4, correctly classified by ML model. Left: factual rule, plotted
against original time series, right: rule of opposite class, plotted against synthetically
generated time series. Time steps in hours.

for instances belonging to the opposite class (here: class 0..3, 5..9): ‘If shapelet
no. 12 is not contained in the time series, then it is not classified as class 4.”,
displayed in Fig. 8, right, plotted against a synthetically generated time series
from a class different to class 4.
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Abstract. Precise object detection algorithms are a mandatory require-
ment in safety critical applications such as autonomous driving or the
analysis of safety critical situations. We provide a novel approach focus-
ing on potential edge cases in order to address those specific situations
which are often most the hardest part in bringing machine learning mod-
els into production within the aforementioned scenarios. We improve
upon existing explainable artificial intelligence (XAI) methods by explor-
ing both qualitative and quantitative approaches in the test setting of
marker detection and develop novel techniques for quantifying the local-
ization of explanations of the object detection models building upon
class activation maps (CAMs). More specifically, we quantify CAMs via
the shape of the pixel value sums across the CAMs axes. Building upon
established object detection models our novel architecture is followed by
the subsequent marker classification task via a reimplemented LeNet-
like Bayesian CNN. Our presented results demonstrate that this app-
roach to quantify the XAI techniques can improve the interpretability of
both object detection and marker classification explanations by reducing
their dimensionality. Moreover, the proposed method provides more clar-
ity through increasingly interpretable explanations for the model’s deci-
sions, helping domain experts to better understand the model’s behavior
and improve the decision-making process. Our proposed approach can
robustly be re-applied to other computer vision tasks focused on object
detection and classification.

Keywords: Explainable AI · Object Detection · Object
Classification · Uncertainty Quantisation

1 Introduction

Automatic video analysis algorithms in safety critical situations, e.g. in auto-
motive crash tests, provide valuable insights into the safety of vehicles and help
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improve the design of novel variants. In order to analyze these tests, researchers
typically use marker-based motion capture to track the movements of the vehi-
cle and the occupants. However, this approach can be complicated by debris or
other image artifacts and in this specific case confusion between different object
(here: marker) types. In this paper, we propose a novel method for detecting
different marker types in automotive crashtest videos. With this project we lay
the groundwork with a use case for an end-to-end explainable AI pipeline that
can be used across object detection and classification tasks. This end-to-end app-
roach helps data scientists and decision makers to easier evaluate and interpret
the results of the deep learning models. As a demonstration of the capabili-
ties of this approach we evaluate the performance of several object detection
models on this task, including Faster R-CNN, YOLOv5, and MobileNet. Our
results show that YOLOv5 significantly outperforms the other models, achiev-
ing higher accuracy and faster processing times. Our innovative approach cen-
ters around tackling potential edge cases, specifically addressing the most chal-
lenging aspects of deploying machine learning models in production within the
mentioned scenarios. To provide explanations for the object detection task, we
use various XAI methods such as GradCAM, AblationCAM, and SHAP. These
methods generate heatmaps that highlight the regions of the image that the
model focuses on for detection. We compare the effectiveness of these methods
across the different models. For the classification of the proposed markers, we use
a Bayesian neural network as the classification head. We provide explanations
for both the non-Bayesian and Bayesian approaches to classification. To further
evaluate the robustness of our detection method, we use a VAE to generate
“adversarial” images and analyze their impact on the explanations generated by
the XAI methods. Finally, we use the Quantus framework [10] to provide quan-
titative metrics for evaluating the explainability of our models. This provides a
more rigorous and statistically sound evaluation of the effectiveness of our XAI
methods.

This article is structured as follows: In Sect. 2 we give an overview of the
state of XAI in object detection. Section 3 describes the experimental setup and
used data in more detail. The implemented pipelines and models are discussed
in Sect. 4. In Sect. 5 we describe the combinations of methods we use to explain
the object detection and classification networks. The experimental results are
then shown and interpreted in Sect. 6 and finally discussed in Sect. 7.

2 Related Work

Explainable AI (XAI) has become an increasingly important research topic in
recent years, especially in the domain of computer vision. In object detection and
classification, there have been several studies that have explored XAI techniques
to improve model interpretability and trustworthiness. One approach to achiev-
ing explainability in object detection is through the use of saliency maps which
highlight the most important regions of an image contributing to the output of
the model. In [1], the authors proposed a method for generating saliency maps
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for object detection using a Faster R-CNN model. Their approach involved com-
puting the gradient of the output class scores with respect to the input image
which is subsequently used to generate a saliency map. The authors demon-
strated that their method could effectively identify the most important regions
of an image for object detection and improve the interpretability of the model.
Another approach within XAI in object detection is through the use of atten-
tion mechanisms which allow the model to focus on the most relevant regions
of the image for making predictions. In [2], the authors proposed an attention-
based approach for object detection using a YOLOv3 model. Their approach
involved using a spatial attention mechanism to highlight the most important
regions of the image for object detection. The authors demonstrated that their
method could improve the accuracy of the model while also providing insights
into how the model was making its predictions. Recently, there have been sev-
eral studies that have explored the use of explainability techniques in YOLOv5
and Faster R-CNN models specifically. In [3], the authors proposed an app-
roach for generating saliency maps for object detection using a YOLOv5 model.
Their approach involved computing the gradient of the output class scores with
respect to the input image and using this gradient to generate a saliency map.
The authors demonstrated that their method could effectively identify the most
important regions of an image for object detection and improve the interpretabil-
ity of the YOLOv5 model. Another technique for XAI in object detection is
Gradient-weighted Class Activation Mapping (GradCAM) [4], which generates
class activation maps by computing the gradients of the output class scores with
respect to the final convolutional layer of a model. In [5], the authors proposed
a method for using GradCAM to generate heatmaps for object detection using
a YOLOv3 model. Their approach involved computing the gradients of the out-
put class scores with respect to the final convolutional layer of the model and
using these gradients to generate heatmaps that highlighted the most impor-
tant regions of the image for object detection. Another popular technique for
XAI in machine learning is SHapley Additive exPlanations (SHAP) [6], which
assigns a value to each input feature based on its contribution to the output
of a model. In [7], the authors proposed a method for using SHAP to generate
explanations for object detection using a Faster R-CNN model. Their approach
involved computing the SHAP values for each input feature and using these
values to identify the most important features for object detection. Ablation-
CAM [8] is another recently proposed technique for XAI in object detection,
which generates explanations by removing different parts of an image and ana-
lyzing the resulting changes in the model’s output. In [9], the authors proposed
a method for using AblationCAM to generate explanations for object detection
using a YOLOv5 model. Their approach involved removing different regions of
an image and analyzing the resulting changes in the model’s output to identify
the most important regions for object detection. Another approach to XAI is
the use of quantitative methods, which provide a more rigorous and statisti-
cally sound evaluation of the explainability of deep learning models. One such
framework is the Quantus framework proposed by Hedström et al. [10]. Quantus
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provides a systematic and comprehensive approach to evaluating the explain-
ability of deep learning models using a set of metrics that measure different
aspects of explainability, such as global versus local explanations, faithfulness,
robustness and stability. Based on the quantitative approach to XAI to better
evaluate the explanations for deep learning models we expand the methods from
quantitative XAI to be implemented in currently not supported object detection
models. Overall, these studies demonstrate the importance of XAI techniques
in improving the interpretability and trustworthiness of object detection mod-
els such as YOLOv5 and Faster R-CNN and give insights in how these Models
actually make their decisions. For the quantification of uncertainties in com-
puter vision tasks Bayesian CNNs have been proposed. A Bayesian CNN is a
type of deep learning model incorporating Bayesian principles for training and
inference [11–13]. Unlike traditional CNNs that use point estimates to repre-
sent the model parameters, Bayesian CNNs treat the parameters as probability
distributions. This allows for uncertainty quantification and model robustness.
During training, Bayesian CNNs use a technique called Bayesian inference to
estimate the posterior distribution of the model parameters given the training
data [11]. This is done by updating the prior distribution of the parameters using
the likelihood of the data and a regularization term [12]. The resulting posterior
distribution is used to make predictions on new data points. Bayesian CNNs
have been shown to outperform traditional CNNs in tasks where uncertainty
quantification is important, such as image segmentation, medical imaging, and
autonomous driving [13]. In this work we used the Bayesian CNN to quantify
the uncertainty of the marker classification task as well es for the application of
XAI Methods for specifically Bayesian computer vision tasks.

3 Experimental Setup and Data

The tracking of markers in automotive crash test videos is used for downstream
kinematic analysis by safety engineers. In this work we detect and track dif-
ferent marker types (MXT, DOT and YQUAD) which are displayed in Fig. 1)
and are commonly used by different safety agencies that carry out these crash
tests. When detecting the markers the precision and reliability of the tracking
is of utmost importance to fulfill the quality needed for further evaluations. In
addition to the precise tracking of the markers the explainability of the predic-
tions is highly relevant as consequences in decision making have great influence
of the downstream analyses within human safety engineering. A blackbox model
can not be properly audited since interpretation of the results is not quantita-
tively and qualitatively describable. To benchmark explainable AI methods for
object detection on our dataset we implement a processing pipeline that detects,
tracks and then provides explanations for these predictions. We do this for four
different object detection architectures - MobileNet, Faster R-CNN50, Faster
R-CNN50v2 and YOLOv5 to compare explanations that can be provided with
these models. The Faster R-CNN model was chosen due to it being used in our
previous projects on automotive crashtests, where we spotted some unexpected
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Fig. 1. The three different marker types: Left: Crops of MXT (5 white circles) and
DOT markers (one white circle). Right: Examples for the YQUAD marker type (black
and yellow). (Color figure online)

problems that are described in more detail below, as well as it being implemented
in PyTorch and supported by XAI frameworks. We then selected other networks
from the same family for comparison. The YOLOv5 architecture was tested due
to its performance in combination with XAI framework support and its imple-
mentation in PyTorch. While developing the marker detection we found that due
to the highly dynamic environment of crashtests, debris can sometimes be falsely
identified as the marker type we are looking for. These false positive detections
should be understandable from the class activation maps provided by the XAI
methods we use. In addition to the debris we found that sometimes the MXT
and DOT marker types are mixed up by the Faster R-CNN classification head.
This can be qualitatively explained by the DOT marker being a geometric subset
of the MXT marker (cf. Fig. 1). To quantify the uncertainty of the MXT/DOT
marker classification we employ a bayesian neural net as the quasi classification
head of the object detectors in that use case. This bayesian neural net can then
be analyzed with XAI methods developed for image classification. We did not
implement additional classification networks for the YQUAD dataset since this
is single-class and thus there was no further need for binary classification as no
confusion between different marker types is possible in this case. In all videos
that were gathered by us for the YQUAD dataset the marker always was the
only type used by the crashtest engineers, and our project partner also requested
a model specifically for this kind of targetmarker. Due to this we did not apply
the Quantus framework to the YQUAD marker case.

The trained networks and their respective evaluation scores can be found in
Table 1 for the object detection models and in Table 2 for the BNN and LeNet
models. The images for both datasets were gathered from freely available 1080p
Youtube videos of NCAP [31] or IIHS [32] crashtests, which had to be cut into
smaller chunks as those are usually compilation videos containing multiple dif-
ferent views, where each chunk focuses on one specific crash test scenario from
one camera perspective.

4 Object Detection Pipeline

We implemented two different pipelines in order to generate our results, the
first one deals with the task of explaining the MXT/DOT marker detection
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Table 1. Evaluation metrics for the different object detectors, evaluated on the labeled
test datasets. The metric used for the accuracy evaluation is the Average Precision
APIoU at different IoU thresholds to compare the label region with the predicted region.
It can be seen that the YOLO architecture significantly outperforms the RCNN net-
works on our datasets. The MobileNet falls off quite a bit, especially when looking at
the MXT/DOT dataset.

backbone MXT/DOT YQUAD

AP AP50 AP75 AP AP50 AP75

Faster R-CNN ResNet-50 72.9 95.1 92.7 76.1 98.2 94.8

Faster R-CNN ResNet50v2 72.2 94.5 91.3 82.8 98.4 97.6

Faster R-CNN MobileNetv3 57.1 87.6 66.2 66.2 96.0 81.4

YOLOv5 CSP-Darknet53 82.2 98.1 94.6 90.3 99.2 98.5

Table 2. Accuracy for the bayesian neural network and LeNet, both trained on the
MXT/DOT dataset.

Accuracy

BNN 94.6

LeNet 97.81

and classification process while the second focuses on the explanations for the
YQUAD detections. Both are displayed in Figs. 2 and 3 respectively, where it
also can be seen that the same methods are used to generate the class activation
maps for the object detection part for each of them. We trained each of the four
different object detection models mentioned above for both datasets (MXT/DOT
and YQUAD), a selection of average precision scores [24] can be found in Table 1.
In addition to the bayesian neural network for the MXT/DOT pipeline we also
trained a LeNet to be able to compare the explanations between a deterministic
and a probabilistic network (cf. Table 2).

In both pipelines we first run inference on crops from the input image (either
taken from saved images or videos) for the object detection model which we want
to evaluate in terms of explainability. These results are then further utilized to
generate class activation maps for different, gradient-free explanation functions.
Our implementation relies on the pytorch-gradcam library [14] which offers the
functionality to use EigenCAM, ScoreCAM and AblationCAM methods to cap-
ture meaningful explanations. For these CAMs we furthermore calculate the nor-
malized row and column sums to reduce the information down to one dimension
per axis and also help to better visualize and quantize the actual activations.

In order to gain insight into the classification task in the MXT/DOT pipeline
we utilize the Quantus framework [10] mentioned above to calculate activa-
tion maps for the Saliency, IntegratedGradients, GradientShap and FusionGrad
explanation functions. Additionally we use it to quantize the capability of the
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Fig. 2. This pipeline handles the MXT/DOT marker and segments the image into 15
different slices which get evaluated by the object detector. The detected regions of the
slices are furthermore evaluated by the object classifier. We use the class activation
maps displayed on the bottom to gain more insight into this process.

Fig. 3. Similar to the pipeline above, the input gets split into individual crops and
then fed into the object detector. Activation maps assist in gathering more knowledge
about the reasoning of the model.

individual explanations to capture the relevant features by testing and ranking
their faithfulness against each other.

For the task of classifying MXT and DOT marker types we use a bayesian
neural network to quantify the uncertainty in the predictions.

5 Methods of Explainable AI for Object Detection
and Image Classification

In this section we will provide an overview and introduction on the explainability
methods used in this paper. We first describe different approaches for the object
detection and classification models before taking a look at the different metrics
used to quantify these explanations.

5.1 Class Activation Maps for Object Detection Models

Methods to generate class activation maps can be divided into two distinct cat-
egories: gradient-based vs gradient-free methods. We chose to apply the Eigen-
CAM [15], AblationCAM [16], and ScoreCAM [17] methods, which fall into the
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latter of the two. This choice was made due to the processing steps (NMS, argmax
etc.) involved in object detection networks that follow after the feature extraction
part (typically CNN), which leads to outputs typically not being differentiable,
at least not in a generic way. The frameworks we used thus allowed only for
classification models (Quantus) or restricted the usability for object detection
models to the aforementioned gradient-free methods (pytorch-gradcam).

EigenCAM is a relatively simple approach to generate class activation maps
by calculating the principal components of the projection OL=k of the input
image onto the last convolutional layer. The class activation map LEigenCAM is
then obtained by further projecting OL=k onto the first eigenvector V1 [15].

The second approach, AblationCAM, calculates activations by ablating
each channel of the last convolutional layer of the network individually. The
change in prediction from yclass to yclass

k , the class prediction value when channel
k is ablated, gets weighted according to the following equation: [16]

wc
k =

yclass − yclass
k

yclass

These weights are then used to construct the final class activation map by taking
the ReLU of the sum of all of the channels feature maps multiplied by their
respective weight as stated here: [16]

Lc
AblationCAM = ReLU(

∑

k

wc
k · Ak)

ScoreCAM takes the feature maps generated by the last convolutional layer,
upsamples them and then uses each of them to mask one copy of the original
input. Each of these copies is fed into the network, and the importance of the
individual feature map is measured by the target score obtained. This score is
used to weigh the contribution of the feature maps according to a factor αc

k

during the generation of the class activation map [17]:

Lc
ScoreCAM = ReLU(

∑

k

αc
k · Ak)

This equation shows that the sole difference between ScoreCAM and Ablation-
CAM lies in the calculation of the weight attributions.

5.2 Saliency Maps for Object Classification Models

Quantus offers support for a variety of different methods to generate saliency
maps for input images. We utilize four of those, namely Saliency (or Vanilla
Gradients) [18,19], GradientShap [20], Integrated Gradients [21] and Fusion-
Grad [22].
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The first of these methods, Saliency, calculates the attribution of input
features/pixels by propagating the output logits of the network back to the
input layer. While this approach is quite intuitively simple, it suffers from various
drawbacks like gradient vanishing effects plus possible insensitivity to changes
due to activation functions like ReLU [21].

Integrated Gradients tries to solve these problems by defining a baseline
x’ which is then used to interpolate (in discrete steps) towards the original
input image x, essentially an inverse fade-to-black in case of a black baseline.
The contribution of a single pixel i is then calculated by taking the mean of the
accumulated derivatives of network F with respect to i at each interpolation
step k

m . This result is furthermore weighted by the difference between input and
baseline to obtain the final contribution as can be seen in the following equation:
[21]

IntegratedGradsapproxi := (xi − x′
i) ·

m∑

k=1

δF (x′ + k
m · (x − x′))
δxi

· 1
m

The FusionGrad approach is a combination of SmoothGrad [23] and
NoiseGrad [22]. The former adds noise to copies of the input and generates the
resulting explanation map by taking the average of the individual maps of each
noisy copy. NoiseGrad on the other hand adds noise to the models’ weights,
basically creating an ensemble of different networks to average out the result
over. The goal of both of these methods is to enhance the important features, as
these should (on average) stand out inbetween the noise, while simultaneously
creating an inverse effect for less relevant ones. By combining both of these algo-
rithms, FusionGrad is able to consider variations in the input data as well as the
network itself [22].

GradientShap [20] is a method that behaves similarly to Integrated Gra-
dients in that it tries to approximate the attribution values from a baseline to
the original input image. It utilizes the models gradients to calculate Shapley
values, which originally come from applications in cooperative game theory, and
deliver further insights into the prediction process. Model features can be inter-
preted as players who generate the inference value by summing up their individ-
ual contributions (efficiency axiom [27]), delivering a result that is completely
decomposable.

5.3 Quantitative Evaluation Metrics

All of the methods mentioned above try to deliver insights into the decision mak-
ing process of the underlying network and can often be qualitatively interpreted
by a human. In order to furthermore quantify the results of these methods, many
different metrics have been derived, especially in recent years, which focus on dif-
ferent properties of the explanation functions. The authors behind the Quantus
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framework divide these metrics into six distinct categories Faithfulness, Robust-
ness, Complexity, Randomisation, Localisation and Axiomatic, from which we
chose the former four to conduct our tests by orienting ourselves on the choices
made in another paper [26] written by some of the authors of the Quantus frame-
work [10]. We also chose to ignore the Localisation metric as we did not utilise
segmentation masks.

Faithfulness tries to quantify the impact of changing different features onto
the model prediction, assuming that the perturbation of important features
should have greater impact on the prediction outcome than the perturbation of
features that are ranked lower in terms of importance by the individual explain-
ability method. For this work we chose to utilize the FaithfulnessCorrelation
[30] metric where the evaluation is performed by taking a random subset of
fixed length of pixel indices and masking these pixels in the input with a base-
line value. Then the network prediction for perturbed and unperturbed inputs
are compared according to the following equation: [30]

μF (f, g;x) = corr
Sε(|d|

|S|)

(
∑

iεS

g(f, x)i, f(x) − f(x[xs=x̄s])

)

where f is the predictor, g the explanation function, x the unperturbed input
and

(|d|
|S|

)
the subset of random pixel indices to be perturbed.

The robustness metric takes a look at the resulting change in the expla-
nation map when slightly changing the input image. This is taken under the
assumption that this process should only lead to small differences in the map
(and model prediction) when dealing with a robust explanation function. We
utilize the AvgSensitivity [25] metric which is defined as following for input x,
explanation map Φ and groundtruth class c: [26]

qAverageSensitivity = Ex+δεNε(x)≤ε

[ ||(Φ(f, c, x) − Φ(f, c, x + δ))||
||x||

]

This formula makes it clear that lower values suggest a higher robustness as the
difference is measured.

Randomisation evaluates how random changes to the class label or network
parameters lead to change in the explanation results, assuming that the latter
should change given those factors. The RandomLogit [28] metric we use here
measures the structural similarity between explanation maps of the original input
and input with a random class label ĉ as defined as follows for an explanation
function Φ: [26]

qRandomLogit = SSIM(Φ(f, c, x), Φ(f, ĉ, x))]

A lower SSIM score translates to a better explanation method performance as
it represents a bigger change in the generated explanations given a wrong class
label.
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The final property we take into consideration in this work is called complex-
ity and assesses the number of features that go into the explanation process,
whereby fewer features are desired as they mean less complexity. The specific
metric we choose in this category is called Sparseness where it is proposed [29]
that only features that have a significant impact on the output decision should
be reflected in the resulting explanations. The implementation in Quantus is
defined by the following equation: [26]

qSparseness =
∑d

i=1(2i − d − 1)Φ(f, x)

d
∑d

i=1 Φ(f, x)
,

and based on the Gini index, where a high Gini index represents a sparse con-
tribution vector.

5.4 Bayesian Methods

When evaluating the bayesian classification head we do n forward passes of
the input image to obtain n different samples of the Saliency, GradientSHAP,
IntGrad and FusionGrad maps. These maps are then aggregated using the mean
value for each input image pixel. In addition to the mean we also calculate
the standard deviation of the pixel values to quantify the uncertainty of the
activation maps. By doing this we can qualitatively see the learned posterior
distributions of the BNN. The uncertainty of the activation maps provides a
good qualitative image of the “confusion” of the BNN when its classification is
uncertain.

6 Analysis Results

In this section we present our findings on the different aspects of the implemented
pipelines.

6.1 Class Activation Maps for Object Detection

Here we show the resulting class activation maps for the trained object detection
models for both marker datasets. The plots in Fig. 4 show the overlay of the
input image with the corresponding class activation maps generated by the three
different algorithms explained earlier. In this particular example it can be seen
that the activation maps for the EigenCAM are more widely centered around the
object but less noisy, while the ScoreCAM produces the more accurate results
around the target regions. The AblationCAM picks up strong activations around
the printed text on the car, but also localises the activations for the correct
targets even better than the ScoreCAM algorithm. In this regard it has to be
said that while the AblationCAM produces quite reliably good results across a
variety of input images, the EigenCAM und ScoreCAM algorithms oftentimes fail
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Fig. 4. Comparison of different class activation map algorithms.

to reliably and correctly capture the correct features on varying inputs or models.
This makes sense as EigenCAM and ScoreCAM rely on the same underlying
technique to capture activation maps as described above, based on which the
ScoreCAM builds its masks for further calculations.

Fig. 5. Comparison of outputs of EigenCAM algorithm for all different network types
on the MXT/DOT dataset.

By comparing the activations of the four different network architectures cap-
tured by EigenCAM (s. Fig. 5) we can see that the RCNN networks deliver sim-
ilar explanations but tend to vary strongly in certain aspects. The FRCNN50 is
the only one to capture high activations around all the target objects, but with
some overshoot, while the EigenCAM representation of the FRCNN50v2 is way
more noisy and fails to generate higher activations around the target regions
when compared to those around the imprints on the car or the reflections in the
door handle. The Mobilenet delivers the best results in term of target localisa-
tion but is slightly noisier than the FRCNN50, while the YOLOv5 network also
captures strong activations at the side mirror and in the cockpit itself.

Taking a closer look at an example for the AblationCAM algorithm applied
to images taken from the MXT/DOT dataset in Fig. 6 it can be seen how big
the difference in outcomes for the same input image can be on slightly varying
models. The Faster R-CNN50 does pick up high activations on the car imprints
but fails to accurately capture those for the MXT markers, at least in their
relative magnitude when compared to their surroundings. The explanations for
the other two models resemble the expected results, even though it can be seen
that the Mobilenet does pick up more activations around the imprinted text
when compared to the FRCNN50v2 which mostly picks up the round shape
of NCAP logo. The more distinct nature of the activations for the latter two
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models can also be seen in the histograms at the top and left side of the images
where there are more distuingishable peaks when compared to the more uniform
distribution of the Faster R-CNN50 model.

Fig. 6. Comparison of the AblationCAM method for the three different Faster R-CNN
models. While the results for the Faster R-CNN50v2 and the Mobilenet are quite
localised and interpretable with distinct peaks at the expected positions, the outcome
for the activation maps of the Faster R-CNN50 is way more uniform and seems to be
inverted in certain parts of the image. It captures the relatively high activations for
the imprints on the car and also picks up some activations on top of the MXT markers
but does not weigh them accordingly.

When analyzing the explanations for the YQUAD dataset it became quickly
apparent that the networks usually tend to have high activations around the
marker objects itself, the imprints on the car as well as on the black and yellow
scale tape that is attached at different position across the car. One example
of this consistent behaviour can be found in Fig. 7 where this even leads to a
misdetection for the FRCNN50 model while its two siblings also pick up relatively
strong activations which do not lead to a false positive detection in their case.

Another interesting finding can be seen in Fig. 8 where it is shown that all
of the networks correctly capture the YQUAD marker but with quite varying
degrees of noise. The Mobilenet network does not pick up many activations apart
from the correct one, while for the FRCNN50 these can also slightly be seen in
the debris and on the background. The FRCNN50v2 model produces very high
activations on multiple glas shards and the debris region in general, and while
it did not lead to a wrongful detection in this case, this should make this model
more prone to potential misdetection errors in these crashtest scenarios.

The Mobilenet in this case (and some others) seems to offer a built-in filter
mechanism for smaller objects due to its lack of detection performance when
compared to the bigger models, and thus produces the cleanest class activation
map, but at the price of worse performance on smaller targets in general. The
amount of activations on the smaller debris objects and background edges seem
to correlate, at least in this particular case, with the evaluation results taken after
the network training. Here it showed that the FRCNN50v2 network delivered
the best performance when it comes to AP and AR on small images, while its
predecessor came second and the Mobilenet dropped off quite a bit. It can be seen
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Fig. 7. This figure shows the results for the AblationCAM algorithm for three different
RCNN networks. It can be seen that the models also capture activations on the stripes,
in case of the Faster R-CNN50 this even leads to a wrong detection.

that similarities in the activations show in the experiments for the MXT/DOT
and YQUAD datasets. For both types the underyling network captures strong
activations when it comes to the imprints on the car itself and the NCAP logo.

Fig. 8. AblationCAM results during crash and with debris flying around. All networks
correctly pick up the activations around the targetmarker but have varying degrees of
activations when it comes to the areas with debris.

6.2 Explanations for Object Classification Models

In this section we compare the results gathered by utilizing the Quantus frame-
work [10] on the trained Bayesian neural network and LeNet.

We took the four different explanation functions Saliency (SAL), Integrated
Gradients (IG), GradientShap (GS) and FusionGrad (FG) which were explained
in a previous section (s. Sect. 5.2) and plotted the resulting outputs for various
images on both network architectures. We used to evaluate the different expla-
nation functions on 100 forward passes through the Bayesian classifier, finally
taking the mean and standard deviation from the 100 generated explanation
maps to try and capture uncertainties in the decision process. For the LeNet
one forward pass through the network per explanation function and image is
sufficient due to its non-probabilistic design, this also explains the lack of maps
displaying the standard deviation. The produced maps are thus only compa-
rable to the mean maps from the BNN. Red pixels represent highly positive
activations, blue highly negative ones.

When comparing the explanation maps generated by both models (s. exam-
ple in Fig. 9) it can be seen that they focus on the similar features and thus
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Fig. 9. Visualization of correct inference result (100% certainty for correct class) for
the different explainability methods and two different network architectures. Top: Mean
and standard deviation maps for the BNN. Bottom: Explanations for LeNet.

produce quite matching results. Both networks seem to clearly detect the dif-
ferent white circles of both marker types. These can be seen as red activations
in both figures, especially when looking at the Integrated Gradients and Gra-
dientShap methods. Additionally there is a small border around these circles,
independent of both networks, with neutral activation values. Interestingly there
are also some negatively activated pixels in the inner circles, even though they
are outweighed by the positive activations. Furthermore it seems as if the LeNet
captures the individual circles with more consistent activations as there are less
breakups inbetween positive pixel values. This is also reflected in the standard
deviation maps for the BNN network where it can be seen that the highest devi-
ations from the mean happen inside the circles themselves. On the left and top
of each map we plotted the normalized distribution of the row- and columnwise
accumulated pixel values. This should in theory lead to quite distinguishable
peaks for the individual circles, meaning one peak for a DOT and three peaks
for the MXT marker type per axis. While this does not provide any good results
for the BNN, the distributions peaks for the LeNet clearly resemble the locations
of the blobs in the input image, even though the result is a bit noisy.

In Fig. 10 we present another example, this time of a misclassification, which
seems to confirm our initial findings. As mentioned above, we purposefully tried
to generate images which are kind of in between both marker types to look
at these specific scenarios. Even though the input image in this case is blurry
with little contrast between the white inner circles, we as a human would most
likely classify this as a MXT marker, both networks come to a different con-
clusion though. Looking at the explanation maps generated during this process
it becomes clear why both models end up with the same, albeit wrong answer.
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Both seem to only focus on the one big circle in the middle while the smaller
circles seem to be too non-contrasting to be recognized as different, individual
entities by the networks.

Fig. 10. Visualization of wrong inference result (100% certainty for wrong class) for
the different explainability methods and two different network architectures. Top: Mean
and standard deviation maps for the BNN. Bottom: Explanations for LeNet.

Furthermore it can be seen that the activation maps generated from the
LeNet model are less blurry in the display of the activations when compared to
its BNN counterpart. This makes intuitive sense due to the uncertainty inherent
to the latter architecture.

One additional finding was the difference in the explanation maps of models
trained on the same dataset but with different initial learning rates. Examples
for the BNN can be found in graphic Fig. 11, where there is quite a significant dif-
ference between the explanation maps for the two models based on their learning
rate. The maps generated from the model trained with the lower learning rate are
more contrastive and more focused on the essential features, additionally they
qualitatively deliver better explanations when it comes to the saliency maps. The
same holds true when it comes to the LeNet (s. Fig. 12) where the lower learning
rate also seems to have a positive impact on the contrastiveness of the result-
ing explanation map, but not as much as in the case of the BNN. Additionally
we used the Quantus framework to evaluate which of the explanation functions
delivers the best results when tested on the different metrics explained above.
From taking a look at the visualization of the metrics for the different explana-
tion algorithms in Fig. 13 it becomes obvious that there is no clear single winner
for every input image and every category, and that the results also vary between
LeNet and BNN architecture. Taking into consideration the results in Tables 3
and 4 it can be seen that, while the values for RandomLogit and Sparseness are
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Fig. 11. Visualization of inference result as well as of mean and standard deviation
maps for different explainability methods for the Bayesian neural network after training
the model with different learning rates. Top: Learning rate 0.001. Bottom: Learning
rate 0.0001.

Fig. 12. Visualization of inference result as explanation maps for different explainabil-
ity methods for the LeNet classifier after training the model with different learning
rates. Top: Learning rate 0.001. Bottom: Learning rate 0.0001.
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Fig. 13. Explainability functions ranked for the different evaluation metrics across
multiple varying input parameters. It can be seen that there is not one singular, absolute
approach that fits every circumstance best. Top: Rankings for the BNN model. Bottom:
Rankings for LeNet.

in the same range and thus comparable to each other, the AvgSensitiviy and
FaithfulnessCorrelation metrics seem to be broken for the BNN as the results
seem to be unreasonably small or large when compared to the ones obtained for
the LeNet. The Sparseness seems comparable across both models, as both times
the GradientSHAP method delivers the highest score, followed by Integrated-
Gradients and FusionGrad, while the least sparse explanations are generated by
the Saliency method. Even though the order stays the same, the explanations
generated for the LeNet classifier seem to be more sparse in general than the ones
from the BNN. In case of the RandomLogit the results are again comparable in
their resulting ranking order, but differ quite significantly in the absolute values
for the individual properties. This method also fails to deliver results in case
of the FusionGrad explanation function for this category as it always produces
NaN values for the evaluated scores. The reason for this did not become clear to
us as the values are calculated internally in the Quantus framework. Apart from
that it shows that the SSIM is significantly lower on average in case of the BNN,
meaning that the generated explanations tend to vary more heavily when trying
to explain another class, which is the desired outcome. This might be explained
due to the variance inherent to the BNN where even explanations on the same
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Table 3. Scores for different evaluation metrics on the explanation functions for the
Bayesian neural network classifier.

BNN

Faithfulness
Correlation

Sparseness RandomLogit AvgSensitivity

Saliency −0.001 0.462 0.091 105.36

GradientSHAP −0.011 0.553 0.198 59.11

IntegratedGrads 0.0029 0.526 0.171 61.98

FusionGrad 0.0001 0.500 – 16.63

Table 4. Scores for different evaluation metrics on the explanation functions for the
LeNet classifier.

LeNet

Faithfulness
Correlation

Sparseness RandomLogit AvgSensitivity

Saliency 0.331 0.579 0.406 0.026

GradientSHAP 0.301 0.673 0.594 0.020

IntegratedGrads 0.239 0.616 0.447 0.018

FusionGrad 0.385 0.591 0.564 0.011

input target vary due to the probabilistic nature of the model. In general it can
be seen that Saliency leads to the most change in explanation maps while Gradi-
entSHAP takes the last place in this category, followed by FusionGrad in case of
the LeNet and IntegratedGradients in case of BNN. As FaithfulnessCorrelation
and AvgSensitivity seem to be broken for the BNN classifier we only evaluate
these metrics for the LeNet architecture, where FusionGrad shows to perform
best, followed by Saliency, GradientSHAP and IntegratedGradients, respectively.
These results interestingly differ from those in another paper [26] where it was
found that FusionGrad scored significantly worse than Saliency and Integrated-
Gradients in terms of this property. At this time we can not explain the reason
for this difference in results, but currently research is being conducted for the
metaevaluation of XAI techniques [33] The explanations generated for the LeNet
classifier seem to be quite robust according to the AvgSensitivity score in the
table, where it can be seen that the FusionGrad approach takes the lead, followed
by IntegratedGradients, GradientSHAP and Saliency. These results also inter-
estingly differ from the findings in the aforementioned other paper [26] where
FusionGrad came into last place in this category.

7 Discussion and Outlook

In this paper, we proposed a novel approach to improve the interpretability of
object detection and marker classification in automotive crashtest videos using
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explainable artificial intelligence (XAI) techniques. Our results show that our
XAI approach provides interpretable explanations for the model’s decisions. Our
approach is not limited to crashtest images, and can be transferred onto any
object detection and classification problem. We used multiple class activation
maps (CAMs) algorithms for different models. To make the object detection
CAMs more interpretable in terms of the localization we calculated the row and
column sums of the activation maps. This dimensionality reduction shows easier
to interpret patterns for engineers. Even though there are some very defined
and good results when it comes to the activation maps generated by the various
CAM algorithms, it is important to note that there is a high variance in the
quality of these findings. This goes as far as that the algorithms work fine on
one image, yet fail to do so on another image from the same video, independent
of position in the video etc. While there is no clear reason in the images why the
algorithms should fail in these instances (blocked view, debris, obstruction etc.),
it showed that the Eigen- and ScoreCAM seem to be more prone to this kind
of variance when compared to the AblationCAM. This is most likely connected
to the SVD which both of the former methods rely on to extract the activations
from the underlying network. The results look inverted which is possibly due to
the implementation of the SVD in numpy and scikit-learn which does deliver the
correct magnitude of the activation, but not necessarily the right sign (+,-) for it.
And while this also happens to the AblationCAM, albeit with a lower frequency,
there is no clearcut explanation for this as the underlying method differs from the
former two. The findings here show that the AblationCAM algorithm is mostly
robust and reliable on a variety of inputs, so that in our opinion it is by far the
best choice of the tested class activation map methods.

We also used quantitative XAI to evaluate the performance of our Bayesian
CNN and LeNet models. The quantus scores and explanations provided addi-
tional insights into the model’s behavior. The approach to combine methods of
quantitative XAI with Bayesian Neural Networks yielded average explanations
and standard deviations of these explanations that give additional insights. We
found that not all metrics were viable for the Bayesian CNN, indicating that
there is additional work to be done on other metrics. In addition, our results
showed that the quantitative XAI for the LeNet model is comparable to the
Bayesian CNN, suggesting that the XAI methods used in this paper can be
applied to other deep learning architectures. Future work can be done to extend
the proposed approach to other industrial domains that require object detection
and classification, such as predictive maintenance, autonomous driving or medi-
cal imaging. In addition, further research can be done to investigate other metrics
for evaluating the performance of Bayesian CNNs and to explore the applicability
of our proposed approach to other deep learning architectures. Overall, our con-
tribution demonstrates the effectiveness of using XAI techniques for improving
object detection and marker classification interpretability in automotive crash
test videos, and provides a promising direction for future research in the field of
XAI.
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Abstract. Federated Learning has witnessed increasing popularity in
the past few years for its ability to train Machine Learning models in
critical contexts, using private data without moving them. Most of the
work in the literature proposes algorithms and architectures for train-
ing neural networks, which although they present high performance in
different predicting tasks and are easy to be learned with a coopera-
tive mechanism, their predictive reasoning is obscure. Therefore, in this
paper, we propose a variant of SHAP, one of the most widely used expla-
nation methods, tailored to Horizontal server-based Federated Learning.
The basic idea is having the possibility to explain an instance’s predic-
tion performed by the trained Machine Leaning model as an aggregation
of the explanations provided by the clients participating in the coopera-
tion. We empirically test our proposal on two different tabular datasets,
and we observe interesting and encouraging preliminary results.

Keywords: Explainable AI · Federated Learning · Features
Importance

1 Introduction

Federated Learning (FL) [14] has become a popular approach to training
Machine Learning (ML) models on distributed data sources. This approach was
originally proposed to preserve data privacy since the users involved do not
have to share their training datasets with a central server. Usually, the mod-
els trained with FL are deep learning models and therefore their transparency
remains a challenge [8,12]. Indeed, although the trained ML models present very
excellent performance in different tasks, their drawback lies in their complexity,
which makes them black-boxes and causes the non-interpretability of the internal
decision process for humans [5]. However, when it comes to making high-stakes
decisions, such as clinical diagnosis, the explanation aspect of the models used
by Artificial Intelligence (AI) systems becomes a critical building block of a
trustworthy interaction between the machine and human experts. Meaningful
explanations [16] of predictive models would augment the cognitive ability of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Longo (Ed.): xAI 2023, CCIS 1902, pp. 151–163, 2023.
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domain experts, such as physicians, to make informed and accurate decisions
and to better support responsibility in decision-making.

In the last years, the scientific community posed much attention to the design
of explainable AI (XAI) techniques [1,4,8,12] but a relatively limited effort has
been spent in the study of interpretability issues in FL [2,6,18,19]. Most of
the studies of interpretability in FL are focused on the Vertical FL and exploit
method based on feature importance.

In this paper, we address the problem of interpretability by proposing an
alternative way to employ the explainer SHAP [13] in the context of FL. In
particular, our proposal enables the explanation of an instance’s prediction per-
formed by the trained global ML model by aggregating the explanation of the
clients participating in the federation. The proposed approach is based on the
requirements that in order to produce the explanation of the global model is not
necessary to access any information on the training data used by the clients. We
propose an analytical methodology that enables a comparison to determine the
approximation introduced by our approach with respect to a scenario where we
simulate a server which can access the training data. Preliminary experiments
conducted on two tabular datasets show that the approximation introduced by
our proposal is negligible and that our SHAP explanation tends to agree with the
explanation provided by the server in terms of the importance of each feature.

The remaining of the paper is organized as follows. Section 2 discusses the lit-
erature on XAI for FL. Section 3 provides an overview on FL and XAI and Sect. 4
presents our proposal and the analytical methodology adopted to validate it. In
Sect. 5 we discuss the preliminary experimental results, while Sect. 6 discusses
our findings and contributions to the field of XAI. Lastly, Sect. 7 concludes the
paper and discusses future research directions.

2 Related Work

Machine learning has become more and more pervasive in our lives. ML models
are used nowadays in many different contexts and can impact our lives. Alongside
the development of novel ML techniques, there was a very active development of
techniques to explain the reasoning of black box models [1,4,7,12]. Explainable
Artificial Intelligence (XAI) is the research field that studies the interpretabil-
ity of AI models [8]. This research field aims to develop methods that can be
helpful to “open” these complex and not interpretable models and to explain
their predictions. To this end, a lot of approaches have been developed in the
past few years. Explanation methods can be categorized with respect to two
aspects [8]. One contrasts model-specific vs model-agnostic approaches, depend-
ing on whether the explanation method exploits knowledge about the internals
of the black-box or not. The other contrasts local vs global approaches, depend-
ing on whether the explanation is provided for any specific instance classified by
the black-box or for the logic of the black-box as a whole. Finally, we can distin-
guish post-hoc vs ante-hoc methods if they are designed to explain a pre-trained
approach or if they are interpretable by design. While the explanation of ML



Explaining Black-Boxes in Federated Learning 153

models has been widely addressed in recent years [1,4,8,12], quite surprisingly,
the use of XAI in FL has not gained much attention. A review of the current
approaches used to explain models trained with FL is presented in [2]. Most of
the approaches provide post-hoc explanation by feature importance [6,18,19].
Wang et al. [19] exploits Shapley values to explain models trained with FL. In
particular, they adopt SHAP [13] to compute the feature importance and mea-
sure the contributions of different parties in Vertical FL [20], where the users
that participate in the training have the same sample space but different fea-
ture space. The choice to use Shapley values in FL is justified by the possible
privacy risks that could arise from classical feature importance that may reveal
some aspect of the private local data. Since cooperative learning explanations
could reveal the underlined feature data from other users, it becomes essen-
tial to guarantee model privacy. Therefore, in [18], Wang proposes a method to
explain models based on SHAP values able to balance interpretability with pri-
vacy. The main idea is to reveal detailed feature importance for owned features
and a unified feature importance for the features from the other parties. In [6],
Fiosina studies the interpretability issues in Horizontal FL [20]. In particular,
they adopt a Federated deep learning model to predict taxi trip duration within
the Brunswick region through the FedAvg algorithm [14]. In order to explain
the trained model, the authors derive feature importance exploiting Integrated
Gradients [10]. Explainable AI techniques have also been used to explain the
misbehaviour of models trained using FL. Haffar et al. [9], focus on the wrong
predictions of an FL model because these predictions could be signs of an attack.
In order to observe changes in the model behaviour, the nodes involved during
the computation explain the trained model at each epoch. An attacker’s pres-
ence could be revealed by changes in feature importance between two consecutive
epochs greater than a predetermined threshold. To the best of our knowledge,
no previous work addressed the problem of interpretability in horizontal FL by
designing a SHAP variant while adhering to participants’ privacy.

3 Background

We keep this paper self-contained by summarizing the key concepts necessary
to comprehend our proposal.

Federated Learning. FL [14] aims to train an ML model by exploiting the
cooperation of different parties while protecting user data. The main idea is that
participants in the federation do not have to share their data among themselves
or with a server. Each participant first trains a local model using their own data.
Then, it sends the gradient or weights of the model to a central server or to the
other participants to the end of learning a global and common model1.

Depending on how many clients are involved in the training of the model
and their nature, we can have two different types of FL: cross-silo and cross-

1 We underline that the meaning of local and global in the context of FL is entirely
different from the meaning in the context of XAI.



154 L. Corbucci et al.

device [11]. In the cross-silo scenario, we only have a few clients (10–50) that
should always be available during the training.

On the contrary, in the cross-device scenario, we can have millions of devices
involved in the computation that can only train the model under certain
conditions.

The most widely used architecture is the server-based one, where a central
server orchestrates the communication between the clients and the server itself.

In this paper, we consider a cross-silos scenario with a server-based archi-
tecture. In particular, we adopt the Federated Averaging (FedAvg) aggregation
algorithm [14]. In each round of this algorithm, the updated local models of
the parties are transferred to the server, which then further aggregates the local
models to update the global model. FedAvg works as follows. We suppose to
have a central server S, which orchestrates the work of a federation of C clients.
The goal is to train a neural network N by executing a given set of Federated
rounds. The procedure starts with the server that randomly initializes the neural
network parameters w0 and then it executes the specified training rounds. We
refer to them as global iterations to distinguish them from the training rounds
executed on the client side, also called local iterations. A generic global iteration
j can be split into four main phases: sending, local training, aggregation and eval-
uation phase. In the sending phase, the server samples a subset Ci of k clients
and sends them wj , that is the current global model’s parameters, through the
dedicated communication channels. Every client c ∈ Ci, after having received
wj , starts training it for E epochs on its private dataset, applying one classic
optimizer, like SGD, Adam or RMSProp. The number of local epochs and the
optimizer are user-defined parameters. Finally, the client c sends back to the
server the updated model parameters wj+1

c , ending the local training phase of
the algorithm. When the server ends gathering all the results from the clients, it
performs the aggregation phase, where it computes the new global model param-
eters, wj+1 as wj+1 = wj +

∑
c∈Ci

nc

n Δwj+1
c , where nc is the number of records

in the client c’s training set and n =
∑

c∈Ci
nc. Therefore, in the last phase, the

evaluation one, the server evaluates the new global model wj+1 according to the
chosen metrics.

Feature Importance Explanations. Feature importance is one of the most
popular types of explanation returned by local explanation methods [4,8]. For
feature importance-based explanation methods, the explainer assigns to each
feature an importance value which represents how much that particular feature
is important for the prediction under analysis. Given a record x, an explainer
f(·) models a feature importance explanation as a vector e = {e1, e2, . . . , ef}, in
which the value ei ∈ e is the importance of the ith feature for the decision made
by the black-box model b(x). For understanding the contribution of each feature,
the sign and the magnitude of each value ei are considered. W.r.t. the sign, if ei <
0, it means that the feature contributes negatively to the outcome y; otherwise,
if ei > 0, the feature contributes positively. The magnitude, instead, represents
how great the contribution of the feature is to the final prediction y. In particular,
the greater the value of |ei|, the greater its contribution. Hence, when ei = 0, it
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means that the ith feature is showing no contribution. An example of a feature
based explanation is e = {(age, 0.8), (income, 0.0), (education,−0.2)}, y = deny .
In this case, age is the most important feature for the decision deny , income is
not affecting the outcome, and education has a small negative contribution.

In this paper, we adopted SHapley Additive exPlanations (SHAP) [13] a local
post-hoc model-agnostic explanation method computing features importance by
means of Shapley values2, a concept from cooperative game theory. SHAP is one
of the most widely used explanation methods returning explanations in terms
of feature importance. The explanations returned by SHAP are additive feature
attributions and respect the following definition: g(z′) = φ0 +

∑F
i=1 φiz

′
i, where

z′ is a record similar to x obtained as a copy of x where some features and
values are replaced with some real values observed from the training set or from
a reference set X, while φi ∈ R are effects assigned to each feature, and F
is the number of simplified input features. SHAP retains three properties: (i)
local accuracy, meaning that g(x) matches b(x); (ii) missingness, which allows
for features xi = 0 to have no attributed impact on the SHAP values; (iii)
stability, meaning that if a model changes so that the marginal contribution of
a feature value increases (or stays the same), the SHAP value also increases
(or stays the same) [15]. The construction of the SHAP values allows us to
employ them both locally, in which each observation gets its own set of SHAP
values, and globally, by exploiting collective SHAP values. We highlight that
SHAP can be realized through different explanation models that differ in how
they approximate the computation of the SHAP values. In our experiments, we
adopted KernelExplainer, i.e., the completely model-agnostic version.

4 SHAP Explanations in Horizontal FL

Our proposal is to exploit SHAP [13] to explain the ML model learned by the
FedAvg algorithm [14], in the case of Horizontal FL architecture. We recall that
SHAP requires access to the training set Dtr, or to a “reference set” which is
similar to the training set used by the model to explain, to create records z′

to study the impact of each feature value in the final prediction. Sometimes, to
speed up the explanation process, a medoid of the dataset is used or a small set
of centroids [17] describing Dtr with a few records capturing the main charac-
teristics, i.e. feature-values [15]. As a consequence, in server-based FL, in order
to explain the learned global model, it is necessary that the server may gain
access to the complete set of training data of its clients or has the possibility of
computing the centroids of the dataset resulting from the union of the training
sets of all the clients. Since the basic idea of FL is to avoid data sharing, in this
setting we propose to have an explanation of the global model as the result of
the aggregation of local (client-side) explanations.

Let C = {c1, . . . , cm} the set of m clients participating to the cooperation.
After the FL algorithm, each client ci ∈ C has its ML model Mi received by
2 We refer the interested reader to: https://christophm.github.io/interpretable-ml-

book/shapley.html.

https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html
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Fig. 1. Overview of our methodology. The server and all clients explain the model
obtaining a matrix of SHAP values. The clients compute the mean of these matrices.
To understand the difference between the explanations, we subtract the client’s average
explanation from the server explanation matrix.

the server. We denote with MS the model on the server side resulting from
the weights averaging. Each client ci can derive a SHAP explainer ψi of its
own model Mi which strongly depends on its training data. We propose to
exploit the additive property of the SHAP values to generate explanations of
the model MS as an aggregation of explanations of the models belonging to
M . More formally, given an instance x to be explained, the explanation of the
prediction performed by the model MS is obtained by ψS(x) = 1

|C|
∑

ci∈C ψci(x).
Specifically, the server’s explanation ψS(x) is composed by |x| values resulting
from the average of SHAP values of m clients, meaning that for each xj we have
vj = 1

|C|
∑

ci∈C ψci(xj), where we assume that ψci(xj) returns the SHAP value
associated by the client ci to the feature xj (Fig. 1).

Thus, according to our proposal, any client can derive its explanation for the
instance x exploiting its own training data without the need to share them with
the server, while the server only needs to receive the clients’ explanations.

Analytical Methodology. In our experiments, we aim at comparing the pro-
posed variant of SHAP explanations tailored for FL with the explanations
obtained by the server. Hence, we propose an analytical methodology for vali-
dating our proposal based on the comparison of two settings: (i) the server gains
access to training data of its clients i.e., Dtr = ∪ci∈CDci

tr; (ii) the server cannot
access training data and thus can only receive the clients’ explanation for each
prediction to be explained. In order to conduct our analysis given a test set Dte

the following analytical methodology is applied:

– Each client ci computes the SHAP explanation for each x ∈ Dte, i.e., it gets
ψci(x). Thus, each client produces a k × f matrix Eci where k is the number
of records in Dte and f is the number of the features.
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– A global explanation for each x ∈ Dte is computed by averaging the
clients’ explanations as described above. Therefore, given the matrices
{Ec1 , . . . , Ecm} we can compute the matrix Ê where each element eij =
1

|C|
∑

c∈C ecij . We call this explanation clients-based explanation.
– A server-based explanation is computed by simulating the server’s access to

the client’s training data. Accessing training data, the server can obtain the
SHAP explainer ψS which applies to each x ∈ Dte and the k × f matrix ES .

– Finally, given the two matrices ES and Ê we analyze the differences to under-
stand the degree of approximation introduced by our approach which does
not assume data access. We perform this analysis by computing: (i) a dif-
ference matrix Δ = ES − Ê; (ii) the average importance for each feature
j produced by the two methods in the dataset Dte and then, how the two
methods differ, this means computing a vector having for each feature j a
value δj = 1

|k|
∑

i∈[1...k] δij.

5 Experiments

This section presents the experimental results obtained by applying the ana-
lytical methodology described in the previous section. We use the CoverType
and Adult tabular datasets available in the UCI Machine Learning Reposi-
tory3. CoverType contains 581, 012 records, 54 attributes and 7 different class
labels. The attributes represent cartographic variables, and the class labels rep-
resent forest cover types. The classification task involves recognizing forest cover
types. On the other hand, Adult is composed of 48, 842 records and 13 variables
(after discarding “fnlwgt” and “education-num”), both numerical and categor-
ical. Information such as age, job, capital loss, capital gain, and marital status
can be found in it. The labels have values <= 50K or > 50K, indicating whether
the person will earn more or less than 50K in a fiscal year.

We defined ML models using Keras. In particular, for CoverType, we devel-
oped a model with three dense layers consisting of 1024, 512, and 256 units and
a final output layer, while for Adult, we used a model with three dense layers
with ten units. In both models, we used Relu as an activation function in each
layer except for the output layer, where we applied softmax. After each layer,
we used Dropout to prevent overfitting. We employed Flower [3] to simulate
FL training. The experiments were performed on a server with an Intel Core
i9-10980XE processor with 36 cores and 1 GPU Quadro RTX 6000.

In our experiments, we tested architectures with a different number of clients
m ∈ {8, 16, 32} involved in the computation. Indeed, one of the objectives of our
analysis is to understand how this parameter impacts the aggregated explana-
tion. In this preliminary experimentation, we considered a scenario where the
clients have IID data which we distribute by stratified sampling. Also, each client
has the same amount of samples. We are perfectly aware that this scenario is
unlikely in real applications, and indeed we plan to perform further experiments
on non-IID data. Nevertheless, the experimented configuration allows us to ana-
lyze FL impact on SHAP explanations without excessive variability.
3 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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Fig. 2. Heatmaps showing the magnitude of the difference between server-based expla-
nations and clients-based explanations for each sample. The first row shows the results
for CoverType while the second one shows the results for Adult.

Results. In this section, we analyze the differences among the explanations with
respect to two different aggregation criteria. Indeed, our goal is to investigate
both the differences in the explanations from the point of view of the features
and from the point of view of the clients.

In Fig. 2, we show through heatmaps, for each sample of the test set, the
differences between the SHAP values of the server-based explanations and the
ones of the clients-based explanations. These heatmaps are a graphical repre-
sentation of the matrix Δ introduced in Sect. 4. To guarantee the readability of
our results, in the plots of CoverType, we report only 10 features over 54, i.e.,
the features that, on average, have the highest discrepancy between the server-
based explanations and clients-based explanations. As expected, the differences
are negligible. For CoverType the features “Soil Type 31” and “Elevation” have
a greater divergence from 0. In particular, the clients-based explanation tends to
overestimate the SHAP values of “Elevation” and underestimate the SHAP val-
ues of “Soil Type 31”. We highlight that these two features present the highest
divergence regardless of the number of clients involved in the training process.
However, as we increase the number of clients, their divergence decreases. In
Adult, we observe even smoother results in terms of divergence between server-
based and clients-based explanations since the divergence varies in a smaller
range with respect to CoverType. We can notice that, in any setting, we have
only a couple of features having a magnitude of the difference more prominent
with respect to the others. For example, in the setting with m = 8, clients
“capital gain” and “realtionship” present higher divergence.
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Fig. 3. SHAP values for CoverType. Top: calculated by the server. Middle: calculated
by the clients. Bottom: Difference between SHAP values obtained by the server and
those obtained by the clients.

We also conducted a more detailed analysis focused on the features. We
report the results for CoverType in Fig. 3. The three plots in the first row depict
the average SHAP values per feature of the server-based explanations, while the
three in the middle row depict the average SHAP values per feature computed
by clients-based explanations. As expected, these plots indicate that the two
explanations almost always agree. The plots in the bottom row, instead, show
the mean of the SHAP values for the top 10 features we selected for CoverType.
They confirm our discussion based on the above heatmaps. Moreover, we observe
that with an increasing number of clients m, some picks disappear, and the
differences per feature vary in a smaller range of values.

Figure 4 shows the same analysis for Adult. As for CoverType, the two types
of explanations almost always agree. Looking at the third row of the figure,
we notice that, in general, the magnitude of the differences between the two
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Fig. 4. SHAP values for Adult. Top: calculated by the server. Middle: calculated by
the clients. Bottom: Difference between SHAP values obtained by the server and those
obtained by the clients.

types of explanation decreases because, also in this case, some relevant picks
disappear. As an example, the pick we have with the feature “capital gain” in
the experiment with m = 8 clients disappears as the number of clients increases.

Besides considering the differences in terms of SHAP values of features, we
investigated the differences between the server-based explanation and the one
performed on each client. This gives us the opportunity to understand if there
are clients contributing more to the divergences between the two types of expla-
nations. We report the results in Fig. 5. In CoverType, we observe that in the
case of m = 8 clients, the difference with respect to the server is equal for all the
clients. As the number of clients increases, we notice different behaviour among
the various participants. Moreover, in the case with m = 32 clients, we observe
an increase in the divergences with respect to the setting with m = 16 clients.
This result is evident also in the last plot of the first row in Fig. 5.
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Fig. 5. Divergence of the server-based explanation w.r.t. clients-based. The first row
reports results for CoverType and the second for Adult. For each setting, we plot the
mean of the differences in the last plot of each row.

In Adult, we observe a different behaviour. The distance between the server
and the various clients is different even when we use only 8 clients. As we increase
the number of clients to 16, the distance increases, i.e., there are only a few clients
with very low divergence and more clients with higher divergence. However,
differently from the experiment with CoverType, when we increase the number
of clients to 32, the overall difference decreases again (see the last plot of the
second row in Fig. 5) because we have more clients with very low divergence.

In a nutshell, our results show that the clients-based explanation introduces a
negligible approximation to SHAP values, proving that our method is promising.

6 Discussion of Findings

By aggregating local explanations, the proposed methodology investigates
whether it is possible to derive an explanation for a model trained using Feder-
ated Learning. To achieve this goal, we exploited SHAP values’ additive property.
To be more specific, we aggregated the explanations computed by the individ-
ual clients to obtain a model explanation. We then compared this explanation
with that of the server. The results obtained from the two datasets we considered
support our initial guesses. Indeed, the differences between the aggregated expla-
nation and the server explanation are minimal. Therefore, the explainer trained
by the server and the one trained by the clients produce the same results. This
means that they are both suitable for explaining a Federated Learning model.
However, the explainer trained by the server requires some data to be trans-
ferred from the clients to the server to be trained. This is against the definition
of Federated Learning [14]. By successfully showcasing the viability of aggregat-
ing local explanations, we proved that clients do not need to transmit their data
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to a central server. This ensures confidentiality and mitigates potential privacy
risks due to data sharing.

By moving the explainers training from the server to the clients, we can also
reduce the computation overhead on the server side. This is because it has only
to perform the SHAP values aggregation. In addition, this approach could easily
be extended and adapted to a peer-to-peer Federated Learning setting, where
we would not have a server that could train an explainer. Instead, using our
clients-based explanations, each client could first compute the explanations and
then, after exchanging their SHAP values, aggregate them to derive the final
explanation without sharing any data.

7 Conclusion

In this paper, we have presented a method for providing SHAP explanations in
horizontal server-based Federated Learning systems. The basic idea is explaining
an instance’s prediction performed by the trained ML model by aggregating
the explanation of the clients participating in the federation. Consequently, the
proposed approach satisfies the strong requirements of a Federated Learning
system by avoiding sharing clients’ data with the server. We have presented
empirical evidence that our proposal introduces an acceptable approximation to
the SHAP explanations. In turn, it can be interpreted as a reasonable trade-off
between privacy and utility. In future work, we intend to analyze the impact of
adopting our method in a scenario with non-I.I.D. data distribution and in a
peer-to-peer Federated learning setting where we do not have a central server.
Moreover, we would also like to study the impact of a larger number of clients
involved in the training. Lastly, we would also like to investigate the impact of
privacy mitigation on explanation quality.
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Abstract. Explainability of a classification model is crucial when
deployed in real-world decision support systems. Explanations make pre-
dictions actionable to the user and should inform about the capabilities
and limitations of the system. Existing explanation methods, however,
typically only provide explanations for individual predictions. Informa-
tion about conditions under which the classifier is able to support the
decision maker is not available, while for instance information about
when the system is not able to differentiate classes can be very help-
ful. In the development phase it can support the search for new features
or combining models, and in the operational phase it supports decision
makers in deciding e.g. not to use the system. This paper presents a
method to explain the qualities of a trained base classifier, called PER-
Formance EXplainer (PERFEX). Our method consists of a meta tree
learning algorithm that is able to predict and explain under which con-
ditions the base classifier has a high or low error or any other classifica-
tion performance metric. We evaluate PERFEX using several classifiers
and datasets, including a case study with urban mobility data. It turns
out that PERFEX typically has high meta prediction performance even
if the base classifier is hardly able to differentiate classes, while giving
compact performance explanations.

Keywords: explainability · classification · decision support systems

1 Introduction

Decision support systems based on machine learning models are being developed
for a growing number of domains. To deploy these systems for operational use,
it is crucial that the system provides tangible explanations. It needs to be trans-
parent about the underlying inference process of its predictions and about its
own limitations. For example, in a medical setting it is important that a doctor
knows under which circumstances the system is unable to provide reliable advice
regarding a diagnosis [18]. Similarly, when a decision support system is used for
investment decisions in policy making, then it is important that the users of
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the system get informed about the uncertainty associated with the advice it
provides [2]. The importance of explanation capabilities is also emphasized by
the guidelines on trustworthy AI from the European Commission [12], which
includes explainability about capabilities and limitations of AI models as a key
requirement.

Developing methods for explainability in machine learning has gained signif-
icant interest in recent years [6]. Global explanations give an overall view of the
knowledge encoded in the model. This is very relevant for knowledge discovery
like in biology or medical applications. Examples are model coefficients as in
logistic regression [9] and indications of feature importance such as with ran-
dom forests [4] and gradient boosting [8]. Local explanations on the other hand
explain predictions for individual datapoints. For example, SHAP and LIME
explain the class prediction of a datapoint by highlighting features which are
locally most influencing the prediction [15,20].

In addition to explaining class predictions, methods are needed that explain
the performance of a classifier. Such explanations can be used by a data scien-
tist to understand under which circumstances a base classifier does or does not
perform well. If the explanation defines that the model does not perform well
for a specific subset of the data, then the data scientist may decide to look for
additional data, additional features, or otherwise attempt to improve the model
in a focused way. The explanations can also be used to inform e.g. a consultant or
medical doctor about circumstances in which a model cannot be trusted, which
is also relevant for engineers who bring models to production. In existing litera-
ture only a method for explaining the uncertainty of individual predictions has
been proposed (e.g., by Antorán et al. [1]). For explaining the performance char-
acteristics and limitations of classifiers globally, no methods have been published
to the best of our knowledge.

This paper presents a model-agnostic PERFormance EXplainer (PERFEX)
to derive explanations about characteristics of classification models. Given a base
classifier, a dataset and a classification performance metric such as the prediction
accuracy, we propose a meta learning algorithm that separates the feature space
in regions with high and low prediction accuracy and enables to generate compact
explanations for these regions. In the following sections we define the problem
formally and overview related work. Then, we describe PERFEX in detail. We
evaluate the method in experiments based on several classification methods and
datasets including our own case study. The experiments show that PERFEX
provides clear explanations in scenarios where explanations from SHAP and
LIME are not sufficient to gain trust. We finalize the paper with our conclusions.

2 Problem Statement

We consider a classification task in which a base classifier C is trained to assign
a datapoint x to a class. The set K = {c1, c2, . . . , ck} contains all k classes con-
sidered, and C(x) ∈ K denotes the class to which datapoint x belongs according
to C. The classifier is trained using a tabular dataset Xt containing n datapoints,
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0

Fig. 1. One-dimensional dataset with correct predictions (dot) and incorrect predic-
tions (cross)

and for each datapoint xi ∈ Xt the true class label is denoted by yi ∈ K. Each
datapoint in the dataset is defined by m feature values, and we use xj to refer
to feature value j of datapoint x.

The prediction performance of classifier C can be measured using standard
metrics, such as accuracy, precision, recall, F1-score and expected calibration
error [13]. We define the prediction performance metric M as a function that
takes a classifier C, test datapoints x1, . . . , xp and true labels y1, . . . , yp as input,
and it computes a real-valued score as output. The problem we consider is: given
a classifier C, a metric M, an independent dataset X and corresponding ground
truth labels Y, find a compact explanation for subgroups of the data having
either low or high (sub) performance. The compactness refers to the amount of
information that the explanation presents to the user.

As an example we consider prediction accuracy as performance metric M,
and we visually illustrate the problem based on a one-dimensional dataset with
feature z, as shown in Fig. 1. The symbols indicate whether predictions from a
given base classifier are correct (dot) or not (cross) when predicting for the ten
datapoints that are shown. The overall prediction accuracy is 0.6. However, this
number does not tell us under which circumstances the classifier performs well,
and when it does not perform well. We would like to create explanations which
tell that the classifier does not perform well for z < 0 (accuracy 2/5 = 0.4),
while it does perform well otherwise (accuracy 4/5 = 0.8). Instead of accuracy
other performance metrics M may be used, such as precision, recall, F1-score
and expected calibration error.

3 Related Work

In this section we overview the work related to the stated problem ranging
from model agnostic individual prediction to cluster based explanations and
explaining uncertainties.

First, SHAP [15] and LIME [20] can be used to create explanations about
individual predictions. SP-LIME [20] is a variant of LIME which aims to enable
a user to assess whether a model can be trusted by providing an explanation
for a group of samples as set of individual explanations. This is problematic in
domains with many features, it requires that the user inspects many instances,
and it is unclear whether a set of local explanations gives global understanding
of a model. Anchors [21] is related to LIME and aims to explain how a model
behaves on unseen instances, but only locally. K-LIME is another variant of
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LIME, which is part of the H2O Driverless AI platform [14]. It performs a k-
means clustering, and for each cluster it fits a linear model to explain features
influencing the predictions in that cluster. In contrast to our problem, it uses a
normal classification model fitting criterion instead of explaining a (base) learner
using its performance metric.

Interpretable clustering [3] clusters data based on a tree structure. It derives
an optimal clustering tree using mixed-integer optimization, and the branches in
the tree structure make the clustering interpretable. Although this approach may
deliver compact cluster explanations, like the LIME variants, it models the dis-
tribution of the data itself instead of the prediction structure of a base learner. A
clustering based on the predictions of a model cannot be easily integrated in this
exact optimization framework, especially if the computation of the performance
metric is non-linear.

Explanations of prediction characteristics of a classifier is related to explana-
tions of uncertainty. The CLUE method [1] can be used to explain which parts
of the input of a deep neural network cause uncertainty by providing a coun-
terfactual explanation in the input space. CLUE only provides an uncertainty
explanation for an individual input, and it cannot be used to inform the user
about the circumstances under which a model is uncertain. Our work also relates
to Interpretable Confidence Measures (ICM), which uses the accuracy as a proxy
for uncertainty [24]. A prediction for a datapoint is considered to be uncertain
if the classifier makes mistakes for similar datapoints. Our problem is to provide
e.g. uncertainty explanations for groups of datapoints, whereas ICM only focuses
on individual datapoints.

For regression models regions with deviating performance can be identified
by using subgroup mining, which creates Error Distribution Rules [19]. Instance
spaces [16] also aim to identify groups of instances such that the strengths and
weaknesses of a classifier can be studied. For both approaches it is important to
emphasize that there is a strong focus on the accuracy of a classifier, whereas
PERFEX can be used to create explanations for any metric.

Finally, there is a link with Emerging Pattern Mining (EPM), which can be
used to capture contrasts between classes [10]. An important difference is that
EPM aims at find patterns in data, while we aim at finding patterns in the
modeled data (by potentially any classifier).

4 Classifier PERFormance EXplainer

This section describes our method to find compact explanations for subsets
of datapoints based on local high or low performance of the base learner. As
overviewed in the Related Work section applying clustering algorithms, such as
k-means, is not suitable because k-means does not cluster based on M. A clus-
tering based on a decision tree can address this problem, because datapoints in
leafs can be seen as clusters and the branch conditions in the tree can be used
to extract explanations. If the classifier accuracy is used as metric M, then a
standard decision tree can be fitted which uses train targets which equal 1 if the
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Metric M
Dataset X
Classifier C

Labels yi (∀xi ∈ X )

Metric M
Dataset X ′ ⊂ X

Classifier C

Labels yi (∀xi ∈ X ′)

Metric M
Dataset X ′′ ⊂ X

Classifier C

Labels yi (∀xi ∈ X ′′)

...
...

accuracy 0.6

accuracy 0.4 accuracy 0.8

Fig. 2. Splitting dataset X into subsets X ′ and X ′′

base classifier predicts correctly for a datapoint, and 0 otherwise. This would
yield a tree which distinguishes subsets of data with low accuracy from subsets
of data with high accuracy, and allows for explanations. However, for other per-
formance metrics M such targets cannot be defined. We introduce PERFEX,
model-agnostic method to explain the prediction performance of a base classifier
for any performance metric M.

4.1 Creating Subsets of Data Using Tree Structure

The basic idea of PERFEX is to divide X up in a hierarchical manner leading
to a tree-structured meta learner. This enables us to naturally split the data
based on a split condition that depends on M, similar to the construction of
classification trees. More importantly, through the hierarchical process the tree
has typically a limited depth, such that when we use the branches as conditions
in a decision rule, it leads to a compact explanation. The process is schematically
illustrated in Fig. 2. For convenience we illustrate the tree construction based on
the same accuracy values as in Fig. 1. In the root node we consider a classifier C,
metric M, dataset X and the corresponding labels. The prediction metric score
for X can be obtained by evaluating M, which gives accuracy 0.6 in the figure.
This value has been computed using the full dataset X , but it does not enable
the user to understand when this metric value is low or high. We provide this
additional understanding to the user by decomposing X into two subsets X ′ ⊂ X
and X ′′ ⊂ X , such that M evaluates to a low value for X ′ and to a high value for
X ′′. This process is illustrated by the child nodes, which evaluate to an accuracy
of 0.4 and 0.8, respectively. The branch conditions in the tree can be used to
explain to a user when the performance metric evaluates to a low or high value.

The tree structure in Fig. 2 can be automatically created using an algorithm
that closely resembles to procedure for generating decision trees for classifica-
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Algorithm 1: PERFEX
input : classifier C, dataset X , labels yi (∀xi ∈ X ), prediction metric M,

minimum subset size α
output: subsets X ′ ⊂ X and X ′′ ⊂ X with corresponding labels, split

condition s
1 X ′ ← ∅, X ′′ ← ∅, s ← (0, 0), β ← 0
2 for j = 1, . . . , m do
3 foreach unique value v of feature j in X do

4 X̂ ′ ← ∅, X̂ ′′ ← ∅
5 foreach x ∈ X do
6 if xj ≤ v then

7 X̂ ′ ← X̂ ′ ∪ {x}
8 else

9 X̂ ′′ ← X̂ ′′ ∪ {x}
10 end

11 end

12 e′ ← evaluate M using C, X̂ ′ and labels

13 e′′ ← evaluate M using C, X̂ ′′ and labels
14 β′ ← |e′ − e′′|
15 if β′ > β and |X̂ ′| ≥ α and |X̂ ′′| ≥ α then

16 β ← β′, X ′ ← X̂ ′, X ′′ ← X̂ ′′, s ← (j, β)
17 end

18 end

19 end

tion and regression [5]. A key difference is that we use a split condition based
on M during the tree generation procedure, rather than using e.g. the Gini
impurity. Algorithm 1 shows how to split a dataset X for all possible features
into subsets X ′ ⊂ X and X ′′ ⊂ X using prediction metric M as split criterion. It
enumerates all possible splits into subsets X ′ and X ′′. For numerical and binary
features a less-than-or-equal condition can be used on line 6, and for categorical
features an equality condition should be used. For features with continuous val-
ues, it may be practical to consider only a fixed number of quantiles, rather than
enumerating all unique values. After creating subsets on lines 4–11, it uses M
to evaluate the metric value for both subsets, and it keeps track of the best
split found so far. The quality of a split is determined by computing the differ-
ence between the performance metric values of both subsets. Since we want to
distinguish subsets with low and high metric values, the algorithm returns the
subsets with maximum difference. The split condition corresponding to the best
split is stored in the tuple s, which contains both the index of the feature and
the feature value used for splitting. Algorithm 1 shows how one node of the tree
(X ) is divided into two child nodes (X ′, X ′′). In order to create a full tree, the
algorithm should be applied again to X ′ and X ′′. This process repeats until a
fixed depth is reached. Another stop criterion based on confidence intervals is
discussed below.
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4.2 Confidence Intervals on Values of M
Splitting data using Algorithm 1 should terminate if the size of either X ′ or
X ′′ becomes too small to provide a good estimation of metric M. This can
be assessed based on a confidence interval on e′ and e′′. We only discuss the
derivation for e′ because for e′′ the procedure is identical. The actual derivation
is dependent on the chosen metric M. Below we illustrate it for the metrics
accuracy and precision.

For accuracy the estimator e′ = u / |X ′| can be used, in which u represents
the total number of correct predictions. The estimator e′ follows a binomial
distribution, and therefore we can use a binomial proportion confidence interval:(

e′ − z

√
e′(1 − e′)

|X ′| , e′ + z

√
e′(1 − e′)

|X ′|

)
, (1)

in which z denotes the Z-score of the desired confidence level [17]. Given maxi-
mum interval width D, combined with the insight that the term e′(1−e′) takes a
value that is at most 0.25, we obtain the minimum number of datapoints, which
can be used as termination condition:

z

√
0.25
|X ′| =

D

2
⇒ |X ′| =

z2

D2
. (2)

For example, when using a 95 percent confidence level and maximum interval
width 0.1, the minimum number of datapoints in X ′ equals 1.962 / 0.12 ≈ 384.

For other proportion metrics such as precision the derivation is slightly dif-
ferent, because precision does not depend on all datapoints in X ′. For example,
the precision for class ci equals u / |{x ∈ X ′ | C(x) = ci}|, in which u denotes the
number of datapoints in {x ∈ X ′ | C(x) = ci} which were predicted correctly.
By applying the same derivation as above, it can be seen that the termination
condition for tree generation should be based on the number of datapoints in
{x ∈ X ′ | C(x) = ci} rather than X ′.

4.3 Tree Evaluation Using Test Set

The tree quality can also be evaluated using a separate test set X̄ . First, the
datapoints in X̄ are assigned to leafs. After that, the metric value in each leaf can
be computed based on the assigned datapoints. Intuitively, it can be expected
that the metric value for datapoints in a leaf of the tree is similar for X and
X̄ , regardless of the performance of the base classifier and regardless of the
performance metric M. For example, if the accuracy in all the leafs of the tree is
low, then the estimated accuracy in the leafs will also be low when using another
dataset from the same distribution. Algorithm 2 shows how the tree quality is
determined by computing the mean absolute error based on the errors of the
individual leafs. The output variable d can be used to assess to what extent
PERFEX distinguishes subsets with low and high metric values.
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Algorithm 2: Estimate quality of tree using test set
input : tree T created by recursively applying Algorithm 1, metric M,

classifier C, dataset X , test set X̄ , and labels
output: mean absolute error ê, metric difference d

1 L ← set of leafs in T , ê ← 0
2 foreach leaf l ∈ L do
3 Xl ← datapoints in leaf l after applying T to X
4 X̄l ← datapoints in leaf l after applying T to X̄
5 el ← evaluate M using C, Xl and labels
6 ēl ← evaluate M using C, X̄l and labels
7 ê ← ê + |el − ēl|
8 end
9 ê ← ê / |L|, d ← (maxl∈L el − minl∈L el)

4.4 Generating Explanations

The tree structure created by Algorithm 1 can be used to extract explanations
that can be presented to a user in a text-based format. Each leaf in the tree
represents a subset of the data with a corresponding metric value. Therefore, we
can print information about the leaf which explains to the user how the subset
of data has been constructed, and what the metric value is, as illustrated below
for one leaf:

There are 134 datapoints for which the

following conditions hold:

length > 10.77, length <= 12.39

and for these datapoints accuracy is 0.68

For each leaf we print the number of datapoints, the prediction metric value
computed on the same subset of data, and the conditions that were used to split
the data. The conditions can be extracted from the tree by taking the conditions
used in the nodes along the path from root to leaf.

In order to create explanations that are understandable from a user point of
view, it is important to limit the depth of the tree. It is expected that PERFEX
works well if areas with low and high metric values can be distinguished by
using a PERFEX tree with limited depth. If an extensive depth of the tree is
required to distinguish these areas, then PERFEX is less suitable because this
creates explanations with many conditions, which may be difficult to interpret
for a user.

4.5 Example Using 2D Dataset

We provide an example using a dataset with two features, which shows visually
how PERFEX creates an explanation. It will also show that explanations for
the class prediction are not the same as the explanations based on M. The
dataset is shown in Fig. 3 and consists of the classes red and blue, generated
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Fig. 3. Example dataset with two features and two classes

using Gaussian blobs with centers (10, 10) and (30, 10). For the purpose of the
example we flip labels of some datapoints for which y > 12. The majority of
the datapoints for which x < 20 belongs to red, and the majority belongs to
blue if x ≥ 20. Our base classifier is a decision tree with depth 1, predicting red
if x < 20 and blue otherwise. We investigate when the base classifier has a low
accuracy by applying Algorithm 1 with accuracy as metric M:

There are 100 datapoints for which the

following conditions hold:

y > 10.96

and for these datapoints accuracy is 0.72

There are 200 datapoints for which the

following conditions hold:

y <= 10.96

and for these datapoints accuracy is 1.0

This explanation shows that the accuracy is lower if y > 10.96, which is also
the area in which datapoints belong to two classes. More importantly, it shows
that the explanation for accuracy depends on y, whereas the prediction made
by the base classifier (and its explanation) only depend on x.

5 Experiments

We present the results of our experiments based on Gaussian data as well as
several standard classifiers and datasets.

5.1 Evaluation of Tree Error with Gaussian Data

We start with two experiments to empirically study two hypotheses from the
previous section. We use data from Gaussian distributions, allowing us to care-
fully control the difficulty of the prediction task. In our first experiment we
show that PERFEX can be used to model a chosen prediction metric even if the
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Fig. 4. Distribution with two classes defined by two Gaussians and one feature. The
shaded area is the region of error.

original class prediction task is hard. We assume that the data comes from a one-
dimensional dataset defined by two Gaussians, as shown in Fig. 4. The Gaussian
with μ = 10 and σ = 2 corresponds to the first class, and remains fixed. The
datapoints of the second class follow a Gaussian distribution with μ = 10+δ and
σ = 2. The parameter δ > 0 is used to control the overlap of both Gaussians,
which affects the difficulty of the prediction task. In the figure this is visualized
for δ = 3. Since the standard deviation of both distributions is the same, the
difficulty of the prediction task can be expressed using the region of error, which
is visualized using the shaded red area. We define a classifier which predicts the
class for a datapoint x by taking the class for which the probability density is
maximum: C(x) = arg maxi∈{0,1} f(μi, σi, x), in which f denotes the probabil-
ity density function. It can be expected that the prediction performance of the
classifier drops if the region of error grows. This is confirmed in Fig. 5a, which
shows the weighted F1 score of the classifier for an increasing region of error.
We also created a PERFEX tree for accuracy, for which the mean absolute error
(MAE, computed by Algorithm 2) is also shown. The error is close to zero, which
confirms that PERFEX can model the accuracy of the classifier C even if the
performance of this classifier is low.

Now we show that a generated tree can be used to model a prediction metric
for a given classifier if the data used for creating the meta decision tree comes
from the same distribution as the data used for creating the base classifier. We
conduct an experiment in which we measure the error of the PERFEX tree, and
we gradually shift the data distribution for creating the tree, which causes the
error to increase. We use two Gaussians for creating the prediction model C,
with μ0 = 10, μ1 = 13 and σ0 = σ1 = 2. The data used for creating the
PERFEX tree uses the same distributions, except that μ1 = 13 + δ with δ ≥ 0.
If δ = 0, then all datasets come from the same distribution, and in that case the
error of the meta decision tree is low, as can be seen in Fig. 5b. If we shift the
distribution of the data for creating our tree by setting δ > 0, then we expect
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Fig. 5. Results of experiments with Gaussian data

that the error increases due to this mismatch in the data. The figure confirms
this, and it shows that a tree can be fitted only if its training data comes from
the same distribution as the classifier training data.

5.2 Evaluation on Several Datasets and Models

We apply PERFEX to different datasets, classifiers and split conditions based
on several metrics. Given that the meta tree needs sufficient data to create
generalizable clusters, 4 classification datasets with at least 1000 datapoints
from the UCI repository [11] were chosen: abalone, car evaluation, contraceptive
method choice, and occupancy detection. While experimenting, we noticed that
the classification of occupancy had almost perfect scores on the test-set. In that
case, the meta model would not be able to create clusters. For that reason, we
made the classification task more difficult by only including two features in the
dataset: CO2 and temperature. Finally, we also included a fifth 2D dataset called
gaussian blobs, which contains three clusters of datapoints that are partially
overlapping. These clusters were sampled from a isotropic Gaussian distribution
with cluster centers (10, 10), (20,12) and (15, 15), and a standard deviation of 3.
We use this dataset to validate whether the tree is able to distinguish the non-
overlapping regions with perfect scores and the overlapping regions with lower
scores.

Each dataset was split into a train set (50%), test 1 set (25%) and test 2 set
(25%), in a stratified manner according to the target. The train set was used to
train 5 base classifiers: Logistic Regression (LR), Support Vector Machine with
RBF kernel (SVM), Random Forest (RF), Decision Tree (DT), and KNN with K
= 3. Test set 1 was used to evaluate the base classifier and to build the PERFEX
tree with maximum depth 6. The tree is used to cluster the datapoints of test
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Table 1. Evaluation of PERFEX using several datasets and base classifiers with accu-
racy as metric M

Dataset C Acc. of C L D Min acc. Max acc. MAE STD AE

Abalone SVC 53,6% 6 6 32,1% 84,3% 5,7% 4,6%

LR 56,5% 6 6 37,2% 83,5% 4,9% 3,8%

RF 54,5% 6 6 43,9% 82,7% 3,6% 2,7%

DT 52,5% 6 6 37,0% 78,7% 5,1% 3,0%

KNN 49,0% 6 6 32,2% 82,5% 4,2% 2,6%

Car
evaluation

SVC 95,0% 2 2 87,6% 99,1% 1,1% 0,7%

LR 90,5% 4 4 74,8% 100,0% 1,9% 2,9%

RF 95,2% 2 2 89,2% 98,5% 1,4% 0,2%

DT 94,8% 3 3 85,8% 100,0% 1,6% 0,9%

KNN 87,5% 4 4 65,5% 99,4% 3,8% 3,9%

Contraceptive
method
choice

SVC 44,3% 3 3 33,0% 63,3% 7,2% 5,3%

LR 53,4% 3 3 41,1% 63,8% 8,8% 2,0%

RF 51,4% 4 4 38,3% 62,4% 4,3% 2,4%

DT 52,3% 3 3 38,7% 62,6% 4,7% 1,3%

KNN 48,2% 4 3 36,0% 62,4% 9,5% 6,2%

Occupancy
detection

SVC 86,8% 12 6 20,6% 98,8% 3,6% 2,4%

LR 81,9% 10 6 21,1% 98,5% 3,9% 3,6%

RF 94,5% 7 6 80,3% 100,0% 2,0% 1,7%

DT 93,5% 9 6 72,5% 98,3% 3,5% 2,0%

KNN 88,6% 9 6 66,0% 98,6% 3,7% 2,0%

Gaussian
blobs

SVC 80,3% 8 6 73,4% 100,0% 2,0% 2,8%

LR 80,2% 8 6 73,1% 100,0% 1,2% 1,2%

RF 78,6% 9 6 69,9% 100,0% 2,3% 1,5%

DT 76,9% 7 6 70,1% 98,5% 2,8% 2,8%

KNN 75,6% 8 6 67,7% 100,0% 3,5% 2,6%

set 1 and test set 2, separately. This tree is evaluated by comparing the accuracy
scores of the corresponding clusters of the test sets using Mean Absolute Error
(MAE), as described in Algorithm 2. This shows whether PERFEX is able to
generalize the accuracy estimates to an unseen dataset.

Table 1 shows both the performance of the base classifiers and the corre-
sponding PERFEX tree based on accuracy (abbreviated as ‘acc’ in the table
columns). The classification models have a diverse accuracy, ranging from 51%
to 95%. For PERFEX the table shows the amount of leaves (L), the depth of the
tree (D), the minimum and maximum accuracies among the leaves, the MAE,
and the STD of the Absolute Error (STD AE). PERFEX is able to separate
datapoints with high and low accuracy, with the lowest difference of 9.3% (Car
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Fig. 6. Results of experiment with SHAP and LIME, with feature x0 horizontal and
feature x1 vertical

RF) and the highest of 78.2% (Contraceptives SVC). For the gaussian blobs,
we see clusters with perfect or almost perfect scores, as expected. The MAE
is generally low, ranging from 1.1% to 9.5%. We also see a pattern in which
classification models with high accuracy result in lower MAE. The supplement
contains results for other metrics M, and more details on the datasets and our
code1

5.3 Limitations of SHAP and LIME

SHAP and LIME were introduced as methods to explain why a classifier makes a
prediction, and to gain trust about the prediction. However, this can be danger-
ous in practice because SHAP and LIME provide explanations regardless of the
classifier performance. We show that circumstances exist in which SHAP and
LIME mark specific features as very important for a high-confidence prediction,
while PERFEX clearly indicates that people should not rely on the classifier.

We consider a scenario in which a doctor uses a classifier to create predictions
for patients that arrive, and SHAP and LIME are used to inform the doctor about
the importance of features. The classifier is a random forest that was trained by

1 The supplement and details on our code are available in a preliminary version of this
article: https://arxiv.org/pdf/2212.06045.pdf.

https://arxiv.org/pdf/2212.06045.pdf
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a data scientist using the dataset shown in Fig. 6a. It can be seen that it may
be difficult to predict in the area where both classes are overlapping. However,
the doctor is not aware of this, and during model development the data scientist
concluded based on accuracy (0.76) that the performance of the classifier is
sufficient. Suppose that a patient arrives with features x0 = 10 and x1 = 12.
It may happen that the classifier assigns a high score to one class, and SHAP
and LIME highlight one feature as much more important than the other. This
is not desirable, because the doctor gets the impression that the system can be
trusted, while the classifier should not be used for such patients.

We now show that datapoints exist for which the described problem arises.
According to PERFEX the cluster with the lowest accuracy (0.51) is defined
by 11.2 ≤ x0 ≤ 13.6. In Fig. 6b we highlight datapoints that belong to this
cluster, and for which two additional properties hold. First, the random forest
assigns at least score 0.8 to the predicted class. Second, the prediction made
by the random forest is not correct. For each highlighted datapoint we apply
SHAP and LIME, which gives importance i0 for feature x0 and importance i1
for feature x1. Next, we compute max(|i0|, |i1|) − min(|i0|, |i1|), which is high if
the absolute importance of one feature is higher than the other. The results are
summarized in Fig. 6d, in which we can see that both explanation methods give
the impression that one feature is much more important than the other.

Suppose that the doctor would investigate one of the highlighted datapoints.
It would get the impression that the model is very confident, because the output
score is at least 0.8, while it is actually incorrect. Additionally, SHAP and LIME
define that one feature is more important than the other. The prediction and
explanation combined suggest that the model can be trusted. PERFEX is a
crucial tool in this scenario because it would inform the doctor that classifier
accuracy tends to be low for similar datapoints.

Finally, we investigate why SHAP and LIME indicate that one feature is more
important than the other. The classifier decision boundary is shown in Fig. 6c.
The highlighted datapoints are located close to the boundary. We can see that
SHAP and LIME attempt to explain the behavior of the classifier locally, and
due to the shape of the boundary both features have varying influence on the
predictions. This also confirms our intuition that SHAP and LIME only explain
local behaviour of the classifier.

6 Case Study: Modality Choices in Mobility

We present a case study in which we apply PERFEX in the context of mobil-
ity. Cities are facing a transition from conventional mobility concepts such as
cars and bikes to so-called new mobility concepts such as ride sharing and e-
scooters [22]. To support this transition, policy makers would like to predict
and understand existing modality choices for trips in their city. They use a
decision support system which uses a classifier to predict the modality that an
individual chooses for a trip, based on trip properties as well as personal charac-
teristics. The classes correspond to the modalities: car, car as a passenger, public
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transport, bike, walk. Each datapoint is a trip consisting of trip properties and
characteristics of the traveler. The trip properties define the travel time for each
modality, the cost for car and the cost for public transport. For the traveler a
datapoint defines whether the traveler has a driving license, whether they own a
car, and whether they are the main user of the car. Our dataset consists of 40266
trips from a travel survey conducted by Statistics Netherlands [7]. PERFEX is
model-agnostic and applies to any base classifier, but for this specific case study
we choose a random forest to illustrate the explanations. For prediction we train
a random forest with 100 trees in the forest and at least 5 datapoints in each
leaf. The accuracy of the final model is 0.91. We illustrate PERFEX based on
two user questions.

User question 1. When is the model not able to predict public transport trips
as such?

For a mobility researcher analyzing the use of public transport it is important to
know whether the model is actually able to label public transport trips as such.
This information can be provided to the researcher by applying our method with
the recall of public transport as a performance metric.

There are 4163 trips for which the following

conditions hold:

travel time public transport > 1800 seconds

cost public transport > 0.74 euro

travel time bike <= 1809 seconds

and for these trips the class recall is 0.07

User question 2. When does the model assign high scores to both public trans-
port and bike?

Finally, we consider a mobility researcher that wants to investigate for which
trips the model expects that both public transport and bike can be chosen. In
order to answer this question we use a custom performance metric during tree
construction. For each datapoint we take the minimum of the predicted scores
for public transport and bike, and the metric M takes the mean of these values.
The mean becomes high if the model assigns a high score to both classes. The
explanation below intuitively makes sense: if walking takes a long time and if
the traveler does not have a car, then both public transport and biking may be
suitable choices.

There are 100 trips for which the following

conditions hold:

cost public transport <= 21.78 euro

traveler does not own a car

travel time walk > 6069 seconds

and for these trips the model assigns on

average at least score 0.19 to both classes
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7 Conclusions

We presented PERFEX, a model-agnostic method to create explanations about
the performance of a given base classifier. Our method creates a clustering of a
dataset based on a tree structure, such that subsets of data can be distinguished
in which a given prediction metric is low or high. PERFEX can be used to
e.g. explain under which circumstances predictions of a model are not accurate,
which is highly relevant in the context of building trustworthy decision support
systems. Our experiments have shown that PERFEX can be used to create expla-
nations for various datasets and classification models, even if the base classifier
hardly differentiates classes. It also shows that PERFEX is an important tool in
scenarios in which SHAP and LIME are not sufficient to gain trust. PERFEX
currently only uses subsets defined by AND-clauses, and therefore we aim to
also investigate other types of subsets in future work [23].
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1 Rotterdam School of Management, Erasmus University,
Rotterdam, The Netherlands

wan@rsm.nl
2 Nova School of Business and Economics, Universidade NOVA de Lisboa,

Lisbon, Portugal
{rodrigo.belo,leid.zejnilovic,susana.lavado}@novasbe.pt

Abstract. An algorithm effects a causal representation of relations
between features and labels in the human’s perception. Such a repre-
sentation might conflict with the human’s prior belief. Explanations can
direct the human’s attention to the conflicting feature and away from
other relevant features. This leads to causal overattribution and may
adversely affect the human’s information processing. In a field experi-
ment we implemented an XGBoost-trained model as a decision-making
aid for counselors at a public employment service to predict candidates’
risk of long-term unemployment. The treatment group of counselors
was also provided with SHAP. The results show that the quality of the
human’s decision-making is worse when a feature on which the human
holds a conflicting prior belief is displayed as part of the explanation.

Keywords: human-AI interaction · communication · causal
representations · prior beliefs · biases · explanations · epistemic
standpoint · salience · conflict · information processing

1 Introduction

Artificial intelligence is increasingly embedded in everyday business and con-
sumer decision-making. For an array of reasons—technical, psychological, orga-
nizational, legal, and ethical—these decision-making systems are seldom fully
automated. They require human input or, as components of larger socio-technical
systems, interface to a significant degree with other components that are pre-
dominantly human-driven. Understanding how humans interact with algorithms
epistemically, therefore, is of crucial importance whether the considerations are
primarily economic and managerial or societal and ethical.

One principal way algorithms communicate with humans is via causal rep-
resentations [35]. The algorithm effects a causal representation relating features
and labels [4] in the human’s perception. This is conveyed through the algo-
rithm’s observable output—typically predictions. For example, imagine a con-
text where humans are using an algorithm as a decision-making aid to predict
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the risk of loan default for different individuals. Upon observing the algorithm’s
output (predictions), the human might attribute to the algorithm a causal rep-
resentation with the following semantics: longer job tenure leads to a lower risk
of loan default.

Informed by history, humans form prior beliefs with respect to predictive
tasks [22]. For example, in predicting loan default humans might associate lower
income with a higher risk of loan default. This representation may conflict with
the causal representation attributed to the algorithm. We call such a conflict
the duet of representations. Because humans value simplicity, both their prior
beliefs and the causal representations they attribute to algorithms are likely to
be linear and sparse [21].

One way to facilitate communication between agents is through the provi-
sion of explanations. Explanatory methods can be viewed as tools that render
the algorithm’s causal representations human-interpretable. They extract simple
representations via some model additive to the original algorithm. For example,
LIME [26] use locally linear models to extract linear representations of relations
between features and labels. SHAP [23] use cooperative games with features as
players and extract representations in the form of sets of important features.
Explanations direct human attention to sparse and cogent representations with
clear semantics. They therefore increase the salience of any conflict with human
priors. We present empirical evidences from a field experiment that explanations
exacerbate the duet of representations and affect the quality of human decisions.

The results of our study suggest that fruitful and robust human-algorithm
interaction requires a reconsideration of what constitutes “communication”
between the algorithm and the human. Epistemically and communicatively, it is
not sufficient to extract causal representations effected by algorithms. Effective
communication depends on understanding the whys of a causal representation
effected by the algorithm—the standpoint from which it is generated—as well
as reciprocity, negotiability and the ability to refer to a shared objective reality.
A set of desiderata for human-algorithm interaction is offered in Sect. 6.

2 Theory and Related Work

2.1 Human-Algorithm Collaboration

One literature stream on human-algorithm interaction adopts a managerial or
engineering perspective and takes performance as the object of study. What mat-
ters is not the epistemic content of human-algorithm interaction but the effect
it has on performance, evaluated against some metric. In this vein, [8] ana-
lyze how human-algorithm interaction can lead to the “cyborgization” of human
thought. This results in the loss of unique human knowledge that can contribute
to effective decision-making. [9] show that humans and AI working together can
outperform AI alone when the latter delegates to the former. [30] study human
deviations from algorithmic prescriptions in warehouse operations. They devise
a machine learning algorithm to predict the deviations and show that incorpo-
rating them in logistics planning improves performance. Results from [18]’s field
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experiment show that the failure to adopt algorithmic recommendation can lead
to a gap between the nominal and the actual performance of the algorithm. [11]
develop a method that uses learning from bandit feedback to optimize human-AI
collaboration.

The common thread behind this body of work is the conception of human-
algorithm collaboration as a process that can and should be optimized in order
to improve performance. To the extent that the process produces observable out-
put in experiments, simulations, and real-world deployment, the data are used to
understand decision quality and how it can be enhanced. This is an intellectual
viewpoint that focuses on the “external”—measurements whose variances are
related to observed variances in the structure of human-algorithm interaction.
What is relatively less theorized is the epistemic content of this interaction. That
is, beyond the fact that human knowledge and human actions can affect perfor-
mance, how do humans process algorithmic predictions or recommendations as
information?

2.2 Affective States

Another stream of literature focuses on internal psychological states induced
by interaction with the algorithm. While the implicit goal might still be the
improvement of a performance measure such as adoption, this body of work
seeks to explain engagement psychologically or develop a normative framework
for judging the conditions under which an internal psychological state is desir-
able. The literature has identified chiefly two affective states as important for
human-algorithm interaction—trust and aversion. [5] introduces the concept of
“algorithm aversion” and [6] shows that agency helps to attenuate it. [20] inves-
tigates how in medical diagnosis the opacity of AI diagnostics can lead to a
loss of trust via an increase in epistemic uncertainty. [17] formalizes the notions
of trust and trustworthiness in human-AI interaction and examine the crite-
ria under which trust is normatively warranted. [14] reviews tangibility, trans-
parency, reliability, and immediacy as factors that help to inculcate cognitive
trust and anthropomorphism as a factor that helps to inculcate emotional trust
in the AI. Lastly, [34] develops a multidimensional measure of trust in the context
of robotics.

What underlies this body of work is an “internal” view that psychological
states are determined by how humans interface with the algorithm and in turn
drive aspects of human-algorithm interaction. Furthermore, there is a norma-
tive dimension in so far as certain psychological states such as trust are only
warranted under specific conditions.

2.3 The Duet of Representations

While an affective state clearly disposes the human towards a particular set
of actions vis-á-vis the algorithm, it lacks the adaptive rationality that allows
agents to respond to changes. Feelings of trust and aversion, once developed,
are relatively constant, at least on the timescale of human-algorithm interaction
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[5,6,20]. They do not explain individual instances of interaction. Consider inter-
personal dynamics. One might be inclined to accept suggestions from a trust-
worthy friend, with such inclination assumed to be relatively stable over time.
There will nonetheless be variability in one’s actions if one is not to surrender
one’s agency completely. If agency is the ability to perform a difference-making
action (e.g. accept or reject a suggestion) as it pertains to one’s goal, then affec-
tive states alone cannot account for the differences in actions. What enables
difference-making actions and agency is representation. Humans build mental
models of the world and also attribute mental models—via theory of mind—to
other agents [19]. These models are often causal representations with interven-
tionist1 or counterfactual2 semantics [25,36]. Human collaboration requires, in
addition to a representation of the shared goal or task, representations of other
agents—more precisely, representations of other agents’ representations of the
task [37]. When the human and the algorithm cooperate on a predictive task,
it is the human’s representation and the representation that she attributes to
the algorithm that jointly enable the human to exercise her agency and perform
difference-making actions.

Formally, the human constructs a representation Rh with respect to the pre-
dictive task from the space of human-interpretable representations R. This rep-
resentation could be a causal model with interventionist or counterfactual seman-
tics [25,36]. It could also be a simpler heuristic [12,13]. For example, the represen-
tation for a binary classification task might be a sparse set of feature values that
contributes to a negative prediction: {U = u0} ∨ {V = v0} ∨ {W = w0} �→ −1.
Since this representation defines the human’s state of knowledge before using
the algorithm, it can also be understood as the prior belief. The algorithm also
effects a causal representation that relates features and labels. For example, a
causal representation (that the human attributes to the algorithm) for a binary
classification task might be that certain features values cause a positive predic-
tion whereas others cause a negative prediction: {U = u0} ∨ {V = v0} ∨ {W =
w0} �→ 1; {X = x1} ∨ {Y = y1} ∨ {Z = z1} �→ −1.

Given an instance from the input space I, the representation the algorithm
effects and the human prior belief interact to induce a human action from the
action space A: I × R × R �→ A. Using the binary classification example from
above, consider the input instance {U = u0} for which the algorithm gives a
positive prediction. The causal representation attributed to the algorithm Ra :
{U = u0} �→ 1 conflicts with the prior belief Rh : {U = u0} �→ −1. This
might prompt the human to reject or revise the algorithm’s prediction. The set
of possible actions as well as the exact process by which an action is selected
will vary by the predictive task. Bayesian updating [1], for example, might be
appropriate for continuous labels.

1 Setting X to x0, Y would be y0.
2 Had X been x0, Y would have been y0.
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2.4 Explanations as Compressed Representations

[28] defines communication as “any process whereby decisional premises are
transmitted from one member of an organization to another.” Effective collabo-
ration requires that the agents’ states of knowledge be commensurate with the
decision-making process. Sometimes routines and procedures encode past learn-
ing and constrain the agents to cooperate [3]. At other times explicit communi-
cation between the agents is needed to establish an adequate basis for action.
With respect to predictive tasks where the human shares in decisional authority
and responsibility, the latter means that the algorithm’s representation would
have to be communicated to the human. Explanations can render complex rep-
resentations human-interpretable and help to close the gap in shared knowledge
of decisional premises. Counterfactual and causal explanations [10,27] especially
might be more aligned with human mental models.

In this capacity, explanations can be regarded as compressed representations:
Ra = ψ(h), where |Ra| < |h|. That is, an explanatory method ψ(·) extracts a
compressed representation Ra of the original function h learned by the algorithm
from the space of human-interpretable representations R. The compressed rep-
resentation Ra is more sparse than the underlying function h in some sense, e.g.
the number of features. For example, LIME approximate the underlying model
locally with sparse linear representations [26]. SHAP model features as players
in a cooperative game and extract the most relevant ones as explanations [23].
Both have human-interpretable semantics—the former in the form of a sparse
linear model, the latter in the form of a sparse set of relevant features.

A number of studies [15,16,24,29] have developed frameworks for evaluat-
ing the fidelity of explanatory methods with respect to the original models.
Compressed representations generated by explanatory methods might also con-
flict with human priors. Explanations increase the salience of any conflict with
human priors by commanding cognitive attention and directing it to sparse and
cogent representations with clear semantics. The fact that an explanation is
explicitly and concisely shown to the human—for SHAP it would be a set of rel-
evant features—can make the disagreement more conspicuous. This exacerbates
the conflict and can affect the quality of human decision-making.

[2] takes the view that explanations help human users to learn to meta-predict
model predictions. While achieving an understanding of the model sufficient for
meta-predicting its predictions is a normative good that can be useful for many
tasks, this conceptualization underplays the fact that in many real-world settings
learning per se is not the express goal—action is. It cannot be assumed that a
human user would suspend her prior beliefs in making decisions as she might
when the objective is explicitly learning. An explanation, therefore, is not simply
a piece of information to be used for improving one’s understanding. It represents
a distinct epistemic standpoint which can conflict with that of the human user
to an extent that is consequential for actions.
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2.5 Psychological Salience and Information Processing

An explanation directs attention to a sparse representation with clear seman-
tics. This increases the salience of features that form part of the explanation,
especially if the human user has a strong prior belief on how they should be
related to the label and this prior belief conflicts with what is implied by the
explanation. For example, the human might hold the belief that {U = u0} �→ −1
and an explanation that {U = u0} contributes to a positive prediction would
put the conflict in the crosshairs.

Research in psychology has shown that salience can have a large impact on
human judgment [31,33] and even affect causal attribution [7,32]. In the context
of machine learning explanations, the focus of attention on a sparse set of features
for which the human user holds strong prior beliefs can induce overconfidence
[35]. By directing attention to features on which the human user has a conflicting
prior belief, the explanation also directs attention away from other features which
could have been part of the human user’s information processing. This leads to
causal overattribution. The conflict also exacts a cognitive cost. Both can affect
the quality of human decision-making.

3 Field Experiment

3.1 Setting

The empirical context is a public employment service (PES) in the European
Union. The PES provides services such as job referral and vocational training
to unemployed individuals. When an individual becomes unemployed, she has
to register at PES to receive financial support from the government. During
the registration process, usually done in person, the registrant gives her data to
a counselor who will review her case and support her in finding employment.
According to an internal regulation, a counselor at the PES is obliged to assess
the unemployed candidate’s risk of LTU (long-term unemployment) upon regis-
tration, where LTU is defined as being involuntarily unemployed for a year or
more.

We trained and implemented an XGBoost classification model that took
as input candidate features and returned as output a raw probability score
(risk score) and a risk assessment. Raw probability scores of LTU produced by
XGBoost were converted into risk assessments of low, medium, and high, where
high means a high probability of LTU. A risk assessment of high is equivalent
to a positive prediction of LTU whereas a risk assessment of medium or low is
equivalent to a negative prediction of LTU.

To explore the effect of explanations on human-algorithm interaction, we ran
a field experiment from October 2019 to June 2020. The assignment of treat-
ment was randomized at the level of job centers. Six centers were selected for the
experiment, three for the treatment with 79 counselors and three for the control
group with 77 counselors. Within a job center, candidates were assigned coun-
selors available at the time of registration. After running the model, counselors
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were shown a risk assessment of low, medium or high and the raw probability
score (risk score). The treatment group of counselors was additionally shown
SHAP which comprised a set of six features. For a high (low) risk assessment,
the top six features that increased (decreased) the probability of LTU were dis-
played; for a medium risk assessment, the top three features that, respectively,
increased and decreased the probability of LTU were displayed. The counselors
had the decisional authority and could either retain the algorithm’s assessment
or replace it with their own. They were also asked to rate their confidence in the
final assessment on a Likert scale of 1 to 5. Data on the realized LTU outcomes
of the candidates were collected in December 2021. Further information on the
empirical setting can be found in Appendices A and B.

3.2 Research Ethics and Social Impact

Before launching the pilot, we obtained approval from the university’s scientific
council to run a study with human participants. All counselors taking part in
the field experiment participated in a face-to-face information session. A presen-
tation on the system they would be using was given and the counselors had the
opportunity to ask the researchers questions. Counselors were also provided the
researchers’ e-mails and encouraged to get in touch with questions or concerns
at any time. All the counselors agreed to participate in the study. After the end
of the pilot, we conducted sessions presenting the results to representatives of all
employment centers, which were recorded and made available to all PES (public
employment service) counselors.

The researchers did not have access to any personal data that could poten-
tially identify, directly or indirectly, the PES users. All the PES identification
numbers were pseudonymized by the PES. All researchers with access to the
data had training in personal data protection from the respective university’s
data protection office.

4 Methods

4.1 Identifying the Conflict

To extract a sparse causal representation effected by the algorithm in the
human’s perception, we regress the algorithm’s LTU prediction r on candidate
features using LASSO logistic regression with ten-fold cross-validation for the
control group. The regression yields sparse linear models p(r = i) = xᵀβi, where
p(r = i) is the probability of the prediction being i (positive or negative), βi the
set of coefficients associated with prediction i, and x the sparse set of features
significant for driving variances in the algorithm’s LTU predictions (Table 1).

Of the nine features, age, number of registrations, number of subsidy suspen-
sions, and unemployment length are numeric variables. The rest are dummy vari-
ables derived from categorical variables. The representation attributed to the
algorithm has the following possible semantics: if the unemployed candidate
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Table 1. LASSO regression coefficients for the representation attributed to the algo-
rithm

LTU prediction non-LTU LTU

1 reason = contract ended 0.304 −0.304

2 reason = mutual agreement −0.347 0.347

3 education = college −0.127 0.127

4 social integration subsidy = true −1.163 1.163

5 age −0.133 0.133

6 number of registrations 0.037 −0.037

7 number of subsidy suspensions 0.012 −0.012

8 age group : > 56 −0.518 0.518

9 unemployment length −0.023 0.023

left her previous employment by mutual agreement, is college-educated, receives
social integration subsidy, is in the age group above 56, is older, has had a fewer
number of registrations, has had a fewer number of subsidy suspensions, and/or
has been unemployed for longer, then she is more likely to be (judged by the
algorithm to be) in long-term unemployment. However, if the unemployed can-
didate left her previous employment because the contract ended, is younger, has
had a greater number of registrations, has had a greater number of subsidy sus-
pensions, and/or has been unemployed for shorter, then she is less likely to be
(judged by the algorithm to be) in long-term unemployment.

Ra :
{reason = mutual agreement} ∨ {education = college}∨
{social integration subsidy = true} ∨ {age group :> 56} ∨ {age +}∨
{number of registrations -} ∨ {number of subsidy suspensions -}∨
{unemployment length +} �→ LTU;
{reason = contract ended} ∨ {age -} ∨ {number of registrations +}∨
{number of subsidy suspensions +} ∨ {unemployment length -} �→ non-LTU.

The counselor either retains or adjusts the algorithm’s risk assessment. We
construct a variable a, with actions a = −1 (adjusting the algorithm’s risk
assessment downward), a = 0 (retaining the algorithm’s risk assessment as it
is), and a = 1 (adjusting the algorithm’s risk assessment upward). To identify
features where the counselor have a strong prior belief, we regress a on candidate
features using LASSO multinomial regression with ten-fold cross-validation for
the control group. This yields sparse linear models p(a = j) = wᵀαj , where
p(a = j) is the probability of action j, αj the set of coefficients associated with
action j, and w the sparse set of features likely, ceteris paribus, to induce the
counselors to take a particular action. The regression is run over the counselors
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as an aggregate so the prior belief is assumed to be held collectively. Both the
sparsity and the linearity dovetail with the inductive bias for human mental
models, which tend to be sparse and linear [21] (Table 2)

Table 2. LASSO regression coefficients for the human prior belief

action down same up

1 reason = was student 0.099 −0.061 −0.037

2 nationality = non-EU/EEA −0.007 −0.027 0.034

3 education = college 0.464 −0.075 −0.389

4 age −0.001 0.004 −0.004

5 desired job = scientific research 0.012 −0.005 −0.008

6 personal employment plan = true 0.196 −0.131 −0.065

7 prior personal employment plan = true −0.022 0.034 −0.012

8 number of interventions in job training 0.061 −0.034 −0.027

9 was LTU = true 0.052 0.064 −0.116

Except for age and number of interventions in job training, which are numeric
variables, all are dummy variables derived from categorical variables. The human
prior belief has the following semantics: if the unemployed candidate left her
previous employment because she was a student, is college-educated, desires to
find a job in scientific research, has a personal employment plan, and/or has had
a greater number of interventions in job training, then she is less likely to be
in long-term unemployment. However, if the candidate does not have EU/EEA
nationality and/or has had a fewer number of interventions in job training, then
she is more likely to be in long-term unemployment. The features age, prior
personal employment plan = true, and was LTU = true have positive coefficients
for a = 0 (retaining the algorithm’s prediction). Thus there is not any strongly
conflicting prior belief associated with them, although was LTU = true is slightly
ambiguous as it also has a positive coefficient for downward adjustment.

Rh :
{reason = was student} ∨ {education = college}∨
{desired job = scientific research} ∨ {personal employment plan = true}∨
{number of interventions in job training + } �→ non-LTU;
{nationality = non-EU/EEA}∨
{number of interventions in job training -} �→ LTU.

Comparing Ra and Rh, we identify college education as the feature where
the human prior belief conflicts with the causal representation effected by the
algorithm as a statistical regularity. Whereas the algorithm effects a sparse causal
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representation college education to a higher risk of long-term unemployment,
the human prior belief seems to be of the opposite view—that college education
should lead to a lower risk of long-term unemployment.

4.2 Identifying the Effects of Explanations on Decision Quality
and Confidence

We first partition the experimental data into instances for which the algorithm
gives a positive prediction of LTU (a risk assessment of high) and instances
for which the algorithm gives a negative prediction of LTU (a risk assessment
of medium or low). This is done for two reasons. Firstly, a conflict is specified
only for a given algorithmic prediction. Secondly, the covariates and dependent
variables in our regressions have different distributions for the two subsets of
observations.

We construct a dummy variable Conflict to indicate the presence or absence
of features where Ra and Rh conflict with each other in the explanation (shown
to the treatment but not the control group). We estimate the following equation
as our first model using logistic regression:

Decision Quality = γ0 + γ1Exposed + γ2Conflict + γ3Exposed × Conflict

+ γ4Risk Score + time fixed effects + ε. (1)

where Decision Quality is the accuracy of the final assessment and Exposed indi-
cates treatment status. We use Risk Score, which is native to XGBoost, as a con-
trol variable that stratifies the data instances into bins of predictions of equal
difficulty. The sign and statistical significance of γ3 tell us whether showing
features on which the counselors hold a conflicting prior belief as part of the
explanation affects the decision quality.

A second model, similarly estimated using logistic regression, explores the
heterogeneity of the mechanism by adding Adjustment as an interaction variable,
where Adjustment is a dummy variable indicating whether the counselor has
adjusted the algorithm’s LTU prediction:

Decision Quality = δ0 + δ1Exposed + δ2Conflict + δ3Adjustment

+ δ4Exposed × Conflict + δ5Exposed × Adjustment

+ δ6Conflict × Adjustment + δ7Exposed × Conflict × Adjustment

+ δ8Risk Score + time fixed effects + η. (2)

The sign and statistical significance of δ4 (δ7) tell us whether showing features
on which the counselors hold a conflicting prior belief as part of the explanation
affects the decision quality, when the counselor retains (adjusts) the algorithm’s
prediction.

In a third model we examine the impact of explanations on counselors’ con-
fidence in the final assessment using linear regression:
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Confidence = ζ0 + ζ1Exposed + ζ2Conflict + ζ3Adjustment

+ ζ4Exposed × Conflict + ζ5Exposed × Adjustment

+ ζ6Conflict × Adjustment + ζ7Exposed × Conflict × Adjustment

+ ζ8Risk Score + time fixed effects + ξ. (3)

The sign and statistical significance of ζ4 (ζ7) tell us whether showing features
on which the counselors hold a conflicting prior belief as part of the explana-
tion increases or decreases confidence, when the counselor retains (adjusts) the
algorithm’s prediction.

Models 1 and 2 are estimated as linear probability models and model 3 is
estimated as a linear regression model.

5 Results

For model 1, Conflict is equal to 1 when college education is displayed as part of
the explanation (or would have been displayed to the control group as part of
the explanation had their treatment condition been different). Only the subset of
instances for which the algorithm gives a positive prediction of LTU is included.
The regression results show that a positive prediction with a higher Risk Score
is more likely to be correct. The coefficient for Exposed×Conflict is negative and
statistically significant. This means that displaying college education as part of
the explanation degrades the quality of decision-making (Table 3).

Regression results for model 2 show that there is heterogeneity in the effects of
explanations on decision quality with the larger part of the decrease coming from
when counselors adjust the algorithm’s positive prediction of LTU, as indicated
by the negative and statistically significant coefficient for Exposed × Conflict ×
Adjustment.

Finally, regression results for model 3 show that displaying college educa-
tion as part of the explanation has polarizing effects on confidence. It reduces
confusion and increases confidence when counselors retain the algorithm’s pre-
diction, as indicated by the positive and statistically significant coefficient
for Exposed × Conflict. On the other hand it draws attention to the con-
flict and decreases confidence when counselors adjust the algorithm’s predic-
tion, as indicated by the negative and statistically significant coefficient for
Exposed × Conflict × Adjustment.

6 Discussion

Conflict between epistemic standpoints defines the kind of rationality that
enables actions. If there is no epistemic conflict, agency—the ability to perform
a difference-making action as it pertains to one’s goal—would not be realized.

In our field experiment, the conflict between the human’s prior belief that
college education is negatively associated with long-term unemployment and the
obverse representation attributed to the algorithm leads to actions that worsen
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Table 3. Regression results

Dependent variable:

Decision Quality Decision Quality Confidence

LPM LPM Linear

(1) (2) (3)

Exposed −0.035* −0.024 -0.006

(0.015) (0.016) (0.018)

Exposed × Conflict −0.104*** −0.049 0.171***

(0.030) (0.038) (0.041)

Exposed × Conflict × Adjustment −0.166** −0.331***

(0.058) (0.063)

Conflict 0.031 −0.009 −0.100**

(0.023) (0.028) (0.031)

Adjustment −0.433*** −0.191***

(0.024) (0.027)

Exposed × Adjustment 0.047 0.108**

(0.031) (0.034)

Conflict × Adjustment 0.277*** 0.349***

(0.044) (0.048)

Risk Score 0.834*** 0.460*** 0.164

(0.085) (0.081) (0.089)

2020Q1 0.084*** 0.082*** −0.030

(0.016) (0.015) (0.016)

2020Q2 0.076*** 0.084*** −0.199***

(0.016) (0.015) (0.017)

Observations 5,728 5,728 5,728

R2 0.029 0.1446 0.048

Adjusted R2 0.028 0.1431 0.046

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

the quality of decision-making for the time period during which the pilot was
run. An alternative scenario, however, can be conceived where the human’s prior
beliefs encode useful information about the world that the algorithm is not privy
to. In such a scenario, epistemic conflict can improve the quality of decision-
making. Nevertheless it is not possible for an organization to determine ex-ante
whether epistemic conflict would degrade or enhance the quality of decision-
making.

Explanations perform an epistemic or communicative function by rendering
complex representations human-interpretable. This however does not resolve the
conflict of representations and may in fact—because explanations direct atten-
tion to cogent representations with explicit semantics—exacerbate it. As can be
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seen with positive predictions of LTU in our field experiment, showing college
education as part of the explanation degrades the quality of decision-making.

Bare communication of representations, therefore, is not sufficient. Such com-
munication is oddly solipsistic in that each representation is committed to its
own epistemic standpoint. What should drive human-algorithm interaction is not
the mere fact of epistemic conflict but its whys, just as human beings do not just
insist on their differences but act to understand and bridge them. A more exten-
sive communicative rationality is needed to enable actions that would improve
the quality of decision-making.

We believe there are four desiderata for such communicative rationality.
The first desideratum is understanding. The human should understand the
algorithm’s epistemic standpoint. In our empirical context, this means being
imparted information about model training as well as possible reasons for cer-
tain representations (e.g. why college education is associated with higher risk
of long-term unemployment). The second desideratum is reciprocity. Human-AI
interaction tends to be unidirectional. Increasing the algorithm’s understanding
of the human’s epistemic standpoint and prior beliefs can improve communica-
tion. The third desideratum is negotiability. Reciprocal understanding facilitates
negotiation where arguments can be developed, evidences arrayed, biases iden-
tified, and confidences gauged. The last desideratum is a shared reality. In our
empirical context, the counselors do not receive feedback on the accuracy of their
judgment. Convergence to a shared reality is possible if the counselors are made
aware of where each of the two parties has erred.

A Empirical Setting

(See Table 4).

Table 4. Treatment assignment to job centers

job center pre-pilot pilot treatment

registrations appointments/mo. registrations appointments/mo.

1 11958 213 13139 169 0

2 9406 191 10263 160 1

3 3396 99 3743 72 0

4 5717 110 6022 88 1

5 3889 78 4379 69 0

6 7016 135 7336 100 1



194 C. Wan et al.

B User Interface

(See Figs. 1 and 2)

Fig. 1. User Interface for the Control Group. In the “Modelo Atual” panel the risk score
and the risk assessment are shown. In the “Justificação da Segemntação Atribúıda”
panel the counselor has to select her own risk assessment on the top and her confidence
level on the right.
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Fig. 2. User Interface for the Treatment Group. SHAP are shown in the “Principais
Factores” panel with their respective effect on the risk of LTU.
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Abstract. Regulatory bodies worldwide are intensifying their efforts
to ensure transparency in influencer marketing on social media through
instruments like the Unfair Commercial Practices Directive (UCPD) in
the European Union, or Section 5 of the Federal Trade Commission Act.
Yet enforcing these obligations has proven to be highly problematic due
to the sheer scale of the influencer market. The task of automatically
detecting sponsored content aims to enable the monitoring and enforce-
ment of such regulations at scale. Current research in this field primarily
frames this problem as a machine learning task, focusing on develop-
ing models that achieve high classification performance in detecting ads.
These machine learning tasks rely on human data annotation to pro-
vide ground truth information. However, agreement between annotators
is often low, leading to inconsistent labels that hinder the reliability of
models. To improve annotation accuracy and, thus, the detection of spon-
sored content, we propose using chatGPT to augment the annotation
process with phrases identified as relevant features and brief explana-
tions. Our experiments show that this approach consistently improves
inter-annotator agreement and annotation accuracy. Additionally, our
survey of user experience in the annotation task indicates that the expla-
nations improve the annotators’ confidence and streamline the process.
Our proposed methods can ultimately lead to more transparency and
alignment with regulatory requirements in sponsored content detection.

Keywords: sponsored content detection · human-AI collaboration ·
legal compliance · social media

1 Introduction

The rise of influencers, content creators monetising online content through
native advertising, has drastically changed the landscape of advertising on social
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media [8,13]. This shift has increased concern about hidden advertising practices
that might harm social media users. For decades, advertising rules have been
applied to legacy media in such a way as to separate commercial communica-
tion from other types of content. The primary rationale behind rules relating
to mandated disclosures has been that hidden advertising leads to consumer
deception. Despite the increasing legal certainty that native advertising, such as
influencer marketing, must be clearly disclosed, monitoring and enforcing com-
pliance remains a significant challenge [25].

The task of automatically detecting sponsored content aims to enable the
monitoring and enforcement of such regulations at scale. For instance, in the
United Kingdom, the Competition and Markets Authority is one of the enforce-
ment agencies tasked with monitoring influencer disclosures on social media,
which is done using some automated techniques developed by their internal data
unit1. In published scholarship, most existing methods frame the problem as a
machine learning task, focusing on developing models with high classification
performance. The success of these models depends on the quality and consis-
tency of human-annotated data, which often suffer from low inter-annotator
agreement, compromising the reliability and performance of the models [9,27].
Moreover, fully-automated approaches are insufficient for regulatory compliance,
where human decision-makers are ultimately responsible for imposing fines or
pursuing further investigations.

To bridge this gap, we propose a novel annotation framework that augments
the annotation process with AI-generated explanations, which, to our knowl-
edge, is the first attempt in this domain. These explanations, presented as text
and tokens or phrases identified as relevant features, aim to improve annota-
tion accuracy and inter-annotator agreement. Our experiments show that our
proposed framework consistently increases agreement metrics and annotation
accuracy, thus leading to higher data quality and more reliable and accurate
models for detecting sponsored content. Critically, our work tackles the need for
explainability in AI tools used for regulatory compliance, ensuring that human
decision-makers can better understand and trust the outputs of these models.
This is particularly important for market surveillance activities, which have not
yet caught up with the transparency and accountability issues at the core of
discussions around individual surveillance [19].

2 Related Work

Sponsored content detection has primarily been studied as a text classification
problem. Works in this field generally train models in a semi-supervised setting,
using posts disclosed as ads with specific hashtags as weak labels. Generally,
there is a lack of focus on evaluating model performance with labelled data. Most
works collect their own datasets and do not describe whether (and how) data is
annotated. Since social media platforms typically do not allow data sharing, there
are no standardised datasets for evaluating the task; thus, comparing results is
1 https://www.gov.uk/cma-cases/social-media-endorsements.
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challenging. Furthermore, the absence of labelled data for evaluation affects the
reliability of results, as models are often not tested on undisclosed ads.

From a technical perspective, previous studies have employed traditional
machine learning models with basic text features [7,29], neural networks with
text embeddings [32], and multimodal deep learning architectures combining
text, image, and network features [16,17]. In this paper we experiment with some
of these models in addition to chatGPT and GPT-4 for classification. Although
peer-reviewed research is limited due to chatGPT’s recent release, some technical
reports have found chatGPT to achieve state-of-the-art performance in several
text classification tasks [12,23,30].

Interdisciplinary research combining computational methods with fields such
as communication and media studies and law has focused on identifying influ-
encers, describing their characteristics, and mapping the prevalence of their dis-
closures [2,4,21]. In the context of using explanations to improve data labelling or
decision-making, research has explored AI-human collaboration and investigated
the optimal integration of explanations for human interaction [6,18,22,28]. To
the best of our knowledge, our paper is the first to propose using AI-generated
explanations to improve the detection of sponsored content, bridging the gap
between explainable AI and regulatory compliance in the context of sponsored
content on social media.

3 Experimental Setup

This section describes the dataset we use, how we selected the model for spon-
sored content detection, generated explanations to augment the annotation pro-
cess, and designed the annotation task and the user-experience survey.

3.1 Data Collection

We collected and curated our own dataset of Instagram posts for this study. We
manually selected 100 influencers based in the United States using the influencer
discovery platform Heepsy2. We selected 50 micro-influencers (between 100k
and 600k followers) and 50 mega-influencers (over 600k followers). Then, we
collected all available data and metadata from all posts for each account using
CrowdTangle3, the Meta platform that provides access to social media data for
(among others) academic purposes. Our dataset includes 294.6k posts, 66.1%
from mega-influencers and 33.9% from micro-influencers. CrowdTangle’s Terms
of Service do not allow (re)sharing datasets that include user-generated content;
thus, we cannot share the full dataset. However, the list of the ids of accounts
and posts is publicly available on https://github.com/thalesbertaglia/chatgpt-
explanations-sponsored-content/

2 https://heepsy.com.
3 https://www.crowdtangle.com/.
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3.2 Detecting Sponsored Content

In the first step of our experimental setup, we aim to select the most suitable
sponsored content classifier for generating explanations. We evaluate three pre-
viously proposed models: (1) a logistic regression classifier with term frequency
inverse-document frequency (TF-IDF) features, analogous to the approach used
by [7,29], (2) a pre-trained BERT model fine-tuned for our task, comparable
to [17,32], and (3) OpenAI’s chatGPT (GPT-3.5-turbo as of March 2022), which
achieves state-of-the-art results in various text classification tasks [12,23]. We
generate GPT predictions using OpenAI’s API.

To evaluate the models’ performance, we select a sample from our original
dataset and split the data into training and test sets by year, using 2022 for
testing and all prior posts for training. This division simulates a real-world sce-
nario where a model is deployed and used to classify unseen data for regulatory
compliance. By ensuring no temporal overlap between the sets, we prevent the
model from learning features correlated with a specific period. Given the high
imbalance in the data (only 1.72% of posts are disclosed as sponsored), we apply
the random undersampling approach proposed by Zarei et al. (2020) [32] to bal-
ance the data. We include all disclosed posts (n) and randomly sample (2 ∗ n)
posts without disclosures as negative examples. We allocate 90% of the balanced
data before 2022 to training and the remaining 10% to validation. We use all
data in 2022 as the test set.

Additionally, we labelled a sample of the test set to evaluate the model’s
performance in detecting undisclosed ads. Four annotators labelled 1283 posts
in total, with a sample of 50 posts labelled by all annotators for calculating
agreement metrics. The inter-annotator agreement was 52% in absolute agree-
ment and 53.37 in α, indicating moderate agreement. 654 posts were labelled
as sponsored (50.97%) and 629 as non-sponsored (49.03%). 91.59% of the spon-
sored posts did not have disclosures – i.e., they were identified as undisclosed
ads.

We employ a semi-supervised approach to train the models, treating disclosed
sponsored posts as positive labels for the sponsored class. We consider #ad,
#advertisement, #spons, and #sponsored as ad disclosures. We then remove
disclosures from the posts to prevent models from learning a direct mapping
between disclosure and sponsorship. We train the logistic regression model using
TF-IDF features extracted from word-level n-grams from the captions (uni-
grams, bigrams, and trigrams). For the BERT-based model, we use the bert-
base-multilingual-uncased pre-trained model weights from HuggingFace [31]. We
fine-tuned the BERT-based model for three epochs using the default hyperpa-
rameters (specified in Devlin et al. (2019) [5]).

We apply various prompt-engineering techniques to enhance GPT’s predic-
tions. As we use the same methodology for generating explanations, we provide
a detailed description in the following subsection. We evaluate all models using
F1 for the positive and negative classes, Macro F1 (the simple average of both
classes) and Accuracy in detecting undisclosed ads – a critical metric for deter-
mining the models’ effectiveness in detecting sponsored posts without explicit
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disclosures, which is ultimately our goal. Table 1 presents the classification met-
rics for the three models, calculated based on the labelled test set.

Table 1. Performance of the different models on the labelled test set. Acc represents
the models’ accuracy in detecting undisclosed ads.

Model Pos F1 Neg F1 Macro F1 Acc

Log Reg 45.33 66.50 55.92 28.71

BERT 29.30 68.84 49.07 10.85

GPT-3.5 76.09 63.93 70.01 88.98

GPT-3.5 outperforms the other models in Macro F1 and accuracy in detect-
ing undisclosed ads. Logistic regression (Log Reg) and BERT achieve signifi-
cantly low accuracy, suggesting their inability to identify undisclosed sponsored
posts effectively. The difference in Macro F1 is smaller, highlighting that relying
solely on this metric for evaluating models may not accurately reflect their actual
performance. Therefore, having high-quality labelled data, including undisclosed
ads, is crucial for proper evaluation.

BERT’s inferior performance compared to Log Reg could be due to a few
factors. Being pre-trained on longer texts, BERT might struggle to extract suf-
ficient contextual information from short Instagram captions. In addition, Log
Reg, when combined with TF-IDF features, effectively captures word-level n-
grams that may be more effective at identifying sponsored content patterns.
In contrast, BERT uses subword tokenisation, which could result in less effi-
cient pattern recognition. Given GPT-3.5’s superior performance, particularly
in detecting undisclosed sponsored posts, we selected it as the model for gener-
ating explanations to augment the annotation task.

3.3 Generating Explanations with GPT

We investigated various prompts for all publicly accessible models from the GPT-
3 series and GPT-4. We observed that even the smallest GPT-3 model, Ada
(text-ada-001 ), performed well in sponsored content detection and identifying
relevant words. Nevertheless, we noted significant performance improvements
for larger models especially when employing chain-of-thought reasoning [30] and
generating explanations – particularly for more ambiguous posts. Consequently,
we focused on GPT-3.5-turbo (the default ChatGPT version as of March 2022)
and GPT-4.

We found a conservative bias for both models, with a strong preference for
predicting the not sponsored class or other negative labels over positive ones.
This phenomenon appeared consistent across all Davinci- and Curie-based mod-
els, with the inverse being true for smaller Babbage and Ada-based models. We
employed several prompt engineering techniques to mitigate this bias and cali-
brate the labels. First, we instructed the model to highlight relevant words and
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generate explanations before classifying a post. This chain-of-thought prompting
approach, inspired by [30], significantly reduced bias and improved prediction
interpretability. Second, we used few-shot learning to refine explanation cali-
bration, address known failure modes, and further alleviate bias [3]. Third, we
experimented with different label phrasings, such as “Likely (not) sponsored”,
to enhance the model’s ability to make less confident predictions. Finally, we
directly instructed the model to favour positive labels in cases of uncertainty,
aiming to identify a higher proportion of undisclosed ads. The final prompt is
available on the project’s GitHub repository4.

Upon qualitative evaluation, we found that GPT-4 outperformed GPT-3.5-
turbo in explanation quality and classification accuracy, especially for ambiguous
posts. However, for this study, we chose GPT-3.5-turbo (hereafter referred to as
“GPT”) due to its advantages in speed, cost, and public accessibility. Following
this approach, we obtained the most important words in a post and generated
explanations for why a post may or may not be sponsored to assist annotators.
The following is an illustrative example of such an explanation; we omitted the
actual brand name to ensure the post’s anonymity:

Key indicators: ’@BRAND’, ’LTK’.
The post promotes a fashion brand and features a discount code,
indicating a partnership. Additionally, it features a @shop.LTK
link, a platform for paid partnerships.

3.4 Annotation Task

We conducted a user study to evaluate how explanations can help detect spon-
sored content. The study consisted of an annotation task in which participants
labelled 200 Instagram posts from our dataset as Sponsored or Non-Sponsored.
Our objective with the task was two-fold: i) Analyse explanations as a tool for
improving annotation as a resource for ML tasks – i.e., to measure their impact
on data quality, which, in turn, allows for the development of better models and
evaluation methods. ii) Simulate regulatory compliance with sponsored content
disclosure regulations – i.e., how a decision-maker would flag posts as sponsored.

We framed the annotation as a text classification task in which annotators
had to determine whether an Instagram post was sponsored based on its caption.
Generally, we followed the data annotation pipeline proposed by Hovy and Lavid
(2010) [15]. We instructed annotators to consider a post as sponsored if the influ-
encer who posted it was, directly or indirectly, promoting products or services
for which they received any form of benefits in return. These benefits included
direct financial compensation and non-monetary benefits, such as free products
or services. Self-promotion was an exception: we considered posts promoting
the influencer’s content (e.g. YouTube channel or podcast) non-sponsored. How-
ever, posts advertising merchandise with their brand or directly selling other
goods still fall under sponsored content. We explained these guidelines to each

4 https://github.com/thalesbertaglia/chatgpt-explanations-sponsored-content/.
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annotator and provided examples of sponsored and non-sponsored posts to help
reinforce the definitions.

Eleven volunteer annotators with varying levels of expertise participated in
the study. All were between 20 and 30 years old, active social media users,
and familiar with influencer marketing practices on Instagram. Additionally, all
annotators had or were working towards a high-education degree in a European
university. Demographically, the participants came from various countries. We
did not specifically collect country-level information, but at a continent level,
participants were from Asia, Europe, and South America. While all participants
were fluent in English, none were native speakers.

We split annotators into three groups according to their level of expertise in
annotating sponsored content on social media. The first group, with three peo-
ple, consisted of participants with no prior experience in data annotation. The
second group included four participants who previously participated in annota-
tion tasks but had no formal training. The third group, consisting of four legal
experts, had specific legal expertise in social media advertisement regulations
and had participated in annotations before. We further split the subgroups of
annotators into two groups regarding annotation setup: one without explana-
tions, in which annotators only had access to the captions, and one augmented
with the generated explanations. One group of four annotators labelled the posts
in both setups: with and without explanations. To summarise, our study includes
three distinctive groups: novices with no prior annotation experience, intermedi-
ate annotators with previous experience but no formal training, and legal experts
knowledgeable in social media regulations.

To select the 200 Instagram posts for our user study, we turned to a sample
previously labelled by law students in another annotation task. Although the
labels and definitions used in that task differed from ours, they provided a way
to identify which posts were undisclosed ads, allowing us to include them in
our study. We selected posts published between 2017 and 2020 by 66 different
influencers based in the United States, with 62% being mega-influencers and 38%
being micro-influencers. We also included 15% of posts with clear ad disclosures
(such as the hashtag #ad) as an attention check to ensure annotators noticed
the disclosures. Based on the labels from the previous annotations, we estimate
that 65% (130) of the posts were likely sponsored, and 50% (100) were likely
undisclosed ads.

We set up the study using the open-source annotation platform Doccano5.
Each participant had a unique project, and although all annotators labelled the
same 200 posts, the labels were not shared, and each participant only had access
to their annotations. The annotation interface displayed the caption of the post
and the two possible labels (Sponsored and Non-Sponsored) as buttons. After the
post caption, we added the generated explanations with an explicit delimitation.

Accurately measuring inter-annotator agreement is crucial in data annotation
tasks, as it allows us to estimate the annotated data’s quality and the decision-
making process’s reliability. To assess inter-annotator agreement in our study,

5 https://github.com/doccano/doccano.
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we used three main metrics: Krippendorff’s Alpha (α), absolute agreement, and
accuracy in detecting disclosed posts. Krippendorff’s Alpha measures the degree
of agreement among annotators, considering the level of agreement expected
by chance alone [14,20]. The absolute agreement indicates the proportion of
annotations where all annotators agreed on the same label. We also used accuracy
in detecting disclosed posts as an attention check mechanism, as it measures
annotators’ ability to correctly identify posts with clear disclosures as sponsored.
This metric is crucial because disclosures may not always be easily visible in
posts [21]. We also analysed additional metrics in some experiments, which we
will introduce when describing the specific experiments.

3.5 User-Experience Survey

After the annotation, we conducted a user-experience survey to gather feed-
back from annotators on their experience using the explanations to assist with
their decision-making process. The survey consisted of seven questions, with five
closed-ended and two open-ended questions. We describe all questions and the
rating scale used below:

– “On a scale of 1 (not helpful) to 5 (extremely helpful), how helpful were the
explanations in identifying undisclosed advertisement partnerships?”

– “How accurate, from 1 (extremely inaccurate) to 5 (extremely accurate), did
you think the explanations were?”

– “How often, from 1 (0% of the time) to 5 (100% of the time), did you agree
with the AI explanations?”

– “Did the AI explanations help you feel more confident in your decision-making
(Yes/No)?”

– “What aspects of the AI explanations were most helpful for your decision-
making process?” This was a multiple-choice question with five options: Rea-
soning, Identifying specific words or phrases, Clear examples, Other (specify),
and None.

– “In what ways did the AI explanations improve your understanding of what
constitutes an undisclosed advertisement partnership?” Open-ended.

– “How could the AI explanations be further improved to better support your
decision-making process? Did you find anything noticeable you want us to
know?” Open-ended.

The participants who received annotations augmented with explanations all
completed the questionnaires, and we ensured their anonymity by not collecting
any identifiable information. Additionally, we made it clear to the annotators
that their responses would be entirely anonymous.

4 Experimental Results

This section presents the main findings from the annotation task and user-
experience survey. Table 2 shows the metrics comparing the agreement between
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annotators who labelled the posts with and without explanations. Seven partic-
ipants were in the No Explanations group (one with no experience, four with
some experience, and two legal experts). The With Explanations group had
eight people (three with no experience, three with some experience, and two legal
experts) – one participant from the no experience group and three from some
experience labelled in both settings. In addition to the metrics presented in Sub-
sect. 3.4, we also evaluate the proportion of posts with at most one disagreement
(1-Disag) and show the percentage of posts labelled as sponsored (Sponsored).
The last two rows present the absolute and relative (normalised) differences in
metrics between the groups. The relative differences in metrics indicate the pro-
portional change (in percentage). Positive differences represent an increase in
agreement.

Table 2. Agreement metrics comparing annotations with and without explanations.

α Abs 1-Disag Acc Sponsored

No Explanations 54.98 46.50 69.50 90.62 54.64

With Explanations 63.58 54.50 75.00 93.75 59.81

Absolute Diff 8.61 8.00 5.50 3.12 5.17

Relative Diff 15.65 17.20 7.91 3.45 9.46

Using explanations to enhance the annotations resulted in a consistent
improvement across all inter-annotator agreement metrics. Specifically, there was
a 15.65% increase in α and a 17.20% increase in absolute agreement. However, the
final values were still relatively low, typical of annotations in complex decision-
making tasks [9,10,27]. Accuracy in detecting disclosed posts also improved by
3.45%, but the final result was not perfect, suggesting that annotators still fail to
identify all disclosure hashtags, even with explanations highlighting them. Addi-
tionally, the proportion of posts labelled as sponsored increased by 9.46%, indi-
cating that explanations led annotators to identify more as sponsored. We also
analyse the agreement between all pairs of annotators to measure the variation
in agreement and ensure the reliability of the annotations. Table 3 summarises
the pairwise agreement metrics. The Min and Max columns represent the lowest
and highest agreement metric values among the annotator pairs, respectively,
and the ± column denotes the standard deviation.

The pairwise metrics reveal considerable variation in the agreement between
annotator pairs. For the No Explanation group, there was a substantial differ-
ence of 46.23 in α between the pair with the lowest and highest agreement, with
a standard deviation of 10.83. This difference indicates that some annotators
are significantly less reliable than others. However, the group With Explana-
tions showed a consistent improvement, with less variation between pairs. The
standard deviation decreased by 14.98% for absolute agreement and 7.62% for
α, indicating more reliable annotations. Even the lowest-agreement pair showed
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Table 3. Pairwise agreement comparing annotations with and without explanations.

Min Abs Max Abs ± Min α Max α ±
No Explanations 66.00 88.50 5.28 30.81 77.04 10.83

With Explanations 73.00 90.00 4.49 43.13 79.53 10.00

Absolute Diff 7.00 1.50 −0.79 12.31 2.48 −0.82

Relative Diff 10.61 1.69 −14.98 39.96 3.22 −7.62

significant improvement, with an increase of 10.61% for absolute agreement and
39.96% for α. These results suggest that using explanations to augment anno-
tations led to a higher inter-annotator agreement overall, improved consistency
between pairs, and even increased agreement among the least reliable annota-
tors. To better understand the impact of augmenting the annotation with expla-
nations, we also investigated how it affects different subgroups of annotators.
We divided the subgroups into three categories: legal experts, non-experts, and
annotators who labelled in both settings (with and without explanations) – this
category does not include legal experts. Table 4 presents the agreement metrics
for each category in both subgroups of annotators, as well as the relative differ-
ence between them. # indicates the number of participants within the subgroup.
For clarity, we did not report the proportion of annotations with at most one
disagreement because some subgroups contain a single pair of annotators.

Table 4. Agreement metrics for different subgroups of annotators, aggregated accord-
ing to their expertise level.

α Abs Acc Sponsored #

Legal Experts No Explanations 52.11 76.50 96.88 57.25 2

Legal Experts With Explanations 61.94 83.00 100.00 66.50 2

Relative Diff 18.86 8.50 3.23 16.16 –

Non-Experts No Explanations 62.04 62.50 93.75 53.60 5

Non-Experts With Explanations 64.89 59.50 93.75 57.58 6

Relative Diff 4.59 −4.80 0.00 7.43 –

Labelled Both No Explanations 66.74 70.00 96.88 53.12 4

Labelled Both With Explanations 73.15 74.50 100.00 54.50 4

Relative Diff 9.60 6.43 3.23 2.59 –

The annotations augmented with explanations showed consistent improve-
ments in all subgroups, except for absolute agreement within the non-expert
group. Legal experts had the most significant improvement in α (18.86%). Addi-
tionally, the proportion of posts labelled as sponsored increased significantly
(16.16%), with the subgroup Legal Experts With Explanations having the high-
est value (66.5%). This subgroup and Labelled Both With Explanations achieved
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100% accuracy in detecting disclosed sponsored posts. Labelled Both also had
the highest α in both settings. It is important to note that higher agreement
does not necessarily imply higher accuracy in correctly identifying sponsored
posts. The metrics measure how much a subgroup of annotators agree on the
definitions they are applying to label; they could be wrongly applying a con-
sistent judgement. Therefore, we cannot reliably conclude which group had the
best performance. Moreover, the high agreement within the subgroup Labelled
Both could be influenced by the annotators labelling the same posts twice in
both settings. Although we randomly shuffled the posts to reduce the likeli-
hood of memorisation, repetition could still affect agreement. Nevertheless, the
high proportion of sponsored content and absolute agreement for the annotation
within Legal Experts With Explanations indicate that experts agree that there
are more sponsored posts than non-experts tend to identify.

While explanations can improve the quality of annotations, they may also
introduce bias by influencing annotators to rely on specific cues presented
in the explanation; annotator bias is a common challenge in text annotation
tasks [1,11]. To investigate potential bias introduced by explanations in our
study, we examine whether annotators tended to use the same label predicted
by GPT. Although we did not explicitly provide GPT’s prediction as part of the
explanation, the model’s reasoning and highlighted words and phrases might
imply the predicted label, leading to over-reliance on the model and decreas-
ing the accuracy of annotations. Thus, it is essential to analyse the impact of
GPT’s predictions on annotator behaviour to ensure the reliability and fairness
of the annotations. Specifically, we calculate two metrics – the distribution of
posts labelled as sponsored and the majority agreement with GPT predictions
– to compare the agreement between annotators who received explanations and
those who did not. We use majority agreement instead of absolute to reduce the
impact of low-agreement pairs and fairly compare all groups. If the agreement
with GPT predictions increased in the group with explanations, it could indicate
that annotators followed the model’s predictions. We hypothesise that, for the
Labelled Both group, an increase in agreement with GPT predictions proportion-
ally more than the percentage of sponsored posts would suggest that annotators
changed their judgements based on the model’s cues. Table 5 summarises the
results of this analysis.

The majority agreement with GPT predictions is consistently high across
all subgroups, ranging from 77.5% to 92%. All subgroups that received expla-
nations had an increase in agreement with GPT predictions compared to the
corresponding No Explanations subgroup. Specifically, except for Labelled Both,
all subgroups showed proportional increases in both metrics, indicating no clear
bias for GPT predictions. However, the Labelled Both subgroup demonstrated a
significant increase in agreement with GPT predictions compared to the propor-
tion of sponsored posts, suggesting that the annotators changed their decision-
making process after having access to explanations. While this result indicates
a bias towards the model’s predictions, more experiments are needed to deter-
mine its impact on data quality. Given the generally high accuracy of GPT
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Table 5. Proportion of posts labelled as sponsored and majority agreement with GPT
predictions across subgroups of annotators.

Sponsored Agreement

No Explanations 54.64 85.50

With Explanations 59.81 90.50

Relative Diff 9.46 5.85

Legal Experts No Explanations 57.25 77.50

Legal Experts With Explanations 66.50 92.00

Relative Diff 16.16 18.71

Non-Experts No Explanations 53.60 81.00

Non-Experts With Explanations 57.58 88.50

Relative Diff 7.43 9.26

Labelled Both No Explanations 53.12 78.50

Labelled Both With Explanations 54.50 87.00

Relative Diff 2.59 10.83

demonstrated in our classification experiments, relying on them could improve
annotation accuracy.

On the other hand, the difference in agreement with the predictions between
the Legal Experts subgroups adds uncertainty about the model’s accuracy. The
subgroup of legal experts with no explanations had the lowest agreement with
GPT predictions; in contrast, those with explanations had the highest. The
groups include different annotators, and Legal Experts No Explanations had low
inter-annotator agreement; therefore, we cannot effectively measure the model’s
accuracy. Although we found evidence of explanations biasing the annotators,
further research is needed to investigate how this result impacts data quality.

Finally, we conducted a user-experience survey to gather feedback from anno-
tators on their experience using the explanations to assist with their annotation
process. All the responses are available online on https://tinyurl.com/sponsored-
annotation-survey. We ensured that the document preserves the anonymity of
all parties involved in the study.

The survey results showed that 87.5% of annotators felt more confident in
their decision-making with the help of explanations. Additionally, 62.5% rated
the explanations highly helpful and accurate (4 out of 5). Only one participant
rated them as unhelpful (2 out of 5). The average estimate of agreement with
the explanations was close to the agreement with GPT predictions, with 62.5%
of annotators estimating that they agreed with the explanations between 80%
and 100% of the time. Notably, all annotators selected the words and phrases
highlighted by the model explanations as a helpful feature, while only 37.5%
selected the reasoning behind the predictions. This result indicates a preference
for precise explanations. Comparable explanations could be generated from any
classifier using local-explainability methods such as LIME [24]. This shows that

https://tinyurl.com/sponsored-annotation-survey
https://tinyurl.com/sponsored-annotation-survey
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the methodology proposed and evaluated in our study does not rely on GPT’s
capability of generating longer text-based explanations and could be reproduced
with simpler models.

The open-ended questions revealed two clear trends among participants.
First, most participants found the highlighted words and phrases helpful in iden-
tifying brands and context-relevant hashtags in the posts. Second, participants
suggested that adding the likelihood of a post being sponsored as a feature would
be a useful improvement to the explanations. Overall, these results indicate that
participants had a positive experience with the explanations, found them helpful
and accurate, and felt they improved their decision-making.

5 Summary

Our experiments show that inter-annotator agreement metrics consistently
improve when augmenting the annotation process with explanations. We
observed a 15.65% increase in α and a 17.20% increase in absolute agreement
among the general population of annotators. The accuracy in detecting dis-
closed sponsored posts improved by 3.45%, and the proportion of posts labelled
as sponsored increased by 9.46%. These findings indicate that explanations not
only help annotators identify more sponsored content but also enhance the reli-
ability of annotations and reduce variation between annotator pairs. Our user-
experience survey shows that most annotators found the explanations helpful
and accurate, increasing their trust in decision-making. Therefore, our proposed
annotation framework could lead to higher-quality data labelling and improve
decision-makers’ experience in regulatory compliance contexts. We made theids
of posts in our dataset, along with all the labels annotated by annotators and
the GPT predictions, publicly available6, offering a valuable resource that could
benefit research in the field.

Nevertheless, our study has some limitations. One potential issue is the bias
introduced by explanations, as annotators may rely on specific cues presented
in the explanation. While we found no clear bias for most subgroups, we note
that the group that labelled posts in both settings showed a significant increase
in agreement with GPT predictions compared to the proportion of sponsored
posts. Another area for improvement is the small sample size of legal experts
and the variation in agreement metrics among different subgroups, which may
impact the generalisability of our results.

Future research should investigate the impact of explanations on annotator
bias and data quality and explore open-source models with greater transparency,
such as LLaMA [26], instead of OpenAI’s GPT – which is a privately-owned
model with limited information regarding its training data. Moreover, conducting
experiments with larger and more diverse samples of annotators, including more
legal experts, could shed light on the role of expertise in the annotation process.
Expanding the study to other annotation tasks and domains would also provide

6 https://github.com/thalesbertaglia/chatgpt-explanations-sponsored-content/.

https://github.com/thalesbertaglia/chatgpt-explanations-sponsored-content/
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insights into the generalisability of our findings, potentially benefiting a broader
range of applications.

Despite these limitations, it is important to consider that digital enforcement
and market monitoring by authorities such as consumer agencies will exponen-
tially grow in the coming years. Thus, monitoring techniques must consider
transparency and explainability to avoid accuracy issues when applying legal
sanctions.
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2. Arriagada, A., Ibáñez, F.: “You need at least one picture daily, if not, you’re dead”:
content creators and platform evolution in the social media ecology. Soc. Media +
Soc. 6(3), 2056305120944624 (2020). https://doi.org/10.1177/2056305120944624

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., et al.: Language models are few-
shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp.
1877–1901 (2020)

4. Christin, A., Lewis, R.: The drama of metrics: status, spectacle, and resistance
among YouTube drama creators. Soc. Media + Soc. 7(1), 2056305121999660
(2021). https://doi.org/10.1177/2056305121999660

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 4171–4186. Association for Computational Linguistics (2019).
https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423

6. van Diggelen, J., et al.: Pluggable social artificial intelligence for enabling human-
agent teaming. arXiv preprint arXiv:1909.04492 (2019)

7. Ershov, D., Mitchell, M.: The effects of influencer advertising disclosure regula-
tions: evidence from instagram. In: Proceedings of the 21st ACM Conference on
Economics and Computation, EC 2020, pp. 73–74. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3391403.3399477

8. Frithjof, M., et al.: The impact of influencers on advertising and consumer pro-
tection in the single market (2022). https://www.europarl.europa.eu/RegData/
etudes/STUD/2022/703350/IPOL STU(2022)703350 EN.pdf. Accessed 13 Oct
2022

9. Geiger, R.S., et al.: “Garbage in, garbage out” revisited: what do machine
learning application papers report about human-labeled training data? CoRR
abs/2107.02278 (2021). https://arxiv.org/abs/2107.02278

10. Geiger, R.S., et al.: Garbage in, garbage out? Do machine learning application
papers in social computing report where human-labeled training data comes from?
In: Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-
parency, pp. 325–336 (2020)

11. Geva, M., Goldberg, Y., Berant, J.: Are we modeling the task or the annotator? An
investigation of annotator bias in natural language understanding datasets (2019)

https://doi.org/10.18653/v1/2020.alw-1.21
https://aclanthology.org/2020.alw-1.21
https://aclanthology.org/2020.alw-1.21
https://doi.org/10.1177/2056305120944624
https://doi.org/10.1177/2056305121999660
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1909.04492
https://doi.org/10.1145/3391403.3399477
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/703350/IPOL_STU(2022)703350_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/703350/IPOL_STU(2022)703350_EN.pdf
https://arxiv.org/abs/2107.02278


212 T. Bertaglia et al.

12. Gilardi, F., Alizadeh, M., Kubli, M.: ChatGPT outperforms crowd-workers for
text-annotation tasks (2023)

13. Goanta, C., Ranchordás, S.: The Regulation of Social Media Influencers. Edward
Elgar Publishing (2020)

14. Hayes, A.F., Krippendorff, K.: Answering the call for a standard reliability measure
for coding data. Commun. Methods Measures 1(1), 77–89 (2007)

15. Hovy, E., Lavid, J.: Towards a ‘science’ of corpus annotation: a new methodological
challenge for corpus linguistics. Int. J. Transl. 22(1), 13–36 (2010)

16. Kim, S., Jiang, J.Y., Nakada, M., Han, J., Wang, W.: Multimodal post attentive
profiling for influencer marketing. In: Proceedings of the Web Conference 2020,
WWW 2020, pp. 2878–2884. Association for Computing Machinery, New York
(2020). https://doi.org/10.1145/3366423.3380052

17. Kim, S., Jiang, J.Y., Wang, W.: Discovering undisclosed paid partnership on social
media via aspect-attentive sponsored post learning. In: Proceedings of the 14th
ACM International Conference on Web Search and Data Mining, WSDM 2021,
pp. 319–327. Association for Computing Machinery, New York (2021). https://
doi.org/10.1145/3437963.3441803

18. Kim, S.S.Y., Watkins, E.A., Russakovsky, O., Fong, R., Monroy-Hernández, A.:
“Help me help the AI”: understanding how explainability can support human-AI
interaction. In: Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. ACM (2023). https://doi.org/10.1145/3544548.3581001

19. Kossow, N., Windwehr, S., Jenkins, M.: Algorithmic transparency and account-
ability. JSTOR (2021)

20. Krippendorff, K.: Computing Krippendorff’s alpha-reliability. Annenberg School
for Communication Departmental Papers, Philadelphia (2011)

21. Mathur, A., Narayanan, A., Chetty, M.: Endorsements on social media: an empir-
ical study of affiliate marketing disclosures on youtube and pinterest. Proc. ACM
Hum.-Comput. Interact. 2(CSCW), 1–26 (2018). https://doi.org/10.1145/3274388

22. Neerincx, M.A., van der Waa, J., Kaptein, F., van Diggelen, J.: Using perceptual
and cognitive explanations for enhanced human-agent team performance. In: Har-
ris, D. (ed.) EPCE 2018. LNCS (LNAI), vol. 10906, pp. 204–214. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91122-9 18

23. Pikuliak, M.: ChatGPT survey: performance on NLP datasets (2023). https://
www.opensamizdat.com/posts/chatgpt survey

24. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016, pp. 1135–1144 (2016)

25. Said, Z.K.: Mandated disclosure in literary hybrid speech. Wash. L. Rev. 88, 419
(2013)

26. Touvron, H., et al.: LLaMA: open and efficient foundation language models (2023)
27. Vidgen, B., Derczynski, L.: Directions in abusive language training data, a system-

atic review: garbage in, garbage out. PLoS ONE 15(12), e0243300 (2020)
28. van der Waa, J., van Diggelen, J., Cavalcante Siebert, L., Neerincx, M., Jonker, C.:

Allocation of moral decision-making in human-agent teams: a pattern approach.
In: Harris, D., Li, W.-C. (eds.) HCII 2020. LNCS (LNAI), vol. 12187, pp. 203–220.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49183-3 16

29. Waltenrath, A.: Empirical evidence on the impact of disclosed vs. undisclosed
advertising in context of influencer marketing on Instagram. In: ECIS 2021
Research Papers, p. 17 (2021)

https://doi.org/10.1145/3366423.3380052
https://doi.org/10.1145/3437963.3441803
https://doi.org/10.1145/3437963.3441803
https://doi.org/10.1145/3544548.3581001
https://doi.org/10.1145/3274388
https://doi.org/10.1007/978-3-319-91122-9_18
https://www.opensamizdat.com/posts/chatgpt_survey
https://www.opensamizdat.com/posts/chatgpt_survey
https://doi.org/10.1007/978-3-030-49183-3_16


Using Model Explanations to Improve Labelling of Sponsored Content 213

30. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language mod-
els (2023)

31. Wolf, T., Debut, L., Sanh, V., et al.: Transformers: state-of-the-art natural lan-
guage processing. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pp. 38–45. Association
for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-
demos.6. https://aclanthology.org/2020.emnlp-demos.6

32. Zarei, K., et al.: Characterising and detecting sponsored influencer posts on Insta-
gram. arXiv:2011.05757 (2020)

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
http://arxiv.org/abs/2011.05757


Human-Computer Interaction
and Explainability: Intersection

and Terminology

Arthur Picard1(B) , Yazan Mualla1(B) , Franck Gechter1,2 ,
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Abstract. Human-computer interaction (HCI) is generally considered
the broader domain encompassing the study of the relationships between
humans and types of technological artifacts or systems. Explainable AI
(xAI) is involved in HCI to have humans better understand comput-
ers or AI systems which fosters, as a consequence, better interaction.
The term “explainability” is sometimes used interchangeably with other
closely related terms such as interpretability or understandability. The
same can be said for the term “interaction”. It is a very broad way
to describe the relationship between humans and technologies, which is
why it is often replaced or completed by more precise terms like coop-
eration, collaboration, teaming, symbiosis, and integration. In the same
vein, the technologies are represented by several terms like computer,
machine, AI, agent, and robot. However, each of these terms (technolo-
gies and relationships) has its specificity and properties which need to
be clearly defined. Currently, the definitions of these various terms are
not well established in the literature, and their usage in various con-
texts is ambiguous. The goals of this paper are threefold: First, clarify
the terminology in the HCI domain representing the technologies and
their relationships with humans. A few concepts specific to xAI are also
clarified. Second, highlight the role that xAI plays or can play in the
HCI domain. Third, study the evolution and tendency of the usage of
explainability and interpretability with the HCI terminology throughout
the years and highlight the observations in the last three years.
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1 Introduction

Human-computer interaction (HCI) is a discipline that was established early in
the age of computers and has had to adapt and evolve, through many waves,
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together with the incredibly fast development of new technologies [6,23]. HCI
includes the design, evaluation, and implementation of interactive systems for
a wide range of tasks and applications. Since its inception, the discipline has
drawn from multiple fields, mainly computer science, but also psychology, design,
sociology, and more. It was never constrained to a specific area, and it is not
surprising to see its field of study incorporating more and more topics following
technological advancements in the computer industry [12].

Understanding the behavior of computers is crucial to guarantee smooth HCI
since it is not straightforward for humans to understand the computer’s state of
mind. In the same vein, recent works in the literature highlighted explainability
as one of the cornerstones for building understandable, trustworthy, responsible,
and acceptable artificial intelligence (AI) systems [11,30,44,45]. Consequently,
the field of explainable AI (xAI) gained momentum both in academia and indus-
try [2,21]. xAI in HCI refers to the ability of a computer system to provide
humans with clear and understandable explanations about their inner workings
and why certain decisions were made.

HCI is generally considered to be the broader domain that encompasses the
study of what type of relationship humans have with all types of technology,
including computers, machines, agents, robots, and systems. One of the main
issues that could be observed from the literature and technological works con-
cerns the terminology representing both these types of technology and their
relationships with humans. Indeed, the definitions of these terms are not well
established in the literature, and their usage in various contexts is ambiguous
and sometimes chaotic. Accordingly, before investigating the role that xAI plays
or could play in the HCI domain, the relationships between humans and tech-
nologies needs to be fully analyzed. The relationships considered in this paper
are between two parties: the first party is the human, and the second party is a
term of the set {computer, machine, AI, agent, robot}. The relationship between
these two parties could take several forms from the set {interaction, cooperation,
collaboration, team, symbiosis, integration}. The previous two sets of terms are
chosen based on our experience and knowledge.

The goals of this paper are threefold, organized into three main sections:
(i) provide and clarify the terminology of both the technologies and their rela-
tionships with the human and how they are subdivided inside the HCI domain
(Sect. 2). (ii) define common terms in xAI and investigate the role it plays or
could play in the HCI domain (Sect. 3). (iii) analyze and study the results from
research queries in Google Scholar to quantify the usages of terms (technolo-
gies and relationships) in the literature and better understand the evolution and
tendency of the usage of explainability and interpretability with these terms
throughout the years (Sect. 4). Finally, Sect. 5 discusses the limitations, and
Sect. 6 concludes the paper.

2 Relationships Between Humans and Technologies

The relationships considered in this paper are between two parties: The first
party is the human while the second is a term of the set {computer, machine,
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AI, agent, robot}. Throughout the paper, variable “Y” is used to refer to the sec-
ond party of the relationship. These relationships could take several forms from
the set {interaction, cooperation, collaboration, team, symbiosis, integration}.
Accordingly, the variable “X” is used to refer to these relationships.

2.1 Human-Y Interaction

This section focuses on the different terms representing the concepts used to
describe “what” humans interact with. The concept of “interaction”, represent-
ing the most general term for describing the mutual relationship between humans
and technologies [17], is used throughout this section since it encompasses all
the other and more detailed relationships. As such, the nature of the relation-
ship is fixed to “interaction” to focus on the concept “Y”, an element of the set
computer, machine, AI, agent, robot.

Computer and Machine. A computer is defined as: “an electronic device for
storing and processing data, typically in binary form, according to instructions
given to it in a variable program.” (Oxford Dictionary). While this definition is
precise, it seems somewhat limited when looking at the literature. In the HCI
domain, the term “computer” is not only used to refer to computational devices,
but also includes devices or even systems that rely on computational devices to
work [48]. Additionally, “computer” isn’t only used to represent physical objects,
but also the software that runs on them [10]. In other words, in HCI, “computer”
can be defined as such: anything that relies on computation through processing
units to function.

As highlighted in [12], computers have become part of almost every techno-
logical object, making the concepts of Human-computer interaction and Human-
Technology Interaction strongly overlap [12]. However, the term “Technology”
does not appear much, and the term “Computer” is generally used instead.

Another overlapping concept is Human-Machine Interaction. A machine is
defined as “an apparatus using mechanical power and having several parts, each
with a definite function and together performing a particular task” (Oxford Dic-
tionary). As this definition is broad, it encompasses most of the devices focused
on HCI. On top of that, the same idea of computers being part of almost all
technological artifacts can be applied to machines. Fewer and fewer machines do
not include a processing unit. According to the definition used here, software is
not considered a machine as it does not have a physical body and does not rely
on mechanical power. However, even software is sometimes included when using
the term “machine” [18].

“Computer” and “machine” are the two broader used terms when it comes
to Human-Y interaction, and as such, their meanings are somehow similar. The
difference in usage mainly comes from the origins of the terms. “computer” is
the most commonly used term as HCI was established as a discipline early on
in the early 1980s, and has multiple renowned conferences directly including
“HCI” or “Human-computer interaction” in their names. Overall, “machine” is
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more often found in domains closer to industry, robotics, and mechanical engi-
neering and only rarely includes software. Even then, it makes sense to include
“Human-machine interaction” as part of the overall “Human-computer interac-
tion” research [25].

AI, Agent, and Robot. Terms other than “computer” and “machine” often
used are “AI”, “robot”, and “agent”. The formulation “Human-AI interaction”
was not used for a long time (as shown in Sect. 4). However, it is starting to
appear more and more in recent years.

AI is considered a “source of much confusion both within the field and among
the public” [37]. Just like intelligence, the concept is both instinctively under-
stood by many and hard to formally define [51]. This vagueness even extends to
the legal and regulatory field, where it may be a source of problems [28]. In this
work, the following definition of AI is considered: a software or virtual entity
which can show behaviors that are usually believed to require intelligence.

A robot is defined as: “a machine capable of carrying out a complex series
of actions automatically, especially one programmable by a computer” (Oxford
Dictionary). The idea of “carrying out a complex series of actions automatically”
can be described as seemingly intelligent, which fits with our definition of AI.
As such, a robot is a machine that incorporates AI.

The term “agent” is often used to refer to a specific branch of AI and a
way to represent AI and robots. In this context, an agent can be defined as: an
autonomous entity with social skills to interact with other agents and can take
reactive or proactive actions [52]. This definition is especially vague in the usage
of the term “entity” which means that even humans can be modeled as human
agents. Following this logic, papers about “Agent-agent interaction” can include
“Human-agent interaction”. However, as the focus here is on the formulation
“Human-agent”, which shows that humans are excluded from the agent model
and focus on the relationship between humans and artificial agents, the definition
of an agent is limited to artificial entities.

In a way, the relationship between the terms “agent” and “robot” is similar to
the one between “computer” and “machine”, respectively, with a large overlap,
but the term “robot” focuses on a physical body while the term “agent” does
include virtual agents. It is worth mentioning here the Human-Agent-Robot-
Machine-Sensor (HARMS) mechanism [35,50] that connects parties over a net-
work by a peer-to-peer manner and uses particular message types such that all
parties are indistinguishable in terms of which type of party (e.g., robot, software
agent, or even human) sends a message [36].

2.2 Human-Computer X

As aforementioned, a computer is the most common way to refer to “what” the
human is interacting with and can be used to encompass the other concepts. As
such, in this section, the term “computer” is fixed representing the second party
of the relationship, to investigate the type of relationship “X” being part of the
set interaction, teaming, cooperation, collaboration, symbiosis, integration.
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Interaction. Since the 1960s, the idea of a human-computer interface, with its
attributes of friendliness, usefulness, transparency, etc., has attracted the inter-
est of researchers. Yet, a significant number of studies on human-automation
relationship failures have been developed by cognitive ergonomics, which focus
on what happens behind the interface [25,43]. Originally the term “interaction”
referred to the interface between humans and computers, for example, chatbots.
Nowadays, it refers to all types of human-computer relationships [17], and if
further focus is needed, a more specific term is used. HCI also addresses a much
broader range of research questions including, for example, the ergonomic issues
raised by today’s extremely sophisticated and dynamic human-computer sys-
tems [25]. From the point of view of humans, computers are not only tools, but
also technological artifacts, and some coherence must be maintained between
humans and these artifacts actions on the environment, whatever the interface
is. This is why it is appealing to incorporate the paradigm of cooperation into
the study of human-computer relationships.

Collaboration, Cooperation, and Teaming. The original focal point of
HCI research was to improve workers’ operational capabilities. While it is not
limited to that anymore [12], it is still a predominant focus in the domain.
This idea is reflected in the usage of terms like “collaboration”, “cooperation”,
and “team”/“teaming” which all represent a relationship where humans work
together with a computer. The terms “collaboration” and “cooperation” focus on
the nature of interaction when working towards a specific goal, while the terms
“team” or “teaming” focus on the efficient integration of computers into a formal
organization that includes humans. In the following, the different relationships
related to the aspect of humans and computers working together are discussed.

– Human-Computer teaming: In the context of work, teams are a small formal
way to organize members together inside a larger organization. In traditional
teams, there are at least two levels of authority, with normal members and
a leader making global decisions and managing the rest of the members [7].
While each member can have their own level of autonomy and independence,
concepts like communication, trust, cohesion, accountability, fairness, and
even competition, are core to a team working properly. The topic of study
of Human-Computer Teams is to create hybrid-intelligent teams composed of
both humans and computers. It is an ambitious goal that presents numerous
challenges, including the development of models adapted to mixed teams by
either modifying existing human team models or creating new ones [15]. It
also requires AI to be capable of filling properties such as accountability,
fairness, and understandability [40].

– Cooperation or Collaboration?: “Cooperation” and “collaboration” types of
relationships are very close. Usually, the difference between the two is not
made in the HCI domain [54]. A very noticeable example of their use comes
from the domain of multiagent systems, in which cooperation and collabo-
ration are central concepts, [52]. In such context, there is also the field of
collaborative working, in which humans are collaborating to solve a common
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task. In both cases (cooperation and collaboration), humans and computers
are working together towards the same goal, often sharing resources, includ-
ing information. However, it can be interesting to look into the differences
between the two in other disciplines to get a more precise definition [19]. Based
on [27], cooperation can be as simple as having the work divided between all
parties and realized independently. A collaboration, however, does not only
mean that the different parties are working together towards a goal, but also
that there is a close interdependence between the parties with reliance on
each other, whether it is in decision-making or information sharing. As such,
while the aim of HCI is mostly collaboration, it is often under the denomi-
nation “cooperation” which is a broader concept that regroups every way of
working together towards a specific goal, including “collaboration”, a specific
way with a closer relationship between the parties [54].

Symbiosis. While it is not the most explored idea, the symbiosis relationship
focuses on an interesting part of HCI. Instead of having humans and computers
working together towards a specific goal, the explored relationship is based on
mutual benefit [18]. The principle comes from biology, where it was first intro-
duced by Anton de Bary in 1879 as “the living together of unlike named organ-
isms” [41]. Although different forms of symbiosis are discussed in biology [34],
the term is also used outside the field to describe a relationship of mutual ben-
efit, which corresponds to “mutualism” symbiosis in biology [41]. In sociology,
it is defined as “a mutually beneficial relationship between different people or
groups” (Oxford Dictionary). By replacing “people or groups” with “human and
computer”, the human-computer symbiosis topic of the study appears. While it
may be unusual to see computers as something that looks for benefits, they nat-
urally inherit the goal of their creator and are made with purpose. Moreover,
something like the common practice of allowing users to send feedback which
is then used to improve the corresponding system is a direct benefit for the
computer and can already be seen as a form of symbiosis. Thus, symbiosis is a
step further in putting the link between humans and computers, moving from a
simple task-sharing point of view to an integrative relationship in which humans
and computers are parts of a whole system as described in the concept of a
bio-physical system [14].

Integration. Integration takes a different approach as it starts by taking an
outside perspective, considering humans and computers as a whole system before
getting into the details of how to make it a seamless and effective system [17].
One approach to improving such a system is to take a long-term view of the
relationship between the parties, specifically how humans adapt to the system
and then how the computer adapts to humans, also called “co-adaptation” [33].

Adaptation and coadaptation are consequences of interaction over a long
period. Co-adaptation is more clear when one looks at the relationship between
human-centered design and goal-oriented design [16]. On the one hand, human-
centered design (or user-centered design) focuses on grounding the design in
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understanding users, their needs, tasks, and the environment. Additionally, it
tries to make user-friendly systems, allowing them to quickly integrate with the
system [4]. However, such an approach can be limited by the fact that it only
exposes a minimal amount of complexity to maximize usability. As such, it ends
up limiting the performance a trained user would have in the system [16]. On the
other hand, a goal-oriented design takes the opposite approach. It maximizes the
performance a trained user would have with the system by allowing a maximum
of available controls. It comes at the cost of usability. A user would need training
to integrate properly into the system [16]. In other words, a human-centered
design gives short-term advantages but has long-term drawbacks, while a goal-
oriented design has the opposite. The purpose of studying co-adaptation is to
reconcile the two ideas by understanding how humans adapt to the computer
in the system and how to adapt the computers through their interaction with
humans. As such, high usability early on can be achieved, and the system stays at
an adequate complexity while the human users learn and maximize performance.
At that time, human users can have in-depth control over the system [16].

After analyzing various types of relationships between humans and different
kinds of technologies, the next section tackles the intersection between explain-
ability and the HCI domain.

3 The Role of xAI in HCI

This section theoretically investigates the role that Explainable Artificial Intel-
ligence (xAI) plays in the HCI domain. First, some definitions of explainability
and some similar or related concepts like interpretability and understandability
are analyzed. Then, the main contributions and opportunities that explainability
could provide in the HCI domain are provided.

3.1 Definitions and Concepts

xAI is a study field that provides useful techniques and models for researchers
to build AI-based systems that are explicable [21,24,39]. Primarily, the surge of
interest in this field is explained by the often useful, but sometimes intriguing
[49], results of black-box machine learning algorithms and the consequent need to
understand how these data fed into the algorithm produced the given results [5,
22,46]. This field recognizes the need to incorporate explanations or explanations
of explainability to improve transparency and trust [8,20,29].

In [2], a literature review of xAI is provided that focuses on goal-driven xAI,
also called explainable agency. In [40], another review of the literature on xAI
is presented, but in the field of healthcare. It focuses mainly on data-driven AI.
The concepts of goal-driven and data-driven xAI emerged mainly to differenti-
ate systems that rely on data analysis from those that are driven by actions.
It highlights and defines the following goals of xAI: trustworthiness, causality,
transferability, informativeness, confidence, fairness, accessibility, interactivity,
and awareness of privacy.
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In [3], the authors define some concepts related to xAI. While their work
focuses on the xAI methods used in data-driven AI, some ideas are true in
both goal-driven and data-driven AI. The differences between understandabil-
ity, comprehensibility, interpretability, explainability, and transparency are also
highlighted. The following goals of xAI are given: trustworthiness, causality,
transferability, information, confidence, fairness, accessibility, interactivity, and
privacy awareness.

From the literature, the three concepts of understandability, interpretability,
and explainability could be differentiated as follows:

Understandability describes AI systems that are clear enough without expla-
nations for the human user to understand how the model works. It does not mean
that the user understands every detail of the model, but is mostly an instinctive
but accurate understanding [3,38].

Interpretability is similar to understandability in the fact that it is a “pas-
sive characteristic of models” [3] which allows humans to understand the AI’s
decision. However, with interpretability, it is achieved by giving insight into the
inner working of the model [13,47].

Explainability allows humans to understand the AI using methods like adding
explanations or extracting relevant data that justify the AI’s decision [26]. It can
be seen as “post hoc interpretability” [13] where methods are used to compensate
for the fact that the model used is not interpretable.

3.2 Key Contributions, Techniques, and Research Questions

As mentioned in the previous section, hybrid intelligent systems, where hybrid
teams of humans and computers share decisions during complex operations, are
gaining more interest in research. Hybrid Intelligence (HI) is the combination
of human and computer intelligence, increasing human intellect and capabilities
rather than replacing them and achieving goals that were unreachable to humans
or computers [1]. For this purpose, xAI is an important part to make the interface
from AI to human. The aim is to build adaptive, responsible, interactive, and
human-centered intelligent systems that collaborate synergistically, proactively,
and purposefully with humans. Hybrid teams highlight the need for effective
interactions between computers and humans. This is to ensure that humans can
understand the models and intelligent systems embodied in these computers. To
have a good interaction with technology, humans need to trust it and, to trust
it, humans need to understand it [40].

xAI Contributions in HCI. Understanding the behavior of computers is
crucial to guarantee smooth HCI since it is not straightforward for humans to
understand the computer’s state of mind. xAI in HCI refers to the ability of a
computer system to provide humans with clear and understandable explanations
about their inner workings and why certain decisions were made. It is an impor-
tant aspect of HCI because it helps humans trust and understand the behavior
of intelligent systems, thus increasing the user satisfaction & acceptance and
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improving the decision making. Explainability is particularly indispensable for
intelligent systems, such as decision-making systems, recommendation systems,
and natural language processing systems, as these systems can be complex and
difficult for users to understand. Explainability helps to coordinate and cooper-
ate between humans and computers by providing a clear understanding of the
goals, actions, and decisions of the system [1].

xAI played a more specific role in the HCI subdomains, i.e., Human-Y X. [53]
is an example of applying xAI in HI in the field of predictive maintenance. Two
main technical challenges are highlighted for the “optimizing human-machine
collaboration in a predictive maintenance system”. Furthermore, multiple social
challenges are discussed regarding the acceptance of such systems by workers.
Another example focuses on the benefit of xAI in teamwork [42]. As such, in a
situation of collaboration between a human and a robot, it tests the impact of
giving the human information on the actions of the robot, both with and without
an explanation of the decision making. In the experiment, users are divided into
two groups: expert and novice. The results show that adding xAI to the system
helps to know the situation of the user. The novice group also shows better
performance when working with xAI. The expert group, on the other hand,
sees their performance degrade. These results highlight the objectivity feature
of explanations and how situational the benefit from an explanation could be. As
the metric of performance is the time taken to perform the task, the assumption
is made that, since the expert is fast to realize the task anyway, the time lost
by getting the information outweighs the time gained by knowing the robot
status. We can also assume that if the task was complex enough to be difficult
to complete even for an expert, the addition of xAI would lead to a gain in
performance for both groups. This means that the explanation should be user-
and context-sensitive, and this confirms other results in the literature [39].

Explainability Techniques in HCI. Explainability in HCI can be achieved
through various techniques, such as:

– Providing human users with concise, understandable explanations of how a
system operates, such as through visualizations or natural language explana-
tions.

– Allowing users to view the components of an AI system’s conclusion, such as
the input data and the weights given to certain features.

– Allowing the users to investigate and interact with and explore the inter-
nal workings of a system, for example, through interactive visualizations or
“what-if” simulations.

– Empowering the users with the ability to control and customize the behavior
of a system, for example, by changing settings or offering feedback.

xAI Benefits to HCI. xAI not only targets data scientists and AI developer to
facilitated models creation and optimization but also brings benefit to normal
end users [3]. This is especially true for tasks with important decision mak-
ing such as predictive visual analytic where both end-users and domain experts
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are strongly involved [9,32]. xAI can bring several of it’s advantages to HCI:
Increased trust & satisfaction, improved accountability & transparency, better
user engagement, and improved decision-making. However, recent work in the
literature has pointed out that the design of xAI systems should consider the
user’s background, cognitive skills, and prior knowledge [42]. Thus, various chal-
lenges must be considered: Balancing explainability & performance, user needs
& preferences, addressing diversity, discrimination & bias, complexity & over-
head, and ethical & social implications, evaluation & validation, and privacy &
security.

HCI focuses on the interaction in terms of technology, while xAI focuses on
ensuring that humans better understand and trust AI. AI is becoming more
and more integrated into technology, so understanding the technology allows for
better interactions with it. Therefore, we believe that further investigation of the
role of explainability in HCI is a good direction of research that may facilitate
better understandability, trust, and transparency of AI in the eyes of humans.

Research Questions. Several research questions could be considered in the
context of applying explainability in HCI:

– How can users investigate and interact with and explore the internal workings
of an intelligent system to control and customize its behavior?

– What are the different types of explanations that make the decision-making
process in HI teams more transparent, understandable, and accountable?

– How can the explanations be communicated to human members of the HI
team so that they improve human trust and lead to successful HCI? How
can xAI be used to calibrated trust, foster interactions with users relying on
the system while keeping a critical thinking i.e., trust without overtrust and
excessive reliance ?

– How can explanations be personalized so that they align with human needs
and capabilities? i.e., How to build a human-centered intelligent model?

– What potential could be achieved with the integration of learning and rea-
soning, i.e., symbolic and sub-symbolic AI as a hybrid solution to generate
and communicate explanations?

– Unified explanations: Interpretability between humans and computers may
not always align, and finding common ground can be challenging. How do
we provide a unified explanation that is interpretable by both humans and
computers?

– What objective and subjective metrics are needed to evaluate the reception
and perception of computers’ explanations by humans? How can the quality
and strength of the explanations be evaluated? This question includes cogni-
tive psychology, which can help us to understand how humans process and
understand explanations.

– Accuracy and performance: Adding additional layers of explainability can
slow down the decision-making process, which can be problematic in time-
sensitive applications. How to maintain accuracy and performance when
applying xAI techniques in HCI?
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To quantify the theoretical analysis provided in this section, the next section
provides a practical investigation of the tendency and evolution of the usage of
xAI concepts (explainability and interpretability) associated with the terminol-
ogy of the HCI subdomains that include the aforementioned various technologies
(Sect. 2.1) and relationships (Sect. 2.2).

4 Tendency and Evolution in Usage of Terminology

This section evaluates the interest of the community over the years by taking a
look at the number of Google Scholar search results of different queries. Since
our purpose is to investigate a global interest in different topics, Google Scholar
was chosen as it is the search engine that indexes the largest number of papers.
Even if the results do include papers that are not peer reviewed, their inclusion
still shows interest in the topics. Multiple formulations of the queries have been
conducted, starting with less precise ones, which were refined to get results using
precisely the keyword studied. The queries used for the data in this paper are:

(i) “human-Y” AND “X”
(ii) “human-Y” AND “X” AND “explainability”
(iii) “human-Y” AND “X” AND “interpretability”

With “Y” a term of the set {computer, machine, AI, agent, robot} and “X” a
term of the set {interaction, cooperation, collaboration, team, symbiosis, inte-
gration, adaptation}. After running pilot queries, two concepts of xAI are cho-
sen: explainability and interpretability. Consequently, in the queries, we have
three choices: (i) without any keyword to represent xAI concepts; (ii) using
the keyword “explainability”; (iii) using the keyword “interpretability”. Accord-
ing to our definition (Sect. 3), the keyword “understandability” is mostly used
to describe simpler models. As such, it is replaced by “interpretability” when
insight into the model is purposefully given to make it more understandable and
was not investigated further.

For all years between 2012 and 2022 (10 years), each type of query described
above were run (3 types), with each X-Y combination (35 possible combina-
tion). Thus, resulting in a total of queries is 1050. The number of search results
obtained from each query is recorded and used to make the graphs presented
bellow. Two graphs are used to depict the data: (1) Heatmaps, where the number
of results over a period of time are added to represent the relationship between
each of the terms. The values are normalized over the total number of results
in the graph and represented as a %. The scale is set between 0% and 23% on
every map for comparison purposes. (2) Graphs that represent the number of
search results as a function of years. As in Sect. 2, sometimes, “Y” is fixed as
“computer” when considering the relationships only, and “X” as “interaction”
when considering the technologies only. In all cases, curves for all options of the
relationships or the technologies that are not fixed are displayed.
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4.1 Query Formulation

In this section, the choices of the formulation of the queries are explained, espe-
cially when using quotation marks.

(a) With quotation marks (b) Without quotation marks

Fig. 1. Normalized heatmap of the number of results using the queries: (a) “human-Y”
AND “X” AND “explainability”; (b) human-Y X explainability, in the period [2020,
2022].

Figure 1 depicts the distribution of the search queries results of all values of
variables “Y” and “X” with the keyword “explainability” in the period [2012,
2022]. This figure aims at showing the difference between using quotation marks
(Fig. 1(a)) or not (Fig. 1(b)) around the keywords. An unexpected and large dif-
ference can be seen in the distribution of the results. Assuming the usage is the
same as in the usual Google search engine, the purpose of the quotation marks is
to get the exact keyword and not allow the algorithm to replace the quoted key-
word with synonyms or similar keywords (such as “explainable” or “explanation”
for “explainability” for example). This is supported by the fact that, in 2022,
for the terms “computer” and “interaction”, 3,880 results are found without
quotation marks and only 1,750 with quotation marks. In Google Scholar, when
manually searching for: [human-computer collaboration explainability], on the
first page that the keywords “interaction” and “cooperation” are highlighted as
corresponding to the search query, which means the algorithm handles them as
synonyms of “collaboration”. This explains the results in Fig. 1(b) which shows
almost the same number of results for the keyword “computer” paired with
“interaction”, “collaboration”, “cooperation” and “integration”. In this context,
all four terms are treated as synonyms. For this reason, we decided to keep the
quotation marks in the rest of the experiments in the paper. “AND” are added
for clarity. It’s important to note that search queries using quotation marks may
also introduce a certain bias, as this may not be the most commonly used way
to refer to the topic. However, their usage is essential to avoid some keywords
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being treated as synonyms. Using the hyphen “-” between the two parties of the
relationship, e.g., “Human” and “Y” excludes the results where the two key-
words do not follow each other, which are likely to be papers that do not focus
on the relationship between humans and “Y” but simply mention both concepts
at some point.

Next, Sects. 4.2, 4.3, and 4.4 investigate, respectively, the usage of terms
(relationships and technologies) of the HCI domain without the concepts of
explainability and interpretability, with the keyword “explainability”, and with
the keyword “interpretability”.

4.2 Without Explainability and Interpretability

The distribution of the usage of HCI terms is investigated when no keyword
(neither “explainability” nor “interpretability”) is used to represent the xAI
concepts. This distribution is used as a baseline in comparison to the results
when adding the xAI keywords.

(a) From 2012 to 2022 (b) From 2020 to 2022

Fig. 2. Normalized heatmap of the number of results using the query: “human-Y”
AND “X”, in the periods [2012, 2022] (a), and [2020, 2022] (b).

Figure 2(a) shows the number of results of the search queries of all values
of the variables “Y” and “X” in the last ten years (period [2012, 2022]). The
main observation to highlight is that the overwhelming majority (23.23%) are
found with the terms “Human-Computer interaction”. As mentioned earlier,
these results are to be expected since it has been established as a research domain
early on. Additionally, it can be noted that the pairs (technology, relationship)
of the terms {computer, integration}, {machine, interaction} and {computer,
team} are also prominent focuses. Furthermore, it can be seen that the terms
“AI”, “agent”, and “symbiosis” give the least amount of results.

Figure 2(b) shows the results when limiting the search queries to the last three
years (period [2020, 2022]). The first observation, even though a bit trivial, is that
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the proportion of results of the terms pair {computer, integration} is remarkably
reduced (16.77% in the last three years compared to 23.23% in the last ten years).
This suggests that researchers tend to prefer, currently, to choose more specific
terminology. The other pair of terms previously highlighted in Fig. 1(a), i.e.,
{computer, integration}, {machine, collaboration}, and {computer, team}, are
still the main focuses, especially the two first pairs. The pair {computer, team}
is currently at the same level as the pairs {computer, collaboration} and {robot,
interaction}.

Overall, a movement of standardization can still be observed, with the major-
ity gaining in proportion except for the results of the pair {computer, interac-
tion} that diminish. The topic of HCI has always included an incredible diversity,
both in the sciences used including psychology, ergonomics, and social sciences,
on top of computer science [12], and in the topics focused on. The HCI com-
munity does not limit itself and includes every new technology in its research
topics [31]. As such, it makes sense to use more precise keywords to describe
the work, which can explain the relative decrease in the usage of the terms
“Human-computer interaction”.

4.3 Usage of the Keyword “explainability”

(a) From 2012 to 2022 (b) From 2020 to 2022

Fig. 3. Normalized heatmap of the number of results using the query: “human-Y”
AND “X” AND “explainability”, in the periods [2012, 2022] (a), and [2020, 2022]
(b).

In this section, the focus is on the impact of adding the keyword “explainabil-
ity” in the search queries. Figure 3 depicts the distribution of HCI terms usage
together with the keyword “explainability” in the period [2012, 2022] (Fig. 3(a))
and in the period [2020, 2022] (Fig. 3(b)). The two heatmaps are almost identical.
It can be explained by the fact that the usage of the keyword “explainability”
is only recent. As such, the majority of results come from the last three years
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(period [2020, 2022]). This observation can also be asserted by Fig. 5(d) and
Fig. 5(c) explained later in Sect. 4.5.

By comparing Fig. 2(b) and Fig. 3(b), the impact of the addition of the key-
word “explainability” on the distribution and the proportions in the period [2020,
2022] can be observed. The first difference that draws attention is that adding the
keyword “explainability” make the results tend towards a uniform distribution.
That is to say that the results of the pair computer, interaction go from 16.77%
to 10.13%. The number of results of the term “AI” which is almost non-existent
in Fig. 2(b) is at the same level as the number of results of the term “robot”
when adding the keyword. The term “Agent” is here the least used concept to
describe the object of interaction, but is still relatively closer to the others. On
the other axis, the number of the results of the term “symbioses” is still by
far the least investigated term in both cases (with and without adding the key-
word “explainability”). Explainability is a hot topic that continues to interest
more and more people. Explainability is closely related to different subdomains
of HCI and not only the pair computer, interaction. This means suggests that
researchers tend to apply explainability in a specific subdomain of HCI.

4.4 Usage of the Keyword “interpretability”

(a) From 2012 to 2022 (b) From 2020 to 2022

Fig. 4. Normalized heatmap of the number of results using the query: “human-Y”
AND “X” AND “interpretability”, in the periods [2012, 2022] (a), and [2020, 2022]
(b).

Figure 4 shows the distribution of HCI terms usage together with the keyword
“interpretability”. The comparison between 4(a) and 4(b) shows the difference
in distribution between the period [2020, 2022], and the period [2020, 2022].
Just like with “explainability”, the two heatmaps are pretty similar. The same
reasoning can be made: the usage of the keyword “interpretability” became far
more common in recent years. As such, the majority of results come from the last



HCI and Explainability: Intersection and Terminology 229

three years (period [2020, 2022]). This observation can be asserted in Fig. 5(f)
and Fig. 5(e) that are explained later in Sect. 4.5. When compared to the results
without the keywords “explainability” and “interpretability” shown in Fig. 2, the
results are similar for the period [2020, 2022], with the proportion for the pair
{computer, interaction} being close to 15% in both cases (16.77% and 14.55%
respectively for: without “explainability” and “interpretability” and with “inter-
pretability”, in the last three years). However, like with the addition of the key-
word “explainability”, the proportion taken by both “AI” and “agent” is far
greater when adding the keyword “interpretability”. Overall, the differences in
tendency when adding the keyword “interpretability” is similar to adding the
keyword “explainability” but to a lesser extent.

4.5 Evolution in the Last Decade

This section will focus on the evolution in the last decade by displaying the
number of results throughout the last decade. As displaying the results for all
combinations would not be readable, “Y” is fixed to “computer” in half of the
graphs and “X” to “interaction” in the other half. Both have one graph for each
case: without “explainability” and “interpretability”, with “explainability”, with
“interpretability”.

In Fig. 5, the graphs are organized by lines and columns. The three graphs
in the first columns show the search results with the keyword “computer” fixed,
while the second columns show the results with the keyword “interaction” fixed.
The graphs on the first line are the ones with neither “explainability” nor “inter-
pretability”, the second line is with “explainability” and the third line is with
“interpretability”.

One of the first observations is the difference in scale between the y-axis. With
the addition of the keyword “explainability”, the results go from 50 000 to 1750.
It is a massive difference, however, it cannot be used to calculate the proportion
of results incorporating “explainability”. Explainability is often referred to as
“explainable” or “xAI”. Since the search is made using quotation marks, papers
which are only referring to the concept with words other than “explainability”
are excluded by the search algorithm. This is why the raw number cannot be
compared between the different graphs, and the focus is on the relative propor-
tion instead.

Figure 5(a) shows that when the query does not include the keywords
“explainability” nor “interpretability”, the term “interaction” gives far more
results than any other term. However, this number of results stagnates since
2019 and even goes down in 2022. The number of results with either the key-
word “explainability” or “interpretability” shows rapid growth in the last few
years. This is especially visible for explainability, as it almost gave no results
before 2016. With explainability, the results of the terms “integration”, “team”
and “collaboration” are the ones giving the most results after the term “inter-
action” and all three give almost the same value.

Figure 5(b) shows that without the keywords “explainability” and “inter-
pretability”, the term “computer” gives by far the highest number of results,
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(a) “computer” fixed (b) “interaction” fixed

(c) “computer” fixed, and “explainability” (d) “interaction” fixed, and “explainability”

(e) “computer” fixed, and “interpretability” (f) “interaction” fixed, and “interpretability”

Fig. 5. Number of the search results using the queries (Y = computer): Number of the
search results in the period [2012, 2022] using the query: “human-Y” AND “X” where
(a, c, e) X in {interaction, cooperation, collaboration, team, symbiosis, integration}
and Y = computer; (b, d, f) X = interaction and Y in {computer, machine, AI, agent,
robot (c, d) AND “explainability” is added to the queries (e, f) AND “interpretability”
is added to the queries

followed by the terms “machine” and “robot” which are close to each other,
then by “agent” and “AI” which gives almost no results. The term “AI” is still
notable due to its growth in the last few years. Figure 5(d) (with the keyword
“explainability”) shows the same growth mentioned before. The growth of the
term “AI” is even more noticeable here, with its number of results, overtaking
both those of the terms “agent” and “robot” in the last five years.
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4.6 Results

The following summarizes the findings of this section:

– The proportion of the usage of the exact formulation “human-computer inter-
action” is less dominant in the last three years than before. It suggests that
in recent years, researchers tend to prefer to choose more specific terminology
(Fig. 2.)

– When adding the keyword “explainability”, the distribution of usage of HCI
terms becomes closer to being uniform (Figs. 2 and 3).

– The last observation is especially true for the usage of “human-AI” and
“human-agent” which are almost non-existent in the distribution without
“explainability” (Figs. 2 and 3).

– The last two observations are also true with “interpretability”, but to a lesser
degree (Figs. 2 and 4).

– The keyword “explainability” was virtually non-existent before 2016. It has
experienced significant growth since then. This is especially true when paired
with “AI” in which case the growth looks exponential (Figs. 5(c) and 5(d)).

– Although it was not common, the keyword “interpretability” was already
used before 2016 but follow a similar growth (Figs. 5(e) and 5(f)).

– The keyword “symbiosis” is used the least out of our selection. It was expected
as it is both uncommon and highly specific.

5 Limitations and Future Work

One aspect of this paper tries to tackle the knotty topic of terminology in HCI.
One limitation of this paper is that the initial set of terms for the technologies
and the relationships are chosen based on our experience and knowledge. A bet-
ter solution is to rely on a systematic analysis of the literature. Other terms that
were excluded from this paper are {automation, vehicle, system} to represent
the technology and {partnership, interface, trust} to represent the relationship
with the human. “Automation” and “vehicle” were judged to be too specific and
only represent a small part of the query results. “System” can have multiple
meanings and with a human interacting with a system, it is often seen as having
the human incorporated as a part of the system. The latter is somehow discussed
throughout the term “integration” in Sect. 2.2. The term “partnership” was not
included because the terms “team” and “teaming” were used. The terms “Inter-
face” and “trust” are out of the scope of this paper. While both are closely linked
interactions, they do not define the purpose of the interaction or the nature of
the relationship, but rather a result or a side effect.

xAI plays more specific roles in the subdomains of HCI, i.e., Human-Y X.
Even though, the paper provided some examples about this point, not all com-
binations of “Y” and “X” were considered due to the space limit. Accordingly,
future work could be to further investigate, systematically, the contributions of
xAI in all subdomains of HCI.
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When choosing the database in Sect. 4, we had the choice of using the Inter-
net as the source, but we wanted to limit our scope to scientific works. Then,
the choice was directed to databases like Association for Computing Machinery
(ACM) and Web of Science (WoS). However, we did not want to limit the source
to officially peer-reviewed works. Finally, we chose to use Google Scholar, which
can be seen as a balanced trade-off between the massive works on the Internet
and controlled scientific works as it includes various scholarly works (both peer-
reviewed and not). It also has the advantage of accessibility but comes with the
drawback of relying on an unknown algorithm for the analysis. Inconsistencies
with the number of results were noticeable, like the number of results between
2012 and 2022 being different from the sum of the results obtained each year
between 2012 and 2022. Other inconsistencies include having the number of
results diminish when adding a term with the operator “OR”. Because of that,
the normalization was not done on the total number of unique papers.

It would be interesting to reproduce the experiments with other databases
such as ACM and WoS as more accurate results can be expect, but with the
drawback of limiting the results to only a small part of existing papers. We
can also expect that such databases would come with a bias as the journals are
selective. This bias is likely to be less present in Google Scholar as it indexes
many more sources.

6 Conclusion

The paper aims to investigate the role of explainability in the HCI domain by
analyzing its subdomains regarding the terminology representing various tech-
nologies that have relationships with humans and the nature of these relation-
ships. Moreover, the paper studies the associations between these relationships
and the xAI concepts (explainability and interpretability). The association of the
two domains of xAI and HCI can provide several benefits: Trust, understand-
ability, and acceptance; Human-centered AI that considers the human perspec-
tive and context; AI ethics that are transparent and accountable; and human-
robot/agent teams. To further investigate this association, the paper quantifies
the usage of the xAI concepts with the terms (technologies and relationships)
that represent the subdomains of HCI.

The results mainly showed the recent growth in the usage of both the key-
words “explainability” and “interpretability” together with HCI-related terms.
The usage of the keyword “explainability” showed that the interest is spread out
between most of the terms, with an important focus on AI in comparison to the
results without this keyword. The same observation was made for the keyword
“interpretability” but to a lesser degree.

The paper concludes that the terms “Computer” and “Machine” are mostly
used as synonyms, with few exceptions in pure software and pure mechanical
machines. Indeed, these terms are the two broader terms that encompass the
terms “AI”, “Agent”, and “Robot” as well as more precise terms excluded from
this paper like “automation” and “system”. Moreover, an analogy can be made
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between the terms “Computer”, “Machine” and the terms “Agent”, “Robot”
respectively, while the term “Robot” can be described as a “Machine” incorpo-
rating “AI”. Furthermore, the term “collaboration” is a specific way of “coop-
eration” and should be the objective of most teamwork. The term “Symbiosis”
differs in the purpose of the relationship, having both parties use each other
for their own benefit. Finally, the term “integration” leads to a different app-
roach and considers everything as a system composed of the two parties of the
interaction.

The paper also concludes that when adding the keywords “explainability”
and “interpretability” to the search queries, the distribution is found to be con-
sistent between the period [2012, 2022] and [2020, 2022]. As shown by the curve
representing the usage throughout the years, the distribution of both keywords
is only recent and saw exponential growth in the last few years. As such, most of
the results are found to come from the last three years, which makes its weight
much more important than the previous years. This is one of the factors explain-
ing the consistency between the distributions. The results show that when the
query does not include the keywords “explainability” nor “interpretability”, the
term “interaction” gives far more results than any other term. However, this
number of results stagnates since 2019. Additionally, the works that use explain-
ability are shown to be more distributed to different subdomains of HCI and
not closely related to the pair computer, interaction compared to the works that
do not use explainability. The evolution of the usage of the terms throughout
the years shows that the term “AI”, or more precisely “human-AI” has faster
growth than any other studied term, especially when paired with the keyword
“explainability”, but also visible otherwise. While the study of the interaction
with AI is not something new, it shows that it is growing faster in recent years,
and that the formulation “human-AI” may become more common with time.
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Abstract. Deep reinforcement learning (DRL) has emerged as a pow-
erful tool for controlling complex systems, by combining deep neural
networks with reinforcement learning techniques. However, due to the
black-box nature of these algorithms, the resulting control policies can
be difficult to understand from a human perspective. This limitation is
particularly relevant in real-world scenarios, where an understanding of
the controller is required for reliability and safety reasons. In this paper
we investigate the application of DRL methods for controlling the heat-
ing, ventilation and air-conditioning (HVAC) system of a building, and
we propose an Explainable Artificial Intelligence (XAI) approach to pro-
vide interpretability to these models. This is accomplished by combining
different XAI methods including surrogate models, Shapley values, and
counterfactual examples. We show the results of the DRL-based con-
troller in terms of energy consumption and thermal comfort and provide
insights and explainability to the underlying control strategy using this
XAI layer.

Keywords: XAI · Deep Reinforcement Learning · Building Control

1 Introduction

Deep Reinforcement Learning (DRL) has emerged as a powerful technique for
training agents that can learn to solve complex tasks through trial and error.
However, the black-box nature of the neural networks used by DRL algorithms
makes it challenging to understand why an agent behaves in a particular way.
This lack of transparency can be problematic, especially in high-stakes applica-
tions such as healthcare or autonomous driving, where incorrect decisions can
have severe consequences.

By incorporating Explainable Artificial Intelligence (XAI) [3] techniques into
DRL models, we can develop algorithms that not only perform well but also pro-
vide interpretable explanations for their decisions. This can help increasing trust
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and transparency, allowing stakeholders to better understand and potentially
correct the agent’s behavior if needed. Additionally, XAI can provide insights
into the underlying mechanisms of DRL-based solutions, allowing us to improve
the overall performance and generalizability of these systems. Nevertheless, XAI
methods for DRL have not been extensively studied, particularly in industrial
problems [18].

One of the most promising industrial applications of DRL is the mitigation
of climate change and, more specifically, energy efficiency of buildings, which
according to the International Energy Agency (IEA), are responsible for 17% and
10% of global direct and indirect CO2 emissions [19], respectively. On this basis,
DRL has been proposed as a viable alternative for building energy optimization
frameworks, mostly focused on improving energy consumption and sustainability
of the Heating, Ventilation, and Air-Conditioning (HVAC) systems, which rep-
resent more than 50% of buildings’ energy demand [38]. DRL can learn sophis-
ticated control strategies from building simulations [2,4,6,12,37,51], avoiding
the short-term horizon of proportional-integral-derivative controllers (PID) [14]
and being more computationally efficient than Model Predictive Control (MPC)
methods [15,52].

This research paper proposes applying XAI techniques to Deep Reinforce-
ment Learning (DRL) algorithms for building energy control. This study applies
three post-hoc explanation methods [3]: (1) training a decision tree as an explain-
able surrogate model of the agent’s policy, (2) computation of Shapley values [44]
to evaluate the features importance, and (3) generating counterfactual examples
that involve hypothetical scenarios in which the agent’s decision is modified.
The tree-based model offers interpretable rules describing the underlying con-
trol logic, enabling building operators to interpret and potentially correct it.
Shapley values assess the contribution of each input variable in the DRL policy,
thus providing insights into the factors that influence the control decisions the
most. In addition, the counterfactual examples help to evaluate the reliability of
the controller and establish decision boundaries.

Overall, our experiments show that these XAI methods are useful for inter-
preting DRL-based controllers, as they allow to discover the underlying rules
and main factors driving the policy. Additionally, they have the potential of
improving the performance through the selection of the state variables.

The remainder of this paper is organized as follows. Section 2 presents the
fundamental concepts of DRL and reviews the related work on DRL and XAI,
analysing existing proposals and gaps in the literature. We present our proposed
methodology in Sect. 3, describing the problem formulation, the experimental
setup and the explainability methods to be used. Section 4 presents the results
of the experimentation, which are discussed in Sect. 5. Finally, we summarize
the main conclusions of our work and identify future lines of research in Sect. 6.
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2 Background

2.1 Fundamentals of DRL

Reinforcement learning (RL) is a widely used machine learning framework for
solving continuous control problems, based on the interaction of an agent with its
environment. Such interaction can be represented as a Markov Decision Process
(MDP) in which learning takes place over a sequence of discrete timesteps T =
{0, 1, 2, ...}. At each time step t, the agent starts from the current state of the
environment st ∈ S and selects an action at ∈ A based on a policy function π,
such that at ∼ π(·|st). As a result of performing this action, the environment
transitions into a new state st+1 ∈ S, emitting a reward signal rt ∈ R which
represents how good or bad the performed action has been.

The objective of the RL agent is learning an optimal policy function that
maximizes the sum of discounted rewards over time, i.e. the return, defined as:
Gt =

∑∞
k=0 γkRt+k+1, with γ ∈ [0, 1] being a discount rate used to weight

rewards based on their temporal proximity. Learning an optimal policy can be
carried out in contexts with limited state and action spaces by using dynamic
programming methods, such as value or policy iteration, or classical reinforce-
ment learning algorithms, such as Monte Carlo, SARSA or Q-learning [46,50].
However, these classical methods have proven to be incapable of scaling to envi-
ronments where S or A are too large, or even infinite for continuous problems.

In recent years, this limitation has motivated the development of Deep Rein-
forcement Learning (DRL) algorithms, which leverage the abstraction capability
of neural networks to approximate value functions or policies in complex environ-
ments. DRL algorithms assume a parameterized policy πθ, i.e., a neural network
with weights θ, whose expected return is iteratively approximated to that of an
optimal policy by adjusting the parameters θ. The way this policy is approxi-
mated depends on the type of algorithm we are dealing with. Some of the most
used DRL algorithms constituting the state of the art are the following: Deep Q-
Networks (DQN) [31], Deep Deterministic Policy Gradient (DDPG) [24], Advan-
tage Actor-Critic (A2C) and Asynchronous Advantage Actor-Critic (A3C) [30],
Proximal Policy Optimization (PPO) [43], Trust Region Policy Optimization
(TRPO) [42], Twin Delayed DDPG (TD3) [13] or Soft Actor-Critic (SAC) [17],
with all their variants.

2.2 Related Work

Explainability in Deep Reinforcement Learning (XAI-DRL) has been a topic
of interest in recent years. In [10], one of the nine most relevant challenges of
real-world reinforcement learning is providing system operators with explainable
policies. As highlighted in the paper, the ability to comprehend the ultimate
intentions of a policy is crucial for securing stakeholder support, particularly
when the policy may present an unforeseen and alternative strategy for regulat-
ing a system. Additionally, in cases where policy errors occur, gaining a posteriori
comprehension of the origins of the error is imperative. However, this is the less
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researched challenge of the suite. For example in [9], the authors provide an
open-source benchmark of control environments, but explicitly leave XAI out
since an objective evaluation of the explainability of a policy is not trivial.

Since DRL is driven by deep neural networks, most of the existing methods
for explaining deep learning models can also be applied for explaining reinforce-
ment learning policies. [3] offers a taxonomy of existing post-hoc explainability
methods, which can be divided in model-agnostic and model-specific methods.
While neural networks-specific methods can take advantage of the differentiable
nature of these algorithms [32,35], model-agnostic methods can be applied to
any machine learning model. Among them, the authors of [3] also identified sev-
eral trends regarding how explainability is achieved; namely by simplification
[5], feature relevance [25], locally [22] or visually [11].

Most of the existing methods of XAI-DRL are adaptations of those for
explaining supervised learning algorithms. Several reviews have been proposed
for categorizing existing methods [18,29,39,49]. [18] distinguishes between trans-
parent algorithms, which explicitly learn a representation for the explanations,
or post-hoc explainability methods. Both [29] and [39] create a taxonomy based
on the RL component where explanations are aimed: policies, states, rewards,
transition dynamics or tasks. Similarly, [49] exposes the different paradigms for
XAI-DRL depending on whether local actions, policies or global properties of
the agent are to be explained. Additionally, we highlight several works proposing
specific methods for XAI-DRL. In [21] rewards are decomposed into meaningful
types, allowing to explain action selection process in terms of them. Other works
focus on expressing policies in an interpretable form, using decision trees [41] or
symbolic expressions [23]. In [27], an approach for learning a structural causal
model is proposed for encoding causal relationships between input states and
actions. Lastly, authors of [16] propose a self-explainable model which captures
time step importance in order to predict cumulative reward over episodes.

A limited number of works have investigated the usage of XAI methods in
HVAC-related scenarios, predominantly focusing on supervised learning prob-
lems [26,28]. Despite the growing interest in the applications of DRL for solving
energy management problems [53], there is a lack of experiments and proposals
focusing on XAI-DRL in real-world scenarios. To the best of our knowledge, only
two papers have considered this matter: in [54] the authors use Shapley values
for quantifying the feature importance of a DRL-based controller for a power
system, and in [8] the authors use a decision tree to simplify the policy of a
DQN algorithm for controlling a building cooling system.

Given the relevance of having explainable and reliable controllers and the
potential of DRL algorithms for improving energy efficiency of building HVAC
systems, this research aims to address the existing gap in the literature by
proposing a methodology for XAI-DRL for controlling the HVAC system of a
building, introducing an XAI layer with several methods of explainability.



Explaining DRL-Based Methods for Control of Building HVAC Systems 241

Fig. 1. Schematic representation of the proposed methodology.

3 Methodology

3.1 Problem Formulation

In this paper we address a continuous and multi-objective HVAC control prob-
lem, where an agent must learn to minimise the power consumption of the HVAC
system while simultaneously ensuring occupants’ thermal comfort. The control
is performed by selecting the heating and cooling temperature setpoints of the
system.

In this formulation, the state st ∈ S encodes information about the current
status of the building at time t; including weather conditions, indoor temperature
and humidity, comfort metrics, power consumption, number of occupants, etc.
An action at ∈ A consists on the selection of the HVAC heating and cooling
setpoints. By selecting this action the building transitions into a new state st+1,
given by st+1 = f(st, at) where f : S × A → S is some unknown transition
function driving the dynamics of the building.

Based on building state variables, we can obtain information about its cur-
rent power consumption, P (st) (measured in W). In turn, we can also compute
different comfort metrics, such as the distance from the current indoor temper-
ature to a target comfort range, C(st, starget). We can combine both terms in a
weighted sum, yielding the following reward signal:

r(st, at) = −(1 − ω)λP P (st) − ωλCC(st, starget) (1)

where ω weights the importance of comfort and consumption, and λP , λC

are constants used to balance both magnitudes. Note that reward is expressed
in negative terms, and thus we aim at maximizing it.

3.2 Building Simulation

Learning an optimal DRL-based control policy usually requires a large amount of
data which, in a real environment, would take several years to gather. Therefore,
most approaches in the literature use building simulators —such as EnergyPlus
or Modelica— to design controllers and evaluate their performance, thus allowing

https://energyplus.net/
https://modelica.org/
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us to simulate, in a affordable computing time, the equivalent to several long
time real-world periods [48,55]. Building simulation also allows for a greater
quantity and variety of data, enabling the consideration of extreme situations or
under designer’s criteria. Moreover, it is possible to pre-train agents in simulated
environments and then continue their training online once deployed. This avoids
cold starts, reducing the time it takes to obtain an acceptable control policy
from which to start acting [47,48].

Usually, training DRL agents for HVAC control involves connecting building
simulators with DRL libraries, such as StableBaselines3. Since the communica-
tion between controllers and simulators is not trivial, different frameworks have
been proposed in the literature. In this work we used Sinergym [20], which offers
a Python interface for EnergyPlus, fully compliant with the Gymnasium API,
the de facto standard for DRL.

3.3 Experimental Settings

The experimentation of this work is based on the 5ZoneAutoDXVAV building
available in Sinergym. It is a single-story building divided into 1 indoor and 4
outdoor zones, comprising an area of 463.6 m2, and it is equipped with a packaged
variable air volume HVAC system with dual setpoints. The building is simulated
on different weather conditions, randomly sampled on each training episode (see
[20] for details on weather data).

The agent interacts with the building environment on a hourly basis, receiv-
ing information from the current state of the building. The complete list of vari-
ables conforming the observation space is described in Table 3 of Appendix A.
We define a 5-dimensional discrete action space, where each action corresponds
to a particular combination of values for the heating and cooling setpoints of the
HVAC system. These values are shown in Table 1.

Table 1. Action space for the HVAC setpoints control.

Action index Heating and cooling setpoints (◦C)

0 [10, 40]

1 [18, 30]

2 [22, 40]

3 [15, 27]

4 [15, 23]

The reward function is expressed by (1). In this case, the comfort term
C(st, starget) is defined as the absolute value between current indoor temper-
ature and the comfort range, and therefore it will be 0 if thermal comfort is
satisfied. We considered a comfort range of [20, 23.5] for winter (October-May)
and [23, 26] for summer (June-September), based on ASHRAE recommendations

https://github.com/DLR-RM/stable-baselines3
https://github.com/ugr-sail/sinergym
https://gymnasium.farama.org/
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[1]. The parameter ω takes different values depending on the hour of the day to
give importance to thermal comfort only during working hours, being ω = 0.5
from 7AM to 6PM, and ω = 0 the for the rest of the day. The constants shown
in (1) were set to λP = 0.0001W and λC = 1◦ C.

Finally, the DRL algorithm employed was the PPO [43] implementation of
StableBaselines3. We trained the model for 30 episodes using the hyperparame-
ters shown in Appendix B. After training, the model was executed for 10 eval-
uation episodes for collecting samples of states and actions produced by the
agent. This dataset, composed of 87,600 samples, was used for training the XAI
methods.

3.4 Explainability Methods

Once the policy was trained and we collected data from evaluation episodes,
we included an extra XAI layer to interpret the controller behavior. We applied
several explainability methods in order to draw different conclusions from the
underlying control logic. In particular, we aim to answer the following three
questions regarding explainability of the DRL-based controller:

– Q1: How could we approximate the policy learned by the agent by some
simple if-else rules, in order to better understand its behavior?

– Q2: What are the main input features for the control, i.e., what are the most
relevant variables for the controller?

– Q3: How would the outputs of the agent change if the inputs changed (what-if
scenarios)?

It is worth noting that these questions complement each other, as each one
allows to understand the model from different angles. For example, answering
Q1 would improve interpretation from a human perspective, while Q2 and Q3
would be more appropriate to ensure reliability or compliance requirements.

In the following, we discuss the XAI methods applied in this work for answer-
ing such questions.

Q1: Training a Surrogate Model. Surrogate models are simple models
intended to explain a more complex model, typically a black-box one. They are
trained on the black-box model’s outputs in order to approximate and interpret
its predictions. The most used surrogates are linear and decision tree models,
since they are easy to understand by a human reader.

We used a decision tree [7] as surrogate model for approximating the policy
of the DRL algorithm. This question can be addressed as a multi-class classi-
fication problem, where each class corresponds to one of the 5 possible actions
available to the agent. We trained the model using data collected from the 10
evaluation episodes, with a 5-fold cross-validation strategy for selecting the max-
imum depth of the tree, using a grid search between 2 and 6. After training, the
model was pruned by aggregating terminal nodes with the same predicted action.
Scikit-learn [36] was employed for implementing and training the decision tree.

https://github.com/DLR-RM/stable-baselines3
https://scikit-learn.org/stable/index.html
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Q2: Shapley Values for Feature Importance. Another relevant aspect
for explainability is quantifying the importance of each input variable in the
trained policy, both for understanding the action selection process and for gain-
ing insights on the main aspects that drive the HVAC control.

We used Shapley values [44] for estimating the contribution of each input
variable in the model’s output. These values provide a theoretically robust man-
ner to distribute the importance among the features, by considering all possible
permutations of the inputs and averaging their marginal contributions. Addi-
tionally, Shapley values are additive, meaning that the sum of Shapley values
for a particular data sample is equal to the difference between model’s output
for that sample and the model average response.

The implementation from [25] was used to calculate Shapley values of the
DRL policy, treating its output as the probability distribution for selecting each
action. Then, we used these values for measuring feature contribution in two
flavors: (1) locally, by explaining individual data samples and (2) globally, by
aggregating Shapley values over the full dataset to extract the global feature
importance.

Q3: Counterfactual Examples. This approach involves the generation of syn-
thetic data samples that modify the output of the controller, i.e., counterfactual
examples. These examples allow us to analyse the boundaries of the decision
function by slightly changing input variables, thus creating what-if scenarios to
better understand the model. An interesting property of counterfactual examples
from an XAI point of view is that they can be translated into natural language,
in the form of “If input variable X were to change its value from x to x′, then
the controller would select action a′ instead of a”.

We used the implementation from [33] to generate these counterfactual sam-
ples. The generation process is as follows. First, given a query sample xi with
action ai = π(xi), we generate up to 1,000 candidates C(xi) by incrementally
changing input values (first one feature at a time, then two at a time, etc.)
until we obtain a different action a′

i = π(C(xi)) from the policy. Then, the best
candidate is selected as the counterfactual example considering diversity and
proximity to the query sample, as also discussed in [33].

We let only a subset of the input features from the observation to be var-
ied; namely weather conditions (temperature, relative humidity, wind speed and
direction and direct and diffuse solar radiation), temperature and relative humid-
ity inside the building and number of occupants. The rationale behind this deci-
sion is to only generate intuitive and meaningful counterfactual examples that
allow us to better understand the HVAC control.

4 Results

The results of our experimentation are discussed in the following subsections.
First, we present the results of the DRL algorithm for controlling the HVAC
system, and we compare its performance with a baseline controller in terms of
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cumulative reward, energy consumption and thermal comfort. Next, we present
the results of the XAI layer using the aforementioned methods for interpreting
the control policy.

4.1 DRL Results

We trained the PPO algorithm for 30 episodes and evaluated on 10 episodes. We
compared its performance using the default control of the building as a baseline,
which modifies the temperature setpoints of the HVAC system based only on
the hour and season. Then, we compared both methods using the cumulative
reward of Equation (1) over the entire episode, i.e., the aggregation of the total
power consumption and the thermal comfort violation. The results are shown in
Table 2.

Table 2. Evaluation of baseline and PPO controllers. Metrics are calculated on a full
episode, which represents one year of simulation. Results show the mean and standard
deviation over 10 evaluation episodes

Evaluation metric Baseline PPO

Cumulative reward −3532 ± 619 −2838± 554

Total power consumption (GW) 32.5± 8.0 34.4 ± 7.0

Mean comfort violation (◦C) 1.26 ± 0.12 0.97± 0.11

The DRL-based method outperformed the default controller in terms of
cumulative reward, with an improvement of 24%. Regarding thermal comfort,
PPO was capable of reducing the mean deviation from the comfort range from
1.26◦ C to 0.97◦ C, which represents a 30% improvement. However, PPO had a
trade-off in terms of energy efficiency, increasing the mean power consumption
by a 6%. Note that, by modifying the parameters of the reward function (1),
different results may be obtained.

4.2 Explainability Results

After training the policy, we incorporated an extra layer of XAI techniques to
interpret the black-box controller and address the questions on explainability
raised above.

Decision Tree. We trained the decision tree using data collected from the
evaluation episodes, using the same input features as the policy. This surrogate
model achieved a mean accuracy of 74.9% in predicting actions made by the
DRL agent.

The visualization of the trained decision tree is shown in Fig. 2. The final
model has a depth of 5 and 10 terminal nodes, representing the predicted action.
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We can see that only 5 features are considered in the decision path; namely
the month, indoor temperatures in current and previous hour, the diffuse solar
radiation and the HVAC electricity demand rate. It is also worth mentioning
that the surrogate model selects only 3 of the 5 actions (1, 2 and 4), which is in
line with the original policy where these actions are performed 15%, 14% and
59% of the timesteps respectively.

Feature Importance. The results of the calculation of the Shapley values are
summarized in Figs. 3 and 4. Local explanations are shown in Fig. 3 for four
individual samples. In the first case (3a), action 4 is selected with a probability
of 0.885, which is 0.291 greater than the baseline. We observe that the direct
solar radiation is the feature contributing the most towards selecting this action
(+0.17), while the number of occupants is subtracting 0.11, resulting in a neg-
ative contribution. By interpreting these local Shapley values we can conclude
that this sample corresponds to a warm day, and the controller is selecting a
cooling setpoint of 23◦ C to maintain indoor temperature in the comfort range.
In the second example (3a), action 1 is selected with a probability of 0.326,
being 0.183 greater than its baseline. The hour of the day and the number of
occupants are the most influential features in this case. The example 3c illus-
trates a sample where action 4 is selected with a similar probability (0.592) than
the baseline, since there are both positive and negative contributing variables.
Lastly, in example 3d action 1 is selected with a probability of 0.446 and having
a positive contribution from the number of occupants and month and hour of
the sample; while all other features are essentially ignored.

Global feature importance is shown in Fig. 4. We can see that the most
influential variables for the controller are the month, hour of the day, number
of occupants and the direct solar radiation. Additionally, these values also allow
us to compare how each action is dependent on different features. For example,
direct solar radiation has great impact on selecting a cooling setpoint of 23◦

C (action 4), while action 1 is mostly driven by the month and the number of
occupants.

Counterfactual Examples. Three examples of these counterfactual explana-
tions are shown in Listing 1. In example A, a modification of both the indoor
temperature and the number of occupants leads to changing from action [15,
23] to action [18, 30]. The second case (example B) shows that the presence of
direct solar radiation also modifies the selected setpoints, moving from [10, 40]
to [18, 30]. Lastly, example C shows that a change in weather conditions such
as the direct solar radiation and the wind direction switches the setpoints from
[18, 30] to [10, 40].

5 Discussion

The above results show how different XAI methods can be adapted to interpret
and understand the policy of DRL-based controllers. By combining different
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Fig. 3. Shapley values for four individual data samples. f(x) represents the probability
given by the policy to the selected action, while E[f(x)] is the average probability of
that action over the full dataset.

Listing 1. Counterfactual examples. For each query sample, a set of counterfactual
candidates are generated. We select and report the one with highest diversity and
proximity to the original, as discussed in [33].

– Example A: If variable temp in changed its value from 20 to 16 and variable
occupant count changed its value from 0 to 10, then action [18, 30] would have
been selected instead of [15, 23].

– Example B: If variable direct solar radiation changed its value from 0 to 887,
then action [18, 30] would have been selected instead of [10, 40].

– Example C: If variable direct solar radiation changed its value from 792 to
311 and variable wind direction changed its value from 230 to 27, then action
[10, 40] would have been selected instead of [18, 30].

post-hoc techniques we can reach a better comprehension of the underlying con-
trol logic, as each method may provide different answers regarding explainability.

It is worth mentioning that each XAI method has its own advantages and
limitations. Using a decision tree as surrogate model provided an accurate and
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Fig. 4. Shapley values for global feature importance.

simple approximation of the policy (Fig. 2), however, since decision trees par-
tition the input space one feature at a time, they may be not well-suited for
more complex policies or control settings. In this sense Shapley values are a con-
venient method for explaining feature importance in HVAC control, providing
robust theoretical guarantees for both local and global explanations. In our case
study, the main features affecting the control policy are the hour and month
of the day, building occupation and the direct solar radiation (Fig. 4). These
two methods are complemented with the generation of counterfactual examples
(Listing 1), which show how the variation of one or two variables may modify the
setpoint selection. This kind of examples are useful for assessing the performance
of the controller under different conditions or for ensuring safety requirements.

The results obtained by the DRL-based controller (Table 2) show an improve-
ment of 30% with respect to the baseline controller in terms of thermal comfort,
but at the cost of 6% higher energy consumption. In HVAC control problems
there is a trade-off between these two objectives [34], so properly designing and
tuning the reward function has a major impact on final performance. Addition-
ally, in this case study keeping the temperature setpoints fixed provides good
results, which is not the case in more complex scenarios [2,47,48,56]. Our pro-
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posed methodology (Fig. 1) is intended to explain any DRL-based controller and
therefore it could be easily adapted to other building control problems, since it is
agnostic to the reward function, algorithm or observation space to be used. How-
ever, the results and insights obtained in this work are specific to the problem
setting we considered, and they may change for other use cases.

As final remarks, we would like to highlight the ethical concerns of having
DRL-based controllers in real buildings without properly assessing or explain-
ing their behavior. Despite their high performance in a wide variety of tasks,
the black-box nature of these algorithms may be problematic in scenarios where
their operation can affect people, as it is the case of HVAC control problems.
Therefore, incorporating XAI methods in the development of DRL algorithms
is crucial to find reliable and transparent control solutions for stakeholders. We
believe an XAI layer for interpreting DRL-based controllers, like the one pre-
sented in this work, could be included in both the development, training and
evaluation pipelines of these methods.

6 Conclusions

In this paper we presented a methodology for explaining DRL-based methods
for controlling HVAC systems using several XAI techniques. We trained a surro-
gate model for approximating the original policy with a simple decision tree, we
calculated Shapley values of input feature for measuring their importance both
locally and globally, and we generated counterfactual examples for evaluating
what-if scenarios where the action selection varies. Our results show that com-
bining different XAI methods improves interpretability and allows for assessing
the reliability of the controller.

Future work should be oriented towards further exploring explainability in
DRL-based methods for building control, including other scenarios like demand
response [48] or microgrid coordination [45]. We will also intend to include other
XAI methods, such as LIME [40], in order to address explainability from different
perspectives. Finally, we plan to explore intrinsically explainable DRL-based
methods in order to provide interpretable control policies by design.
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Appendix

A. Observation space description

Table 3. Observation space used for training the DRL agent. It is composed of 20
variables normalized into range [0, 1] using min-max strategy.

Variable name Description

month cos Cosine of the current month

month sin Sine of the current month

is weekend Flag indicating weekday or weekend

hour cos Cosine of the current hour

hour sin Sin of the current hour

temp out Outdoor temperature

temp out previous hour Outdoor temperature in the previous hour

relative humidity out Outdoor relative humidity

wind speed Wind speed

wind direction Wind direction

diffuse solar radiation Diffuse solar radiation

direct solar radiation Direct solar radiation

heating setpoint Current value of the heating setpoint

cooling setpoint Current value of the cooling setpoint

temp in Current indoor temperature of the building

temp in previous hour Indoor temperature of the building in the previous hour

relative humidity in Indoor relative humidity inside the building

thermal comfort ppd PPD thermal comfort index

occupant count Current number of occupants of the building

hvac demand rate Electricity demand rate of the HVAC system

B. PPO hyperparameters

The trained PPO model has the default architecture of the ActorCriticPolicy
class of StableBaselines3. This architecture is similar for policy and value nets,
and consists of a feature extractor followed by 2 fully-connected hidden layers
with 64 units per layer. The activation function is tanh.

The remaining hyperparameters are listed in Table 4.
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Table 4. Hyperparameters for training PPO model

Hyperparameter Value

learning rate 0.0003

n steps 2048

batch size 64

n epochs 10

gamma 0.99

gae lambda 0.95

clip range 0.2

ent coef 0

vf coef 0.5

max grad norm 0.5
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26. Madhikermi, M., Malhi, A.K., Främling, K.: Explainable artificial intelligence
based heat recycler fault detection in air handling unit. In: Calvaresi, D., Naj-
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Abstract. Missing data are quite common in real scenarios when using
Artificial Intelligence (AI) systems for decision-making with tabular data
and effectively handling them poses a significant challenge for such sys-
tems. While some machine learning models used by AI systems can
tackle this problem, the existing literature lacks post-hoc explainabil-
ity approaches able to deal with predictors that encounter missing data.
In this paper, we extend a widely used local model-agnostic post-hoc
explanation approach that enables explainability in the presence of miss-
ing values by incorporating state-of-the-art imputation methods within
the explanation process. Since our proposal returns explanations in the
form of feature importance, the user will be aware also of the importance
of a missing value in a given record for a particular prediction. Extensive
experiments show the effectiveness of the proposed method with respect
to some baseline solutions relying on traditional data imputation.

Keywords: Explainable AI · Local Post-hoc Explanation ·
Decision-Making · Missing Values · Missing Data · Data Imputation

1 Introduction

Missing data is a pervasive problem across various domains that arises when some
values in a dataset, typically tabular datasets, are unavailable due to factors such
as measurement errors, incomplete data collection, or the intrinsic nature of the
data [7,14]. The presence of missing values, and therefore the absence of some
information, can significantly affect the performance of Machine Learning (ML)
models used by Artificial Intelligence (AI) systems for decision-making in these
contexts, often resulting in biased outcomes and inferior accuracy [13]. In par-
ticular, issues related to missing values are particularly relevant in applications
where accurate data is critical for decision-making, such as medical diagnosis,
risk assessment, and credit scoring [17,38,46]. Hence, addressing missing values
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is crucial to improve the reliability and usefulness of ML models used by AI sys-
tems in real-world scenarios. In the last years, researchers realized various data
preprocessing methods to impute missing values [12,29], and designed predictive
ML models which can deal by design with datasets affected by missing values
such as XGBoost [8], LightGBM [26], and CatBoost [41].

Besides missing values, another issue against which researchers are fight-
ing nowadays is the eXplainability of AI systems (XAI), particularly when ML
techniques are employed to model the logic of the AI system in high-stakes
decision fields [20,28]. Indeed, some of the most effective ML predictors are con-
sidered “black-box” models [20,37] due to their complexity, which causes the
non-interpretability of the decision process [28,34]. However, explainability is a
fundamental requirement in sensitive domains where the AI system is meant to
offer support to experts instead of making decisions for them [15,33].

Even though the current research in XAI is flourishing [1,5,30,50], there is an
apparent research vacuum at the intersection between these two issues in AI and
ML, i.e., XAI approaches able to deal with missing values. To understand a real
practical scenario in which it may be important to have an explanation method
also working in the presence of missing values, we can think of a predictive
model in the healthcare context that tries to assess the severity of a disease or
to recommend a treatment plan. Indeed, models in such contexts are typically
trained and applied on incomplete patient data due to missing values [17,38,
46]. For instance, the record describing a patient can be incomplete because
they cannot undergo particular medical examinations. In such cases, the AI
recommendation should be questioned and inspected thoroughly to check the
correctness of the decision process. In addition, even if the model’s performance
may appear promising, the model might be biased towards a particular group of
patients due to missing data and thus make incorrect predictions and recommend
wrong treatments. Consequently, an explainer working in this context is needed
to verify the decision logic learned and applied by the AI system.

Since the literature shows a lack of efforts toward the design of XAI meth-
ods able to handle missing values, we extend one of the most widely used and
applied post-hoc explanation approaches. In this paper, we propose limemv for
Local Interpretable Model-Agnostic Explanations with Missing Values. limemv
extends lime [42] by removing the need for imputing missing data before explain-
ing the record under analysis. Indeed, limemv handle missing values within the
explanation process by employing state-of-the-art imputation methods. Specif-
ically, (i) we replace the synthetic data generation performed by lime with a
neighborhood generation strategy creating synthetic records with missing data,
and (ii) we substitute the linear model adopted by lime with a surrogate model
able to handle missing values. As a result, limemv is able to return an expla-
nation in the form of feature importance for a record with missing values, for a
predictive model working on missing values, and for considering a dataset with
missing values. We highlight that our proposal for a missing-value-compliant
explanation method can be easily adapted to extend and improve other model-
agnostic explainers like lore [19], or shap [31]. However, we restrict our investi-
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gation and the enabling of the native treatment of missing values into the expla-
nation extraction process of lime due to the easiness of the integration. Our
experiments on various datasets show that limemv explanations are relatively
similar to those of lime and that it approximates well the decisions taken by the
black-box classifier without impacting the fidelity in mimicking the black-box.

The rest of this paper is organized as follows. Section 2 describes the state-
of-the-art related to missing values and XAI. Section 3 formalizes the problem
treated and recalls basic notions for understanding our proposal that is defined
in Sect. 4. Section 5 presents experimental results. Conclusions, limitations and
future works are discussed in Sect. 6.

2 Related Works

In this section, we provide the reader with a brief review of XAI approaches,
taking into account missing values and lime, that is at the basis of our proposal.

In [2] are presented the challenges of imputation in XAI methods showing
different settings where AI models with imputation can be problematic, as opti-
mizing for explainability with post-hoc models while simultaneously optimizing
for performance via imputation may lead to unsafe results. Our proposal can be
adapted to answer many issues raised in this paper. In [25] is confirmed that the
presence of missing values is among the common issues faced by data scientists
working with explainability. However, despite the presence of many researchers
both in the fields of missing values [7,14] and XAI [15,20,28,33,34] there is a clear
lack of effort at the intersection of these two fields. To the best of our knowledge,
we can refer to decision trees [49] as interpretable-by-design approaches dealing
with missing data. Indeed, during training, if an attribute a has missing values
in some of the training instances associated with a node, a way to measure the
gain in purity for a is to exclude instances with missing values of the records of a
in the counting of instances associated with every child node generated for every
possible outcome. Further, suppose a is chosen as the attribute test condition at
a node. In that case, training instances with missing values of a can be propa-
gated to the child nodes by distributing the records to every child according to
the probability that the missing attribute has a particular value. The same can
be done at query time. Obviously, such approaches, despite being interpretable,
are only sometimes effective for solving complex decision problems. Another pos-
sibility for decision trees is the CHAID approach [24] that treats missing values
as separate categorical values. Also, the BEST approach [4] selects a certain fea-
ture to split the dataset only when in the current partition there are no missing
values. Furthermore, CART trees [47] employ recursive partitioning based on
feature thresholds to split data into homogeneous subsets. Recently, in [22] has
been presented a procedure for data imputation based on different data type
values and their association constraints that not only imputes the missing val-
ues but also generates human-readable explanations describing the significance
of attributes used for every imputation.

Again to the best of our knowledge, there are no post-hoc local explanation
approaches able to handle natively missing values. Consequently, we decided to
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extend lime [42], the most well-known model-agnostic explainer that returns
local explanations as feature importance vectors. Further details about lime
are presented in Sect. 3. Although lime is effective and straightforward, it has
several weak points. A possible downside is the required transformation of any
data into a binary format claimed to be human-interpretable. Another aspect
worth highlighting is that the random perturbation method results in shifts in
data and instability in explanations. Indeed, for the same record and prediction,
lime can generate different explanations over several iterations [51]. This lack
of stability is among the main weaknesses of an interpretable model, especially
in critical domains [51]. Lastly, in [16] is shown that additive explanations like
those returned by lime cannot be trusted in the presence of noisy interactions
introduced in the reference set used to extract the explanations.

Over recent years, numerous researchers have analyzed lime limitations and
proposed several subsequent works extending or improving it. Most of the mod-
ifications have been in selecting relevant data for training the local interpretable
model. For instance, klime [21] runs the K-Means clustering algorithm to par-
tition the training data and then fit local models within each cluster instead
of perturbation-based data generation around an instance being explained. A
weakness of klime is that it is non-deterministic, as the default implementation
of K-Means picks initial centroids randomly. In [23] is proposed lime-sup that
approximates the original lime better than klime by using supervised parti-
tioning. Furthermore, kl-lime [40] adopts the Kullback-Leibler divergence to
explain Bayesian predictive models. Within this constraint, both the original
task and the explanation model can be arbitrarily changed without losing the
theoretical information interpretation of the projection for finding the expla-
nation model. alime [45] presents modifications by employing an autoencoder
as a better weighting function for the local surrogate models. In qlime [6],
the authors consider nonlinear relationships using a quadratic approximation.
Another approach proposed in [44] utilizes a Conditional Tabular Generative
Adversarial Network (CTGAN) to generate more realistic synthetic data for
querying the model to be explained. Theoretically, GAN-like methods can learn
possible dependencies. However, as empirically demonstrated in [9], these rela-
tionships are not directly represented, and there is no guarantee that they are
followed in the data generation process. In [51] is proposed dlime, a Determinis-
tic Local Interpretable Model-Agnostic Explanations. In dlime, random pertur-
bations are replaced with hierarchical clustering to group the data. After that,
a kNN is used to select the cluster where the instance to be explained belongs.
The authors showed that dlime is superior to lime with respect to three medi-
cal datasets. We highlight that, besides this deterministic enhancement, clusters
may have a few points affecting the fidelity of explanations. In [52] is presented a
Bayesian local surrogate model called bay-lime, which exploits prior knowledge
and Bayesian reasoning to improve both the consistency in repeated explanations
of a single prediction and the robustness to kernel settings. Finally, in [10] is pre-
sented calime, a causal-aware version of lime that discover causal relationships
and exploits them for the synthetic neighborhood generation.
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Although a considerable number of solutions proposed to overcome the limi-
tations of lime, no state-of-the-art variants allow to handle missing values. This
research vacuum motivates our interest in developing such a methodology.

3 Setting the Stage

In this paper, we address the problem of designing a XAI method able to solve
the black-box outcome explanation problem [20] in the presence of incomplete
data. A black-box classifier is defined as a function b : X (m) → Y that maps
data instances x = {(a1, v1), . . . , (am, vm)} from a feature space X (m) with m
input features (where ai is the attribute name and vi is the corresponding value)
to a decision y in a target space Y of size l = |Y|, i.e., y can assume one of the l
different labels (l = 2 is binary classification, l > 2 is multi-class classification).
We write b(x) = y to denote the decision y taken by b, and b(X) = Y as a
shorthand for {b(x) | x ∈ X} = Y . A classifier b is black-box when its internals are
unknown to the observer or they are known but uninterpretable by humans. If b
is a probabilistic classifier, we denote with bp(x) the vector of probabilities for the
different labels. Hence, b(x) = y is the label with the highest probability among
the l values in bp(x). In this paper, we assume that (i) some values vi of the
records used to train the classifier b can be missing, i.e., vi = ∗, (ii) b can return a
decision y = b(x) even when values vi = ∗ in x are missing. Let A = {a1, . . . , am}
be the set of all the features. We name M(x) = {aj |∀j = 1, . . . m ∧ vj = ∗} the
set of features with a missing value for a record x, and ¬M(x) = A − M(x) the
set of features for which values are not missing. We write M(X), respectively
¬M(X), as a shorthand to indicate the set of features for which at least a record
has a missing value in X. Thus, we can model the input domain of a predictive
model b as X (m) = (A1 ∪ {∗}) × · · · × (Am ∪ {∗}) where Ai identifies the set of
known values for attribute ai. We complete our formalism using |X| to indicate
the size of a dataset X, and Xj to indicate the jth feature, i.e., column, of X.

Given a black-box b and an instance x classified by b, i.e., b(x) = y, the black-
box outcome explanation problem aims at providing an explanation e belonging to
a human-interpretable domain. According to the domain, in our work, we focus
on feature importance modeling the explanation as a vector e = {e1, e2, . . . , em},
in which the value ei ∈ e is the importance of the ith feature for the decision made
by b(x). To understand each feature’s contribution, the sign and the magnitude of
ei are considered. If ei < 0, the feature ai contributes negatively to the outcome
y; otherwise, the feature ai contributes positively. The magnitude represents how
significant the feature’s contribution is to the prediction.

In this context, our aim is to design an explanation method that can return
a valid and meaningful explanation e even in the presence of missing values in
x and/or X without requiring any a priori imputation.

We keep this paper self-contained by summarizing in the following the key
concepts necessary to comprehend our proposal.
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3.1 Missing Values Imputation

In statistics [43], the mechanisms of missing values are categorized into three
types depending on the relationship between M(X) and ¬M(X).

First, Missing Completely At Random (MCAR) if M(X) is independent of
A, i.e., when the probability of a record having a missing value for an attribute
does not depend on either the known values or the missing data itself.

Second, Missing At Random (MAR) if M(X) depends only on ¬M(X),
i.e., when the probability of a record having a missing value for an attribute
may depend on the value of other attributes without missing values. In other
words, MAR occurs when the distribution of a record having missing values for
an attribute depends on the observed data. Considering missing data as MAR
instead of MCAR is a safer assumption since any analysis valid for MAR data,
e.g., multiple imputations, is correct also if the data is MCAR [39].

Finally, Missing Not At Random (MNAR) if M(X) depends on M(X), i.e.,
MNAR occurs when the probability of a record having a missing value for an
attribute may depend on the value of that attribute. MNAR data is also called
“non-ignorable” since treating it with techniques designed to work on MCAR
or MAR, like imputation, will produce misleading results. A peculiar case of
MNAR is when data is structurally missing, i.e., data that is missing for a
logical reason. A typical example can be a survey where some questions are
only asked participants who answered in a certain way to previous questions.
In this case, the mechanism is easy to analyze, while MNAR data can pose
more of a challenge since the logic behind the missing data might be difficult to
understand. We conduct experiments with the MCAR mechanism only, as most
researchers are reported doing in the survey in [29]. The extensive adoption of
the MCAR approach underlines its credibility and efficacy in addressing missing
data, making it a compelling and well-founded choice for our investigations. In
future works, we intend to explore also other settings such as MAR or MNAR.

In the following, we summarize two missing values imputation approaches
that we adopted as competitors and as a component of our proposal.

K-Nearest Neighbours. k-Nearest Neighbours (kNN) is a supervised ML
method widely employed with good results for imputing missing values [29].
KNN identifies the nearest neighbors of an instance based on a distance func-
tion, e.g., the Euclidean distance. The distance computation is performed w.r.t.
the features in ¬M(x). A majority vote is then conducted among the top k
neighbors to determine the most appropriate value for replacing the missing
one.

MICE. Multivariate Imputation by Chained Equations (MICE) [3] is a multiple
imputation method [36] that can be used whenever missing data is assumed to
be MAR or MCAR. MICE works by imputing values in multiple copies of the
dataset and then pooling together the results. On each copy of the available data,
MICE performs an iterative process in which, at each iteration, a feature in the
dataset is imputed using the knowledge of the other attributes. In particular, at
each iteration, the first step replaces the missing values in M(X) with placeholder
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Algorithm 1: lime(x, b, X, k, N)
Input : x - instance to explain, b - classifier, X - reference dataset,

k - nbr of features N - nbr of samples
Output: e - features importance

1 Z ← ∅, Z′ ← ∅, W ← ∅, S ← ∅; // init. empty synth data, weights, ad stats

2 for j ∈ [1, m] do
3 S ← S ∪ {(μ(Xj), σ(Xj))}; // compute statistics

4 for i ∈ [1, . . . , N ] do
5 z ← sampling(x, S); // random permutation

6 z′ ← {(aj , 1(xvj = zvj ))|j = 1, . . . , m}; // features changed

7 Z ← Z ∪ {z}; Z′ ← Z′ ∪ {z′}; // add synthetic instance

8 W ← W ∪ {exp(−π(x,z)2

σ2 )}; // add weights

9 e ← solve Lasso(Z′, bp(Z), W, k); // get coefficients

10 return e;

values that do not consider the other features, e.g., the mean of the available
data for that attribute or random values. Then, let X ′ ⊂ X, for each attribute
a ∈ M(X ′), MICE imputes it with a linear regression model trained on another
slice of the dataset X ′′ ⊂ X such that a ∈ ¬M(X ′′). An iteration is completed
when all the features are processed. This process is repeated up to a user-specified
number of times or until convergence is reached.

3.2 LIME

A widely adopted, local, model-agnostic, post-hoc explanation method is lime
(Local Interpretable Model-Agnostic Explanations) [42], which acts as a foun-
dation for our proposal. The main idea of lime is that the explanation can be
derived locally from records generated randomly in the synthetic neighborhood
Z of the instance x that has to be explained.

Algorithm 1 illustrates the pseudo-code of lime. In line 1, two empty sets
Z and Z ′ are initialized. Z will be populated with the synthetic data sampled
around the instance x represented in the real domain, while Z ′ will contain a
representation of the synthetic records in Z in a binary version signaling the
features that have been changed, i.e., given z′ ∈ Z ′ and z ∈ Z, the value of
the jth features in z′ is equal to one (z′

vj
= 1) if zvj

= xvj
, z′

vj
= 0 otherwise.

The vector W will contain the weights associated with the records Z generated,
expressed in terms of their distance from x. S will contain the statistics of every
feature j with j = {1, . . . , m} where m is the number of features. Indeed, the
loop in lines 2–3 populates S with the mean μ and standard deviation σ of every
feature Xj . Subsequently, lime runs N times a loop (lines 4–8), populating
Z,Z ′ and W at each iteration with a new synthetic instance. lime randomly
samples N instances similar to x by drawing values according to the statistics
S (line 5). The function 1(condition) in line 6 returns one when the condition
is verified, zero otherwise. It highlights how lime creates the binary version Z ′

of the synthetic records Z. Then, lime weights proximity of the records z′ with
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x w.r.t. a certain distance function π and store the result in W (line 8). Finally,
lime adopts the perturbed sample of instances Z to fed to the black-box b and
obtain the classification probabilities bp(Z) with respect to the class b(x) = y.
The binary synthetic instances Z ′ with the weights W are used to train a linear
regressor with Lasso regularization using the classification probabilities bp(Z) as
the target variable and considering only the top k most essential features (line
9). The k coefficients of the linear regressor are returned as explanation e.

4 Local Explainability with Missing Values

We present limemv (Local Interpretable Model-Agnostic Explanations with
Missing Values). limemv extends lime [42] with the ability to handle incom-
plete data during the explanation process. This eliminates the need of imputing
missing values both on the training dataset and on the records for which the
explanation is required. The presence of the missing values in X impacts the
calculus of the statistics S used to generate the synthetic neighborhood (line
3, Algorithm 1), while missing values in the record x to be explained impacts
the sampling function generating the synthetic records z (line 5, Algorithm 1).
limemv is able to deal with both of these issues.

Before outlining the details of limemv, we aim at clarifying when this app-
roach is crucial. Given a dataset X with missing values, a user can decide (i) to
adopt a model b which is not able to handle missing values, such as a SVM or
a Neural Network, (ii) to use a model b able to handle missing values, such as
XGBoost and LightGBM. In the first case, in order to train b, the user needs to
preprocess X by applying a data imputation approach. As a consequence, given
a test record x possibly having missing values, the same imputation approach
should be applied on x before querying b to obtain the decision y = b(x). Thus,
if an explanation e is desired for the decision y = b(x), the classic lime approach
can be used. Instead, in the second case, the dataset X can be directly used to
train b, and any test record x can be passed to b without requiring any data
imputation. However, if an explanation e is desired, for the decision y = b(x),
the classic lime approach cannot be used, as it cannot work in the presence of
missing data. A naive solution consists in applying an imputation approach on X
and x before passing them to lime (see Algorithm 1). However, in this case, the
explainer is applied to a dataset and on a record that differ from those adopted
by the decision model b. On the other hand, with limemv, the user does not
need to apply any imputation approach, and it can be used directly to obtain
the explanation e for the decision y = b(x) in the presence of missing data.

The pseudo-code of limemv is reported on Algorithm 2, with the main differ-
ences from lime highlighted in blue. In the following, we detail such differences.
Also, Fig. 1 visualizes with an example the various steps of limemv.

4.1 Input Parameters

First, we can notice that (i) limemv does not require the user to specify the
number of important features k as these are identified by design by the surrogate
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Algorithm 2: limemv(x, b, X, k, N)
Input : x - instance to explain, b - classifier, X - reference dataset,

N - nbr of samples, ψ - imputation function
Output: e - features importance

1 Z ← ∅, W ← ∅, S ← ∅; // init. empty synth data, weights, ad stats

2 for j ∈ [1, m] do
3 X ′

j ← {(ai, vi)|∀i = 1, . . . , |X| ∧ vi �= ∗}; // consider only non missing values

4 S ← S ∪ {(μ(X ′
j), σ(X ′

j), 1−|X ′
j |/|X|)}; // compute statistics

5 for i ∈ [1, . . . , N ] do
6 z ← sampling imputation(x, ψX , S); // random permutation with imputation

7 Z ← Z ∪ {z}; // add synthetic instance

8 W ← W ∪ {exp(−π′(x,z)2

σ2 )}; // add weights

9 T ← train tree(Z, bp(Z), W )); // train regressor tree

10 e ← tree feature imp(x, T ); // get coefficients

11 return e;

model adopted; (ii) it requires as input an imputation function ψ, i.e., a function
that given a dataset X fills the missing values using a certain strategy. Examples
of ψ functions are kNN [29] and MICE [3]. Other naive approaches may consist
in using the mean (or the mode) of each feature to fill in missing values.

4.2 Dataset Statistics

The next difference is in the loop computing the statistics (lines 3–4). Indeed,
rather than of calculating the mean and standard deviations for the complete
set of features Xj , it calculates them on a subset X ′

j ⊆ Xj such that Xj only
contains not missing values (as formalized in line 3). This setting solves the
possible presence of the missing values in X. Another difference w.r.t. lime is
an addition to the set of computed statistics, i.e., the information about the
distribution of missing values in each attribute. Since a priori we need to assume
MCAR data, this boils down to the relative number of missing values for each
feature, i.e., 1−|X ′

j |/|X|. However, when dealing with MAR data, information
about the relationships with other features can be exploited if available. Figure 1
shows an example of S content resulting from a dataset.

4.3 Synthetic Neighborhood Generation

The knowledge stored in S is then applied when generating the synthetic neigh-
borhood in the subsequent loop (lines 5–8) that is responsible for the synthetic
neighborhood generation, where the sampling function has been changed w.r.t.
lime (line 6, Algorithm 2) to fix the possible presence of missing values in the
record x. The problem we face is relative to how to sample values around a
coordinate that is absent from x. A naive strategy consists in generating the N
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Fig. 1. limemv takes as input the reference dataset X, the instance to explain x
and the black-box b, and returns as output a feature importance explanation e. The
workflows highlights the statistics S calculated considering missing values and shows
the synthetic neighborhood Z before and after the imputation with ψ. Finally, e is
returned as feature importance extracted from a local regressor tree using as target
variable the probability bp(x) for the decision y = b(x).

synthetic neighbors Z only considering the features in ¬M(x). This would prac-
tically remove those attributes from the explanation, thus preventing the user
from understanding the impact of features with missing values. On the other
hand, the sampling imputation adopted by limemv works as follows. The val-
ues for the features in ¬M(x) are drawn as in the classic approach exploiting the
means and standard deviations in S, while for the features in M(x) the values
are set as missing ∗. After that, an imputation function ψ is used to fill a number
of missing values in z proportionate with the ratio stored in S, i.e., 1− |Xj |/|X|
for feature j. We implemented ψ as kNN [29] and MICE [3]. In other words,
with limemv we obtain a set Z of synthetic records where the features without
missing values in ¬M(x) are randomly sampled around the observed values or
left the same, while some of the records of some of the features with missing
values in M(x) are filled w.r.t. the records in X, i.e., with plausible values for
non missing features. Hence, in this way, the imputation is performed exclusively
at explanation time and to generate a plausible synthetic dataset in the prox-
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imity of x and respect the missing values in X. Figure 1 shows an example of
a synthetic neighborhood Z before and after the application of the imputation
function ψ. We notice that the number of missing values per feature remains
coherent with those in the observed dataset X and captured by S.

Like in lime, the importance of the synthetic records in Z is stored in W
and it is evaluated w.r.t. their proximity with x. Differently from lime, since the
synthetic records z have missing values, we employ a function (π′) calculating
the Euclidean distances in the presence of missing values by ignoring features
with a missing value in both x and z and scaling the result as m divided by the
features without missing values [11], i.e., |(¬M(x)) ∩ (¬M(z))|.

4.4 Local Interpretable Surrogate Model

At this stage, differently from lime, the synthetic neighborhood Z contains
missing values. As a consequence, the linear Lasso regression model cannot be
used as it is not capable of handling training sets containing missing values.
Thus, inspired by [19], we decided to employ a decision tree T that is able to
deal with missing data by design [49] (line 9). As a side effect, in limemv there is
no need for the user to specify the number of important features k for which the
explanation is required as the explanation e is going to be formed only by the
features appearing in the branch of T responsible for the decision on x. However,
differently from lime instead of training the surrogate tree regressor T on Z ′,
i.e., the binary version of Z modeling the changes w.r.t. x, like in [19], we train
the surrogate T directly on Z, permitting in this way to understand in terms
of values, and not in terms of presence/absence, the dependencies between the
features Z and the prediction probability of the target label bp(Z).

4.5 Explanation with Missing Values

Finally, limemv extracts the explanation e of x in terms of feature importance
with the function tree feature imp as follows. First, as the magnitude of the
feature importance ej , it is used the normalized total reduction of the impurity
criterion brought by the jth feature, i.e., the Gini importance1 [49]. Second, as
the sign of the feature importance ej , limemv adopts the sign of the difference
between the average value on the qth node in the tree (with q = 0 indicating the
root) and the subsequent one w.r.t. the path from the root to the leaf followed
on T for the prediction of the record x, i.e., sign(Tq(x) − Tq+1(x)), where Tq(x)
indicates the average value on the qth node T for the prediction of x. Thus,
each feature j receives a score that depends on the decision path followed on x.
We should note that, while considering ej could be reasonable, it requires more
investigation and might also be of interest outside the missing data domain.

For example, suppose that a certain local surrogate tree T for the record x
in the root separates the data using the attribute aj =age. If the normalized

1 The Gini importance could be biased regarding cardinality as pointed out in [48]
but its effect is mitigated from the normalization.
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Gini importance of aj is 0.4, and, for x, T0(x) − T1(x) < 0, than, we will have
ej = −0.4, meaning that age has a negative contribution of 0.4 in the decision
taken by b on x. We underline that, according to our definition, the value of age
for x might also be unspecified in this setting. However, we still have access to
its local importance for the decision y = b(x).

5 Experiments

We report here the experiments carried out to validate limemv2. We present
the evaluation measures adopted, the datasets used, the experimental setup,
and the explainers selected as baselines. Then, we demonstrate that limemv
outperforms lime used in pipeline with standard imputation approaches. Since
it is not generally possible to access the ground truth for explanations [18], we
decided to adopt a controlled experiment to check the validity of the explanations
returned by limemv and by the baseline competitors to judge their effectiveness.

In particular, we adopt datasets without missing data in which we insert
missing values in a controlled way. Formally, let X be the original dataset, and
X̃ the same dataset where some records are modified by inserting missing values
for certain features according to a procedure detailed in the following sections.
Let b be the black-box able to deal with missing trained on X and b̃ the same
black-box trained on X̃. Also, let x be a record to predict and explain and x̃ the
same record but with some missing values. Given an explanation method expl
that is implemented in the experiments by limemv or by one of the baselines, we
name e and ẽ the feature importance explanations returned by expl(x, b,X) and
expl(x̃, b̃, X̃), respectively. Then, by comparing sets of e and ẽ, i.e., the expla-
nations obtained for records with and without missing values, we can establish
the impact of the treatment of the missing values in the explanation process:
the lower the discrepancy between the explanations, the less impactful is the
treatment of the missing values made by the explainer.

5.1 Evaluation Measures and Explanations Normalization

In order to compare explanations expressed as feature importance, we normalize
the magnitude ei of the values present in each explanation e. Given an explana-
tion e, we aim at guaranteeing that the following property holds

∑m
j=1 |ej | = 1.

Thus, we normalize the value ej obtaining the normalized value e′
i as

e′
i = ei/

m∑

j=1

|ej |.

We underline that this normalization is useful not only to compare explanations,
but also to make the explanations more intuitive for human users. In the fol-
lowing, we assume that all the explanations returned by the different explainers
tested are normalized as described in this section.
2 The implementation is available here: https://github.com/marti5ini/LIMEMV..

https://github.com/marti5ini/LIMEMV.
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Table 1. Datasets statistics and classifiers accuracy. Specifically, we present the number
of samples of each dataset (n), the number of features (m), the number of labels that
can assume the class (l), the number of training records for the black-box (Xb) and
the number of records for which we seek predictions (Xt). Additionally, we report the
accuracy of the black-box without missing values (b) and with missing values (b̃) across
various levels of missingness (p).

n m l |Xb| |Xt| b b̃

p = 10 p = 20 p = 30 p = 40 p = 50

adult 32561 13 2 2600 50 .88 .87 ± .01 .87 ± .01 .70 ± .01 .87 ± .01 .87 ± .01

compas 6907 11 2 1381 50 .81 .79 ± .01 .79 ± .02 .80 ± .01 .79 ± .01 .79 ± .02

diabetes 768 8 2 154 50 .73 .73 ± .02 .70 ± .03 .71 ± .04 .69 ± .02 .70 ± .04

fico 10459 22 2 1822 50 .67 .70 ± .01 .70 ± .00 .70 ± .00 .70 ± .01 .69 ± .01

german 1000 20 2 200 50 .83 .79 ± .02 .77 ± .03 .77 ± .02 .77 ± .04 .76 ± .02

iris 150 4 3 30 30 1.0 .96 ± .03 .99 ± .02 .95 ± .08 .98 ± .03 .96 ± .04

titanic 715 4 2 143 50 .78 .77 ± .02 .78 ± .02 .76 ± .02 .76 ± .02 .76 ± .02

Given a couple of normalized explanations with and without missing values e
and ẽ, we adopted the Cosine Similarity (CS) [49] and the Kendall Tau (KT) [27]
to measure their similarity. The CS ranges in [−1, 1], the closer to one the better
it is. In addition, inspired by [16,32], we measure the discrepancy between two
explanations by calculating the Absolute Deviation (AD) as feature-wise and
record-wise means of the vector of differences δ = {|e1 − ẽ1|, . . . , |em − ẽm|}. The
AD ranges in [0,+∞], the closer to zero the better it is. In particular, we group
the features to analyze the differences between the features contained in M(X̃)
versus those contained in ¬M(X̃). We use ADW to indicate the AD for features
W ith missing values, and ADO for the AD of features with Out missing values.

Furthermore, in line with the literature in XAI [5,20], we measure the Fidelity
(FI) of the local surrogate models in approximating the behavior of the black-
box as the difference between the predicted probability of the black-box for the
decision, i.e., bp(x), and the prediction of the surrogate, i.e., T . We measure the
FI as 1 − |bp(x) − T (x)| such that it is in [0, 1], the closer to one the better it is.

Finally, we also report the Explanation Time (ET) expressed in seconds.

5.2 Datasets and Experimental Setting

We experimented on seven benchmarking datasets from UCI Machine Learn-
ing Repository and Kaggle3, namely iris, titanic, adult, german, diabetes,
compas, and fico, which belong to diverse yet critical real-world applications.
These datasets have very different properties in terms of number of records and
features and type of features, i.e., their attributes are numeric, categorical, or
mixed. Table 1 (left) presents a summary of each dataset. The datasets are pre-
processed by removing all the records with missing values, and normalized using

3 https://archive.ics.uci.edu/ml/index.php, https://www.kaggle.com/.

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
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the Z-Score normalization [49]. Categorical features are label encoded. We split
each dataset into two partitions: Xb, is the set of records to train the black-box
models b and b̃ when trained on the training with and without missing values,
respectively, while is Xt the partition that contains the records for which we
want a prediction b and b̃ and an explanation from the explainers detailed in
the following section. We highlight that both Xb and Xt are used at training
and explanation time in the two versions with and without missing values. We
underline that Xb is used to train the black-box but also by limemv and by the
baselines tested to gather information to generate the synthetic neighborhood.

Our objective is to re-create a scenario in which missing values are present
both in the observable data and in the records for which the explanation is
required4. In this work, we experiment with the MCAR setting, which is typ-
ically assumed in the presence of missing values when additional knowledge is
unavailable. We leave the study on MAR and MNAR for future work.

Since often the most important features for individual predictions are in
overlap with features globally important for the classifier, we aim at stressing
the experimental scenario by inserting missing values among the features most
important globally. Thus, for each dataset, we train a Random Forest (RF)
classifier on Xb with default hyper-parameters. We exploit the RF to obtain a
ranking of the m features {j1, . . . , jm}, where jr says that the jth features is
ranked rth w.r.t. its importance, which is determined using Gini importance.
Thus, we randomly select p% features among the most important ones with
respect to the ranking obtained with p ∈ {10, 20, 30, 40, 50}, i.e., |M(X)| =
|X|∗p/100. Then, for each feature in M(X) we select the percentage q of missing
values with q ∈ {4, 8, 16, 32}. Hence, we are able to observe the impact of different
configurations of missing values in the explanation process.

As black-box we trained an XGBoost [8] implemented as the xgboost library5

using default parameters both in the training set with and without missing values
to avoid possible biases. The partitioning sizes and the classification accuracy
in presence of missing values and without them are in Table 1 (right). When in
presence of missing values for a certain percentage of features p, it is reported the
average accuracy w.r.t. the various percentages of missing values in the features
q. We notice that, even in presence of missing values with various p, the accuracy
of the various black-boxes b̃ remains close to the accuracy of b.

5.3 Baseline Explainers

We compare limemv against some naive approaches that can be adopted to solve
the problem faced in this paper without requiring a novel implementation. These
solutions consist in using a data imputation approach on the dataset Xb and on

4 In preliminary experimentation considering missing values present only in the observ-
able data Xb or only in the explained records Xt we noticed that the overall per-
formance are similar to those reported in this paper. Thus we preferred to illustrate
and discuss results only for the most realistic and complex scenario.

5 https://xgboost.readthedocs.io/en/stable/.

https://xgboost.readthedocs.io/en/stable/
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the test record x, and then relying on the explanation returned by the classic
lime version since there are no missing values disturbing the explanation process.
As data imputation approaches we experiment with the mean value of the feature
with missing values, kNN, and MICE. We adopt the names lb-m, lb-k, and
lb-c, to refer to these baseline explainers relying on mean, kNN, and MICE
imputations and lime, respectively. On the other hand, we use lmv-k and lmv-
c to refer to the two versions of limemv implementing the imputation function
ψ with kNN and MICE, respectively. For future work, it could be also interesting
to investigate lime with a tree-based local model and pre-hoc imputation as a
competitor. To make the lime and limemv methods comparable, since limemv
automatically selects the most important features that will appear with non-
zero features importance, for lime we set k = m such that all the features are
considered by the surrogate Lasso regressor. For all the explainers we keep the
size of the synthetic neighborhood as in the original lime implementation, i.e.,
N = 5000. We remark on the fact that with p and q we refer to the percentages
of features among the most important ones and those with missing values and
they do not impact with k.

5.4 Case Study Explanation

Before presenting the experimental results, we show in Fig. 2 a case study expla-
nation for a record of the adult dataset where missing values are inserted among
p = 50% of the most important features according to a RF and such that there
are at least q = 20% missing values for each feature with missing. The features’
importance of the explanations is reported as bars for the features having a
value ej different from zero. Thus, the taller the bar, the higher the magnitude
of the feature importance ej . For completeness, we also report the values. The
plot on the left shows the feature importance returned by lime using kNN as
data imputation method at the preprocessing time, while the one on the right
shows the feature importance returned by limemv using kNN as an imputation
function ψ.

In this particular example, the record has two missing values for the
attributes age and relationship. By comparing the two plots, we immediately
realize two aspects. First, due to the usage of the Lasso regressor as a local
surrogate, lime returns much more features than limemv with non-zero feature
importance ej

6. On the other hand, the local surrogate tree regressor adopted by
limemv is able to identify by-design the most important features, and indeed,
due to the experimental setting adopted, among them, we find also age and
relationship. Second, we visually see a clear discrepancy between the feature
importance of the explanations with and without missing values when lime or
limemv are adopted. Indeed, limemv is considerably more adherent than lime
to the explanation without missing values as to capital-gain is assigned almost

6 Such an outcome is due to the choice of k = m. However, regardless of how we set
k, the same result occurs when k is smaller than m and greater than the minimum
number of features required to obtain a high-performing linear regressor surrogate.
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Fig. 2. Explanations of a record of the adult dataset with and without missing values
for lime using kNN as imputer at preprocessing time, and limemv using kNN as
imputation function ψ. Normalized/missing values (*) of the record are on the x-axis.

the same value. Furthermore, also for the features with missing values, we notice
a minor discrepancy for the explanation of limemv: age passes from 0.023 to
0.025 for limemv while it changes from −0.14 to −0.58 for lime, relationship
passes from −0.004 to 0.00 for limemv while it changes from −0.003 to −0.046
for lime.

In the next section, we observe numerically these phenomena on various
datasets and with various settings for inserting missing values.

5.5 Results

According to our experimental setting, we are able to evaluate the explanations
with the measures previously presented for each record in Xt of each dataset,
for each explanation method, and for each couple of parameters p and q tested.
Table 2 reports the mean and standard deviations for the various settings where
the measures obtained for the local explanations of the records in Xt of each
setting are aggregated using the interquartile range mean, i.e., the mean of the
values in the range defined by the 25th and 75th percentile. The score of the best
performer for each dataset and measure is highlighted in bold.

We immediately realize that lmv-k exhibits superior performance in all qual-
itative measures for adult, compas, and titanic. Furthermore, lmv-k is always
the best performer in terms of ADO, i.e., it is the explainer treating missing val-
ues with a smaller impact on features without missing values. This characteristic
is particularly significant since missing values are usually a minority among the
records in a dataset, and therefore, their importance should remain unchanged
regardless of their presence or absence. On the contrary, limemv adopting MICE,
i.e., lmv-c, is often among the worst in terms of ADO. This underlines how the
choice of a certain imputation function ψ can affect the explanation process that
is not necessarily the best with more advanced imputation functions.

Concerning the similarity measures CS and KT we notice that there is not a
clear winner. Indeed, regarding CS for three datasets, the best approach is lmv-
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Table 2. Mean and standard deviation of the evaluation measures observed for each
dataset, explainer, and setting of missing values w.r.t. the number of features with
missing and percentage of missing values. The best performer is highlighted in bold.

CS ↑ KT ↑ ADW ↓ ADO ↓ FI ↑ ET ↓
adult lb-m .024 ± .38 .271 ± .05 .299 ± .20 .029 ± .02 .691 ± .11 .047 ± .00

lb-k .465 ± .14 .396 ± .04 .211 ± .09 .026 ± .01 .796 ± .02 .048 ± .00

lb-c .132 ± .28 .304 ± .03 .276 ± .16 .027 ± .01 .697 ± .07 .577 ± .00

lmv-k .770 ± .06 .437 ± .08 .112 ± .05 .012 ± .01 .834 ± .02 8.75 ± 1.08

lmv-c .071 ± .28 .026 ± .06 .317 ± .18 .031 ± .01 .697 ± .07 .040 ± .00

compas lb-m .314 ± .11 .243 ± .09 .176 ± .04 .072 ± .02 .870 ± .02 .059 ± .01

lb-k .360 ± .07 .248 ± .07 .194 ± .05 .041 ± .01 .871 ± .04 .059 ± .01

lb-c .258 ± .06 .206 ± .05 .210 ± .05 .057 ± .01 .869 ± .02 .210 ± .01

lmv-k .380 ± .07 .387 ± .07 .071 ± .10 .028 ± .02 .858 ± 0.03 1.82 ± .26

lmv-c .311 ± 0.07 .119 ± .06 .301 ± .10 .058 ± .01 .871 ± .02 .039 ± .00

diabetes lb-m .235 ± .15 .143 ± .14 .284 ± .05 .087 ± .02 .772 ± .03 .037 ± .00

lb-k .315 ± .12 .228 ± .12 .266 ± .04 .060 ± .01 .771 ± .03 .041 ± .00

lb-c .316 ± .12 .215 ± .13 .261 ± .04 .069 ± .01 .774 ± .02 .099 ± .00

lmv-k .248 ± .17 .303 ± .10 .364 ± .17 .030 ± .03 .809 ± .05 .227 ± .03

lmv-c .210 ± .07 .165 ± .08 .400 ± .14 .076 ± .02 .774 ± .02 .035 ± .00

fico lb-m .340 ± .14 .334 ± .08 .094 ± .03 .023 ± .00 .816 ± .03 .086 ± .00

lb-k .681 ± .11 .466 ± .06 .066 ± .02 .018 ± .00 .842 ± .02 .093 ± .00

lb-c .731 ± .07 .500 ± .05 .062 ± .01 .018 ± .00 .844 ± .02 1.56 ± .00

lmv-k .491 ± .52 .129 ± .17 .223 ± .11 .010 ± .01 .781 ± .03 3.19 ± .40

lmv-c .273 ± .20 .047 ± .05 .141 ± .04 .038 ± .01 .844 ± .02 .081 ± .00

german lb-m .483 ± .10 .405 ± .07 .079 ± .01 .027 ± .00 .832 ± .03 .063 ± .00

lb-k .521 ± .11 .433 ± .09 .079 ± .01 .025 ± .00 .838 ± .02 .074 ± .00

lb-c .526 ± .11 .436 ± .08 .079 ± .02 .024 ± .00 .851 ± .03 .547 ± .00

lmv-k .445 ± .13 .396 ± .11 .126 ± .03 .012 ± .01 .849 ± .03 .345 ± .04

lmv-c .398 ± .07 .210 ± .04 .127 ± .02 .034 ± .01 .851 ± .01 .059 ± .00

iris lb-m .565 ± .24 .317 ± .22 .285 ± .11 .162 ± .06 .758 ± .07 .063 ± .00

lb-k .619 ± .18 .503 ± .11 .232 ± .09 .087 ± .03 .791 ± .04 .064 ± .00

lb-c .599 ± .22 .450 ± .16 .252 ± .11 .097 ± .02 .698 ± .06 .114 ± .00

lmv-k .525 ± .36 .446 ± .28 .337 ± .20 .050 ± .04 .834 ± .10 .110 ± .00

lmv-c .456 ± .17 .377 ± .12 .269 ± .13 .134 ± .05 .698 ± .06 .061 ± .00

titanic lb-m .156 ± .17 .151 ± .19 .558 ± .09 .168 ± .06 .618 ± .07 .053 ± .00

lb-k .172 ± .14 .157 ± .14 .542 ± .07 .113 ± .05 .658 ± .05 .054 ± .00

lb-c .151 ± .12 .133 ± .16 .541 ± .07 .110 ± .04 .630 ± .07 .080 ± .00

lmv-k .182 ± .11 .168 ± .16 .521 ± .09 .100 ± .11 .678 ± .05 .232 ± .02

lmv-c .086 ± .18 .075 ± .13 .663 ± .14 .116 ± .05 .630 ± .07 .051 ± .00

k, for the other three is lb-c, and for one is lb-k. On the other hand, for KT,
lmv-k is the winner on four datasets, lb-c on two, and for one dataset lb-k.
The insights from this analysis are the following. First, relying only on the mean
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at a preprocessing time does not guarantee at all coherence for explanations,
and using lmv-c can be even worse. Some approaches are favoring similarity
among the scores (measured in terms of CS), while others are favoring that the
ordering of the scores, i.e., the order of the importance, is respected. Overall,
adopting kNN as an imputation function is a reliable solution at a preprocessing
time with lime but is even better at explanation time with limemv.

Regarding the absolute deviation with missings (ADW), the situation is even
more unclear as it is considerably difficult to leave untouched the level of impor-
tance of a feature when the value is missing. A possible future research direction
might re-frame this measure into a loss function and learn an explanation model
from simulated situations of missing values (like the proposed experiment) such
that these errors can be avoided by relying on the other features with values to
estimate the importance of the features with missing values.

For the fidelity (FI) of the local surrogate, we observe that the proposed
approaches in the limemv family have always the best results. This is probably
due to the usage (i) of the regressor tree that is better in approximating the
behavior of the black-box, (ii) of a synthetic neighborhood that includes missing
values and resembles the real data where the black-box is trained and applied.

Finally, for the explanation time (ET), we observe that lmv-k is the slowest
approach compared to the others that always have an ET smaller than a second
for explaining a single instance. This is caused by the kNN imputation approach
that is applied for each instance in the synthetic neighborhood Z having at least
a missing value and every time it needs to calculate the distance with all the
other synthetic records in Z. Since the size of Z is N = 5000, this causes a not
negligible increment in the ET w.r.t. the other explainers for large datasets.

In Fig. 3 and Fig. 4, we observe the impact of the different percentages of fea-
tures with missing values (p) and different percentages of missing values in fea-
tures (q) on the evaluation measures CS, KT, ADW, and ADO, for the datasets
adult and german, respectively. Similar behaviors can be observed for the other
datasets. In particular, for compas, diabetes, titanic and iris results are
similar to adult, while for fico results are similar to german. We do not report
the same plots for FI and ET as the variation of p and q do not impact these
measures significantly enough.

As we know from the previous discussion and from Table 2, lmv-k is, on
average, the best performer for the adult dataset. However, Fig. 3 unveils that
this is not true for all combinations of p and q. Besides highlighting the best
performers, through these plots, we can understand that the situation is even
more variegated than expected, independently from the explainer we are inter-
ested in. Indeed, from Fig. 3, we can realize that for the explainers the increment
of the percentage of features with missing values p has an impact w.r.t. certain
measures. The measures more impacted by p are CS and ADW, as we observe
an increasing performance trend when p grows. Indeed, the explainers are more
coherent in explaining the corresponding record without missing values when
the number of missing values is smaller. This may seem surprising. However, it
makes sense that when there are fewer features with missing values, it is eas-



274 M. Cinquini et al.

Fig. 3. Impact on evaluation measures of the variation of percentage of features with
missing values (p) and percentage of missing values in features (q) for adult.

ier to create a discrepancy with the real importance value as by experimental
setting, these are the globally most important. In comparison, when there are
more features with missing values, their overall relative importance might be
balanced among them, and the measures suffer less from their incorrect evalua-
tion. A future research direction might consist in designing unbiased evaluation
measures. All the explainers gain an improvement of ADW with lmv-k being
constantly the best while concerning CS lmv-k and lb-k seem to be more robust,
and their performance remains constant when varying p. On the other hand, KT
and ADO are less impacted by the variation of p. Concerning q, we notice that
nearly all the plots have slight changes from left to right, except for q = 32 for
ADO. Indeed, in this case, especially for lb-m, we observe a degradation of the
performance in terms of discrepancy for the features without missing values, i.e.,
having 32% of missing values in the features negatively affects the estimation of
the importance of features without missing values.

In Fig. 4 are shown the same results reported in Fig. 3 but for german. In this
case, we can notice that the percentage of features with missing values p has a
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Fig. 4. Impact on evaluation measures of the variation of percentage of features with
missing values (p) and percentage of missing values in features (q) for german.

negligible impact w.r.t. almost measures. For ADO, we observe an improvement
in the performance when p grows, but this is not evident as it was in Fig. 3 for CS
and ADW. In addition, the scores of all the explainers are quite similar to each
other and do not follow a clear increasing or decreasing trend. Therefore, these
approaches are not very sensitive to the characteristics of the missing values for
german, for the configurations studied.

6 Conclusion

We have presented limemv, the first proposal in the research area of post-hoc
local model-agnostic explanation methods that is able to handle the presence of
missing values directly in the explanation process. An experimental evaluation
empirically proves that using limemv leads to more reliable explanations than
using any imputation approach in the pipeline with the classic lime regarding
coherence for features without missing values and fidelity of the local surrogate
model. However, we cannot state that limemv is always the best solution as
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it seems that various issues are tied to the type of dataset processed by the
black-box, with the type of missing values and how disruptive their presence is.

As future research direction, we would like to implement the missing value-
compliant version of other post-hoc explanation approaches such as shap [31],
lore [19] or dice [35] by following the same strategies used for limemv. Also, we
intend to study these techniques not only in the MCAR setting but also in MAR
and MNAR. Furthermore, we aim to adapt the neighborhood generation process
by extending its capability to handle categorical, continuous, and discrete data
simultaneously. Finally, to completely cover lime applicability, we would like to
study to which extent it is possible to handle missing data on data types different
from tabular data, such as images, textual data, and time series.
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Abstract. We are interested in explaining models from Multi-Criteria Decision
Aiding. These can be used to perform pairwise comparisons between two options,
or classify an instance in an ordered list of categories, on the basis of multiple
and conflicting criteria. Several models can be used to achieve such goals rang-
ing from the simplest one assuming independence among criteria - namely the
weighted sum model - to complex models able to represent complex interaction
among criteria, such as the Hierarchical Choquet Integral (HCI). We consider
two complementary explanations of these two models under these two goals: suf-
ficient explanation (a.k.a. Prime Implicants) and necessary explanations (a.k.a.
Counterfactual explanations). The idea of prime implicants is to identify the parts
of the instance that need to be kept unchanged so that the decision remains the
same, while the other parts are replaced by any value. We generalize the notion of
information that needs to be kept not only on the values of the criteria (values of
the instance of the criteria) but also on the weights of criteria (parameters of the
model). For the HCI model, we propose a Mixed-Integer Linear Program (MILP)
formulation to compute the prime implicants. We also propose a weak version of
prime implicants to account for the case where the requirements of changing the
other criteria in any possible way is too strong. Finally, we also propose a MILP
formulation for computing counterfactual explanations of the HCI model.

Keywords: Prime Implicants · Counterfactual Explanation · Multi-Criteria
Decision Aiding · Choquet integral

1 Introduction

We are interested in explaining Multi-Criteria Decision Aiding (MCDA). The aim
of MCDA is to capture the preferences of a decision maker regarding alternatives
described over multiple criteria. Such criteria are conflicting in the sense that one can
usually not maximize all of them at the same time [13]. One thus needs to perform
tradeoffs among criteria, as one criterion may compensate another one. MCDA aims at
solving several types of problems. This first one, ranking aims at constructing a pref-
erence relation among a set of alternatives. This relation can be used for instance to
determine the preferred option. Another goal is sorting and aims at assigning options
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to an ordered list of categories. An essential component of decision support, once the
preference model is constructed, is to explain the recommendation to the user.

The ranking and sorting problems in MCDA can be solved by a utility model which
maps each alternative onto a utility scale. The essential component of this utility func-
tion is the so-called aggregation function, which aggregates the outcomes of the criteria
and returns an overall utility score. The simplest aggregation function is the weighted
sum. It is sufficient to represent tradeoffs among criteria. However, this model is lim-
ited by the fact that it requires the criteria to be independant, which is not the case in
many real-life situations. In this case, a more versatile model is the Choquet integral
(CI) [10,15]. CIs have the ability to capture complex interaction among criteria, such
as sinergy or redundancy. It is common to organize such models in a hierarchical way,
thereby decomposing the aggregation process into a tree of smaller aggregations. The
corresponding model is the Hierarchical Choquet Integral (HCI), which is a nest com-
position of Choquet integrals [8]. One reason chosen for using HCI is its by-design
explainability, which we will detail now.

Explainability can take very different forms [2]. An explanation can be constructed
independently from the model (model-agnostic explanation) or be dedicated to a partic-
ular class of models (model specific). One can then try to explain the model as a whole
(global explanation) or focus on explaining a particular instance (local explanation)
[21]. One may think of applying a model agnostic explanation to an MCDA model.
Feature-attributions techniques represent good candidates, as they are widely used in
Machine Learning. We may mention the LIME or SHAP frameworks [35,40]. Note
that the Shapley value has been extended to models decomposed in trees, through the
concept of Winter value [34,51]. While being fully adapted to the hierarchical MCDA
models, this approach does not provide any concrete and actionable explanation.

We thus consider other types of explanations. The first type is called sufficient expla-
nation. It corresponds to the concept of Prime Implicants. The idea is that if changing
the value of a feature by any other value does not modify the outcome of the model, then
this feature has no influence on the result. This approach provides a safe and compelling
way to remove non-influential features from the explanation, unlike the feature attribu-
tion methods, which require to introduce a -subjective- threshold to decide whether the
features should be displayed to the user. While Prime Implicants simplify only on the
feature values of the instance, we propose in this work to simplify on both the values of
the instance on the features and the weights of criteria. We propose efficient approaches
to compute the sufficient explanations for the weighted sum model. For the non-linear
HCI model, prime implicants can be obtained thanks to a Mixed-Integer Linear Pro-
gram (MILP) formulation. Prime implicants imply that we can replace the value on
a feature that is not in the prime implicant by any other value without changing the
outcome of the decision model. This condition might be too restrictive in some appli-
cations. Moreover, operating a reasonable modification of the value on a feature might
be sufficient to remove this feature from the explanation. This yields a weaker version
of prime implicants, which we develop later.

The second type of explanation is called necessary explanation – also called coun-
terfactual explanation. We look for the smallest modification of the values on the fea-
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tures that yield a different outcome. We also show that this problem can be turned into
a MIP formulation in the case of a HCI model.

The paper is organized as follows: Section 3 recalls the background in MCDA. The
following sections present our contribution: the construction of necessary and sufficient
explanations, for the decision and classification problems, applied to the weighted sum
and the Choquet integral models. First, Sect. 4 considers sufficient explanations for the
decision problem. Then we tackle sufficient explanations for the classification problem
(Sect. 5). Necessary explanations are treated separately (Sect. 6). Finally Sect. 7 dis-
cusses the impact of our approaches on the xAI field. Note that, in order to make the
formal sessions easier to read, the proofs of lemmas are given in Sect. 9.

2 Related Works

2.1 Related Works in MCDA

Various models have been explored in MCDA to capture different types of preferences
[13]. The basic ingredient in MCDA is a binary relation called preference relation,
which compares any pair of alternatives. The two main classes of MCDA models for
representing such a relation differ on the order in which the operations of aggregation
of the attributes and comparison of the two alternatives are made. In the outranking
methods, one first compares the two alternatives attribute by attribute, then these com-
parisons are aggregated [43]. The ELECTREmethod is a popular MCDAmethod in this
category [42]. The other approach consists in aggregating the values over all attributes
for each alternative, into an overall utility. Only then do we decide between both alter-
natives by comparing their utilities [27]. Often, a marginal utility function is applied to
the value on each attribute. One can then simply sum-up these partial utility to obtain
the overall utility. The corresponding model is the additive-utility [27]. When the value
of utilities are commensurate and can be compared, then the marginal utilities are com-
bined with criteria weights to construct the overall utility. This yields to the weighted
sum. Many elicitation methods have been designed to construct the additive utility with
the UTA approach [25], or the weighted sum with AHP [46] or MACBETH [3]. Apart
from these two branches, rough sets methodology brings a way to explicitly capture
preferences through (at-least or at-most) rules [19].

We will follow the second, that is the utility-based approach. The assumption of
independence of criteria, which characterizes the weighted sum, is often violated in
applications. To overcome this limitation, the Choquet integral [10] is used in MCDA
to represent interacting criteria and complex decision strategies [15,16].

2.2 Related Works in xAI

Many xAI techniques have been defined. The first category of methods provides formal
definition of explanation. Prime implicants define sufficient interpretation in first-order
logic [36]. They can be used to explain a particular instance, which yields the con-
cepts of sufficient reason [11], PI-explanation [47] and abductive explanation [24]. An
explanation is a subset of the literals of the instance that entails the same conclusion.
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A sufficient cause is a subset of literals such that if they were modified, the conclusion
would have been different [22]. An actual cause is a minimal sufficient cause [22].

It has been shown that humans often reason in a contrastive way. This means that
the explanation of “Why x?” is cast into “why x and not y?”, where x is the fact and y
is called the foil [37]. A counterfactual explanation aims at finding the minimal change
in the values of the instance on the features so that its classification is changed [48,50].
The main difficulty of these approaches is to generate modification recommendations
that are realistic for the user [26,28].

Anchors generates an if-then rule to explain an instance with high precision, in the
sense that the accuracy of the local rule is quite good [41]. This is also a sufficient
explanation in the sense that when some features are missing from the premises of
the rule, then changing the value on those features do not influence the outcome (with
high accuracy). LORE is a local interpretator that generates for a given instance, a rule
explaining the instance together with several counterfactual rules proposing different
ways to change the instance outcome [20].

Other methods are less formal and in particular simply aim at allocating an impor-
tance to each feature for a given instance (feature attribution methods) [40]. These tech-
niques highlight the most important features. Their main added-value is that they are
model-agnostic, meaning that they can be applied to any (even black-box) model. The
LIME approach constructs a linear model to approach the separation border close to the
instance to explain (where this model is trained from data selected according to their
proximity to the instance) [40]. The weights of this linear model provide the impor-
tance of features for the given instance. The Shapley value has recently become popular
in Machine Learning (ML) for feature attribution [12,35,49]. What distinguishes these
methods is the game on which the Shapley value is computed. A major difficulty in
assessing the game is to take into account the interdependencies among the features in
a consistent way [1].

3 Setting

A Multi-Criteria Decision Aiding (MCDA) problem consists of a set N = {1, . . . , n}
of features or attributes. Each feature is associated to its domain of definition Xi. The
instances are elements of X = X1×· · ·×Xn. We assume we are given for each feature
i ∈ N a binary preference relation �i over Xi such that xi �i x′

i (for xi, x
′
i ∈ Xi)

means that xi is at least as good as x′
i on this feature.

MCDA aims at representing the preferences of a user regarding options in X . These
preferences can be mapped into different problems.

Definition 1. In a sorting problem, the aim is to assign any element in X into ordered
classes – typically C = {0, 1}, where 0 is the lower class and 1 is the higher class –
thanks to a function f : X → C, where f is a classification function.

Definition 2. In a ranking problem, the aim is to construct a preference relation � over
X × X such that x � y (with x, y ∈ X) means that x is at least as good as y.
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If � is a weak order, one may for instance deduce the best elements in X . These two
problems can be represented with the help of a so-called utility function u : X → R.
The sorting problem is obtained by discretizing function u:

f(x) = 1 ⇔ u(x) > α, (1)

where α is a threshold, and the ranking of alternatives also follows from the utility:

x � y ⇐⇒ u(x) ≥ u(y). (2)

An important property of MCDA is monotonicity with respect to �i: for all x, y ∈
X , [∀i ∈ N xi �i yi] implies that u(x) ≥ u(y).

Utility model u is taken in the decomposable form [27]:

u(x) = F (u1(x1), . . . , un(xn)), (3)

where ui : Xi → [0, 1] (for every i ∈ N ) is a so-called utility function transforming
feature i into a utility in satisfaction scale [0, 1] (where 0 is total non-satisfaction, and 1
is the total satisfaction), and F : [0, 1]N → [0, 1] is an aggregation function.

We assume here that the model is already constructed. We can assume without loss
of generality that the Xi’s are already normalized, so that the marginal utility functions
are the identity functions and that Xi = [0, 1].

The simplest aggregation function is the weighted sum (wi is criterion i’s weight):

u(x) = F (x) =
∑

i∈N

wi xi. (4)

In order to ease its interpretability, functionF is taken as a hierarchical model, described
by a tree T characterized by the set N of leaves, a set of other nodes M and a root r ∈
M . The children of a node i ∈ M are denoted C(i) ⊆ M ∪ N . We define thus a local
aggregation function Fi : [0, 1]C(i) → [0, 1] for each i ∈ M . For x ∈ X = [0, 1]N , we
recursively set xi = Fi(tC(i)) for any i ∈ M , and u(x) = F (x) = xr.

A weighted sum can be equivalently described on any hierarchy, without conse-
quence on the mathematical expression, provided that the weights are correctly assigned
to each node. A more versatile aggregation function than the weighted sum is the Cho-
quet integral [10]. The two-additive Choquet integral takes the following form:

Fi(xC(i),m) =
∑

j∈C(i)

mj xj +
∑

{j,k}∈E(i)

mj,k xj ∧ xk, (5)

where E(i) ⊆ {{j, k} ⊆ C(i)} is the set of pairs having non-zero interaction. We note
that mj,k and mj correspond to the Möbius coefficients for the two-additive Choquet
integral. A hierarchy of Choquet integrals is called a HCI model.

4 Sufficient Explanation of the Preference Relation �

We wish to explain preference x � y, with x, y ∈ X = [0, 1]N .
Prime Implicants (PI) represent a standard explanation approach. It consists in sim-

plifying the known values on the features while the decision remains the same. The
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idea is that a set T of criteria explains the decision if the decision remains unchanged
regardless of what values are assigned on the other criteria. In this approach, the sim-
plification is done on the feature space.

Following [32], the arguments explaining a weighted sum shall mention the values
on the features and/or the parameters of the model (e.h. the importance of criteria). We
take this idea by extending the concept of explanation in which the process of simpli-
fication or modification shall not be done only on the value of the features but also on
the parameters of the model.

4.1 General Approach for the Weighted Sum Model

We consider the weighted sum model:

x � y ⇐⇒ H(Δ,w) :=
∑

i∈N

wi Δi ≥ 0

where Δi = xi − yi. Let D = [−1, 1]N be the set of possible values of Δ, and W be
the set of normalized weights:

W =

{
w ∈ R

N :
∑

i∈N

wi = 1 and ∀i ∈ N, wi ≥ 0

}
.

An explanation is a subset of the utilities of x and y (it is sufficient to know the differ-
ence Δ), but also a subset of the criteria weights w, such that the preference remains
the same, whatever the remaining values of the utilities and of the weights. One wishes
to display to the user the simplest explanation, i.e. to show the least number of elements
of Δ and w. If one keeps only the utility discrepancy Δ on criteria S ⊆ N and the
weights w on a subset T ⊆ N of criteria, and if ΔS can be completed by anything
on N\S and wT can be completed by anything on N\T while x remains preferred to
y, then the explanation can focus on the pair 〈S, T 〉. More generally, one may enforce
some constraints on the completion of ΔS and wT . We denote by D(S) ⊆ D the set of
admissible preferences given that Δ is known only in S, and by W (T ) ⊆ W the set of
admissible weights given that w is known only for criteria in T .

Definition 3. We define the set of sufficient explanations (or implicants) as:

ExSuf :={〈S, T 〉 with S, T ⊆ N : ∀Δ′ ∈ D(S), ∀v ∈ W (T ), H(Δ′, v) ≥ 0}.

Several definitions of D(S) and W (T ) will be proposed. We assume that

D(S) ⊆ {Δ′ ∈ D : Δ′
i = Δi ∀i ∈ S},

W (T ) ⊆ {v ∈ W : vi = wi ∀i ∈ T}.

We have that 〈N,N〉 ∈ ExSuf (since x is preferred to y from Δ and w) and that
〈∅, ∅〉 �∈ ExSuf (since one can of course obtain that y is preferred to x if we consider
other preference information on the options or importance of criteria).
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We assume that D(·) and W (·) are antimonotone:

∀S ⊆ S′ ⊆ N D(S) ⊇ D(S′), (6)

∀T ⊆ T ′ ⊆ N W (T ) ⊇ W (T ′). (7)

If S ⊆ S′, then D(S) is composed of weights whose value is fixed on S′ to Δ, and thus
is also fixed on S ⊆ S′. Hence D(S′) ⊆ D(S). The same argument applies for W (·).

Lemma 1. Under (6) and (7), we have

〈S, T 〉 ∈ ExSuf =⇒ ∀S′ ⊇ S ∀T ′ ⊇ T , 〈S′, T ′〉 ∈ ExSuf .

The proof of this lemma and the other results is given in Sect. 9.
Starting from a sufficient explanation 〈S, T 〉 ∈ ExSuf , adding extra information Δi

(for i ∈ N\S) regarding the utilities or wj (for j ∈ N\T ) on the criteria weights also
yields a sufficient explanation. We are thus looking for the simplest explanation, that is
the minimal ones.

Definition 4. We define the set Exmin
Suf of minimal sufficient explanations (or prime

implicants) as the minimal elements of ExSuf w.r.t. set inclusion.

Remark 1. If the decision is clear-cut, then it is possible to change a lot of weights
without inverting the decision. In this case, the elements of Exmin

Suf contain only a small
number of criteria. Hence the explanation is simple when the decision is clear-cut. On
the opposite side, if the decision is tight, then a little change in the utilities or criteria
weights is enough to switch the decision. Hence, the elements of Exmin

Suf contain a rel-
atively large number of criteria. Hence the explanation is relatively complex when the
decision is tight.

We propose several definitions of D(·) and W (·) depending on whether we simplify
only on the utilities of x and y, only on the criteria weights w, or on both. These these
three possibilities are explored in the next sections.

4.2 Case of the Weighted Sum: Simplification w.r.t. the Utilities

The first approach is the standard way to conceive Prime Implicants, that is, by simpli-
fying only on the values of the features. No simplification is done on the weights of the
model. Simplifying only on the utilities means that the weights of criteria are known to
the recipient of the explanation. They only wants to know which values of x and y are
essential to understand the preference of x over y. We set

D(S) = {Δ′ ∈ D : Δ′
i = Δi ∀i ∈ S},

W (T ) = {w}.

For D(S), we keep the values of utilities in S and consider any possible value on the
other criteria. We keep all criteria weights, so that W (T ) is only composed of the
full vector of weights. The second argument in 〈S, T 〉 ∈ ExSuf is not relevant and
is removed. Hence we keep only the first argument S of the elements of ExSuf .
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Lemma 2. We have
ExSuf =

{
S ⊆ N : L(S) ≥ 0

}
,

where L(S) :=
∑

k∈S wk Δk −
∑

k∈N\S wk =
∑

k∈S wk (Δk + 1) − 1.

Proof. When the value of Δ is unknown, the most pessimistic value is −1.

�
Let

ck := wk (Δk + 1). (8)

We have
L(S) − L(S\{k}) = ck ≥ 0 (9)

Define a permutation π such that

cπ(1) ≥ cπ(2) ≥ · · · ≥ cπ(n). (10)

The k that are selected are the ones with the small values of ck. Relation ck ≈ 0
means:

– criterion k is not important (wk ≈ 0);
– or criterion k is very negative (Δk ≈ −1).

Lemma 3. Let p the smallest integer such that {π(1), π(2), . . . , π(p)} ∈ ExSuf . Then
{π(1), π(2), . . . , π(p)} ∈ Exmin

Suf and there is no element of Exmin
Suf with a smaller car-

dinality.

The minimal explanation generated by this lemma focuses on the strongest and most
positive arguments, which makes sense.

Let us start with an example in which very few simplifications are obtained.

Example 1. Consider the following examples with 5 criteria.

Criteria 1 2 3 4 5

x 0.5 0.4 0.1 0.7 0.9

y 0.2 0.6 0.5 0.4 0.2

Δ 0.3 −0.2 −0.4 0.3 0.7

w 0.2 0.2 0.1 0.4 0.1

c 0.26 0.16 0.06 0.52 0.17

We have u(x) = 0.56 and u(y) = 0.39 so that x � y. Even though, there is some
margin on the utility of x compared to that of y, the set of minimal explanations is:

Exmin
Suf =

{
{1, 2, 3, 4}, {1, 3, 4, 5}, {1, 2, 4, 5}

}
.

Explanation {1, 2, 3, 4} yields an exact indifference between x and y, as
L({1, 2, 3, 4}) = 0. We see that we can remove criteria 2, 3 or 5 in the explanation.
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Criteria 2 and 3 are the two negative arguments. Criterion 5 correspond to a weak posi-
tive argument as its weight is small.

We also note that c4 > c5 > c2 > c1 > c3, i.e. π(1) = 4, π(2) = 5, π(3) =
2, π(4) = 1, π(5) = 3. Hence the minimal explanation (according to Lemma 3)
is {π(1), π(2), π(3), π(4)} = {1, 2, 4, 5}, as L({π(1), π(2), π(3), π(4)}) ≥ 0 but
L({π(1), π(2), π(3)}) < 0. We only remove criterion 3 from this explanation. �

The next example illustrates a much more efficient simplification.

Example 2. Consider the following examples with 5 criteria. We have u(x) = 0.75,

Criteria 1 2 3 4 5

x 0.7 0.9 0.4 0.8 0.9

y 0.2 0.6 0.5 0.4 0.2

Δ 0.5 0.3 −0.1 0.4 0.7

w 0.3 0.1 0.1 0.5 0.1

c 0.45 0.13 0.09 0.56 0.17

u(y) = 0.35 and thus x � y. One can now simplify on much more criteria. We note
that c4 > c1 > c5 > c2 > c3. Hence the minimal explanation (according to Lemma 3)
is {π(1), π(2)} = {1, 4}. �

4.3 Case of a Weighted Sum: Simplification w.r.t. the Weights

The second approach supposes that we keep all information on the values of criteria,
thereby the simplification only operates on the criteria weights. We set

D(S) = {Δ}
W (T ) = {v ∈ W : vi = wi ∀i ∈ T}.

We keep all utilities so that D(S) is reduced to Δ. For W (T ), we keep the criteria
weights in T and we complete this vector in any possible way. The first argument
in 〈S, T 〉 ∈ ExSuf is not considered. We only keep the second argument T of the
elements of ExSuf . The following lemma provides a means to compute the sufficient
explanations.

Lemma 4. We have

ExSuf =
{

T ⊆ N : ∀i ∈ N\T Δi ≥ −
∑

k∈T wk Δk

1 −
∑

k∈T wk

}
, (11)

and equivalently

ExSuf =
{

T ⊆ N : H(T ) ≥ 0
}

, (12)

where H(T ) :=
( ∑

k∈N\T wk

)
mini∈N\T Δi +

∑
k∈T wk Δk.
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The idea is that the criteria N\T are not selected since, once w is known on T , the
remaining amount of weight 1−

∑
k∈T wk for criteria N\T can be assigned in any way

without switching the preference between x and y.
By Lemma 1, if T ∈ ExSuf and i ∈ N\T then T ∪ i ∈ ExSuf . We have

H(N) − H(T ) =
∑

k∈N\T

wk

(
Δk − min

i∈N\T
Δi

)
≥ 0.

Hence for T ∈ ExSuf , we have 0 ≤ H(T ) ≤ H(N). In order to find the smallest
possible explanation T , we wish to find the smallest T such that H(N) − H(T ) ≤
H(N). In order to have H(N) − H(T ) small, we have two options:

– the Δk have more or less the same value for all k ∈ N\T ;
– or wk ≈ 0 for all k ∈ N\T .

Example 3 (Example 1 cont.). With the same values as in Example 1, we now obtain

Exmin
Suf =

{
{1, 2, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4}

}
.

The explanation with minimal cardinality is {3, 4} and contains the two negative argu-
ments. �

Comparing Examples 1 and 3, the approach of simplification w.r.t. utilities exhibits
the most important and positive arguments, whereas the approach of simplification w.r.t.
weights seem to highlight the negative arguments. The reason for this is that if a negative
argument is not selected, it will receive all weights of the unselected criteria, which is
very penalizing to keep the same decision – see Lemma 4. The so-obtained explanation
{3, 4} looks counter-intuitive. Moreover, N\{i} ∈ ExSuf for any i ∈ N , as if we just
remove one criterion, its weight can of course be deduced from all other ones (they
sum-up to one). For these reasons, we will not consider this part of simplifying only on
criteria weights in the remaining of the paper.

4.4 Case of the Weighted Sum: Simplification w.r.t. both the Weights
and the Utilities

In the last approach, we assume that we can simplify on both the values of the features
and the weights. We set

D(S) = {Δ′ ∈ D : Δ′
i = Δi ∀i ∈ S}

W (T ) = {v ∈ W : vi = wi ∀i ∈ T}.

Lemma 5. We have

ExSuf =
{

〈S, T 〉 ∈ 2N × 2N : M(S, T ) ≥ 0
}

,

where

M(S, T ) :=

{∑
k∈S∩T wk Δk −

∑
k∈T\S wk − (1 −

∑
k∈T wk) if T ∪ S �= N

∑
k∈S∩T wk Δk −

∑
k∈T\S wk +

(
mink∈S\T Δk

)∑
k∈S\T wk else
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Lemma 6. Assume that T ∪S �= N . If 〈S, T 〉 ∈ ExSuf , then 〈S ∩T, S ∩T 〉 ∈ ExSuf .

The previous lemma shows that the minimal elements of ExSuf for which T ∪ S �=
N select the same criteria for Δ and w. For 〈S, S〉 with S �= N , we have

M(S, S) =
∑

k∈S

wk Δk −
∑

k∈N\S

wk = L(S), (13)

with the same function L as in Lemma 2. We can thus apply the results of Sect. 4.3.
Let us consider 〈S, T 〉 with S ∪ T = N . It does not seem very interesting to keep

values of criteria and weights that cover all inputs but that are not identical. Starting
from pair 〈S, T 〉 we remove i ∈ S ∩ T on both terms:

L(S, T ) − L(S\{i}, T\{i}) =
[
wi Δi +

∑
k∈(S∩T )\{i}

wk Δk +
(

min
k∈S\T

Δk

) ∑
k∈S\T

wk

]

−
[ ∑
k∈(S∩T )\{i}

wk Δk −
∑

k∈N\(T\{i})
wk

︸ ︷︷ ︸
=wi+

∑
k∈S\T wk

]

= wi (Δi + 1) +
∑

k∈S\T
wk

(
min

k∈S\T
Δk + 1

)

Applying this to 〈N,N〉, we obtain

L(N,N) − L(N\{i}, N\{i}) = wi (Δi + 1) = ci.

by (8). We also recover the same case as in Sect. 4.3.
In sum, we can use exactly the same algorithm than in Sect. 4.3 to compute a min-

imal explanation. In particular, let p be the smallest integer such that 〈S, S〉 ∈ ExSuf

with S = {π(1), π(2), . . . , π(p)}. As in Lemma 3, this is a minimal explanation, thanks
to Lemma 6.

Example 4 (Example 1 cont.). Applying the previous heuristics, we obtain the minimal
explanation 〈{1, 2, 4, 5}, {1, 2, 4, 5}〉. �

Comparing Sects. 4.2 and 4.4, we see that the explanations obtained by simplifying
only the utilities, or both the utilities and the criteria weights are similar. This com-
pletely makes sense, as when S and T are similar (we align the knowledge on the utili-
ties and the criteria weights), we can allocate the weights on the criteria which utility is
not known in any way.

4.5 Case of the HCI Model

Following the discussion at the end of the previous section, we are interested in explana-
tion based only on the simplification w.r.t. utilities. We wish here to compute a minimal
explanation for the HCI model given by (5). In Sect. 4.2, we have described a linear
algorithm to find the minimal explanation with the smallest cardinality. As the HCI
model is composed of nested Choquet integrals, and each Choquet is non-linear, we
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cannot compute a minimal explanation in linear time. We propose a MILP (Mixed-
Integer Linear Program) formulation of the problem of finding a minimum explanation
on the utilities.

We introduce the following MILP:

min
∑

i∈N

λi (14)

under ∀i ∈ N λi ∈ {0, 1} , txi , tyi ∈ [0, 1] (15)

∀i ∈ N txi = xi λi (16)

∀i ∈ N tyi = yi λi + (1 − λi) (17)

∀i ∈ M ∀{j, k} ∈ E(i) txj,k ∈ [0, 1] , εx
j,k ∈ {0, 1} (18)

txj,k ≤ txj , txj,k ≤ txk (19)

txj,k ≥ txj + εx
j,k (20)

txj,k ≥ txk + 1 − εx
j,k (21)

∀i ∈ M txi =
∑

{j,k}∈E(i)

mj,k txj,k +
∑

j∈C(i)

mj txj (22)

∀i ∈ M ∀{j, k} ∈ E(i) tyj,k ∈ [0, 1] , εy
j,k ∈ {0, 1} (23)

tyj,k ≤ tyj , tyj,k ≤ tyk (24)

tyj,k ≥ tyj + εy
j,k (25)

tyj,k ≥ tyk + 1 − εy
j,k (26)

∀i ∈ M tyi =
∑

{j,k}∈E(i)

mj,k tyj,k +
∑

j∈C(i)

mj tyj (27)

txr ≥ tyr (28)

We simplify here with respect to the values of the features. The implicant S is the set
of indices i ∈ N such that λi = 1 . As we look for prime implicants, we wish to
minimise the number of indices i ∈ N taking value 1 for λi. Constraints (18)–(21)
implies that txj,k = min(txj , txk) (classic reformulation trick from LP). Hence (22) is
exactly the expression of the 2-additive Choquet integral for (xS , 0N\S). Likewise (27)
is the 2-additive Choquet integral for (xS , 1N\S). Finally, x shall be preferred to y –
see (28).

The interest of this formulation is to directly handle a HCI model.

Example 5. Consider the following examples with 5 criteria.

Criteria 1 2 3 4 5

x 0.5 0.6 0.4 0.7 0.9

y 0.4 0.8 0.1 0.4 0.2
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x6 = 0.4 x1 + 0.6 min(x2, x3)
x7 = 0.3 min(x3, x4) + 0.7 min(x3, x5)
u(x) = x8 = 0.5 min(x6, x7) + 0.1 x6 + 0.4 x7

x6 = 0.5, x7 = 0.4, u(x) = x8 = 0.41, y6 = 0.4, y7 = 0.1 and u(y) = y8 = 0.13.
Hence x � y.

Exmin
Suf =

{
{1, 2, 3, 4}, {1, 3, 5}

}
.

The MILP returns explanation {1, 3, 5}. �

5 Sufficient Explanation of a Classification Function

We consider a binary classification problem and x ∈ X with f(x) = 1. We wish to find
a sufficient explanation the class of x.

5.1 Case of the Weighted Sum

We consider first a weighted sum. The PI of the class 1 assigned to x are:

ExSuf :={〈S, T 〉 with S, T ⊆ N : ∀x′ ∈ U(S) ∀w′ ∈ W (T )
∑

i∈N

w′
i x′

i > α}.

where α is a decision threshold – see (1).
We usually assume that

U(S) ⊆ {x′ ∈ [0, 1]N : x′
i = xi ∀i ∈ S},

W (T ) ⊆ {w′ ∈ W : w′
i = wi ∀i ∈ T}.

As in Sect. 4, we can either simplify the explanation only on the first argument (i.e. the
utilities), only on the second argument (i.e. the criteria weights), or on both. We focus
on the first case, in which the explanation reduces to S ⊆ N .

Lemma 7. We have

ExSuf =
{

S ⊆ N : FS(x,w) > α
}

.

where FS(x,w) =
∑

i∈S wi xi.

Proof. When the value of t′ is unknown, the most pessimistic value is 0.

�
Let

dk := wk txk

Define a permutation π such that

dπ(1) ≥ dπ(2) ≥ · · · ≥ dπ(n).

Lemma 8. Let p the smallest integer such that {π(1), π(2), . . . , π(p)} ∈ ExSuf . Then
the set {π(1), π(2), . . . , π(p)} is minimal in PI and there is no element of ExSuf with
a smaller cardinality.
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5.2 Case of a HCI Model

We can adapt the MILP of Sect. 4.5 to binary classification. A sufficient explanation of
a classification problem for a HCI model can thus be obtained by the following MILP:

min&
∑

i∈N

λi (29)

under ∀i ∈ N λi ∈ {0, 1} , txi ∈ [0, 1] (30)

∀i ∈ N txi = xi λi + ri (1 − λi) (31)

constraints (18)–(22)

txr > α (32)

where r = (0, . . . , 0) is the worst case for x being in class 1, when its value is not
known on some feature. Condition (32) indicates that the class is still 1. Unknown
vector λ takes value 1 for the criteria on which the value of x is kept – the other values
of x being removed. Finally, the explanation is the vector of literals

{
(i, xi) : i ∈ N and λi = 1

}
.

The interest of this formulation is to directly handle a HCI model.

5.3 Weak Prime Implicants

A sufficient explanation is a strong condition as we only remove the literals whose value
can be replaced by any other value. The following example illustrates the fact that the
prime implicants may not simplify the values of x.

Example 6. Consider the following example with n = 5: with α = 0.5. One can easily

1 2 3 4 5

score x 0.9 0.7 0.5 0.4 0.6

weights w 0.1 0.1 0.2 0.3 0.3

check that FN (x,w) = 0.55 > α so that f(x) = 1. However, removing any value of x
yields an overall score that is lower than α:

F{2,3,4,5}(t, w) = 0.48 , F{1,3,4,5}(t, w) = 0.45 , F{1,2,4,5}(t, w) = 0.43 ,

F{1,2,3,5}(t, w) = 0.47 , F{1,2,3,4}(t, w) = 0.37.

Therefore, we cannot simplify vector of x while keeping the same class. �

A weaker version consists in stating that the prediction f(x) = 1 would not change
if value xi on attribute i is changed with some intensity, which can belong to for instance
infinitely, a lot, significantly, or a little bit. Of course, the larger the intensity, the better
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for the stability of the explanation. For the end-user, not mentioning an attribute that
does not influence the decision if we change it a lot is fine, even if changing it extremely
would finally change the decision. The idea is that this extreme change would put the
option in a completely different situation, and the end-user does not care about this
situation. We define thus a set of q categories of intensity of change on the attributes:
Q = {0, 1, . . . , q}, where 0 means that no change is allowed and q means that any
change is allowed. We define nested sets of allowed values on the attributes, for q ∈ Q

Xq
i (xi) = {yi ∈ Xi , |yi − xi| ≤ sq

i (xi)},

satisfying

{xi} = X0
i (xi) ⊂ X1

i (xi) ⊂ · · · ⊂ Xq−1
i (xi) ⊂ Xq

i (xi) = Xi.

This implies the following conditions

0 = s0i (xi) < s1i (xi) < · · · < sq−1
i (xi) < sq

i (xi) = ∞.

Then

Ex q(x, c) = {xS , S ⊆ N s.t. ∀yN\S ∈ Xq
N\S(xN\S) f(xS , yN\S) = c}.

Example 7 (Example 6 cont.).We weaken sufficient explanations, by allowing a modi-
fication of the utilities up to intensity sq

i (xi) = 0.3 in the [0, 1] scale. We obtain

Ex q(x, c) =
{

{1, 2}, {3}
}

.

We can in particular avoid mentioning criteria 1 and 2, under the assumption that they
can vary in a given range. �

We choose the largest value of q such that PIq(x, c) is significantly smaller than the
full set of values of x. We can apply MILP (29)–(32) with ri = xi − sq

i (xi) for some
q ∈ Q.

6 Necessary Explanation

In the so-called necessary approach, we wish to know the smallest modification in
the preference information that changes the decision. This approach corresponds to a
robustness analysis.

6.1 Explanation of � for a Weighted Sum

Following Sect. 4.1, a counterfactual example can be a pair 〈S, T 〉 composed of a sub-
set of criteria values and a subset of criteria weights. We define the set of necessary
explanations as

ExNec :={〈S, T 〉 with S ⊆ N and T ⊆ N :
∃Δ′ ∈ D(N\S), ∃v ∈ W (N\T ), H(Δ′, v) ≤ 0}

We have that 〈N,N〉 ∈ ExNec and that 〈∅, ∅〉 �∈ ExNec.
Necessary and sufficient explanations are dual of one another, as shown in the fol-

lowing result.
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Lemma 9. 〈S, T 〉 ∈ ExNec ⇐⇒ 〈N\S,N\T 〉 �∈ ExSuf .

However, recommending changing criteria weights is not realistic in the case of an
actionable explanation. The end-user takes the model as granted, and cannot act on it.
The only action at the hand of the user is to improve (after producing some effort) his
evaluation on some criteria. So we restrict an explanation to S ⊆ N .

ÊxNec :={S ⊆ N : ∃Δ′ ∈ D(N\S),H(Δ′, N) ≤ 0}

We have then to turn vector Δ′ into new values x′ and y′ of x and y such that x′ − y′ =
Δ.

If the decision is clear-cut, then one needs a lot of changes in the weights to invert
the decision. Hence, the minimal elements ofExNec contain a relatively large number of
criteria. This is rather counter-intuitive since one would expect that a clear-cut decision
is explained only with a few arguments. On the opposite side, if the decision is tight,
then a little change in the weights is enough to switch the decision. Hence, the minimal
elements of ExNec contain only a small number of criteria. Once again, this is counter-
intuitive since the explanation is relatively simple when the decision is tight.

6.2 Explanation of the Preference Relation � for the HCI Model

A counterfactual explanation of x � y for the HCI model consists of finding tx close to
x and ty close to y such that tx ≺ ty. We can adapt the MILP of Sect. 4.5 to this case:

min
∑

i∈N

(|txi − xi| + |tyi − yi|)

under ∀i ∈ N txi , tyi ∈ [0, 1]
constraints (18)–(27)

txr < tyr − ε

for a small constant ε > 0. The last constraint indicates that tx shall be strictly less
preferred than ty .

6.3 Explanation of a Classification Function for the HCI Model

Given x ∈ X with f(x) = 0, we look at y ∈ X s.t. f(y) = 1 that is close to x.

min
∑

i∈N

|txi − xi|

under&∀i ∈ N ti ∈ [0, 1]
constraints (18)–(22)

constraint (32)

This is also a MILP. The counterfactual explanation is tx.
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7 Contribution to the XAI Field

One of the main focus of MCDA has been to build models that are interpretable and
constrained by design [44]. They are justified by axiomatic characterizations which
provide necessary and sufficient conditions under which a given model is the unique
admissible one (each condition is an interpretable property of the model) [30], and by
behavioral studies in cognitive science showing the cognitive biases that are captured
by each model. The idea behind such models is to be trustable for advising a human
end user in making a specific decision. The CI model is rooted in this philosophy [16],
with a natural intelligibility and formal guarantees over their behavior, making them
suitable for use in safety-critical settings [18], in particular as it offers guarantees that
are not provided by post-hoc analysis of black-box models [45]. Its main source of
explainability is the ability to extract indicators, such as the Shapley value, in a straight-
forward manner from a closed-form formula. Interaction indices can be computed in a
similar manner [17]. Together, these indices allow to quickly summarize, analyze and
ultimately validate a given model on a global, holistic scale. Local (or instance-wise)
Shapley values are also extractable, allowing for a fine-grained, instance-specific anal-
ysis, which an end user can exploit for understanding a given model’s decision, grant-
ing interpretation at runtime. Finally, the formal constraints of the model restrict its
behavior to follow expert-validated properties, ensuring no unpredictable phenomenon
to occur at runtime.

The hierarchical generalization of the CI, called HCI in this paper, has the same
strengths in terms of interpretability and behavioral properties. First of all, all nodes
in the hierarchy are constructed with a decision maker, and thus make sense to the
user. This is the contrary of Deep learning in which the intermediate nodes and layers
are latent variables which are not interpretable. When discussing on the outcome of
a MCDA model on a particular alternative with the user, we can communicate on the
elementary criteria (i.e. the leaves of the tree) but also on the higher level nodes which
represent a more comprehensive viewpoint than elementary criteria. These hierarchical
models can be globally interpreted with approaches being developed for generalizing
Shapley values to tree structures [34,51]. The hierarchical model offers even higher
interpretability, allowing through its structure to decompose nicely the reasoning of the
model. In particular, explanations can now be obtained at different levels, with different
granularity, depending on what information the end user requires. Moreover, using a
hierarchy is a way to ensure model sparsity, in turn easing the cognitive effort on the
end user. Finally, the robustness and trustability of HCIs was further reinforced by these
models’ identifiability [7], ensuring the unicity of the interpretation of a given model.

While CIs were traditionally built using constrained optimization based on informa-
tion provided by a domain expert, several approaches have been recently proposed to
learn the parameter of a fuzzy integral such as a CI [6,23]. A noticeable example is the
learning a HCI from data through the use of neural networks [8]. These works further
reinforce the bond between xAI and MCDA, allowing to use methods from machine
learning to learn models which offer all the strength of MCDA models, preserving their
interpretability and constrainedness.
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Even though MCDA offers naturally interpretable models, some work has been pur-
sued to generate local explanations. The first level of explainability refers to the inter-
pretation of the model parameters. The weighted sum proposes such a framework by
distinguishing between the concepts of marginal utility (level of satisfaction of crite-
rion by criterion) and criteria importance in the model (their weight). One may say
for instance that an alternative is preferred to another one as the first one has a high
satisfaction on important criteria [32]. This has lead to several approaches generating
argumentation schemas [32,39]. Alternatively, one can also produce an argumentation
graph [52]. The drawback of these approaches is that the identification of the arguments
(criteria that are displayed to the user) is based on heuristics, which introduces biases
and subjectivity, making these models questionable for safety-critical settings.

Another approach for explaining MCDA is to assign a level of contribution to each
criterion. The concept of compellingness has been defined in MCDA long time before
feature attribution techniques have been developed in machine learning [9,29]. This
concept has been extended to the Choquet integral [38], but this yields instability [34].
To overcome this drawback, the Shapley value has been extended to hierarchical struc-
tures such as HCI [34]. An axiomatic characterization of these indices has been pro-
posed in the framework of Game Theory [34]. Lastly, Främling introduced two indices
per criteria instead of one, where the first one (Contextual Importance) represents the
importance of a criterion relatively to a given instance, and the second one (Contextual
Utility) is interpreted as the utility of the instance on a criterion [14]. The drawback of
all these methods computing degrees is that, at some point, one needs to introduce a
threshold above which the values of this value are displayed to the user. The choice of
this threshold is again questionable.

Another approach has been proposed – based on robust entailment. The decision
is done not from fixed values of the parameters, but for the set of all parameters that
are compatible with a set of preferential data. It has been shown that the entailment is
necessarily a linear combination (with integer coefficients) of some preferential data
[4,5,33]. The drawback is on the use of the robust entailment, which might be (nearly)
empty. It fails to recommend a decision in most of the cases, which is not acceptable.

We propose in this paper two alternative approaches – namely sufficient and nec-
essary explanations. Their main asset is that they do not rely on any threshold or other
parameter. They provide a grounded method for recommending sufficient criteria (the
other criteria can be removed without any consequence on the outcome) or minimal
modification to perform on criteria values to change the model outcome.

Sufficient Explanations: Sufficient explanations aims at identifying the criteria and/or
model parameters that can be discarded (i.e. replaced by any possible value) without
any consequence on the model outcome (a decision or a class). The main asset of this
approach is that it provides a justification to safely discard those elements from the
explanation. This is not the case with approaches based on indices, as their interpre-
tation is not clear and their are not designed for feature selection. We have seen that
simplifying only on the model parameters may yield explanations which are difficult to
understand. We have also seen that for the weighted sum, it is equivalent to simplify
only on the utilities or on both the utilities and criteria weights (see Sect. 4.4).
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The use of prime implicants provides a baseline for restricting the set of criteria,
which avoids mentioning non-relevant criteria in the explanation. Assume that subset S
is a minimal sufficient explanation: it is completely useless to mention criteria inN\S at
all. This approach can be seen as a baseline for safely selecting relevant criteria, and can
be complemented to another xAI approach. One can think for instance of explanations
based on argumentation schemas [32,39]. The difficulty here is to make sure that such
approach mentions no criterion in N\S. We have of course no guarantee on that. In
order to ensure this constraint, we can construct from the decision model u defined on
N , a restricted decision model u[S] defined only on S, as in [31]. As criteriaN\S do not
influence u when criteria S take value x, there are several ways to construct u[S]. For
instance u[S](xS) is an average of quantity u(xS , yN\S) over several values of yN\S

[31]. Then the other explanation approach is used on this restricted model u[S]. As its
arguments are criteria S, we are sure that the explanation of u[S] is only restricted to S.

Necessary Explanations: Necessary explanations aim at finding the smallest modifi-
cation that yields the opposite decision or class. The interest of these explanations is
that they are actionable, that is that they can be applied by the user. As it is complex to
generate realistic modification recommendations, one can imagine extending the MILP
to include user feedback. It can take the form of a constraint on some criteria – e.g. the
value of this criterion cannot exceed some value, or one cannot improvetwo criteria at
the same time.

8 Conclusion and Future Works

In this paper, we have explicited the notion of prime implicants with regards to the
hierarchical Choquet integral model. We have proposed to formulate this problem as an
MILP to extract the PIs in several settings. We also exploit the same method to extract
counterfactual explanations.

A practical challenge is to generate an instance that is realistic. This means that
some points in X are not realistic, even though they are close, in terms of distance, to
a real point x. In practice, given an unsupervised set of instances, one can construct a
normality score with a one-class SVM for example. Another idea would be to be able to
quantify the relationships between the variables, which can be done either explicitly if
there is a theoretical background (for instance in physical systems) or through learning
the manifold of data, then sampling from it.

A realistic counterfactual example is then an instance y that is close to x, has the
opposite class than x and has a large normality score. This is loosely analogous to
generating adversarial examples.

We denote by X the set of realistic instances. We can also use X in Prime Impli-
cants, by avoiding modifications of the instances that are not realistic. It is to be noted,
though, that this can lead to values that are so constrained that the possibilities are
restricted to a small, or even empty, set.
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9 Proofs

Proof of Lemma 1: Assume that 〈S, T 〉 ∈ ExSuf . Let S′ and T ′ such that S′ ⊇ S and
T ′ ⊇ T .

Let Δ′ ∈ D(S′) and v ∈ W (T ′). By the assumptions (6) and (7), Δ′ ∈ D(S) and
v ∈ W (T ). Hence since 〈S, T 〉 ∈ ExSuf , we obtain that H(Δ′, v) > 0. We conclude
that 〈S′, T ′〉 ∈ ExSuf . �

Proof of Lemma 9:We have

〈S, T 〉 ∈ ExNec ⇐⇒ ∃Δ′ ∈ D(N\S) ∃v ∈ W (N\T ) H(Δ′, v) ≤ 0

⇐⇒ NOT
[
∀Δ′ ∈ D(N\S) ∀v ∈ W (N\T ) H(Δ′, v) > 0

]

⇐⇒ NOT
[
〈N\S,N\T 〉 ∈ ExSuf

]

⇐⇒ 〈N\S,N\T 〉 �∈ ExSuf

�
Proof of Lemma 4: The set T := {vN\T ∈ [0, 1]N\T : (wT , vN\T ) ∈ W} forms
a polytope. Since the constraint x �(wT ,vN\T ) y is linear, it is sufficient to check this
condition at the vertices of T . Clearly the vertices of T are of the form for all i ∈ N\T

vk = wk, ∀k ∈ T , vi = 1 −
∑

k∈T

wk and vk = 0 ∀k ∈ N\(T ∪ i).

Then the constraint gives (1 −
∑

k∈T wk) Δi +
∑

k∈T wk Δk > 0 for all i ∈ N\T .
Hence (11) holds.

The condition in (11) is equivalent to

min
i∈N\T

Δi > −
∑

k∈T wk Δk

1 −
∑

k∈T wk
= −

∑
k∈T wk Δk∑
k∈N\T wk

which is equivalent to the condition in (12). �

Proof of Lemma 3: Let p given in the lemma and P = {π(1), π(2), . . . , π(p)}. Then
P\{π(p)} �∈ ExSuf . This means that L(P\{π(p)}) ≤ 0. Let l ∈ {1, 2, . . . , p}. Then

L(P\{π(l)}) − L(P\{π(p)}) = cπ(p) − cπ(l) ≤ 0.

Hence L(P\{π(l)}) ≤ 0 and thus P\{π(l)} �∈ ExSuf . This proves that P is minimal
in ExSuf .

The fact that P has the smallest cardinality follows from the relation L(S) =∑
k∈S ck − 1. �

Proof of Lemma 5:We have

〈S, T 〉 ∈ ExSuf ⇐⇒ ∀Δ′ ∈ D(S) ∀v ∈ W (T ) H(Δ′, v) > 0

⇐⇒ H(Δ′, v) > 0 for Δ′
i =

{
Δi if i ∈ S
−1 otherwise

and vi =

⎧
⎨
⎩

wi if i ∈ T
1 − ∑

j∈T wj if i = k

0 otherwise
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where k ∈ N\(T ∪ S) if T ∪ S �= N and k ∈ S\T that has the smallest value of Δk

otherwise. This later condition is equivalent to
∑

i∈S∩T

wi Δi −
∑

i∈T\S

wi − (1 −
∑

j∈T

wj) ≥ 0

if T ∪S �= N (when T ∪S �= N , the worst choice of k �∈ T is obtained with for k �∈ S,
in which case Δ′

k = −1), and is equivalent to

∑

i∈S∩T

wi Δi −
∑

i∈T\S

wi +
(

min
k∈S\T

Δk

) ∑

j∈S\T

wj ≥ 0

otherwise (when T ∪ S = N , the worst choice of k �∈ T is obtained for k ∈ S\T ). �

Proof of Lemma 6: Let 〈S, T 〉 ∈ ExSuf and i ∈ T\S. We have, as S∩T = S∩(T\{i})

M(S, T ) − M(S, T\{i}) =

⎡

⎣−
(
wi +

∑

k∈(T\S)\{i}
wk

)
−

(
1 − wi −

∑

k∈T\{i}
wk

)
⎤

⎦

−

⎡

⎣−
∑

k∈(T\S)\{i}
wk −

(
1 −

∑

k∈T\{i}
wk

)
⎤

⎦

= 0

so that 〈S, T\{i}〉 ∈ ExSuf . Iterating over all i ∈ T\S, we obtain that 〈S, S ∩ T 〉 ∈
ExSuf .

From the expression of M , M(S, T ) is independant of S\T . Hence M(S, S ∩ T )
is also independant of S\T . This implies that 〈S ∩ T, S ∩ T 〉 ∈ ExSuf . �

Proof of Lemma 8: Let p given in the lemma and P = {π(1), π(2), . . . , π(p)}. Then∑p
�=1 cπ(�) > α and

∑p−1
�=1 cπ(�) ≤ α. By definition of π, for every S ⊆ N with

|S| < p
∑

i∈S

ci ≤
p−1∑

�=1

cπ(�) ≤ α.

Hence P is minimal and there is subset of cardinality strictly lower than p that is a
prime implicant. �

References

1. Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features are depen-
dent: more accurate approximations to shapley values. Artif. Intell. 298, 103502 (2021)

2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, oppor-
tunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

3. Bana e Costa, C.A., De Corte, J., Vansnick, J.C.: MACBETH. Int. J. Inf. Technol. Decis.
Making 11, 359–387 (2012)



300 C. Labreuche and R. Bresson

4. Belahcène, K., Chevaleyre, Y., Labreuche, C., Maudet, N., Mousseau, V., Ouerdane, W.:
Accountable approval sorting. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI 2018), pp. 70–76. Stockholm, Sweden (2018)

5. Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., Ouerdane, W.: Comparing options
with argument schemes powered by cancellation. In: Proceedings of the Twenty-Eight Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2019), pp. 1537–1543. Macao,
China (2019)

6. Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for mul-
ticriteria choice, ranking and sorting problems. Artif. Intell. 246, 152–180 (2017)
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Abstract. Progress in graph neural networks has grown rapidly in
recent years, with many new developments in drug discovery, medical
diagnosis, and recommender systems. While this progress is significant,
many networks are ‘black boxes’ with little understanding of the ‘what’
exactly the network is learning. Many high-stakes applications, such as
drug discovery, require human-intelligible explanations from the models
so that users can recognize errors and discover new knowledge. There-
fore, the development of explainable AI algorithms is essential for us to
reap the benefits of AI.

We propose an explainability algorithm for GNNs called eXplainable
Insight (XInsight) that generates a distribution of model explanations
using GFlowNets. Since GFlowNets generate objects with probabilities
proportional to a reward, XInsight can generate a diverse set of expla-
nations, compared to previous methods that only learn the maximum
reward sample. We demonstrate XInsight by generating explanations for
GNNs trained on two graph classification tasks: classifying mutagenic
compounds with the MUTAG dataset and classifying acyclic graphs with
a synthetic dataset that we have open-sourced. We show the utility of
XInsight’s explanations by analyzing the generated compounds using
QSAR modeling, and we find that XInsight generates compounds that
cluster by lipophilicity, a known correlate of mutagenicity. Our results
show that XInsight generates a distribution of explanations that uncov-
ers the underlying relationships demonstrated by the model. They also
highlight the importance of generating a diverse set of explanations, as
it enables us to discover hidden relationships in the model and provides
valuable guidance for further analysis.

Keywords: Explainable AI · Graph Neural Networks · GFlowNets

1 Introduction

Graph neural networks (GNNs) have emerged as a popular and effective machine
learning algorithm for modeling structured data, particularly graph data. As
GNNs continue to gain popularity, there is an increasing need for explainable
GNN algorithms. Explainable AI refers to machine learning algorithms that
can provide understandable and interpretable results. Explainable AI algorithms
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L. Longo (Ed.): xAI 2023, CCIS 1902, pp. 303–320, 2023.
https://doi.org/10.1007/978-3-031-44067-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44067-0_16&domain=pdf
http://orcid.org/0000-0002-0668-8745
http://orcid.org/0000-0001-8151-2208
http://orcid.org/0000-0002-9658-5626
http://orcid.org/0000-0003-0129-9270
https://doi.org/10.1007/978-3-031-44067-0_16


304 E. Laird et al.

have the ability to uncover hidden relationships or patterns that deep learning
models use in making their decisions. This means that researchers can use these
methods to understand why a model arrived at a certain decision. In the case of
GNNs, the need for explainability arises from the fact that they are often used
in applications where the decision-making process needs to be transparent and
easily understood by humans. For example, in the field of drug discovery, GNNs
are used to predict the efficacy of a drug by analyzing its molecular structure [49].
In this case, it is crucial to understand how the GNN arrived at its prediction,
as it can have significant implications for patient health and safety.

Explainable AI algorithms also uncover erroneous correlations in deep learn-
ing models. For instance, in a study by Narla et al. [25], the researchers found
that their model had incorrectly learned that images with rulers were more likely
to be cancerous. The use of explainable AI methods helped them uncover this
error and highlighted the need for methods that can explain the underlying
relationships that deep learning models rely on to make predictions.

In response to this need, we propose a novel GNN explainability algorithm,
eXplainable Insight (XInsight), that generates diverse model-level explanations
using Generative Flow Networks (GFlowNets) [3]. XInsight represents the first
application of GFlowNets to explain graph neural networks. Unlike previous
model-level algorithms, that only learn the maximum reward sample, XInsight
generates objects with probabilities proportional to a reward. We demonstrate
the effectiveness of XInsight by applying it to GNNs trained on two graph
classification tasks: classifying mutagenic compounds with the MUTAG dataset
and classifying acyclic graphs with a synthetic dataset. In our experiments, we
demonstrate that XInsight’s explanations for the MUTAG dataset [24] can be
analyzed using data mining techniques and QSAR [14] modeling to uncover hid-
den relationships in the model. For instance, when analyzing the compounds
generated by XInsight, we found that they clustered by lipophilicity, which is a
known correlate of mutagenicity. Our results demonstrate that XInsight gener-
ates a distribution of explanations that enables the discovery of hidden relation-
ships in the model.

The key contributions of this paper are summarized below:

(i) We proposed eXplainable Insight (XInsight), an explainability algorithm
for Graph Neural Networks (GNNs) that uses GFlowNets to generate a
distribution of model explanations.

(ii) We applied XInsight to explain two classification tasks, one of which was
a newly open-sourced synthetic dataset, and the other was a real-world
molecular compound dataset.

(iii) We analyzed XInsight’s generated explanations using a clustering method
and chemical analysis tool, which helped us to discover important under-
lying patterns and relationships of the examined model.



XInsight 305

2 Related Work

2.1 Graph Neural Networks

Graph neural networks (GNNs) have emerged as a popular deep learning tech-
nique to model structured data that can be represented as graphs. Unlike tradi-
tional neural networks that operate on structured data like images and sequences,
GNNs operate on non-Euclidean data, such as social networks [9,34], chemi-
cal molecules [5,11,12,49], and 3D point clouds [10,31]. GNNs typically use a
message-passing approach [12], where the feature representations of nodes, edges,
and the overall graph are iteratively updated by aggregating the features of their
neighbors and combining them with the learned features from the previous step.
This message-passing process is repeated for a fixed number of iterations or until
convergence. Expanding upon traditional message-passing GNNs, many other
GNN architectures have been proposed, such as Graph Convolutional Networks
(GCNs) [48] that use convolutional operations similar to Euclidean Convolu-
tional Neural Networks, Graph Isomorphism Networks (GINs) [41] that employ
multilayer perceptrons to aggregate neighboring features, and Graph Attention
Networks (GATs) [36] that apply an attention mechanism to weigh contributions
of neighboring nodes/edges based on their importance. With the development
of GNNs, we can now model and make predictions based on structured data in
a way that was not possible before.

2.2 Explaining Graph Neural Networks

Graph neural networks (GNNs) are widely used in various domains such as
drug discovery [5,11,12,49], recommendation systems [39,40,43], and medical
diagnosis [1,18,19]. However, as with other machine learning models, GNNs
are often considered to be ‘black boxes’, providing little insight into how they
make predictions. Therefore, explainable AI algorithms for GNNs have gained
increasing attention in recent years.

There are several approaches to developing explainable GNN algorithms that
can conveniently be categorized as instance-level and model-level approaches.
Instance-level algorithms provide explanations for individual predictions of the
GNN and include methods that utilize the gradients of the features to deter-
mine input importance, such as sensitivity analysis, Guided BP, and Grad-CAM
[2,30,33], perturb inputs to observe changes in output as in GNNExplainer and
PGExplainer [20,42], and learn relationships between the input and its neighbors
using surrogate models [15,38]. While there are several instance-level explainabil-
ity methods for GNNs, there is still a lack of effective model-level explainability
methods [46].

Model-level explanations help identify how the GNN approaches the task at
hand, and can reveal patterns and structures that may not be immediately evi-
dent from the graph data alone. They also help identify when a model is not
performing well on the given task, or when it is exhibiting unwanted behavior.
Outside of the graph-learning world, input optimization is a popular model-level
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approach for image classification models, where the goal is to generate an image
that maximizes the predicted class label [8,21,26–28,32]. In contrast, model-level
explanations for GNNs have received relatively less attention. One of the most
prominent model-level explainability methods for GNNs is XGNN (eXplainable
Graph Neural Networks) [45]. XGNN leverages reinforcement learning techniques
to generate graphs that provide insights into how the GNN is making predic-
tions. XGNN generates a graph explanation that maximizes a target prediction,
thereby revealing the optimized class pattern learned by the model.

To gain more insight into the model, it is often necessary to analyze a diverse
distribution of examples that cover different scenarios and edge cases. Further-
more, generating a distribution of explanations opens the door to applying sta-
tistical analysis and data mining techniques, such as dimensionality reduction or
t-tests, to uncover hidden relationships in the data. For instance, in this paper
we use dimensionality techniques to uncover clusters within XInsight explana-
tions. When then used these clusters to verify that the model correctly learned
a known correlation within the data.

2.3 XGNN

XGNN, which stands for eXplainable Graph Neural Networks, is a novel model-
level explainability framework introduced by Yuan et al. in 2020 [45]. The goal
of XGNN is to generate a graph that maximizes a specific target class of a
graph classification model. XGNN employs a reinforcement learning approach
to iteratively build a graph using actions that add nodes or edges to the graph
at each time step. During each time step, the model calculates the reward based
on the probability of the target class, which encourages the algorithm to select
actions that generate graphs of a particular class. This process is repeated until
the model converges or until a maximum number of time steps is reached.

Like Graph Convolutional Policy Networks [44], XGNN learns a generator
model using a policy gradient. The generator produces a graph that contains
patterns that maximize the target class in question. In contrast to instance-level
explainability methods that identify subgraphs that contribute to the model’s
output, XGNN focuses on the entire graph and the relationships between its
nodes and edges. XGNN is currently the only model-level explanation method
that has been proposed for GNNs, according to a recent survey [46].

While XGNN is a powerful model-level explainability method for GNNs,
it generates a single maximum reward explanation, which limits its ability to
explain the full extent of the model’s behavior. XGNN is also limited in its utility
to discover hidden insights related to the classification task due to the inability
to perform a more detailed analysis of the explanations, such as clustering. Due
to these limitations, there is no way of directly comparing XGNN to techniques
that generate a distribution of explanations, such as XInsight.

2.4 GFlowNets

Generative Flow Networks (GFlowNets) are a type of generative model that
generate a diverse set of objects by iteratively sampling actions proportional to
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a reward function [3,4]. The objective of GFlowNets is to learn to sample from
a distribution of diverse and high-reward samples instead of generating a single
sample to maximize a reward function. GFlowNets can be viewed as Markov
Decision Processes (MDP) represented by a directed acyclic graph (DAG), where
the edges represent the actions that can be taken in the states. The flows coming
into a state represent the actions that can be taken to reach that state, while
the flows leaving a state represent the actions that can be taken in that state to
reach the next state. The DAG is traversed iteratively by sampling flows, which
generates a flow trajectory that ends when a terminal state is reached. The flow
entering a terminal state is the total flow of the trajectory and is equal to the
reward function assigned to that state.

Trajectory Balance Objective. In [22], Malkin et al. introduced the Tra-
jectory Balance Constraint, shown in Eq. 1, which ensures that the flow of the
trajectory leading to a state is equal to the flow of the trajectory leaving that
state and terminating at a terminal state. Satisfying this constraint allows the
GFlowNet to sample objects with probability proportional to its reward.

Z
∏

t

PF (st+1|st) = R(τ)
∏

t

PB(st|st+1) (1)

where Z is the ‘total flow’. The right side of Eq. 1 represents the fraction
of the total reward going through the trajectory, while the left represents the
fraction of the total flow going through the trajectory. This constraint can be
turned into the Trajectory Balance Objective [22] for training a GFlowNet, shown
below:

LTB(τ) =
(

log
Z

∏
t PF (st+1|st)

R(τ)
∏

t PB(st|st+1)

)2

(2)

Applications of GFlowNets. GFlowNets have been applied to many genera-
tive applications, including molecular sequence generation [3,16,22] and MNIST
image generation [47]. And due to their ability to generate diverse samples,
GFlowNets trained to generate model explanations, as in XInsight, provide the
machine learning user a greater breadth of human-readable explanations of what
their models are learning from the data.

3 eXplainable Insight (XInsight)

3.1 Explaining Graph Neural Networks

Graph classification networks can be difficult for humans to interpret since graph
structures can be less intuitive to humans compared to visual features which
humans are naturally equipped to interpret. Therefore when seeking to under-
stand a graph classification model, a quality explainability algorithm should take
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advantage of the natural pattern matching capabilities of its human users by pro-
ducing concise explanations that highlight patterns that are easily interpreted by
humans. To make it even easier for its users, a quality explainability algorithm
should produce a distribution of explanations in order to provide the user with
multiple perspectives into the model; however, most algorithms to date lack one
or both of these qualities.

XInsight not only produces concise explanations that highlight important
patterns but also produces a distribution of explanations that allows the user to
develop a more robust understanding of what the examined model is learning
from the data. XInsight trains a GFlowNet to generate a diverse set of model-
explanations for a graph classification model. The explanations that XInsight
generates highlight general patterns that the classification model attributes to
specified target class in question.

In the context of model explanations as a whole, the explanations that XIn-
sight produces are particularly useful for discovering relationships within the
trained model. For example, they can help determine if a model incorrectly
associates an artifact in the data with the target class, like rulers with skin
cancer as discussed in [25]. XInsight empowers users to do this by generating a
distribution of explanations, which can then be passed through traditional data
mining techniques, such as clustering, to uncover what the model is learning
from the data.

3.2 Generating Graphs with XInsight

XInsight employs a GFlowNet that it is trained to generate graphs with proba-
bilities proportional to their likelihood of belonging to a target class. Specifically,
the GFlowNet generates a graph by iteratively sampling actions that determine
whether to add a new node or edge to the existing structure. It is important to
note that the likelihood of a sample belonging to a particular class is defined
by the trained model that is being explained. Therefore, the distribution of
generated samples is dependent upon the trained model and not the true class
distribution, which in the context of explaining a trained model is desirable since
the goal is to understand the model itself.

Action Space. The action space, A, is split into two flows: the first selecting
a starting node and the second selecting the ending node. The starting node
is selected from the set of nodes N in the current incomplete graph Gt. The
ending node is selected from the union of the same N , excluding the starting
node and a set of building blocks B. Together, the starting and ending nodes
form the combined action A(ns, ne) sampled from the forward flow PF . Taking
this action generates a new graph Gt+1 as shown below:

Gt+1 ∼ PF (A(ns, ne)|Gt) (3)

pstart(ns ∈ N |Gt) (4)
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pend(ne ∈ N ∪ B;ne �= ns|Gt) (5)

3.3 Proxy

The proxy f in classical GFlowNets is used to generate the reward for a generated
object. For example, in [3] Bengio et al. used a pretrained model as their proxy
to predict the binding energy of a generated molecule to a protein target. In
XInsight, we use the model to be explained as the proxy since the generated
objects are treated as explanations of the model.

Reward. The reward in XInsight guides the underlying GFlowNet to generate
graphs that explain the proxy. In XInsight, we define the reward as the proxy’s
predicted probability that the generated graph belongs to the target class c, as
shown in Eq. 6. To encourage the generation of objects explaining the target
class, we define the reward to be zero if the generated object is classified as the
opposite class. In addition, we add a scalar multiplier α to magnify the reward
for the target class, where α > 0.

R(Gt) =

{
α ∗ softmax(f(Gt)) if argmax{f(Gt)} = Target Class

0 if argmax{f(Gt)} �= Target Class
(6)

3.4 Training XInsight

We train XInsight using the trajectory balance objective, following [22]. We
define the trajectory balance objective for a complete graph G generated over a
trajectory τ actions in Eq. 7.

LTB(G) =
(

log
Z

∏τ
t PF (Gt+1|Gt)

R(Gt)
∏τ

t PB(Gt|Gt+1)

)2

(7)

The training loop consists of sampling trajectories (i.e. generating graphs),
calculating forward and backward flows and the reward, and updating the under-
lying GFlowNet parameters until convergence. We highlight the in-depth steps
of XInsight’s training loop in Algorithm 1.

For every epoch in the training loop, we start by initializing the GFlowNet
and creating an initial graph G0. Then we generate a graph by iteratively
sampling actions from the forward policy PF that add nodes or edges to the
graph at each step Gt. Once a trajectory is complete, either by the reaching the
MAX ACTIONS limit or by sampling a stop action, the reward is computed
for Gt using the Proxy. Finally, we calculate the trajectory balance loss, update
the GFlowNet’s parameters and repeat.
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Algorithm 1. XInsight Training Loop
Input: EPOCHS, Proxy(·), TARGET CLASS, MAX ACTIONS

XI(·; θ) ← GFlowNet
for epoch in EPOCHS do

actions ← 0
Gt ← G0 � Initialize new graph
τ ← ∅ + {Gt}
repeat

PF , PB ← XI(Gt; θ) � Generate flows
ns, ne ∼ PF � Sample start & end node
if ns = stop then

STOP ← True � Stop if stop action sampled
end if
Gnew ← T (ns, ne) � Add node/edge
PF , PB ← XI(Gnew; θ) � Recompute flows
Gt = Gnew

τ ← τ + {Gt} � Append Gt to trajectory
actions + +

until actions > MAX ACTIONS or STOP
Reward = softmax(Proxy(Gt))TARGET CLASS � Calculate reward
θ ← θ − η∇LossTB(Reward, logZ , τ) � Update parameters

end for

4 Experiment Design

4.1 Datasets

The Acyclic Graph dataset includes 2405 synthetically generated graphs labeled
as either acyclic or cyclic. We generated graphs using graph generation functions
from the NetworkX software package [13]. To improve the diversity of the dataset,
we trained a GFlowNet with a brute-force cycle checker as a reward function
to generate acyclic and cyclic graphs to add to the dataset. The code used to
generate this dataset can be found in [17].

The MUTAG dataset [24], included in Pytorch Geometric, contains 188
graphs representing chemical compounds used in an Ames test on the S.
Typhimurium TA98 bacteria with the goal of measuring the mutagenic effects
of the compound. This dataset was used in a study to measure the correlation
between the chemical structure of the compounds and their mutagenic activity
[7]. The nodes and edges in the graphs in MUTAG represent 7 different atoms
(Carbon, Nitrogen, Oxygen, Fluorine, Iodine, Chlorine, and Bromine) and their
chemical bonds. In the graph learning community, the dataset is used as a bench-
mark dataset for graph classification models labeling each graph as ‘Mutagenic’
or ‘Non-Mutagenic’.

4.2 Verifying XInsight’s Generative Abilities Setup

To validate that XInsight can generate graphs belonging to a target class, we
trained XInsight to generate acyclic graphs because of their simple and human-
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interpretable form. For the proxy, we trained a graph convolutional neural net-
work (GCN) to classify acyclic graphs using the Acyclic Graph dataset and node
degree as the node features, achieving 99.58% accuracy. This GCN is composed
of three graph convolutional layers (GCNConv) with 32, 48, 64 filters, respec-
tively, a global mean pooling layer, and two fully connected layers with 64 and
32 hidden units. We also used dropout and the ReLU activation function. The
GFlowNet was also a GCN made up of three GCNConv layers with 32, 64,
and 128 filters, two fully connected layers with 128 and 512 hidden units, and a
scalar parameter representing log(Z) from the reward function, see Sect. 3.3. The
building blocks used for action selection consisted of a single node of degree 1.

4.3 Revealing MUTAG Relationships Setup

Due to their highly qualitative nature, there is no established method for eval-
uating model-level explanation methods for graphs, particularly for methods
that generate a distribution of explanations. Despite this barrier, we demon-
strate XInsight’s explanatory abilities by applying it to the task of knowledge
discovery within the mutagenic compound domain. Particularly, we evaluated
XInsight for its ability to uncover meaningful relationships learned by a graph
neural network trained to classify mutagenic compounds and verify that these
relationships exist in the ground truth data.

Fig. 1. Generated graphs (8 with cycles and 8 without cycles) to verify XInsight’s
ability to generate graphs of a specified target class.
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For the proxy, we trained a graph convolutional neural network (GCN) to
classify mutagenic compounds using the MUTAG dataset. Following [45], we
used node features which were seven-dimensional one-hot encoded vectors encod-
ing the seven different atoms in the dataset. The architecture of this GCN mir-
rored that used for the Acyclic classification task, with the addition of another
GCNConv layer with 64 filters and LeakyReLU as the activation function. With
this architecture, we achieved 89% accuracy on the MUTAG classification task.
The GFlowNet architecture was also the same as the one used for the Acyclic
classification task, except we used seven nodes representing the different atoms
as the building blocks. The initial graph G0, used in training the GFlowNet, was
set to a single node graph with the feature value set to carbon, as in [45].

5 Results

5.1 Verifying XInsight’s Generative Abilities Using the Acyclic
Dataset

To verify that XInsight is capable of generating graphs of a particular class
defined by a classification model, we conducted an experiment in which we
trained XInsight to generate graphs from a graph convolutional network, pre-
viously trained on the Acyclic Graphs dataset. This synthetic dataset contains
two classes, acyclic and cyclic, and is described in detail in Sect. 4.1.

Following XInsight training, we generated a distribution of 16 graphs (8
acyclic and 8 cyclic), shown in Fig. 1. The results of the experiment indicate
that XInsight is indeed capable of generating acyclic graphs, which is consistent
with the nature of the dataset. This provides evidence that XInsight is capable
of generating graphs guided by the predictions of a simple classification model.

5.2 Revealing Distinct Relationships Learned by the MUTAG
Classifier

Generating Explanations. In our second experiment, we trained XInsight to
explain a GCN trained on the MUTAG dataset. Our objective was to uncover
hidden patterns and relationships that the trained GCN classifier associates with
the mutagenic class. To achieve this, we used XInsight to generate a distribution
of 16 compounds, illustrated in Fig. 2, and then fed the generated graphs through
the trained GCN to produce graph embeddings. In order to visualize the 32-
dimensional graph embeddings we used the UMAP dimensionality reduction
algorithm, which preserves global and local structure of the data [23], to project
the embeddings onto a 2-dimensional plane. From this visualization, we identified
five distinct groupings of compounds that we hypothesize group by an unknown
factor related to mutagenicity. To uncover the factor behind these groupings,
we continued our analysis by analyzing the chemical properties of the generated
compounds using QSAR modeling [14] (Fig. 3).
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Fig. 2. Distribution of explanations for the Mutagenic classifier generated by the
trained XInsight model, with MUTAG class probabilities according to the trained
proxy. Colors represent UMAP clusters of graph embeddings for the generated com-
pounds. Blue: Group 1, Red: Group 2, Yellow: Group 3, Purple: Group 4, Orange:
Group 5. (Color figure online)

Knowledge Discovery. Quantitative Structure-Activity Relationship (QSAR)
modeling is a well-established methodology that is used to differentiate between
mutagenic and non-mutagenic compounds, which have been identified by the
Ames test [14]. Various features of typical drugs, such as lipophilicity, polariz-
ability, hydrophilicity, electron density, and topological analysis, have been uti-
lized in the literature to establish QSAR models for mutagenicity [35]. Among
these features, lipophilicity has been identified as a major contributing factor for
mutagenicity, as it facilitates the penetration of lipophilic compounds through
cellular membranes.

To establish a relationship between the clusters of compounds generated by
XInsight and their mutagenicity, we calculated the lipophilicity of all the gener-
ated structures using the XLOGP3 method [6], samples shown in Fig. 4. This
method has been shown to provide reliable results that are comparable to those
obtained using the calculation of the octanol water partition coefficient for logP
[37]. It is essential to note that we added hydrogens to O (-OH) and N (-NH2)
groups to represent the aqueous environment within the human body, since hydro-
gen atoms were not included in the building blocks for the MUTAG dataset.

In Fig. 5 we see that in general the lipophilicity value is higher for the gen-
erated mutagenic compounds compared to the non-mutagenic compounds. We
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Fig. 3. Generated graph embeddings projected onto 2-dimensional plane using UMAP.
UMAP was fit using the cosine similarity metric, 2 neighbors, and a minimum distance
of 0.1.

Fig. 4. Lipophilicity calculations for 10 of the clustered compounds generated by XIn-
sight using the XLOGP3 method. Surface mesh and 3 dimensional structures were
generated by Chimera visualization software [29].

observed that the highest lipophilicity was associated with compounds of Group
4 (purple), followed by those of Group 2 (red) and Group 3 (yellow). The pur-
ple cluster exhibited significant differences in lipophilicity when compared to the
red and yellow clusters, which explains why purple is a distinct cluster. However,
groups 1 (blue) and 5 (orange) showed lower levels of lipophilicity values but still
exhibited significant differences. Thus, lipophilicity appears to be a factor related
to the mutagenicity of these compounds.
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Knowledge Verification. To verify that the discovered relationship between
lipophilicity and mutagenicity is valid, we randomly sampled 32 compounds
from the MUTAG dataset, with 16 compounds for each class, and calculated
lipophilicity for each. We then performed a t-test to determine whether there
is a statistically significant difference in lipophilicity for mutagenic and non-
mutagenic compounds. In Table 1 we show a statistically significant difference
between the mean lipophilicity values for the mutagenic and non-mutagenic
classes, thus verifying that the relationship uncovered using XInsight’s generated
distribution is a true relationship exhibited in the training data. Additionally,
this shows how XInsight can be used to discover knowledge about the model.

Fig. 5. XLOGP3 Lipophilicity values for UMAP clustered compounds colored by group
with classified labels, Mutagenic: M, Non-Mutagenic: NM. (Color figure online)

Further Insights. The distribution of explanations provided us with another
significant insight, which is that the compounds in Group 1 (blue) and Group 5
(orange) have low lipophilicity, even though Group 1 is classified as mutagenic
and Group 5 as non-mutagenic. This raises two possible assumptions: first, the
classifier might be incorrectly classifying compounds that are similar to those
in Groups 1 as mutagenic, or second, there might be another underlying factor
that is responsible for the hydrophilic nature of these compounds. Furthermore,
as mentioned earlier, lipophilicity is not the only factor determining the muta-
genicity of the compounds. To explain the clustering of the Group 1, additional
quantum-mechanical calculations are necessary.

This analysis underscores the considerable advantages of generating a distri-
bution of explanations, as opposed to a single explanation that maximizes the
reward. By having a distribution of explanations, we can uncover hidden insights
into what the classification model associates with the target class. Without a
distribution of explanations, we are restricted in the types of analysis we can
perform to more effectively explain the model being examined.
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Table 1. t-test results showing a statistically significant difference between Mutagenic
and Non-Mutagenic lipophilicity values for 32 randomly sampled compounds from the
MUTAG dataset, α = 0.05.

Mutagenic Non-Mutagenic

Mean 4.1444 2.1750

Variance 0.6812 1.3963

t-statistic −5.2917

p-value 0.00001022

6 Conclusion

In this paper, we proposed XInsight, a novel explainability algorithm for graph
neural networks, that generates a diverse set of model explanations using Genera-
tive Flow Networks. Our approach is designed to provide human-understandable
explanations for GNNs that uncover the hidden relationships of the model. We
demonstrated the effectiveness of XInsight by generating explanations for GNNs
trained for two graph classification tasks, including the classification of acyclic
graphs and the classification of mutagenic compounds. Our results indicate that
XInsight uncovers underlying relationships and patterns demonstrated by the
model, and provides valuable guidance for further analysis.

Our findings emphasize the importance of generating a diverse set of explana-
tions, as it enables us to discover hidden relationships in the model and identify
important features in the data. Furthermore, we show that the generated expla-
nations from XInsight can be used in combination with data mining and chemi-
cal analysis methods to uncover relationships within the model. For instance, we
analyzed the generated compounds from XInsight using QSAR modeling, and
we observe that XInsight generates compounds that cluster by Lipophilicity, a
known correlate of mutagenicity.

Overall, XInsight provides a promising direction for developing explainable
AI algorithms for graph-based applications, with implications for many real-
world domains. We believe that XInsight has the potential to make a significant
impact in various real-world domains, particularly in high-stakes applications,
such as drug discovery, where interpretability and transparency are essential.
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Abstract. Explainable Artificial Intelligence (XAI) techniques can pro-
vide explanations of how AI systems or models make decisions, or what
factors AI considers when making the decisions. Online social networks
have a problem with misinformation which is known to have negative
effects. In this paper, we propose to utilize XAI techniques to study
what factors lead to misinformation spreading by explaining a trained
graph neural network that predicts misinformation spread. However, it
is difficult to achieve this with the existing XAI methods for homoge-
neous social networks, since the spread of misinformation is often associ-
ated with heterogeneous social networks which contain different types of
nodes and relationships. This paper presents, MisInfoExplainer, an XAI
pipeline for explaining the factors contributing to misinformation spread
in heterogeneous social networks. Firstly, a prediction module is pro-
posed for predicting misinformation spread by leveraging GraphSAGE
with heterogeneous graph convolution. Secondly, we propose an explana-
tion module that uses gradient-based and perturbation-based methods,
to identify what makes misinformation spread by explaining the trained
prediction module. Experimentally we demonstrate the superiority of
MisinfoExplainer in predicting misinformation spread, and also reveal
the key factors that make misinformation spread by generating a global
explanation for the prediction module. Finally, we conclude that the
perturbation-based approach is superior to the gradient-based approach,
both in terms of qualitative analysis and quantitative measurements.

Keywords: Misinformation Spread · Graph Neural Networks ·
Explainable Artificial Intelligence

1 Introduction

Explainable Artificial Intelligence (XAI) [2] is a set of techniques used to make
AI more explainable and understandable to humans. By using XAI techniques,
developers and users of AI can understand how AI makes decisions or pro-
duces outputs, including the factors considered when making the decisions. XAI
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has become popular because AI techniques are now prevalent in people’s daily
lives [30,36], and it is important to know how AI makes decisions that can
increase trust and confidence in AI systems by making AI more understand-
able to humans which can lead to better acceptance of and improvements in AI
methods [12]. XAI methods can be divided into local explanation methods and
global explanation methods. The local explanation methods [20,29] provide the
explanation for a specific decision or output of the system, while the global XAI
methods [2] explain the behavior of the system as a whole.

Misinformation, which can cause negative effects, is pervasive on social media.
A research question of interest to us is to understand the factors, for example,
the content of the misinformation or the relationships between users, that enable
the spread of misinformation on online social networks. Previous studies [24,33]
on this topic have largely cooperated with social scientists, relying on specialized
knowledge for subjective analysis, which is not efficient when social media data
is huge. However, a global explanation may be able to identify which factors
enable misinformation spread, but this relies on an accurate underlying machine
learning model. Graph Neural Networks (GNNs) have seen increasing use in
many applications, including social network analysis [6,7,27], and have been
demonstrated success at classifying misinformation on social networks [4,21].
Several explainable approaches for GNNs have been explored, such as GNNEx-
plainer [37], GraphLIME [16], and GraphSHAP [25].

However, these existing methods are insufficient to explain the misinforma-
tion spread. Social networks are often studied as homogenous networks between
users [5,39], but it can be argued that they are better modeled as heteroge-
neous networks of different types of nodes [23]. Some of these methods, such as
GraphLIME [16], can only generate explanations for a homogeneous graph that
contains the same types of nodes and edges. Some other explanation methods are
limited to classification tasks and may not be suitable for explaining the spread
of misinformation, such as PGM-Explainer [34] which is designed for node and
graph classification tasks. To address the limitations of the existing XAI meth-
ods, this paper explores two research challenges. Firstly, how to train an effective
graph neural network that can accurately predict the spread of misinformation
on large complex heterogeneous social networks. Secondly, given this model, how
to explain the factors contributing to misinformation spread.

To address these two challenges, this paper presents MisInfoExplainer, an
XAI pipeline designed to explore the factors contributing to the spread of misin-
formation. The key contributions of this paper are as follows: First, we provide
a new formulation of the spread of misinformation problem where the objective
is to predict the spread value of each source of misinformation quantitatively.
Second, we introduce a misinformation spread prediction approach that lever-
ages the GraphSAGE model with the heterogeneous graph convolution (Het-
eroGraphConv) to accurately predict the spread of misinformation on hetero-
geneous social networks. Third, we propose a GNN-based explanation approach
that uses both gradient-based and perturbation-based methods to identify what
node feature types and edge types contribute to the spread of misinformation.
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Furthermore, we apply MisInfoExplainer to a large social network dataset to
demonstrate how it can be used to identify the node feature types and edge
types that contribute to the spread of misinformation. Finally, we conclude that
the explanations generated by the perturbation-based approach are superior to
those produced by the gradient-based approach by conducting both qualitative
analysis and quantitative measurements.

2 Related Work

Our study closely relates to two distinct topics of interest. The first topic cen-
ters around the analysis of misinformation spread, aiming to gain insights into
its dynamics and effects. The second topic explores the domain of GNN-based
Explainable AI (XAI), with a focus on interpreting and providing transparent
insights into the decision-making process of Graph Neural Networks.

2.1 Misinformation Spread

Misinformation is false or inaccurate information by concealing the correct facts,
also called ‘fake news’ or ‘rumor’. Misinformation has the potential to spread
rapidly through social media due to users’ behaviors, leading to various negative
effects. Consequently, the detection of misinformation has emerged as an impor-
tant research topic. One category of studies involves using Natural Language
Processing (NLP) technology to determine whether a post contains misinfor-
mation [9,17] and the explanations are also involved during detection, such as
dEFEND [31] which is to capture the features from the comments on a message
to explain why a message is considered as fake. Other studies have used infor-
mation propagation models for graph structures or GNNs to detect the spread
of false information [4,21].

Our study, however, focuses on the spread of known misinformation rather
than whether a message is misinformation. Some research studies the spread of
misinformation by using propagation models [22,33], while few have used GNN
models. However, the spread of known misinformation can be framed as an infor-
mation propagation problem and GNNs are currently the most commonly used
approach for modeling the relationships between users in information spread pre-
diction models for social networks. Examples of such models include CasCN [11],
MUCas [10], and coupledGNN [8], which all focus on homogeneous graphs rather
than heterogeneous graphs.

There are also studies that aim at explaining the misinformation spread. For
instance, [33] examined why fake information spreads faster than true informa-
tion, and [24] provided a psychological framework for understanding the spread
of misinformation. However, none of them used the XAI method to explain a
prediction model. To the best of our knowledge, we are the first to explore the
prediction and explanation of misinformation spread with the model-based XAI
method.
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2.2 GNN-Based XAI

Graph Neural Networks (GNNs) have demonstrated their effectiveness in numer-
ous graph machine learning tasks, as many real-world problems can be naturally
represented as graphs [14]. The XAI approaches to explaining GNNs are broadly
categorized into the following groups. Gradient-based methods leverage the input
gradient, representing the rate of change of input features in a deep learning
model, to quantify the importance values of the input features. Initially proposed
for image explanation, these methods have been successfully extended to graphs,
exemplified by techniques like Grad-CAM and Guided BP [26]. Perturbation-
based methods assess the significance of input features by introducing pertur-
bations to the inputs and observing the subsequent changes in model predic-
tions. Several examples of perturbation-based Graph Neural Networks (GNNs)
for Explainable AI (XAI) are GNNExplainer [37], GraphSHAP [25], and Graph-
Mask [28]. Surrogate-based methods involve employing a simple surrogate model
to approximate the outputs of a complex GNN model, and the feature impor-
tance in the surrogate model is utilized to explain the original model. Examples
of surrogate-based Graph Neural Networks (GNNs) for Explainable AI (XAI)
include GraphLIME [16] and PGM-Explainer [34]. These GNN-based XAI meth-
ods are designed for GNNs with homogeneous graphs, if the explanations are
required for heterogeneous GNNs, extensions to these methods would be needed.

3 Problem Formulation

The social network with misinformation is represented as a heterogeneous graph
that consists of multiple types of nodes, such as users, misinformation, claims,
etc. and different types of relationships between nodes. For example, a user fol-
lowing another user, a user posting a misinformation tweet, a reply tweet reply-
ing to a misinformation tweet, a misinformation tweet belonging to a particular
claim, etc. where following, posting, replying are edge types.

Definition 1 Heterogeneous Social Network. A heterogeneous social net-
work is defined as a heterogeneous graph G = (V,E), consisting of a node set
V and an edge set E. A heterogeneous graph is also associated with a node type
mapping function ξ : V → RV and an edge type mapping function ψ : E → RE.
RV and RE denote the predefined sets of node types and edge types, respectively,
with |RV | + |RE | > 2.

A heterogeneous graph can also be represented as G = (X,A), where A =
{A1, A2, .., A|RE |} is the set of adjacency matrices corresponding to the edge
types RE and X = {x1, ..., xv, ..., } denotes the node feature vectors of nodes v ∈
V . A heterogeneous graph is also associated with a node feature type mapping
function ζ : X → RX , where RX denotes the predefined set of node feature
types and |ζ(xv)| >= 1. In a heterogeneous graph representing a social network,
the misinformation (i.e., misinformation tweets) can be represented as a type of
nodes M ⊂ V .
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The first challenge this paper solves is to quantitatively predict the spread
value, yi, of each misinformation tweet, mi ∈ M , on a social network G, which
functionally depends on the number of reply tweets rpi, the number of retweets
rti, and the number of quote tweets qti for mi:

yi = log(rpi + rti + qti + 1), (1)

where yi is the spread value of a source of misinformation mi ∈ M .

Research Challenge 1 Misinformation Spread Prediction. The objective
of misinformation spread prediction is to use a learned misinformation spread
prediction model φ to predict the spread value of a misinformation node mi ∈ M
on a social network G. The model predicts the spread value of mi on G which is
represented as yi = φ(mi, G) approximating the true spread value yi.

The second research challenge this paper solves is to analyze what causes a
misinformation tweet to spread by explaining φ. The explanation focuses on the
node feature types RX and edge types RE , specifically which node feature types
in RX and which edge types in RE contribute to the misinformation spread.

Research Challenge 2 Misinformation Spread Explanation. Given the
social network G and the trained misinformation spread prediction model φ, the
objective of the misinformation spread explanation is to calculate a set of impor-
tant values Imi ∈ [0, 1] for i = 1, ..., |RX | + |RE | with each Imi representing the
contribution of an Inputi ∈ {RX ∪ RE}, which is an input node feature or edge
type to φ.

4 Methodolodgy

In this section, we describe MinInfoExplainer, our proposed GNN-based explana-
tion pipeline for predicting and explaining the spread of misinformation on social
networks. The pipeline begins with training a misinformation spread prediction
model φ to solve the problem of misinformation spread prediction (Research
Challenge 1) using a heterogenous convolutional graph neural network (see
Sect. 4.1). Then two XAI methods, a gradient-based method and a perturbation-
based method, are used to explain the misinformation spread (Research Chal-
lenge 2), which is predicted by the model φ (see Sect. 4.2).

4.1 Misinformation Spread Prediction Module

We have implemented an extended version of GraphSAGE [13] to solve the
misinformation spread prediction in Research Challenge 1, which is to predict
the spread values yi of the misinformation node mi, which approximates the
corresponding ground truth yi. GraphSAGE is a GNN for node representation
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learning by aggregating information from each node’s neighborhood. For a homo-
geneous graph, a GraphSAGE layer updates the hidden representation for each
node v based on the features of its neighbors N (v):

h
(l+1)
N (v) = aggregate({hl

u,∀u ∈ N (v)}), (2)

h(l+1)
v = σ(W · concat(hl

v, h
(l+1)
N (v) )), (3)

where l represents the l-th layer and W is the weight matrix. When l = 0, we
have the h0

v = xv, where xv ∈ X representing the features of v. The aggregate
process in Eq. 2 determines how to combine the representations of v’s neighbors
and we use the LSTM (Long Short-Term Memory) [15] function as the aggregate
function. Then the aggregated representation of N (v) and the representation of
v are concatenated to generate a new representation for v (as shown in Eq. 3).

However, when the social network G used to predict the misinformation
spread is heterogeneous, hence the different types of nodes and edges need to be
taken into consideration. Each node is connected to its neighbor nodes by differ-
ent types of edges and a heterogeneous graph convolution (HeteroGraphConv)
provided by the Deep Graph Library [35] is used to initiate the GraphSAGE
layer for each edge type r ∈ RE . The different GraphSAGE layers in the same
HeteroGraphConv module do not share the parameters and the HeteroGraph-
Conv module passes the message from a source node to a target node based on
the GraphSAGE layer given for the corresponding edge type. HeteroGraphConv
updates the hidden representations for the nodes that are connected by the same
type of edges and then a function conv agg aggregates the representations for
each node v that is connected by the different types of edges:

h
(l+1)
Nr(v)

= aggregate({hl
u,∀u ∈ Nr(v)}), (4)

h(l+1)
v,r = σ(Wr · concat(hl

v, h
(l+1)
Nr(v)

)), (5)

h(l+1)
v = conv agg(

∑

r∈RE

h(l+1
v,r )), (6)

where Eq. 4 and 5 are the GraphSAGE layer for the the edge type r ∈ RE and
Nr(v) represents the set of neighbors of node v with edge type r. We use a sum
function as the conv agg function in this work.

The entire prediction module is called HeteroGraphSAGE which outputs the
prediction on the spread value, yi = φ(mi, G), yi ∈ Y , for each misinformation
node mi ∈ M , with the MSE loss between yi and yi calculated as the feedback
for the optimisation process. The prediction module is formally described in
Algorithm 1.
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Algorithm 1. HeteroGraphSAGE
Input: Social network G; Misinformation Nodes M ; Spread Values Y
Output: The trained φ for predicting the spread values of M .
1: Initial φ;
2: while Training do
3: for Each HeteroGraphConv layer in φ do
4: for Each relation type in RE do
5: Initiate a GraphSAGE layer;
6: Calculate the hidden representation for each node based on Eq. 4 and 5;
7: end for
8: Aggregate multiple relations to nodes by conv agg (Eq. 6);
9: end for

10: Update weights in φ based on the loss between Y and Y .
11: end while

4.2 GNN-Based Explanation Module

With the prediction model φ trained, we propose a GNN-based explanation
module that incorporates treating both node feature types RX and edge types
RE together as the input to the model to identify the factors that contribute to
the prediction on the spread of misinformation by the model. Gradient-based and
perturbation-based methods are the two most common methods for explaining
deep learning models. We extend these two methods to heterogeneous GNNs to
explain the prediction model φ. Gradient-based methods use the gradients of
the inputs in the deep learning model to measure the importance of the inputs,
while perturbation-based methods perturb the inputs to measure the importance
of the inputs. Both gradient-based and perturbation-based methods can output
the importance values Imi ∈ [0, 1] that represents the contribution of the input
feature or edge type Inputi ∈ {RX ∪ RE} to the model φ.

Gradient-Based Method. We use a widely used gradient-based attribution
method, called Integrated Gradient (IG) [32], to help us understand which fea-
tures are more important in making predictions. As we need to explain a het-
erogeneous graph model with different types of node features and edges, the IG
method needs to be extended to compute the importance value of each node
feature type and edge type. Given a trained model φ and the node feature set
X, IG takes as input k different versions of the modified {X̂1, .., X̂k} which only
modified the node features values of the type that needs to be calculated. For
each type of node feature, IG calculates the change in the output of the model
as each feature xi ∈ X in the input is gradually changed. Then IG output the
attribution score for each xi by integrating the gradients of the model output
with respect to xi:

IGi = (xi − x̂i)
k∑

j=1

(
∂φ(M, (A, X̂j + j/k(X − X̂j)))

∂xi
) (7)
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where X̂j + j/k(X − X̂j) is the combined modified node feature input and
∂φ(M, (A, X̂j + j/k(X − X̂j)))/∂xi is the gradient of output with respect to
feature xi, where M is the misinformation nodes set and A is the adjcency
matrices set.

The explanation of edge types is based on a general principle of GraphSAGE,
that training a model without edge weights is equivalent to training the model
with all edge weights we = 1, we ∈ We equal to 1, which is φ(M, (A,X,We)). For
each edge type, we first need to generate an edge weight vector we with values
set to 1 for each type of edge and then use a similar equation to calculate the
IG value for each edge type:

IGe = (we − ŵe)
k∑

j=1

(
∂φ(M, (A,X, ŵej + j/k(we − ŵej))

∂we
)) (8)

Since the explanation of misinformation spread in our proposed pipeline
needs to be meaningful, we integrate the IGi and IGe absolute values into Imi

which corresponds to Inputi. This is done by mapping the node features corre-
sponding to IGi to the node feature types RX and the edges corresponding to
IGe to edge types RE , using the mapping functions ζ and ψ respectively. After
this integration, Imi is normalized so that

∑N
i=1(Imi) = 1.

Perturbation-Based Method. We use a similar idea in GNNExplainer [37],
to iteratively mask the node features and edges to identify the impact on the
output of a GNN model. Given the trained φ, we use the node feature mask
Xm ∈ [0, 1] and edge mask Am ∈ [0, 1] to perturb the node feature X and the
set of adjacency matrix A, by X̂ = X �Xm and Â = A�Am, where � denotes
element-wise multiplication. The intuition is that if a node feature or edge is not
important to the model φ (with a low Imi), even with a large perturbation (with
small values in the masks), the model output Ŷ = φ(M, (Â, X̂) will not change
much from the original output Y = φ(M, (A,X)). We want to obtain Xm and
Am that can perturb the unimportant node feature or edge as much as possible
that makes little change to the model output, then the elements in Xm and Am
can indicate the importance of the node feature or edge types Inputi, based on
the mapping functions ζ or ψ.

To generate an explanation module, the Xm and Am are trained by opti-
mizing the following objective function:

Lall = L(Ŷ , Y ) + α1||Xm||1 + β1||Am||1 + α2H(Xm) + β2H(Am), (9)

where L(Ŷ , Y ) is to calculate the MSE loss of output changing after perturba-
tion, ||Xm||1 and ||Am||1 is to make as many elements in two masks change as
possible, H(·) is the entropy function which can make the masks as stable as
possible, and α1, α2, β1, β2 are hyper-parameters.

For each node feature type or edge type, the Imi is integrated using Xm
and Am, which is the same operation used in the gradient-based method for
integrating IGi and IGe.
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5 Experimental Results

This section shows the experimental results of predicting misinformation spread
and exploring factors contributing to the spread using our proposed MisinfoEx-
plainer on a misinformation-labeled social network dataset. We also perform the
evaluation of the two proposed XAI methods described in the previous section
on this dataset.

5.1 Dataset

We perform our experiments on a large-scale misinformation social network
dataset, MuMiN [23], to quantitatively evaluate the proposed MisinfoExplainer.
The MuMiN dataset is a public misinformation graph dataset with three dif-
ferent versions that contain multimodal information from Twitter. Specifically,
MuMiN associates multitopic and multilingual tweets with fact-checked claims,
and it also includes textual and visual content from tweets. We only keep the
data that are fact-checked tweets discussing misinformation and filter out the
tweets discussing factual claims. The statistics of the different node types RV

in the MuMiN dataset after filtering are shown in Table 1. The data we use
contains 9 types of node features, denoted as ‘n1’ to ‘n9’ in Table 2, which con-
sist of the node feature type set RX and 12 different types of edges, denoted
‘e1’ to ‘e12’ shown in Fig. 1, which are the edge type set RE . In our experi-
ment, we predict the misinformation spread which is to predict the spread value
Y of the misinformation type of nodes, and reveal the key factors that make
misinformation spread which is to measure the importance values Imi for each
Inputi ∈ {RX ∪ RE}.

Table 1. Three versions of the dataset. The 6 node types in RV and the numbers of
nodes in these node types are shown in the table. Misinformation is a type of nodes
representing tweets that have been labelled as discussing a non-factual claim, a claim
is a short description of the misinformation provided by a fact-checker and a reply is a
tweet that replies to a tweet.

Dataset Misinformation Claim User Hashtag Image Reply

MuMiN-Small 3,589 2,049 140,113 25,472 986 163,113

MuMiN-Medium 9,326 5,318 290,199 49,575 2,397 356947

MuMiN-Large 22,835 12,509 564,789 85,501 6,309 754,097
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Fig. 1. The edge types RE present in the data we use, denoted as e1 to e12. The figure
shows a metagraph that consists of the nodes representing all 6 different node types in
the dataset and all the edge types between them.

5.2 Prediction Module Evaluation

To comprehensively evaluate the performance of our prediction module, Hetero-
GraphSAGE, we conducted a series of comparative experiments on the MuMiN
dataset. These experiments allow us to assess the effectiveness and efficiency of
HeteroGraphSAGE in comparison to other state-of-the-art methods, providing
valuable insights into its capabilities for handling heterogeneous graph data.

Experiment Setup. This experimental evaluation aims to measure the effec-
tiveness of HeteroGraphSAGE. We selected two GNNs that are commonly used
in the field of social network analysis, Graph Convolutional Networks (GCN)
and Graph Attention Networks (GAT), as the baseline methods. Since both
GCN and GAT are designed for homogeneous graphs, we extended them to
HeteroGCN and HeteroGAT, respectively, by applying HeteroGraphConv. The
performance is evaluated in terms of Mean Absolute Percentage Error (MAPE),
Mean Squared Error (MSE), and R-squared (R2).

The baseline methods and our proposed method are all based on 2-layer
HeteroGraphConv and the dimension of each layer is set to 512. All parameters
are trained using the AdmaW [19] optimizer with a learning rate 3e−4 and a
dropout rate 0.2. For HeteroGAT, each layer contains 3 attention heads. We
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Table 2. The node feature types RX and node types. (The claim reviewer is the URL
for the fact-checking website that reviewed the claim and the ‘lang’ is an abbreviation
of ‘language’).

Input Features Types Associated Node Types

n1 misinformation text Misinformation

n2 misinformation lang Misinformation

n3 claim embedding Claim

n4 claim reviewer Claim

n5 image embedding Image

n6 hashtag embedding Hashtag

n7 user profile User

n8 reply text Reply

n9 reply lang Reply

used the pre-set train/valid/test splits provided by the MuMiN dataset, which
claims that these pre-set splits can better cover distinct events [23] and thus
better measure the ability of the model to generalise to unseen misinformation
topics. The number of training epochs is set to 100.

Comparison Results. The results of the experiments are shown in Table 3.
HeteroGraphSAGE has significant advantages for misinformation spread predic-
tion tasks on all three versions MuMiN dataset. The quality of our proposed
regression model was assessed using three metrics, with the best performance
on MAPE and MSE indicating the accurate prediction of the misinformation
spread values yi, and the best performance on R2 showing the good fit of the
data.

Table 3. Performance of the prediction module based on different GNN models. For
the MSE and MAPE evaluation metrics, a smaller value indicates better performance,
whereas, for R2, a larger value indicates better performance.

Data Model MAPE MSE R2

MuMiN-Small HeteroGCN 0.1752 0.5412 0.7684

HeteroGAT 0.1660 0.5558 0.7622

HeteroGraphSAGE 0.1511 0.4214 0.8197

MuMiN-Medium HeteroGCN 0.1351 0.3213 0.8241

HeteroGAT 0.1436 0.4000 0.7810

HeteroGraphSAGE 0.1239 0.3091 0.8308

MuMiN-Large HeteroGCN 0.1321 0.2692 0.8372

HeteroGAT 0.1308 0.2792 0.8312

HeteroGraphSAGE 0.1134 0.2091 0.8735
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5.3 What Factors Make Misinformation Spread?

We then trained the HeteroGraphSAGE on the MuMiN-small dataset to obtain
the trained model φ and then explained φ by using our gradient-based and
perturbation-based XAI methods respectively. We considered the 9 types of node
features and 12 types of edges as shown in Table 2 and Fig. 1 as the Inputs which
are the factors we aim to measure the Im.

Experiment Setup. The HeteroGraphSAGE was trained with the same set-
tings as in the previous experiments in Subsect. 5.2. For the gradient-based
method, the number of modified inputs k is set to 50. For the perturbation-
based method, the number of training epochs is set to 100, the learning rate is
set to 0.1. The purpose of hyper-parameters in Eq. 9 is to make the terms of the
loss function balance during optimizing, and we set α1, α2, β1 and β2 to 0.05,
1.0, 1.0 and 0.1.

Experiment Results and Qualitative Analysis. The explanation results
using perturbation-based and gradient-based methods are shown in Fig. 2. Both
methods consider the text of the misinformation (n1: misinformation text) to
be the most important factor in the spread of misinformation, which is also
corroborated by marketing research, for example [3], which claims the message
content itself can contribute to the virality.

The perturbation-based explanation considers that the four important factors
after the text of the tweet are the text of reply (n8: reply text), the embedding of
the claim (n3: claim embedding), the embedding of image (n5: image embedding)
and the users description (n7: user profile). The reply text can include other
users’ opinions, stimulating engagement, which can amplify the original tweet
and then contribute to spreading further, engaging more users. The claim is a
short description of the misinformation, which can be seen as a summary of
the misinformation. The explanation considers that images can help the spread
of related misinformation, where a similar conclusion is also found in market-
ing research [18] that high-quality images can lead to engagement with related
Tweets.

The gradient-based explanation considers four different types of edges as
important factors for spreading misinformation: a user follows another user (e11:
User follows User), a user retweeted misinformation (e10: User retweeted Mis-
information), a user has a hashtag (e3: User has hashtag Hashtag), and a mis-
information tweet has a hashtag (e2: Misinformation has hashtag Hashtag). In
contrast to the perturbation-based approach, the gradient-based approach gives
a less plausible explanation. The following relationship and retweeting interac-
tions are utilized in many studies [1,27] about information diffusion, but it is
difficult to explain intuitively how the hashtag relationship contributes to the
spread of misinformation.

In summary, the perturbation-based method considers node features to be
more important, while the gradient-based method considers edges to be more
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Fig. 2. Im values calculated by two different explanation methods. The top five Inputs
which are considered as important in each method are marked.

important. In the following subsection, we compare the two explanation methods
quantitatively to see which one is more plausible.

5.4 Which Explanation Shall We Believe?

While visualizations can provide insights regarding whether the explanations
are reasonable to humans, such evaluations are not entirely trustworthy due to
the lack of ground truth. In this subsection, we calculate the fidelity which can
quantitatively measure the explanation methods.

The Fidelity+ metric was originally proposed in [26,38] based on the intu-
ition that if the important factors identified by explanation methods are dis-
criminative to the model, the predictions should change significantly when these
features are removed. In this study, we extend Fidelity+ to be defined as the
difference between the original predictions φ(M,G) and the new predictions
φ(M,G1−∑N

i=1 Inputi) after masking out N important Inputs, as follows:

Fidelity+ =
1
N

(φ(M,G) − φ(M,G1−∑N
i=1 Inputi)), (10)

where i is the ith most important Input indicated by the explainer, N is the num-
ber of Inputs to be removed and G1−∑N

i=1 Inputi indicates the graph removed N
most important Inputs. For Fidelity+, higher values indicate better explana-
tions, and more discriminative Inputs are identified.

In contrast, the Fidelity− [26,38] was proposed to study prediction change
by keeping important input features and removing unimportant features. The
Fidelity− is defined as the difference between the original predictions φ(M,G)
and the new predictions φ(M,G

∑N
i=1 Inputi) where G only contains the important

Inputs:

Fidelity− =
1
N

(φ(M,G) − φ(M,G
∑N

i=1 Inputi)) (11)
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Fig. 3. Fidelity+. The higher values indicate better explanations.

Fig. 4. Fidelity−. The lower values mean the explanations are better.

For Fidelity−, lower values indicate less important Inputs are removed so that
the explanations results are better.
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For the measurement of Fidelity+, we conducted experiments by removing
the top 1 to top 7 most important Inputs, with N ranging from 1 to 7. However,
for the Fidelity− measurement, it was challenging to keep only a few Inputs and
still construct a graph. Therefore, we set N from 12 to 18 for this measurement.
The results are shown in Fig. 3 and Fig. 4. We can observe that the perturbation-
based approach works better, which supports the previous intuitive observation
in Subsect. 5.3.

6 Conclusion and Future Works

In this paper, we proposed a novel XAI pipeline, called MisinfoExplainer, to
explore the factors contributing to misinformation spread on social networks.
The proposed MisinfoExplainer made use of the heterogenous convolutional
GraphSAGE (HeteroGraphSAGE) to predict the misinformation spread with
the trained model explained by XAI methods. We provided two XAI methods
for explaining the trained model: a gradient-based method that exploits the gra-
dients of the input in the model, and a perturbation-based method that perturbs
the input of the model to obtain explanations. The experimental results showed
that our proposed pipeline can obtain an accurate model for misinformation
spread prediction, and that HeteroGraphSAGE is superior to other methods on
a large-scale misinformation-labelled social network dataset. We obtained the
factors that contribute to misinformation spread by explaining the prediction
model using the two proposed XAI methods. Through qualitative analysis and
quantitative measurement, we concluded that the perturbation-based method
provides better explanations than the gradient-based method.

Limitations and Future Work. All experiments in this study are conducted under
the assumption that the dataset has classified certain tweets as misinformation.
Our XAI method is constrained by the model of misinformation spread, which
incorporates the use of spread indicators, such as the number of retweets. In
future work, we aim to develop more precise models of misinformation spread
and explore advanced XAI techniques to provide comprehensive explanations
for the spread process. Nonetheless, we firmly believe that the current research
approach in this study, which involves modeling the spread and utilizing XAI
to investigate the factors contributing to its occurrence, is a valid and valuable
research direction.
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Abstract. We propose a multi-explanation graph attention network
(MEGAN). Unlike existing graph explainability methods, our network
can produce node and edge attributional explanations along multiple
channels, the number of which is independent of task specifications.
This proves crucial to improve the interpretability of graph regression
predictions, as explanations can be split into positive and negative evi-
dence w.r.t to a reference value. Additionally, our attention-based net-
work is fully differentiable and explanations can actively be trained in
an explanation-supervised manner. We first validate our model on a syn-
thetic graph regression dataset with known ground-truth explanations.
Our network outperforms existing baseline explainability methods for
the single- as well as the multi-explanation case, achieving near-perfect
explanation accuracy during explanation supervision. Finally, we demon-
strate our model’s capabilities on multiple real-world datasets. We find
that our model produces sparse high-fidelity explanations consistent with
human intuition about those tasks.

Keywords: Graph Neural Network · Self-Explaining Model ·
Explanation Supervision

1 Introduction

Explainable AI (XAI) methods aim to provide explanations complementing a
model’s predictions to make it’s complex inner workings more transparent to
humans with the intention to improve trust and reliability, provide tools for
model analysis, and comply with anti-discrimination laws [8]. The majority of
existing work on graph explainability focuses on post-hoc methods, which can
be used to generate explanations for already trained models, which have been
proven to perform well. While post-hoc methods are an important area of devel-
opment to add explainability to time-tested models, we want to emphasize the
potential of self-explaining methods. In their literature review, Jiminez-Luna et
al. [17] describe these methods as being explainable by design. One example
of this class are the simpler, traditional machine learning approaches that are
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naturally interpretable, such as decision tree methods [11]. However, we want to
focus on self-explaining graph neural networks, which produce the attributional
explanations for the nodes and edges of the input graph directly alongside each
prediction. We emphasize this class of methods specifically due to their capabil-
ity for explanation-supervised training. During explanation-supervised training,
a model is additionally trained to produce explanations that are similar to a given
set of reference explanations. Recently, there has been promising progress on the
topic of explanation supervision in the domains of image processing [2,19,29]
and natural language processing [10,28,37]. Previous work is able to improve
model interpretability by training models to generate more human-like expla-
nations and even improve main prediction performance by training models on
human-generated image saliency maps. In the graph domain, however, there has
been little work on explanation supervision [13,21] yet. Inspired by the suc-
cesses recently demonstrated in other domains, we propose the self-explaining
multi-explanation graph attention network (MEGAN) architecture. In this work,
we demonstrate that our model shows significantly improved capability to learn
explanations during explanation-supervised training, outperforming the baseline
method [13] from the literature.

In addition to its properties w.r.t. explanation supervision, we design our
network to output explanations along multiple channels, the number of which
is independent of the main prediction task. Like the majority of existing GNN
explainability methods, we focus on attributional explanations, which attribute
a value of importance to each element of the input graph. For existing methods,
the number of these attribution values is dictated by the details of the main
prediction task. For single-value graph regression tasks for example a single value
would be assigned to each node and edge. For our multi-explanation method,
however, this number of attributions is a property of the network rather than
restricted by task specifications.

We want to emphasize the importance of this property especially in regard
to graph regression problems. For the prediction of a single regression value,
existing methods only produce a single attribution for each node and edge. We
argue that such explanations are insufficient for the interpretation of regression
predictions. In reality, one often encounters structure-property explanations of
opposing polarity. One practical example of this is the prediction of water solubil-
ity, where large non-polar carbon structures generally cause low solubility values
and polar functional groups cause higher values. A single attributional expla-
nation may highlight all the important motifs, but is not able to capture this
crucial detail about their polarity. For this reason, we decouple the number of
explanations from the task specification to be able to produce two explanations
(negative and positive influence) for graph regression problems. We introduce
an explanation co-training method which uses only the generated explanation
masks to solve an approximation of the prediction problem to promote each
explanation channel to behave according to their intended interpretation. In our
experiments, we find that this explanation co-training is an effective method to
guide the generation of the explanation channels to contribute faithfully to the
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prediction outcome according to pre-determined interpretations. We validate this
finding on several real-world datasets, where our model produces explanations
consistent with human intuition about those tasks. Beyond that, we apply our
model to one real-world task of molecular property prediction without common
human intuition and are able to support previously published hypotheses about
structure-property relationships and propose several new potential explanatory
motifs.

2 Related Work

GNN Explanation Methods. Yuan et al. [41] provide a taxonomic overview
of XAI methods for graph neural networks. Some methods have been adapted
from similar approaches in other domains, such as GradCAM [26], GraphLIME
[16] and LRP [33]. Other methods were developed specifically for graph neural
networks. Notable ones include GNNExplainer [40], PGExplainer [20], and Zorro
[12]. Jiminez-Luna et al. [17] present another literature review about the appli-
cations of XAI in drug discovery. Henderson et al. [15] for example introduce
regularization terms to improve GradCAM-generated explanations for chemi-
cal property prediction. Sanchez-Lenglin et al. [32] introduce new benchmark
datasets for attributional graph explanations based on molecular graphs and
compare several existing explanation methods.

Generally, most explanation methods aim to produce attributional explana-
tions, which explain a prediction by assigning importance values to the nodes
and edges of the input graph. However, there exists some criticism about this
class of explanations [1,18], which is partially why recently different modalities
of explanations have been explored for the graph domain as well. Magister et al.
[22] for example propose GCExplainer, which can be used to generate concept-
based explanations for graph neural networks in a post-hoc fashion. Shin et al.
[34] for example propose PAGE, a method to generate prototype-based explana-
tions. Counterfactuals are yet another popular explanation modality, for which
Tan et al. [38] and Prado-Romero and Stilo [27] have recently proposed methods
for graph neural networks.

Self-explaining Graph Neural Networks. In their literature review,
Jiminez-Luna et al. [17] define self-explaining methods as those that are explain-
able by design. One large fraction of this category is represented by simpler
traditional machine learning methods. Friederich et al. [11] for example use an
interpretable decision tree approach to structure-property relationships for sev-
eral real-world graph datasets. However, there is also recent progress for more
complex self-explaining models such as graph neural networks. Dang and Wang
[4] and Zhang et al. [43] independently introduce self-explaining graph neural
networks for prototype-based explanations. Magister et al. [21] introduce a self-
explaining network for concept-based explanations. Furthermore, Müller et al.
[24] propose DT+GNN, an interesting method that combines the capabilities of
GNNs with the inherent interpretability of decision trees.
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Explanation Supervision. During explanation supervision, models are not
only trained to perform a main prediction task through ground truth target
labels but also to produce explanations that are similar to a given set of refer-
ence explanations. Most interestingly explanation supervision provides the pos-
sibility to train models to produce more human-like explanations. Beyond that,
several works are able to show that the inclusion of human saliency maps has
the potential to increase the task performance of the models [2,19]. In that con-
text, Linseley et al. [19] for example show that human saliency maps improve
the performance of an image classifier. Boyd et al. [2] demonstrate that human
saliency annotations improve the performance of a deep fake detection model.
In the domain of natural language processing, Pruthi et al. [28] use explanation-
supervised models to substitute human participants in artificial simulatability
studies to assess the quality of explanations. Fernandes et al. [10] even take this
concept one step further and train an explainer to optimize this property of
simulatability.

3 Multi-explanation Graph Attention Network

3.1 Task Description

We assume a directed graph G = (V, E) is represented by a set of node indices
V ⊂ N

V and a set of edges E ⊆ V × V ⊂ R
E , where a tuple (i, j) ∈ E denotes

an edge from node i to node j. Every node i is associated with a vector of
initial node features h(0)

i ∈ R
N0 , combining into the initial node feature tensor

H(0) ∈ R
V ×N0 . Each edge is associated with a feature vector ui ∈ R

M , combining
into the edge feature tensor U ∈ R

E×M .
We consider graph classification and regression problems, which means

graphs are associated with a target vector y ∈ R
C which is either a one-hot

class encoding or continuous regression values. In addition, node and edge attri-
butional explanations for graphs are considered. We define explanations as masks
that assign [0, 1] values to each node and each edge, representing the importance
of the corresponding graph element toward the outcome of the prediction. We
generally assume that any prediction may be explained by K individual impor-
tance channels, where K is an independent hyperparameter. The node expla-
nations are given as the node importance tensor Vim ∈ [0, 1]V ×K and the edge
explanations are given as the edge importance tensor Eim ∈ [0, 1]E×K .

3.2 Architecture Overview

To solve the previously defined task we propose the following multi-explanation
graph attention network (MEGAN) architecture, for which Fig. 1 provides a
visual overview. The network consists of L attention layers, where the num-
ber of layers L and the hidden units of each layer are hyperparameters. Each of
these layers consists of K individual, yet structurally identical GATv2 [3] atten-
tion heads, one for each of the K expected explanation channels. Assuming the
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Fig. 1. Multi-explanation graph attention network (MEGAN) architecture overview.
Rectangle boxes represent layers; arrows indicate layer interconnections. Rounded
boxes represent tensors. Intermediate tensors are also named annotated arrows. Tuples
beneath variable names indicate the tensor shape, with batch dimension omitted, but
implicitly assumed as the first dimension for all.

attention heads in the l-th layer have Nl hidden units, then each attention head
produces its own node embeddings H(l,k), where k ∈ {1, . . . , K} is the head
index. The final node embeddings H(l) ∈ R

V ×Nl·K of layer l are then produced
by averaging all these individual matrices along the feature dimension:

H(l) =
1
K

K∑

k

H(l,k) (1)

This node embedding tensor is then used as the input to each of the K attention
heads of layer l + 1. Aside from the node embeddings, each attention head also
produces a vector A(l,k) ∈ R

E of attention logits which are used to calculate the
attention weights

ααα(l,k) = softmax(A(l,k)) (2)

of the k-the attention head in the l-th layer. The edge importance tensor Eim ∈
[0, 1]E×K is calculated from the concatenation of these attention logit tensors in
the feature dimension and summed up over the number of layers:

Eim = σ

(
L∑

l=1

(
A(l,1) || A(l,2) || . . . || A(l,K)

))
(3)
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Fig. 2. Illustration of the split training procedure for the regression case. The
explanation-only train step attempts to find an approximate solution to the main pre-
diction task, by using only a globally pooled node importance tensor. After the weight
update for the explanation step was applied to the model, the prediction step performs
another weight update based on the actual output of the model and the ground truth
labels.

Based on this, a local pooling operation is used to derive the pooled edge impor-
tance tensor Ep ∈ [0, 1]V ×K for the nodes of the graph. This local pooling
operation can be seen as the aggregation step in a message-passing framework,
where the edge importance values are treated as the corresponding messages.

The final node embeddings H(L) are then used as the input to a dense net-
work, whose final layer is set to have K hidden units, producing the node impor-
tance embeddings Ṽim ∈ [0, 1]V ×K . The node importance tensor is then calcu-
lated as the product of those node importance embeddings Ṽim ∈ [0, 1]V ×K and
the pooled edge importance tensor Ep ∈ [0, 1]V ×K :

Vim = Ṽim · Ep · M. (4)

The mask M introduced in Fig. 1 is only optionally used to compute the fidelity
metric, which is introduced in Sect. 3.4. At this point, the edge and node impor-
tance matrices, which represent the explanations generated by the network, are
already accounted for, which leaves only the primary prediction to be explained.
The first remaining step is a global sum pooling operation which turns the node
embedding tensor H(L) into a vector of global graph embeddings. For this, K
separate weighted global sum pooling operations are performed, one for each
explanation channel. Each of these pooling operations uses the same node embed-
dings H(L) as input, but a different slice V im

:,k of the node importance tensor as
weights. In that way, K separate graph embedding vectors

h(k) =
V∑

i=0

(
H(L) · Vim

:,k

)

i,:
(5)

are created, which are then concatenated into a single graph embedding vector

h = h(1) || h(2) || . . . || h(K) (6)
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where h ∈ R
NL·K . This graph embedding vector is then passed through a generic

MLP whose final layer either has linear activation for graph regression or softmax
activation for graph classification to create an appropriate output

y = MLP(h) (7)

3.3 Explanation Co-training

With the architecture as explained up to this point, there is no mechanism yet
to ensure that individual explanation channels learn the appropriate explana-
tions according to their intended interpretation (for example positive vs negative
evidence). We use a special explanation co-training procedure to guide the indi-
vidual explanation channels to develop according to pre-determined interpreta-
tions. This is illustrated in Fig. 2. For this purpose, the loss function consists of
two parts: The prediction loss and the explanation loss. The explanation loss is
based only on the node importance tensor produced by the network. A global
sum pooling operation is used to turn the importance values of each separate
channel into a single alternate output tensor Ŷ ∈ R

B×K , where B is the training
batch size. This alternate output tensor is then used to solve an approximation of
the original prediction problem: This can be seen as a reduction of the problem
into a set of K separate and independent subgraph counting problems, where
each of those only uses the subset of training batch samples that aligns with the
respective channel’s intended interpretation.

Regression. For regression, we assume K = 2, where the first channel repre-
sents the negative and the second channel the positive influences relative to the
reference value yc, which is a hyperparameter of the model and usually set as
the arithmetic mean of the target value distribution in the train set. We select
all samples of the current training batch lesser and greater than the reference
value and use these to calculate a mean squared error (MSE) loss:

Lexp =
1

2 · B

B∑

b=1

{
(Ŷb,0 − yc − Ytrue

b )2 if Ytrue
b < yc

(Ŷb,1 − yc − Ytrue
b )2 if Ytrue

b > yc

(8)

Classification. We assume the number of channels K = C is equal to the
number of possible output classes C. We use the alternate output channel to
compute an individual binary cross entropy (BCE) loss for each channel:

Lexp =
1

C · B

B∑

b=1

C∑

c=1

LBCE(Ytrue
b,c , Ŷb,c) (9)

For regression as well as classification, the total loss during model training con-
sists of these task-specific terms and an additional term for explanation sparsity:

Ltotal = Lpred + γLexp + βLsparsity (10)
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where γ and β are hyperparameters of the training process. Explanation spar-
sity Lsparsity is calculated as L1 regularization over the node importance ten-
sor. Based on this loss the gradients are calculated and the model weights are
updated.

We will henceforth use the notation MEGANK
γ to refer to specific model

configurations with K explanation channels, γ explanation co-training weight
and use the superscript MEGAN(S) to indicate when models where trained in
an explanation-supervised fashion.

3.4 Multi-channel Fidelity

A particular challenge in the field of explainable AI is the question of how to
properly assess the quality of explanations [8]. One commonly used metric is the
fidelity of explanations w.r.t. the model predictions. It quantifies the extent to
which the explanation is responsible for the corresponding prediction. Yuan et al.
[41] define the Fidelity+ metric as the deviation of the predicted model output
if all the nodes and edges that are part of the explanation are removed from
the input. The reasoning is that the higher this resulting output deviation, the
more important the explanation must have been for the original prediction. This
metric is usually computed by setting all the features of the corresponding nodes
and edges of the input graph to zero. However, one issue with this approach is
that zero might be an in-distribution value for the input features. Therefore, the
masked input elements may have an effect on the model that is different than
their intended removal.

To address this issue we introduce the multi-channel Fidelity∗ metric to assess
the faithfulness of MEGAN’s predictions. Since our network directly incorporates
the explanations into the prediction process as weights of the final global pool-
ing operation, we can directly manipulate these explanations to quantify their
impact on the prediction. This can be done by providing an additional impor-
tance mask M ∈ [0, 1]V ×K during the prediction of the network (see Fig. 1). For
each explanation channel k, we construct a mask Mk which only suppresses that
channel from the final pooling operation. The model is then queried with that
mask to produce the modified output ŷk, which we use to calculate the deviation
Δk = |y − ŷk| w.r.t. the original output. The fidelity is then calculated as:

Fidelity∗ =
1
K

K∑

k

{
+Δk if deviation as expected for channel k

−Δk if deviation not as expected for channel k
(11)

What kind of deviation counts as expected for a given channel k is defined by
the interpretation that is assigned to that channel. In the case of regression,
for example, we assign the interpretation of the first explanation channel to be
the negatively influencing evidence and the second channel to be the positively
influencing evidence. In that case, if all the negative evidence is omitted from
the result, it would be expected that the output becomes more positive than
the original prediction and vice versa. For classification on the other hand, if
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Fig. 3. Examples for explanations generated for one element of the RbMotifs dataset
using selected methods. Explanations are represented as bold highlights of the cor-
responding graph elements. Left: The ground truth explanations split by the polar-
ity of their influence on the graph target value. Middle: Explanations generated by
some selected single-explanation methods. Right: Explanations generated by the multi-
explanation MEGAN models.

all evidence for one specific class is suppressed it would be expected that the
confidence of that respective class decreases.

Consequently, a positive Fidelity∗ indicates that the channels of the model
generally have an effect on the prediction outcome that matches with their pre-
defined interpretation.

4 Computational Experiments

We conduct computational experiments to demonstrate the capabilities of our
network. Primarily, we emphasize two key strengths of our proposed model:
(1) The inherent advantage of multi channel-explanations especially in regard
to the interpretability of regression problems. On a specifically designed syn-
thetic dataset we show that, unlike other post-hoc methods, by using expla-
nation co-training our model is able to correctly capture the polarity of exist-
ing sub-graph evidence. (2) Our model’s significantly increased capability for
explanation-supervised training, where our model correctly learns to replicate
the ground truth explanations that it was trained on. Additionally, we conduct
experiments with real-world graph classification and regression datasets that
provide anecdotal evidence for the correctness of the model’s explanations for
more complex tasks as well.

4.1 Synthetic Graph Regression

We create a synthetic graph regression dataset called RbMotifs consisting of 5000
randomly generated graphs, where each node is associated with 3 node features
representing an RGB color code. Graphs are additionally randomly seeded with
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specific simple sub-graph motifs, which either consist dominantly of red nodes or
blue nodes. If a red-based motif exists within a graph, it contributes a constant
positive value to the overall target value of a graph. Likewise, a blue-based motif
contributes a negative value. Thus, the overall target value associated with each
graph is the sum of all the sub-graph contributions and a small random value.
The dataset represents a simple motif-based graph regression problem, where
the individual sub-graph motifs are considered the perfect ground truth expla-
nations. Most importantly, the explanations have a clear opposing polarity which
is crucial to the understanding of the dataset’s underlying structure-property
relationship.

Single Explanations. Although many regression tasks may exhibit such expla-
nations of different polarity, existing post-hoc attributional XAI methods are
only able to provide a single explanation. These single explanations are only able
to point out which parts of the graph are generally important for the prediction
but do not capture in what manner they contribute to the outcome. Therefore,
to compare our proposed MEGAN model to some established existing post-hoc
explanation methods, we conduct a first experiment that only considers such
single explanations. For this case, we concatenate all of the relevant sub-graphs
into a single channel which will be considered the ground truth explanation for
each element of the dataset.

We conduct the experiment for explanations obtained from Gradients [26],
GNNExplainer [40], GNES [13] and MEGAN. For all the post-hoc methods we
train a 3-layer GATv2 network as the basis for the explanations. The results
of this experiment can be found in Table 1. We report on the overall predic-
tion performance of the network, the explanation accuracy, the sparsity, and the
fidelity of the explanations. The explanation accuracy is given as the node and
edge AUROC score resulting from a comparison with the ground truth expla-
nations, as it is proposed by McCloskey et al. [23]. The fidelity is given as the
relative value Fidelity+

rel, which is the difference between the predicted expla-
nation’s fidelity and the fidelity of random explanations of the same sparsity
(see Appendix A). In addition, we perform experiments with explanation super-
vision. To our knowledge, MEGAN and GNES are currently the only methods
capable of explanation supervision for node and edge attributional explanations.
For both of these cases, the models are trained with ground truth explanations
in addition to the target values.

The results show that the explanations generated by all the methods achieve
reasonable results for predictive performance, the node accuracy w.r.t. the expla-
nation ground truth, as well as sparsity and fidelity. The explanation super-
vised methods show the best results for explanation accuracy. The supervised
MEGAN1,(S)

0.0 model achieves a near-perfect accuracy, with the explanation-
supervised GNES method being second-best.

The differences in prediction performance between the baseline methods and
MEGAN models can be explained by the slightly different model architectures.
However, one particularly interesting result is the small but significant perfor-
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Table 1. Results for 25 independent repetitions of the computational experiments on
the RbMotifs dataset. We report the mean in black and the standard deviation in gray.
The upper section contains results for the single-explanation experiments and the lower
section for multi-explanation experiments. We highlight the best results in each section
in bold and underline the second-best.

Explanations r2 ↑ Node AUC ↑ Edge AUC ↑ Sparsity ↓ Fidelity+
rel ↑

Gradients 0.89±0.05 0.73±0.05 0.60±0.03 0.12±0.01 0.57±0.14

GnnExplainer 0.89±0.05 0.70±0.04 0.52±0.03 0.22±0.06 0.78±0.20

GNES
(S)
original 0.88±0.02 0.63±0.04 0.58±0.03 0.10±0.01 0.50±0.22

GNES
(S)
fixed 0.88±0.02 0.85±0.04 0.66±0.02 0.12±0.01 0.74±0.13

MEGAN1
0.0 0.92±0.05 0.82±0.12 0.79±0.08 0.14±0.08 1.10±3.03

MEGAN
1,(S)
0.0 0.95±0.02 0.98±0.00 0.99±0.00 0.18±0.00 0.53±0.17

MEGAN2
1.0 0.95±0.01 0.94±0.02 0.85±0.06 0.10±0.06 2.06(*)±0.85

MEGAN
2,(S)
0.0 0.95±0.03 0.99±0.00 0.99±0.00 0.09±0.06 2.11(*)±0.36

(S) Explanation-supervised models. These models were trained on the ground truth explanation
annotations in addition to the main target values.

(*) Values of the multi-channel Fidelity∗ metric. Note that these are not comparable to the
other fidelity values obtained in a single channel setting.

mance difference between MEGAN1
0.0 and the supervised MEGAN1,(S)

0.0 version.
In both cases, the same model architecture and hyperparameters are used, the
only difference being that the latter additionally receives the explanatory infor-
mation during training. This indicates that the explanations provide the model
with some additional level of information about the task, which is useful for the
main prediction task as well.

Aside from the numerical results, Fig. 3 illustrates one example for these
explanations. It shows that the single-explanation methods are able to cap-
ture the ground truth explanations to various degrees of success. However, in
the presence of motifs with opposing influence, we often observe the issue that
single-explanation methods focus on only one of these motifs and fail to high-
light the other. An example of this can be seen with the explanation generated
by GNNExplainer in Fig. 3, where it only highlights the positive explanation as
being important. Although this is not always the case, we believe this effect con-
tributes to the lower explanation accuracy results of these methods. Explanation-
supervised training can be used to effectively counter this property, as is evident
from the examples and the numerical results. However, even if all the explanatory
motifs are correctly highlighted, we argue that single-explanations still don’t pro-
vide the crucial information about how each motif contributes to the prediction
outcome, as the polarity information cannot be retrieved from a single channel.

Multi-explanations. To demonstrate the advantages of multi-channel expla-
nations, we conduct an experiment with the RbMotifs dataset, where the ground
truth explanatory motifs of each graph are separated into two channels accord-
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ing to their influence on the target values. All blue-based motifs with a negative
influence are sorted into one channel and all red-based motifs with positive influ-
ence are sorted into another.

We train two models to solve the prediction task: A two-channel MEGAN2
1.0

model, which uses explanation co-training to promote the generation of expla-
nations according to the previously introduced explanations and a MEGAN2,(S)

0.0

which is explanation-supervised with the ground truth explanations instead. The
results can be found in the lower section of Table 1.

Both models achieve nearly equal predictive performance, explanation spar-
sity, and Fidelity∗. The explanation-supervised model achieves near-perfect
explanation accuracy for nodes and edges. However, the explanation co-training
model also achieves a very good explanation accuracy. The right-hand side of
Fig. 3 shows an example of these results. As can be seen, both versions of the
model are able to correctly capture the ground truth explanatory motifs accord-
ing to their respective influence on the target value. The highly positive Fidelity∗

results in both cases prove that both of the model’s channels actually contribute
to the prediction outcome according to their assigned interpretations of nega-
tive and positive influence. The results of this experiment present solid evidence
that our proposed explanation co-training is an effective method to accurately
capture the polarity of ground truth explanations even in the absence of ground
truth explanations during training.

4.2 Real World Datasets

MovieReviews - Sentiment Classification. The MovieReviews dataset is
originally a natural language processing dataset from the ERASER benchmark
[7] consisting of 2000 movie reviews from the IMDB database. The general sen-
timent of each review is labeled as either “positive” or “negative”, where both
classes are represented equally. Since this is a text classification dataset in its
original form, we first process it in a manner similar to Rathee et al. [30]. First,
the raw strings are converted into token lists, where tokens are either words or
other sentence elements such as punctuation. Each token is converted into a 50-
dimensional feature vector through a pre-trained GLOVE model [25]. We finally
convert the token list into a graph by applying a sliding window method, where
each token is considered to be a node and connected to its four closest neighbors
through an undirected edge.

We train a three-layer MEGAN2
1.0 model to solve the binary sentiment clas-

sification task for each graph using the classification version of the explanation
co-training procedure. The explanation co-training procedure promotes the first
explanation channel of the network to contain evidence for the “negative” class
label and the second channel for the “positive” class label.

In terms of classification performance our model achieves similar results (F1
≈ 0.85) as previously reported by Rathee et al. [30], who also use GNN and
GLOVE embeddings. However, these results are significantly worse than results
obtained with state-of-the-art NLP models, as they are for example reported by
DeYoung et al. [7] (F1 ≈ 0.92). We believe the main reason for this difference
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Table 2. Example explanations generated for both sentiment classes for a review about
the movie “Avengers Endgame”. Larger importance values are represented by stronger
color highlights.

Negative Positive

overall avengers endgame was a remarkable

movie and a worthy culmination of the mcu

up to this point there were some genuinely

heartbreaking moments and breathtaking

action sequences but to be honest some of

the movies i had to sit through to get here

were not worth it some of the early mcu

movies and series leading up to this finale i

found rather bland unfunny and sometimes

just downright bad but this movie was one of

the best movies i have seen in a while

overall avengers endgame was a remarkable

movie and a worthy culmination of the mcu

up to this point there were some genuinely

heartbreaking moments and breathtaking

action sequences but to be honest some of

the movies i had to sit through to get here

were not worth it some of the early mcu

movies and series leading up to this finale i

found rather bland unfunny and sometimes

just downright bad but this movie was one of

the best movies i have seen in a while

to be the use of the token embeddings derived from the 2014 GLOVE model.
In the future, it would be interesting to see if GNNs could achieve competitive
performance by using a state-of-the-art encoder such as BERT [6].

In regard to the generated explanations, Table 2 shows one example of a
movie review. As can be seen, the model correctly learns negative adjectives
such as “bad” as evidence for the “negative” class and positive adjectives such
as “breathtaking” and “best” as evidence for the “positive” class. Despite this
encouraging result, we still find there to be some errors in regard to the model’s
explanations about sentiment classification. On the one hand, the model also
highlights unrelated words as explanations as well, such as “criminal” showing
up as an explanation for negative reviews and “director” as positive evidence. On
the other hand, the model is also not capable of accurately identifying negations
and sarcasm to cause an inversion of sentiment.

AqSolDB - Molecular Regression. The AqSolDB [35] dataset consists of
roughly 10000 molecular graphs which are annotated with experimentally deter-
mined values of their water solubility. In chemistry, there exists some general
intuition about what kinds of molecular structures are responsible for higher
solubility values and which are responsible for lower ones. In a simplified man-
ner, one can say that non-polar substructures such as carbon rings and long
carbon chains generally result in lower solubility values, while polar structures
such as certain nitrogen and oxygen functional groups are associated with higher
values.

In this experiment, we train a dual-channel three-layer MEGAN2
1.0 model to

predict the continuous solubility values for the molecular graphs. We make use of
the previously described regression version of the co-training procedure, which
promotes the first channel to highlight negatively influencing motifs and the
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Fig. 4. Example explanations generated by MEGAN and GNNExplainer for the pre-
diction of water solubility. Explanations are represented as bold highlights of the cor-
responding graph elements. Explanations are represented as bold highlights of the
corresponding graph elements. (a) Examples of molecules dominated by large carbon
structures which are known as negative influences on water solubility. (b) Examples of
molecules containing oxygen functional groups which are known to be a positive influ-
ence on water solubility. (c) Examples of molecules containing nitrogen groups which
are also known as positive influences.

second channel to highlight positively influencing motifs. Additionally, we train
a comparable GATv2 model on the solubility dataset as well and use GNNEx-
plainer to produce single explanations as a comparison.

Both the MEGAN model and the GATv2 model are able to match the predic-
tive performance which was previously reported in the literature by Sorkunen
et al. [36]. Both approaches also generate explanations with low sparsity and
high fidelity values, as it can be seen in Table 3. Figure 4 illustrates some exam-
ple explanations generated by MEGAN and GNNExplainer. The examples show
that the explanations generated by MEGAN match the general human intu-
ition about the structure-property relationships of water solubility. Large carbon
structures are consistently highlighted in the negative explanation channel. The
positive explanation channel on the other hand mostly contains polar nitrogen
and oxygen functional groups. The explanations generated by GNNExplainer
on the basis of the GATv2 model, however, do not show any such discernible
pattern.

Despite an equally high predictive performance and high explanation fidelity,
we argue that the single-explanation case contributes significantly less useful
information for a human understanding of the predictions. We think this exam-
ple reinforces the importance of the multi-explanation approach, especially for
graph regression problems. By considering the polarity of structure-property
explanations in graph regression problems, the MEGAN model is able to pro-
vide explanations that are more consistent with human intuition and are thus
more interpretable.
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Table 3. Results for 5 independent repetitions of the experiments with the AqSolDB
dataset for water solubility. We report the mean in black and the standard deviation
in gray.

Model R2 ↑ Sparsity ↓ Fidelity(∗) ↑
GNNX+GATv2 0.93±0.01 0.34±0.27 1.26±0.90

MEGAN2
1.0 0.93±0.01 0.22±0.14 2.50(∗)±2.29

Consensus Model† 0.93 - -

† Previously published results by Sorkun et al. [35].

(*) Multi-explanation case measures Fidelity∗ metric

TADF - Molecular Regression. Previous experiments were able to provide
exemplary evidence for the correctness of MEGAN’s explanations through real-
world datasets for which human intuition exists. In this final experiment, we
choose a dataset where almost no human intuition exists to investigate potential
applications to reveal novel insights about structure-property relationships. The
TADF dataset consists of roughly half a million molecular graphs. Target value
annotations were during a high-throughput virtual screening experiment con-
ducted by Gómez-Bombarelli et al. [14] with the objective to discover novel
materials for an application in OLED technology. Specifically, the authors aimed
to discover materials that show a specific characteristic of thermally delayed flu-
orescence (TADF). This class of materials is a promising approach to avoid the
high cost of typically used phosphorescent OLED materials [9,42]. Along the
delayed fluorescent rate constant kTADF, the elements of the dataset are anno-
tated with the singlet-triplet energy gap ΔEst and the oscillator strength f .

In this experiment, we train a three-layer MEGAN2
1.0 model to estimate the

singlet-triplet gap ΔEst for each element. As before, the explanation co-training
promotes the first channel to contain the negative influences and the second
channel to contain the positive influences.

Our model achieves overall good predictivity (R2 ≈ 0.90) for the main pre-
diction task and a positive Fidelity∗ value validating that the individual channels
indeed affect the model prediction according to their pre-determined interpreta-
tions. Figure 5 illustrates some example explanations obtained from the model.
Most importantly, we show that our model is able to replicate one of the few
known structure-property relationships about the singlet-triplet energy. Triph-
enylamine bridges are known to be associated with low energy gaps, as they cause
the necessary twist angles between the fragments, decoupling electron-donating
and electron-accepting parts of a molecule to reduce the exchange interaction
between the frontier orbitals which would otherwise lower the triplet state com-
pared to the singlet state, thus preventing undesired singlet-triplet splittings.
This fact is reflected in Fig. 5(a), where a triphenylamine bridge is highlighted
as a negative influence on the prediction outcome. Furthermore, our model is
able to support hypotheses published in previous work by Friederich et al. [11],
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Fig. 5. Example explanations obtained from the MEGAN model for the prediction of
the singlet-triplet energy gap of the TADF dataset. (a) Explanations that reproduce
known chemical intuition about the task. (b) Explanations that reproduce hypotheses
previously published by Friederich et al. [11]. (c) New explanatory sub-graph motifs
proposed through an observation of the explanations generated by MEGAN.

who use an interpretable decision tree method to generate explanation hypothe-
ses for the same task. As shown in Fig. 5(b) our model replicates their findings of
conjugated bridges as a positive influence on the energy gap and carbonyl groups
as a negative influence. Beyond that, our model finds several novel hypotheses
about structure-property relationships, two of which are shown in Fig. 5(c): We
can propose silane groups and phosphine oxides as positive influences to the
singlet-triplet energy gap.

5 Limitations

Despite the encouraging experimental results, there are limitations to the pro-
posed MEGAN architecture: Firstly, there is no hard guarantee that each chan-
nel’s explanations align correctly according to their pre-determined interpreta-
tions. This alignment is mainly promoted through the explanation co-training,
whose influence on the network is dependent on a hyperparameter. We occasion-
ally observed “explanation leakage” and “explanation flipping” during training.
In those rare cases, explanations factually belonging to one channel may either
faintly appear in the opposite channel or a particularly disadvantageous ini-
tialization of the network causes explanations to develop in the exact opposite
channel relative to their assigned interpretation. Ultimately, the alignment of a
particular channel with its intended interpretation has to be tested through a
Fidelity* analysis after the model training.

The second limitation is in the design of the explanation co-training itself,
which essentially reduces the problem to a subgraph counting task. While there
are many important real-world applications that can be approximated as such,
it still presents an important limit to the expressiveness of the models produced
by our model.
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6 Conclusion

In this work, we introduce the self-explaining multi-explanation graph attention
network (MEGAN) architecture, which produces node and edge attributional
explanations for graph regression and classification tasks. Our model imple-
ments the number K of generated explanations as a hyperparameter of the
network itself, instead of being dependent on the task specification. Based on
several exemplary synthetic and real-world datasets, we show that this property
is especially crucial for graph regression problems. By being able to generate
attributional explanations for a single regression target along multiple explana-
tion channels, our model is able to account for the polarity of explanations. In
many graph regression applications certain sub-graph motifs influence the pre-
dicted outcome in opposing directions: Some motifs present a negative influence
on the overall prediction, while others are a positive influence. We achieve the
alignment of the model’s multiple explanation channels according to these pre-
determined interpretations by introducing an explanation co-training procedure.
Beside the main prediction loss, an additional explanation loss is generated from
an approximate solution of the prediction problem based only on each channels
explanation masks. We can validate the channel’s alignment to their respective
intended interpretations through the Fidelity∗ metric, which extends the concept
of explanation fidelity to our multi-channel case.

Additionally, we demonstrate the capabilities of our model for explanation-
supervised training, where a model is trained to produce explanations based on a
set of given ground truth explanations. For a synthetic graph regression dataset,
we show that our model is able to learn the given ground truth explanations
almost perfectly, significantly outperforming an existing baseline method from
literature.

One particularly interesting result is the improvement of the prediction per-
formance for the explanation-supervised training during the first synthetic exper-
iment but not during the second one. Similar effects have already been shown in
the domain of image processing, where various authors are able to demonstrate
a performance increase when models are additionally trained to emulate human
saliency maps [2,19]. One promising direction for future work will be to inves-
tigate the conditions under which (human) explanations have the potential to
improve predictive performance for graph-related tasks as well.

7 Reproducibility Statement

We make our experimental code publically available at https://github.com/
aimat-lab/graph attention student. The code is implemented in the Python 3.9
programming language. Our neural networks are built with the KGCNN library
by Reiser et al. [31], which provides a framework for graph neural network imple-
mentations with TensorFlow and Keras. We make all data used in our experi-
ments publically available on a file share provider https://bwsyncandshare.kit.
edu/s/E3MynrfQsLAHzJC. The datasets can be loaded, processed, and visu-
alized with the visual graph datasets package https://github.com/aimat-lab/
visual graph datasets. All experiments were performed on a system with the

https://github.com/aimat-lab/graph_attention_student
https://github.com/aimat-lab/graph_attention_student
https://bwsyncandshare.kit.edu/s/E3MynrfQsLAHzJC
https://bwsyncandshare.kit.edu/s/E3MynrfQsLAHzJC
https://github.com/aimat-lab/visual_graph_datasets
https://github.com/aimat-lab/visual_graph_datasets
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following specifications: Ubuntu 22.04 operating system, Ryzen 9 5900 proces-
sor, RTX 2060 graphics card and 80 GB of memory. We have aimed to package
the various experiments as independent modules and our code repository con-
tains a brief explanation of how these can be executed.

A Evaluation Metrics

Fidelity. Fidelity metrics are used to quantify the degree to which explanations
are actually responsible for a model’s prediction. In our experiments, we use the
definition of the Fidelity+ metric as defined by Yuan et al. [41]. It is calculated
as the difference between the original predicted value and the predicted value if
the elements of the explanation are removed from the input graph. It is generally
assumed the higher this value, the more important those elements are for the
prediction. This metric generally works well by itself for classification problems,
where confidence values are limited to the range between 0 and 1. In such a
case, a fidelity value of 0.8 would be considered quite high because there exists
a frame of reference that defines 1 as the maximum possible value. However,
for this reason, we find that the metric is not immediately applicable to the
regression problems since there exists no frame of reference as to what would be
considered a particularly high or low value.

Instead, for our regression experiments, we use a relative fidelity value which
is defined relative to a point of reference.

Fidelity+
rel = Fidelity+ −Fidelity+

random (12)

As the frame of reference, we use the fidelity value which results from a purely
random input graph mask, which has the same sparsity as the given explanation.
The random fidelity value is calculated as the arithmetic mean resulting from
10 such randomly sampled input masks per explanation.

B GNES Implementation

In our experiments, we use the GNES method by Gao et al. [13] as a base-
line approach from the literature that supports explanation supervision. In their
framework, the authors propose using existing differentiable post-hoc explana-
tion methods for explanation supervision. For that, they introduce a generic
framework to describe node and edge attributional explanations. For example,
they define node the attributional explanation for node n at layer l as

M (l)
n = || ReLU(g(

∂yc

∂F
(l)
n

) · h(F (l)
n )) || (13)

where F
(l)
n is the activation of node n at layer l. g(·) and h(·) are generic functions

that can be defined for specific implementations of explanation methods. Edge
explanations are defined in a similarly generic way. Explanation supervision is
then achieved through additional loss MAE loss terms between these generated
explanations and the given reference explanations.
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For our experiments, we were not able to use the original code at https://
github.com/YuyangGao/GNES as that implementation only supports binary
classification problems and is limited to a batch size of 1. We re-implement their
method in the KGCNN framework. We follow the original paper as closely as pos-
sible for the version we call GNESoriginal. However, we find that the used ReLU(·)
operation does not work well with regression operations as it cuts off negative
values and thus actively discards explanatory motifs with opposing influence.
Consequently, we modify the method to use an absolute value operation || · ||
instead of the ReLU(·) for the version we call GNESfixed. We find that this ver-
sion works much better with regression tasks as it is able to properly account
for positive and negative influences.

C GNN Benchmarks

Aside from its capability for explanation supervision, we also find that our
model generally shows a good prediction performance as well, when com-
pared to other state-of-the-art GNNs. Figure 6 shows the benchmarking results
of the MEGAN model compared to several other GNNs from the literature
for two datasets of molecular property prediction. The benchmarking results
were obtained from the KGCNN library https://github.com/aimat-lab/gcnn
keras/tree/master/training/results. To produce the results, all models were sub-
jected to a cursory hyperparameter optimization on the respective datasets. The
MEGAN models trained for this comparison use neither explanation supervision
nor the co-training method.

The results show that MEGAN achieves the second-best results for both
tasks.

Fig. 6. Benchmarking results obtained from the KGCNN library from a random 5-fold
cross-validation for the ESOL dataset [5] and the LIPOP dataset [39].

https://github.com/YuyangGao/GNES
https://github.com/YuyangGao/GNES
https://github.com/aimat-lab/gcnn_keras/tree/master/training/results
https://github.com/aimat-lab/gcnn_keras/tree/master/training/results
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concept-based explanations for graph neural networks (2021). https://doi.org/10.
48550/arXiv.2107.11889. http://arxiv.org/abs/2107.11889. arXiv:2107.11889

23. McCloskey, K., Taly, A., Monti, F., Brenner, M.P., Colwell, L.J.: Using attri-
bution to decode binding mechanism in neural network models for chemistry.
Proc. Natl. Acad. Sci. 116(24), 11624–11629 (2019). https://doi.org/10.1073/pnas.
1820657116. https://www.pnas.org/doi/10.1073/pnas.1820657116

24. Müller, P., Faber, L., Martinkus, K., Wattenhofer, R.: DT+GNN: a fully explain-
able graph neural network using decision trees (2022). https://doi.org/10.48550/
arXiv.2205.13234. http://arxiv.org/abs/2205.13234. arXiv:2205.13234

25. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), Doha, Qatar, pp. 1532–1543. Association for
Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1162. https://
aclanthology.org/D14-1162

26. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability
methods for graph convolutional neural networks, pp. 10772–10781 (2019).
https://openaccess.thecvf.com/content CVPR 2019/html/Pope Explainability
Methods for Graph Convolutional Neural Networks CVPR 2019 paper.html

27. Prado-Romero, M.A., Stilo, G.: GRETEL: graph counterfactual explanation eval-
uation framework. In: Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, CIKM 2022, pp. 4389–4393. Association

https://doi.org/10.1038/nmat4717
https://www.nature.com/articles/nmat4717
https://www.nature.com/articles/nmat4717
https://proceedings.mlr.press/v139/henderson21a.html
https://proceedings.mlr.press/v139/henderson21a.html
https://doi.org/10.1109/TKDE.2022.3187455
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://www.nature.com/articles/s42256-020-00236-4
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1007/978-3-030-28954-6_14
https://openreview.net/forum?id=BJgLg3R9KQ
https://www.semanticscholar.org/paper/Parameterized-Explainer-for-Graph-Neural-Network-Luo-Cheng/d9f5ec342df97e060b527a8bc18ae4e97401f246
https://www.semanticscholar.org/paper/Parameterized-Explainer-for-Graph-Neural-Network-Luo-Cheng/d9f5ec342df97e060b527a8bc18ae4e97401f246
https://doi.org/10.48550/arXiv.2207.13586
http://arxiv.org/abs/2207.13586
http://arxiv.org/abs/2207.13586
http://arxiv.org/abs/2207.13586
https://doi.org/10.48550/arXiv.2107.11889
https://doi.org/10.48550/arXiv.2107.11889
http://arxiv.org/abs/2107.11889
http://arxiv.org/abs/2107.11889
https://doi.org/10.1073/pnas.1820657116
https://doi.org/10.1073/pnas.1820657116
https://www.pnas.org/doi/10.1073/pnas.1820657116
https://doi.org/10.48550/arXiv.2205.13234
https://doi.org/10.48550/arXiv.2205.13234
http://arxiv.org/abs/2205.13234
http://arxiv.org/abs/2205.13234
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://openaccess.thecvf.com/content_CVPR_2019/html/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.html


MEGAN: Multi-explanation Graph Attention Network 359

for Computing Machinery, New York (2022). https://doi.org/10.1145/3511808.
3557608. https://dl.acm.org/doi/10.1145/3511808.3557608

28. Pruthi, D., Gupta, M., Dhingra, B., Neubig, G., Lipton, Z.C.: Learning to deceive
with attention-based explanations. In: Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp. 4782–4793. Association
for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.
432. https://aclanthology.org/2020.acl-main.432

29. Qiao, T., Dong, J., Xu, D.: Exploring human-like attention supervision in visual
question answering. In: Thirty-Second AAAI Conference on Artificial Intelligence
(2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16485

30. Rathee, M., Funke, T., Anand, A., Khosla, M.: BAGEL: a benchmark for assessing
graph neural network explanations (2022). https://doi.org/10.48550/arXiv.2206.
13983. http://arxiv.org/abs/2206.13983. arXiv:2206.13983

31. Reiser, P., Eberhard, A., Friederich, P.: Graph neural networks in TensorFlow-
Keras with RaggedTensor representation (KGCNN). Softw. Impacts 9, 100095
(2021). https://doi.org/10.1016/j.simpa.2021.100095. https://www.sciencedirect.
com/science/article/pii/S266596382100035X

32. Sanchez-Lengeling, B., et al.: Evaluating attribution for graph neural networks.
In: Advances in Neural Information Processing Systems, vol. 33, pp. 5898–5910.
Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/hash/
417fbbf2e9d5a28a855a11894b2e795a-Abstract.html
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Abstract. Despite the increasing relevance of explainable AI, assessing
the quality of explanations remains a challenging issue. Due to the high
costs associated with human-subject experiments, various proxy metrics
are often used to approximately quantify explanation quality. Generally,
one possible interpretation of the quality of an explanation is its inher-
ent value for teaching a related concept to a student. In this work, we
extend artificial simulatability studies to the domain of graph neural net-
works. Instead of costly human trials, we use explanation-supervisable
graph neural networks to perform simulatability studies to quantify the
inherent usefulness of attributional graph explanations. We perform an
extensive ablation study to investigate the conditions under which the
proposed analyses are most meaningful. We additionally validate our
method’s applicability on real-world graph classification and regression
datasets. We find that relevant explanations can significantly boost the
sample efficiency of graph neural networks and analyze the robustness
towards noise and bias in the explanations. We believe that the notion
of usefulness obtained from our proposed simulatability analysis pro-
vides a dimension of explanation quality that is largely orthogonal to
the common practice of faithfulness and has great potential to expand
the toolbox of explanation quality assessments, specifically for graph
explanations.

Keywords: Graph Neural Networks · Explainable AI · Explanation
Quality · Simulatability Study

1 Introduction

Explainable AI (XAI) methods are meant to provide explanations alongside a
complex model’s predictions to make its inner workings more transparent to
human operators to improve trust and reliability, provide tools for retrospective
model analysis, as well as to comply with anti-discrimination laws [6]. Despite
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recent developments and a growing corpus of XAI methods, a recurring challenge
remains the question of how to assess the quality of the generated explanations.

Since explainability methods aim to improve human understanding of com-
plex models, Doshi-Velez and Kim [6] argue that ultimately the quality of expla-
nations has to be assessed in a human context. To accomplish this, the authors
propose the idea of simulatability studies. In that context, human subjects are
tasked to simulate the behavior of a machine-learning model given different
amounts of information. While a control group of participants receives only the
model input-output information, the test group additionally receives the expla-
nations in question. If, in that case, the test group performs significantly better
at simulating the behavior, the explanations can be assumed to contain informa-
tion useful to human understanding of the task. However, human trials such as
this are costly and time-consuming, especially considering the number of partici-
pants required to obtain a statistically significant result. Therefore, the majority
of XAI research is centered around more easily available proxy metrics such as
explanation sparsity and faithfulness.

While proxy metrics are an integral part of the XAI evaluation pipeline,
we argue that the quantification of usefulness obtained through simulatability
studies is an important next step toward comparing XAI methods and thus
increasing the impact of explainable AI. Recently, Pruthi et al. [21] introduce
the concept of artificial simulatability studies as a trade-off between cost and
meaningfulness. Instead of using human subjects, the authors use explanation-
supervisable neural networks as participants to conduct simulatability studies
for natural language processing tasks.

In this work, we extend the concept of artificial simulatability studies to
the domain of graph neural networks and specifically node and edge attribu-
tional explanations thereof. This application has only been enabled through the
recent development of sufficiently explanation-supervisable graph neural network
approaches [26]. We will henceforth refer to this artificial simulatability app-
roach as the student-teacher analysis of explanation quality: The explanations
in question are considered to be the “teachers” that are evaluated on their effec-
tiveness of communicating additional task-related information to explanation-
supervisable “student” models. We show that, under the right circumstances,
explanation supervision leads to significantly improved main task prediction per-
formance w.r.t. to a reference. We first conduct an extensive ablation study on
a specifically designed synthetic dataset to highlight the conditions under which
this effect can be optimally observed. Most importantly, we find that the under-
lying student model architecture has to be sufficiently capable to learn explana-
tions during explanation-supervised training. Our experiments show, that this
is especially the case for the self-explaining MEGAN architecture, which was
recently introduced by Teufel et al. [26].

Additionally, we find that the target prediction problem needs to be suf-
ficiently challenging to the student models to see a significant effect. We can
furthermore show that while ground truth explanations cause an increase in
performance, deterministically incorrect/adversarial explanations cause a signif-
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icant decrease in performance. In the same context, random explanation noise
merely diminishes the benefit of explanations, but neither causes a significant
advantage nor a disadvantage.

Finally, we validate the applicability of our method on explanations for one
real-world molecular classification and one molecular regression dataset.

2 Related Work

Simulatability Studies. Doshi-Velez and Kim [6] introduce the concept of
simulatability studies, in which human participants are asked to simulate the
forward predictive behavior of a given model. Explanations about the model
behavior should be considered useful if a group of participants with access to
these explanations performs significantly better than a control group without
them. Such studies are only rarely found in the growing corpus of XAI literature
due to the high effort and cost associated with them. Nonetheless, some exam-
ples of such studies can be found. Chandrasekaran et al. [4] for example conduct
a simulatability study for a visual question answering (VQA) task. The authors
investigate the effect of several different XAI methods such as GradCAM and
attention among other aspects. They find no significant performance difference
for participants when providing explanations. Hase and Bansal [10] conduct a
simulatability study for a sentiment classification task. They can only report
significant improvements for a small subset of explanation methods. Lai et al.
[13,14] conduct a simulatability study for a deception detection task. Unlike
previously mentioned studies, the authors ask participants to predict ground
truth labels instead of simulating a model’s predictions. Among different expla-
nation methods, they also investigate the effects of other assistive methods on
human performance, such as procedurally generated pre-task tutorials and real-
time feedback. The study shows that real-time feedback is crucial to improve
human performance. In regard to explanations, the authors find that especially
simplistic explanations methods seem to be more useful than more complicated
deep-learning-based ones and that providing the polarity of attributional expla-
nations is essential.

Beyond the cost and effort associated with human trials, previous studies
report various additional challenges when working with human subjects. One
issue seems to be the limited working memory of humans, where participants
report forgetting previously seen relevant examples along the way. Another issue
is the heterogeneity of participants’ abilities, which causes a higher variance
in performance results, necessitating larger sample sizes to obtain statistically
significant results. Overall, various factors contribute to such studies either not
observing any effect at all or reporting only on marginal explanation benefits.

One possible way to address this is proposed by Arora et al. [2], who argue
to rethink the concept of simulatability studies itself. In their work, instead of
merely using human subjects as passive predictors, the participants are encour-
aged to interactively engage with the system. In addition to guessing the model
prediction, participants are asked to make subsequent single edits to the input
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text with the goal of maximizing the difference in model confidence. The metric
of the average confidence deviation per edit can then also be seen as a measure
of human understanding of the model’s inner workings. The authors argue that
such an explorative and interactive study design is generally more suited to the
strengths of human subjects and avoids their respective weaknesses.

Another approach is represented by the emergent idea of artificial simulatabil-
ity studies, which generally aim to substitute human participants in these kinds
of studies with machine learning models that are able to learn from explanations
in a similar manner. There exist early variations of this basic idea [11,27], for
which conceptional problems have been pointed out [21]. Most notably, some
methods expose explanations during test time, which may cause label leakage.
Recently, Pruthi et al. [21] devise a method that does not expose explanations
during test time by leveraging explanation-supervised model training. They are
able to show a statistically significant test performance benefit for various expla-
nation methods, as well as for explanations derived from human experts in nat-
ural language processing tasks. In our work, we build on the basic methodology
proposed by Pruthi et al. and use explanation-supervisable student models to
avoid the label-leakage problem. Furthermore, we extend their basic approach
toward a more rigorous method. The authors consider the absolute performance
of the explanation supervised student by itself as an indicator of simulatability.
We argue that, due to the stochastic nature of neural network training, potential
simulatability benefits should only be considered on a statistical level obtained
through multiple independent repetitions, only relative to a direct reference, and
verified by tests of statistical significance.

Explanation Supervision for GNNs. Artificial simulatability studies, as
previously discussed, require student models which are capable of explanation
supervision. This means that it should be possible to directly train the generated
explanations to match some given ground truth explanations during the model
training phase. Explanation supervision has already been successfully applied
in the domains of image processing [16] and natural language processing [3].
However, only recently was the practice successfully adapted to the domain of
graph neural networks as well. First, Gao et al. [8] propose the GNES framework,
which aims to use the differentiable nature of various existing post-hoc expla-
nation methods such as GradCAM and LRP to perform explanation supervised
training. Teufel et al. [26] on the other hand introduce the MEGAN architec-
ture which is a specialized attention-based architecture showing especially high
potential for explanation-supervision. To the best of our knowledge, these two
methods remain the only existing methods for explanation-supervision of graph
attributional explanations until now.

In addition to attributional explanations, several other types of explanations
have been introduced. Noteworthy examples are prototype-based explanations
[23] and concept-based explanations [19]. In the realm of prototype explanations,
Zhang et al. [28] and Dai and Wang [5] introduce self-explaining prototype-based
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graph neural networks, although it has not yet been demonstrated if and how
explanation-supervision could be applied to them. For concept-based explana-
tions, on the other hand, Magister et al. [18] demonstrate explanation super-
vision, opening up the possibility to extend artificial simulatability studies to
explanation modalities beyond simple attributional explanations as well.

3 Student-Teacher Analysis of Explanation Quality

Simulatability studies aim to assess how useful a set of explanations is in
improving human understanding of a related task. To offset the high cost and
uncertainty associated with human-subject experiments, Pruthi et al. [21] intro-
duce artificial simulatability studies, which substitute human participants with
explanation-aware neural networks, for natural language processing tasks. In
this section, we describe our extension of this principle idea to the application
domain of graph neural networks and introduce the novel STS metric which we
use to quantify the explanation-induced performance benefit.

We assume a directed graph G = (V,V) is represented by a set of node
indices V = N

V and a set of edges E ⊆ V × V, where a tuple (i, j) ∈ E denotes a
directed edge from node i to node j. Every node i is associated with a vector of
initial node features h(0)

i ∈ R
N0 , combining into the initial node feature tensor

H(0) ∈ R
V ×N0 . Each edge is associated with an edge feature vector u(0)

ij ∈ R
M ,

combining into the edge feature tensor U ∈ R
E×M . Each graph is also anno-

tated with a target value vector ytrue ∈ R
C , which is either a one-hot encoded

vector for classification problems or a vector of continuous values for regression
problems. For each graph exists node and edge attributional explanations in the
form of a node importance tensor V ∈ [0, 1]V ×K and an edge importance tensor

Fig. 1. Illustration of the student teacher training workflow as well as the setting of
our artificial simulatability study.
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E ∈ [0, 1]E×K respectively. K is the number of explanation channels and is usu-
ally equal to the size C of the target vector, meaning that for every target value
each element of the input graph is annotated with a 0 to 1 value indicating that
element’s importance.

In the framework of artificial simulatability studies, human participants are
replaced by explanation-aware machine learning models which will be referred
to as students. In this analogy, the teacher is represented by the dataset of
input graphs and target value annotations, as well as the explanations whose
quality is to be determined. Figure 1 illustrates the concept of such a student-
teacher analysis of explanation quality. The set X of input data consists of tuples
(G,H(0),U(0)) of graphs and their features. The set Y consists of tuples (y,V,E)
of target value annotations, as well as node and edge attributional explanations.
A student is defined as a parametric model Sθ : (G,H(0),U(0)) → (y,V,E)
with the trainable model parameters θθθ. This firstly implies that every student
model has to directly output explanations alongside each prediction. Moreover,
these generated explanations have to be actively supervisable to qualify as an
explanation-aware student model.

During a single iteration of the student-teacher analysis, the sets of input
and corresponding output data are split into a training set X

train,Ytrain and an
unseen test set X

test,Ytest respectively. Furthermore, two architecturally identi-
cal student models are initialized with the same initial model parameters θθθ: The
reference student model Sref

θ and the explanation-aware student model Sexp
θ .

During the subsequent training phase, the reference student only gets to train
on the main target value annotations y, while the explanation student is addi-
tionally trained on the given explanations. After the two students were trained
on the same training elements and the same hyperparameters, their final predic-
tion performance is evaluated on the unseen test data. If the explanation student
outperforms the reference student on the final evaluation, we can assume that
the given explanations contain additional task-related information and can thus
be considered useful in this context.

However, the training of complex models, such as neural networks, is a
stochastic process that generally only converges to a local optimum. For this
reason, a single execution of the previously described process is not sufficient to
assess a possible performance difference. Rather, a repeated execution is required
to confirm the statistical significance of any result. Therefore, we define the
student-teacher analysis as the R repetitions of the previously described process,
resulting in the two vectors of test set evaluation performances pref,pexp ∈ R

R

for the two student models respectively. The concrete type of metric used to
determine the final performance may differ, as is the case with classification and
regression problems for example. Based on this definition we define the student-
teacher simulatability metric

STSR = median(pexp − pref)

as the median of the pairwise performance differences between all the individ-
ual explanation students’ and reference students’ evaluation results. We choose
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the median here instead of the arithmetic mean, due to its robustness towards
outliers, which may occur when models sporadically fail to properly converge in
certain iterations of the procedure.

In addition to the calculation of the STS metric, a paired t-test is performed
to assure the statistical significance of the results. Only if the p-value of this
test is below a 5% significance level should the analysis results be considered
meaningful.

4 Computational Experiments

4.1 Ablation Study for a Synthetic Graph Classification Dataset

We first conduct an ablation study on a specifically designed synthetic graph
dataset to show the special conditions under which a performance benefit for
the explanation student can be observed.

We call the synthetic dataset created for this purpose red and blue adversarial
motifs and a visualization of it can be seen in Fig. 2. The dataset consists of 5000
randomly generated graphs where each node is associated with 3 node features
representing an RGB color code. Each graph is seeded with one primarily red
motif: Half of the elements are seeded with the red and yellow star motif and
are consequently labeled as the “active” class. The other half of the elements are
seeded with a red and green ring motif and labeled as “inactive”. The dataset
represents a binary classification problem where each graph will have to be clas-
sified as either active or inactive. As each class assignment is entirely based on
the existence of the corresponding sub-graph motifs, these motifs are consid-
ered the perfect ground truth explanations for that dataset. In addition to the
primarily red motifs, each graph is also seeded with one primarily blue motif:
Either a blue-yellow ring motif or a blue-green star motif. These blue motifs
are seeded such that their distribution is completely uncorrelated with the true
class label of the elements. Thus, these motifs are considered deterministically
incorrect/adversarial explanations w.r.t. the main classification task.

Student Model Implementations. We conduct an experiment to assess the
suitability of different student model implementations. As previously explained,
a student model has to possess two main properties: Node and edge explana-
tions have to be generated alongside each prediction and more importantly it has
to be possible to train the models based on these explanations in a supervised
manner. To the best of our knowledge, there exist two methods from literature,
which do this for attributional explanations: The GNES framework of Gao et
al. [8] and the MEGAN architecture of Teufel et al. [26]. We conduct an experi-
ment with R = 25 repetitions of the student-teacher analysis for three different
models: A lightweight MEGAN model, GNES explanations based on a simple
GCN network, and GNES explanations based on a simple GATv2 network. In
each iteration, 100 elements of the dataset are used to train the student model
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while the rest is used during testing. Table 1 shows the results of this experi-
ment. We report the final STS value, as well as the node and edge AUC metrics,
which indicate how well the explanations of the corresponding models match the
ground truth explanations of the test set.

Table 1. Results for 25 repetitions of the student-teacher analysis for different reference
models (Ref) and explanation supervised student model (Exp) implementations.

Student Model STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

GNESGCN 0.02 0.55±0.04 0.59±0.03 0.64±0.04 0.66±0.04

GNESGATv2 0.01 0.59±0.05 0.61±0.05 0.51±0.05 0.55±0.04

MEGAN2
0.0 0.12(∗) 0.64±0.15 0.94±0.01 0.66±0.14 0.96±0.02

(*) Statistically significant according to a paired T-test with p < 5%

Since the perfect ground truth explanations are used for this experiment, we
expect the explanation student to have the maximum possible advantage w.r.t
to the explanations. The results show that only the MEGAN student indicates
a statistically significant STS value of a median 12% accuracy improvement for
the explanation-aware student. The GNES experiments on the other hand do
not show statistically significant performance benefits. We believe that this is
due to the limited effect of the explanation supervision that can be observed
in these cases: While the node and edge accuracy of the GNES explanation
student only improves by a few percent, the MEGAN explanation student almost
perfectly learns the ground truth explanations. This is consistent with the results

Fig. 2. Synthetic dataset used to quantify the usefulness of attributional graph explana-
tions, incl. testing the robustness toward adversarial explanations. (Color figure online)
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Fig. 3. Results of student-teacher analyses (R = 25) for different training dataset sizes.
Each column shows the performance distribution for the reference student (blue) and
the explanation student (green) of the student-teacher procedure. The number above
each column is the resulting STS value. (*) indicates statistical significance according
to a paired T-test with p < 5% (Color figure online)

reported by Teufel et al. [26], who report that MEGAN outperforms the GNES
approach in capability for explanation supervision. A possible explanation for
why that is the case might be that the explanation-supervised training of the
already gradient-based explanations of GNES relies on a second derivative of
the network, which might provide a generally weaker influence on the network’s
weights.

Based on this result, we only investigate the MEGAN student in subsequent
experiments.

Training Dataset Size Sweep. In this experiment, we investigate the influ-
ence of the training dataset size on the explanation performance benefit. For this
purpose, we conduct several student-teacher analyses with R = 25 repetitions
using the MEGAN student architecture. We vary the number of elements used
for training between 100, 200, 300, 400, and 500 elements out of a total of 5000.
In each iteration, the training dataset with that number of elements is randomly
sampled from the entire dataset and the rest is used during testing. Figure 3
shows the results of this experiment. We visualize the performance distributions
of explanation and reference students for each dataset size and provide the STS
metric in each case.

The results show the greatest performance benefit for the smallest training
set size of just 100 elements. Afterward, the STS value converges to 0 for 500
elements, losing statistical significance as well. We believe that this is caused by
the convergence of both students to the near-perfect performance of approx. 98%
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Fig. 4. Results of student-teacher analyses (R = 25) for explanations with different
ratios of additional explanation noise. Each column shows the performance distribution
for the reference student (blue) and the explanation student (green) of the student-
teacher procedure. The number above each column is the resulting STS value. (*)
indicates statistical significance according to a paired T-test with p < 5% (Color figure
online)

accuracy. In other words: A larger train set size represents a smaller difficulty for
the student models. With decreasing difficulty, the students can solve the task
almost perfectly by themselves, diminishing any possible benefit of the expla-
nations. We can therefore formulate the rule of thumb that explanations have
the potential to provide the greatest benefit when tasks are more difficult, and
cannot be so easily solved without explanations. As shown in this experiment, a
reduction of the train set size sufficiently provides such an increase in difficulty.

Based on this result, we conduct subsequent experiments with a training set
size of 100 to observe the most pronounced effect.

Explanation Noise Sweep. For the majority of real-world tasks, perfect
ground truth explanations are generally not available. Instead, explanations can
be generated through a multitude of XAI methods that have been proposed in
recent years. Since complex machine learning models and XAI methods generally
only find local optima, it is reasonable to assume that generated explanations are
not perfect but rather contain some amount of noise as well. The question is how
such explanation noise affects the results of our proposed student-teacher anal-
ysis. In this experiment, we perform different student-teacher analyses, where in
each case the explanations are overlaid with a certain ratio P% of random noise,
where P ∈ {0, 5, 10, 20, 40, 60, 80, 100}. A ratio P% means that the explanation
importance value for every element (nodes and edges) in every graph has a P%
chance of being randomly sampled instead of the ground truth value being used.
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Fig. 5. Results of student-teacher analyses (R = 25) for datasets containing different
amounts of adversarial incorrect explanations. Each column shows the performance
distribution for the reference student (blue) and the explanation student (green) of the
student-teacher procedure. The number above each column is the resulting STS value.
(*) indicates statistical significance according to a paired T-test with p < 5% (Color
figure online)

Each student-teacher analysis is conducted with a MEGAN student architecture
and 100 training data points. Figure 4 shows the results of this experiment.

The results show that there is a statistically significant performance benefit
for the explanation student until 40% explanation noise is reached. Afterward,
the STS value converges towards zero and loses statistical significance as well.
One important aspect to note is that even for high ratios of explanation noise the
performance difference converges toward zero. This indicates that explanations
consisting almost entirely of random noise do not benefit the performance of a
student model, but they do not negatively influence it either. We believe this is
the case because random explanations do not cause any learning effect for the
model. In our setup of explanation-supervised training, actual explanation labels
are not accessible to either student during the testing phase, instead, the models
have to learn to replicate the given explanations during training through their
own internal explanation-generating mechanisms. Only through these learned
replications can any potential advantage or disadvantage be experienced by the
models during performance evaluation. Completely random explanations cannot
be learned by the models and consequently have no effect during performance
evaluation.

Adversarial Explanation Sweep. The previous experiment indicates that
purely random explanations do not negatively affect the model performance.
By contrast, it could be expected that deterministic incorrect explanations on
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Fig. 6. Results of student-teacher analyses (R = 25) for different layer structures of
the MEGAN student model. The square brackets indicate the number of hidden units
in each layer of the main convolutional part of the network. The normal brackets
beneath indicate the number of hidden units in the fully connected layers in the tail-
end of the network. Each column shows the performance distribution for the reference
student (blue) and the explanation student (green) of the student-teacher procedure.
The number above each column is the resulting STS value. (*) indicates statistical
significance according to a paired T-test with p < 5% (Color figure online)

the other hand should have a negative influence on the performance. The used
dataset is seeded with two families of sub-graph motifs (see Fig. 2): The red-
based motifs are completely correlated with the two target classes and can thus
be considered the perfect explanations for the classification task. The blue-based
motifs on the other hand are completely uncorrelated to the task and can thus
be considered incorrect/adversarial explanations w.r.t. to the target labels. In
this experiment, increasing amounts of these adversarial explanations are used
to substitute the true explanations during the student-teacher analysis to inves-
tigate the effect of incorrect explanations on the performance difference. In each
iteration, Q% of the true explanations are replaced by adversarial explanations,
where Q ∈ {0, 5, 10, 20, 40, 60, 80, 100}. Each student-teacher analysis is con-
ducted with a MEGAN student architecture and 100 training elements.

The results in Fig. 5 show that a statistically significant explanation perfor-
mance benefit remains for ratios of adversarial explanations for up to 20%. For
increasingly large ratios, the STS value still remains positive although the sta-
tistical significance is lost. For ratios of 80% and above, statistically significant
negative STS values can be observed. This implies that incorrect explanations
negatively influence the performance of the explanation-aware student model.
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Student Network Layer Structure. In this experiment, we investigate the
influence of the concrete student network layout on the explanation performance
benefit. For this purpose, we conduct several student-teacher analyses with R =
25 repetitions using the MEGAN student architecture. We vary the number of
convolutional and fully-connected layers, as well as the number of hidden units in
these layers. Starting with a simple two-layer 3-unit network layout, the number
of model parameters, and thus its complexity is gradually increased until the
most complex case of a three-layer 20-unit network is reached. Figure 6 shows
the results of this experiment. We visualize the performance distributions of
explanation and reference students for each dataset size and provide the STS
metric in each case.

The results show that the students’ prediction performance generally
improves for more complex models. However, this is true for the explanation
as well as the reference student. While there still is a statistically significant
effect for the most complex network layout, it is very marginal because the ref-
erence student achieves almost perfect accuracy in these cases as well. On the
other hand, the most simple student network layout shows the largest perfor-
mance benefit. However, for the simple network layouts, the standard variation
of the performance over the various repetitions is greatly increased for reference
and explanation students, but seemingly more so for the explanation student. We
generally conclude that both extreme cases of simplistic and complex student
network architectures have disadvantages w.r.t. to revealing a possible expla-
nation performance benefit. In the end, the best choice is a trade-off between
variance in performance and overall capability.

Node Versus Edge Explanations. We conduct an experiment to determine
the relative impact of the node and edge explanations individually. We conduct
a student-teacher analysis with R = 25 repetitions. We use a simple three-
layer MEGAN student, where each iteration uses 100 randomly chosen training
samples. We investigate three cases: As a baseline case, the explanation student
uses ground truth node and edge explanations during explanation-supervised
training. In another case, the explanation student is only supplied with the
node attributional explanations. In the last case, only the edge attributional
explanations are used. This is achieved by setting the corresponding weighting
factors to 0 during training. Table 2 shows the results of this experiment. We
report the final STS value, as well as the node and edge AUC metrics, which
indicate how well the explanations of the corresponding models match the ground
truth explanations of the test set.

The results show that all three cases achieve statistically significant STS val-
ues indicating a performance benefit of the given explanations. Furthermore, in
all three cases, the explanations learned by the explanation student show high
similarity (AUC > 0.9) to the ground truth explanations for node as well as edge
attributions. This implies that the student model is able to infer the correspond-
ing explanation edges for the ground truth explanatory motifs, even if it is only
trained on the nodes, and vice versa. We believe the extent of this property is
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Table 2. Results for 25 repetitions of the student-teacher Analysis conducted with
either only node explanations, only edge explanations, or both.

Explanations STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

Both 0.12(∗) 0.62±0.14 0.95±0.03 0.62±0.16 0.94±0.03

Nodes 0.12(∗) 0.65±0.13 0.93±0.03 0.65±0.12 0.92±0.04

Edges 0.10(∗) 0.67±0.15 0.93±0.03 0.67±0.12 0.94±0.03

(*) Statistically significant according to a paired T-test with p < 5%

a consequence of the used MEGAN student architecture. The MEGAN network
architecture implements an explicit architectural co-dependency of node and
edge explanations to promote the creation of connected explanatory sub-graphs.
These results imply that it may be possible to also apply the student-teacher
analysis in situations where only node or edge explanations are available.

4.2 Real-World Datasets

In addition to the experiments on the synthetic dataset, we aim to provide a
validation of the student-teacher analysis’ effectiveness on real-world datasets
as well. For this purpose, we choose one graph classification and one graph
regression dataset from the application domain of chemistry. We show how the
student-teacher analysis can be used to quantify usefulness of the various kinds
of explanations for these datasets.

Mutagenicity - Graph Classification. To demonstrate the student-teacher
analysis of GNN-generated explanations on a real-world graph classification task,
we choose the Mutagenicity dataset [9] as the starting point. By its nature of
being real-world data, this dataset does not have ground truth explanations
as it is, making it hard to compare GNN-generated explanations to the ground
truth. However, the dataset can be transformed into a dataset with ground truth
explanatory subgraph motifs. It is hypothesized that the nitro group (NO2) is
one of the main reasons for the property of mutagenicity [15,17]. Following the
procedure previously proposed by Tan et al. [25], we extract a subset of elements
containing all molecules which are labeled as mutagenic and contain the benzene-
NO2 group as well as all the elements that are labeled as non-mutagenic and do
not contain that group. Consequently, for the resulting mutagenicity subset, the
benzene-NO2 group can be considered as the definitive ground truth explanation
for the mutagenic class label. We call the resulting dataset MutagenicityExp.
It consists of roughly 3500 molecular graphs, where about 700 are labeled as
mutagenic. Furthermore, we designate 500 random elements as the test set, which
are sampled to achieve a balanced label distribution.
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Based on this dataset, we train GNN models to solve the classification prob-
lem. Additionally, we use multiple different XAI methods to generate attribu-
tional explanations for the predictions of those GNNs on the previously men-
tioned test set of 500 elements. These explanations, generated by the various
XAI methods, are then subjected to student-teacher analysis, along with some
baseline explanations. The results of an analysis with 25 repetitions can be found
in Table 3. The hyperparameters of the student-teacher analysis have been cho-
sen through a brief manual search. We use the same basic three-layer MEGAN
student architecture as with the synthetic experiments. In each repetition, 10
random elements are used to train the students, and the remainder is used to
assess the final test performance. Each training process employs a batch size of
10, 150 epochs, and a 0.01 learning rate. The student-teacher analysis is per-
formed solely on the previously mentioned 500-element test set, which remained
unseen to any of the trained GNN models.

Table 3. Results for 25 repetitions of the student-teacher analysis for different expla-
nations on the MutagenicityExp dataset. We mark the best result in bold and underline
the second best.

Explanations by STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

Ground Truth 0.13(∗) 0.42±0.05 0.97±0.05 0.41±0.05 0.96±0.04

GNNExplainer 0.09(∗) 0.50±0.09 0.69±0.05 0.50±0.11 0.71±0.04

Gradient 0.07(∗) 0.54±0.18 0.84±0.06 0.46±0.17 0.67±0.10

MEGAN2
1.0 0.12(∗) 0.55±0.15 0.91±0.01 0.55±0.14 0.92±0.02

Random 0.01 0.50±0.04 0.50±0.03 0.50±0.04 0.50±0.04

(*) Statistically significant according to a paired T-test with p < 5%

As expected, the results show that the reference random explanations do not
produce a statistically significant STS result. These explanations are included as
a baseline sanity check because previous experiments on the synthetic dataset
imply that purely random explanation noise should not have any statistically sig-
nificant effect on the performance in either direction. The benzene-NO2 ground
truth explanations on the other hand show the largest statistically significant
STS value of a median 13% accuracy improvement, as well as the largest expla-
nation accuracy of the explanation student models. GNNexplainer and Gradient
explanations also show statistically significant STS values of 9% and 7% median
accuracy improvement respectively. The MEGAN-generated explanations show
the overall second-best results with an STS value just slightly below the ground
truth.
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We hypothesize that high values of explanation accuracy are a necessary but
not sufficient condition for high STS results. A higher learned explanation accu-
racy indicates that the explanations are generally based on a more consistent
set of underlying rules and can consequently be replicated more easily by the
student network, which is the basic prerequisite to show any kind of effect dur-
ing the student evaluation phase. This is a necessary but not sufficient condition
because as shown in the previous adversarial explanation experiment, explana-
tions can be highly deterministic yet conceptionally incorrect and thus harmful
to model performance.

AqSolDB - Graph Regression. The AqSolDB [24] dataset consists of roughly
10000 molecular graphs annotated with experimentally determined logS values
for their corresponding solubility in water. Of these, we designate 1000 random
elements as the test set.

For the concept of water solubility, there exist no definitive attributional
explanations. However, there exists some approximate intuition as to what
molecular structures should result in higher/lower solubility values: In a sim-
plified manner, one can say that non-polar substructures such as carbon rings
and long carbon chains generally result in lower solubility values, while polar
structures such as certain nitrogen and oxygen groups are associated with higher
solubility values.

Based on this dataset, we train a large MEGAN model on the training split of
the elements to regress the water solubility and then generate the dual-channel
attributional explanations for the previously mentioned 1000-element test split.
For this experiment, we only use a MEGAN model as it is the only XAI method
able to create dual-channel explanations for single value graph regression tasks
[26]. These dual-channel explanations take the previously mentioned polarity
of evidence into account, where some substructures have an opposing influence
on the solubility value. The first explanation channel contains all negatively
influencing sub-graph motifs, while the second channel contains the positively
influencing motifs. In addition to the MEGAN-generated explanations, we pro-
vide two baseline explanation types. Random explanations consist of randomly
generated binary node and edge masks with the same shape. Trivial explanations
represent the most simple implementation of the previously introduced human
intuition about water solubility: The first channel contains all carbon atoms as
explanations and the second channel contains all oxygen and nitrogen atoms as
explanations.

The hyperparameters of the student-teacher analysis have been chosen
through a brief manual search. We use the same basic three-layer MEGAN stu-
dent architecture as with the synthetic experiments. In each repetition, 300 ran-
dom elements are used to train the students, and the remainder is used to assess
the final test performance. Each training process employs a batch size of 32,
150 epochs, and a 0.01 learning rate. The student-teacher analysis is performed
solely on the previously mentioned 1000-element test set, which remained unseen
to the predictive model during training (Table 4).
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Table 4. Results for 25 repetitions of the student-teacher analysis for different expla-
nations on the AqSolDB dataset. We highlight the best result in bold and underline
the second best.

Model STS25 ↑ Node AUC ↑ Edge AUC ↑
Ref Exp Ref Exp

Random 0.00 0.50±0.04 0.50±0.03 0.50±0.04 0.50±0.04

Trivial 0.03 0.40±0.05 0.99±0.05 0.42±0.05 0.99±0.04

MEGAN2
1.0 0.23(∗) 0.55±0.15 0.90±0.01 0.55±0.14 0.89±0.02

(*) Statistically significant according to a paired T-test with p < 5%

The results show that neither the random nor the trivial explanations result
in any significant performance improvement. The MEGAN-generated explana-
tions on the other hand result in a significant improvement of a median 0.23
for the final prediction MSE. This implies that the MEGAN-generated explana-
tions do in fact encode additional task-related information, which goes beyond
the most trivial intuition about the task. However, a possible pitfall w.r.t. to
this conclusion needs to be pointed out: The MEGAN-generated explanations
are evaluated by a MEGAN-based student architecture. It could be that the
effect is so strong because these explanations are especially well suited to that
kind of architecture, as they were generated through the same architecture.
We believe that previous experiments involving architecture-independent ground
truth explanations have weakened this argument to an extent. Still, it will be
prudent to compare these results with explanations of a different origin in the
future, such as the explanations of human experts.

5 Limitations

We propose the student-teacher analysis as a means to measure the content
of useful task-related information contained within a set of attributional graph
explanations. This methodology is inspired by human simulatability studies but
with the decisive advantages of being vastly more time- and cost-efficient as well
as being more reproducible. However, there are currently also some limitations
to the applicability of this approach. Firstly, the approach is currently limited
to attributional explanations, which assign a 0 to 1 importance value to each
element. These kinds of explanations have been found to have issues [1,12] and
recently many different kinds of explanations have been proposed. Some exam-
ples are counterfactuals [20], concept-based explanations [19], and prototype-based
explanations [23].

Another limitation is that the student-teacher analysis process itself depends
on a lot of parameters. As we show in previous sections, the size of the training
dataset and the specific student architectures have an impact on how pronounced
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the effect can be observed. For these reasons, the proposed STS metric cannot be
used as an absolute measure of quality such as accuracy for example. Rather, it
can be used to relatively compare different sets of explanations under the condi-
tion that all experiments are conducted with the same parameters. We propose
certain rules of thumb for the selection of these parameters, however, it may still
be necessary to conduct a cursory parameter search for each specific applica-
tion. Despite these limitations, we believe that artificial simulatability studies,
as proposed in this work, are still an important step toward better practices
for the evaluation of explainable AI methods. The currently most widespread
metric of explanation quality is the concept of explanation faithfulness, which
only measures how decisive an explanation is for a model’s prediction. We argue,
that the concept of artificial simulatability is a first step towards a measure of
how intrinsically useful explanation can be for the communication of additional
task-related information.

6 Conclusion

In this work, we extend the concept of artificial simulatability studies to the
application domain of graph classification and regression tasks. We propose the
student-teacher analysis and the student-teacher simulatability (STS) metric to
quantify the content of intrinsically useful task-related information for a given
set of node and edge attributional explanations. We conduct an ablation study
on a synthetic dataset to investigate the conditions under which an explana-
tion benefit can be observed most clearly and propose several rules of thumb
for an initial choice of experimental parameters: Analysis requires a sufficient
number of repetitions for statistical significance, a small number of training ele-
ments and a light-weight layer structure for the student model. Furthermore,
we show evidence that the analysis method is robust towards small amounts
of explanation noise and adversarial explanations. Interestingly, random expla-
nation noise merely suppresses any explanation benefit while deterministically
incorrect explanations cause significant performance degradation. This indicates
that the method cannot only be used to identify good explanations but also to
detect actively harmful ones. Furthermore, we can validate the applicability of
our proposed analysis for several real-world datasets of molecular classification
and regression.

We believe that artificial simulatability studies can provide a valuable addi-
tional tool for the evaluation of graph explanations. The student-teacher analysis
measures the usefulness of explanations in communicating task-related knowl-
edge, which can be seen as a complementary dimension to the current widespread
practice of measuring explanation faithfulness.

For future work, it will be interesting to extend this process to other kinds
of graph explanations that have recently emerged such as concept-based expla-
nations or prototype-based explanations. Since this is a method of measuring
the content of task-related information within explanations, another application
may be in educational science. The method could be used to assess explana-
tion annotations created by human students to provide quantitative feedback
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on their understanding of a given graph-related problem. Another line of future
work is demonstrated by Fernandes et al. [7] which uses the differentiable nature
of Pruthi et al.’s [21] original artificial simulatability procedure itself in a meta-
optimization process that attempts to optimize an explanation generator for this
property of explanation usefulness.

7 Reproducibility Statement

We make our experimental code publically available at https://github.com/
aimat-lab/gnn student teacher. The code is implemented in the Python 3.9 pro-
gramming language. Our neural networks are built with the KGCNN library by
Reiser et al. [22], which provides a framework for graph neural network imple-
mentations with TensorFlow and Keras. We make all data used in our experi-
ments publically available on a file share provider https://bwsyncandshare.kit.
edu/s/E3MynrfQsLAHzJC. The datasets can be loaded, processed, and visu-
alized with the visual graph datasets package https://github.com/aimat-lab/
visual graph datasets. All experiments were performed on a system with the fol-
lowing specifications: Ubuntu 22.04 operating system, Ryzen 9 5900 processor,
RTX 2060 graphics card and 80GB of memory. We have aimed to package the
various experiments as independent modules and our code repository contains a
brief explanation of how these can be executed.

References

1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency maps. In: Advances in Neural Information Processing Systems,
vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper files/
paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html

2. Arora, S., Pruthi, D., Sadeh, N., Cohen, W.W., Lipton, Z.C., Neubig, G.: Explain,
edit, and understand: rethinking user study design for evaluating model explana-
tions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 5, pp. 5277–5285 (2022). https://doi.org/10.1609/aaai.v36i5.20464. https://
ojs.aaai.org/index.php/AAAI/article/view/20464

3. Boyd, A., Tinsley, P., Bowyer, K., Czajka, A.: CYBORG: blending human saliency
into the loss improves deep learning (2022). https://doi.org/10.48550/arXiv.2112.
00686. http://arxiv.org/abs/2112.00686. arXiv:2112.00686

4. Chandrasekaran, A., Prabhu, V., Yadav, D., Chattopadhyay, P., Parikh,
D.: Do explanations make VQA models more predictable to a human?
(2018). https://doi.org/10.48550/arXiv.1810.12366. http://arxiv.org/abs/1810.
12366. arXiv:1810.12366

5. Dai, E., Wang, S.: Towards self-explainable graph neural network. In: Proceedings
of the 30th ACM International Conference on Information & Knowledge Manage-
ment, CIKM 2021, pp. 302–311. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3459637.3482306

6. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv:1702.08608 (2017). http://arxiv.org/abs/1702.08608

https://github.com/aimat-lab/gnn_student_teacher
https://github.com/aimat-lab/gnn_student_teacher
https://bwsyncandshare.kit.edu/s/E3MynrfQsLAHzJC
https://bwsyncandshare.kit.edu/s/E3MynrfQsLAHzJC
https://github.com/aimat-lab/visual_graph_datasets
https://github.com/aimat-lab/visual_graph_datasets
https://proceedings.neurips.cc/paper_files/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/294a8ed24b1ad22ec2e7efea049b8737-Abstract.html
https://doi.org/10.1609/aaai.v36i5.20464
https://ojs.aaai.org/index.php/AAAI/article/view/20464
https://ojs.aaai.org/index.php/AAAI/article/view/20464
https://doi.org/10.48550/arXiv.2112.00686
https://doi.org/10.48550/arXiv.2112.00686
http://arxiv.org/abs/2112.00686
http://arxiv.org/abs/2112.00686
https://doi.org/10.48550/arXiv.1810.12366
http://arxiv.org/abs/1810.12366
http://arxiv.org/abs/1810.12366
http://arxiv.org/abs/1810.12366
https://doi.org/10.1145/3459637.3482306
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608


380 J. Teufel et al.

7. Fernandes, P., Treviso, M., Pruthi, D., Martins, A.F.T., Neubig, G.: Learning to
scaffold: optimizing model explanations for teaching (2022). https://doi.org/10.
48550/arXiv.2204.10810. http://arxiv.org/abs/2204.10810. arXiv:2204.10810

8. Gao, Y., Sun, T., Bhatt, R., Yu, D., Hong, S., Zhao, L.: GNES: learning to explain
graph neural networks. In: 2021 IEEE International Conference on Data Min-
ing (ICDM), pp. 131–140 (2021). https://doi.org/10.1109/ICDM51629.2021.00023.
ISSN: 2374-8486

9. Hansen, K., et al.: Benchmark data set for in silico prediction of Ames mutagenicity.
J. Chem. Inf. Model. 49(9), 2077–2081 (2009). https://doi.org/10.1021/ci900161g

10. Hase, P., Bansal, M.: Evaluating explainable AI: which algorithmic explanations
help users predict model behavior? (2020). https://doi.org/10.48550/arXiv.2005.
01831. http://arxiv.org/abs/2005.01831. arXiv:2005.01831

11. Hase, P., Zhang, S., Xie, H., Bansal, M.: Leakage-adjusted simulatability:
can models generate non-trivial explanations of their behavior in natural lan-
guage? (2020). https://doi.org/10.48550/arXiv.2010.04119. http://arxiv.org/abs/
2010.04119. arXiv:2010.04119

12. Kindermans, P.-J., et al.: The (un)reliability of saliency methods. In: Samek,
W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol.
11700, pp. 267–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28954-6 14

13. Lai, V., Liu, H., Tan, C.: “Why is ‘Chicago’ deceptive?” Towards building model-
driven tutorials for humans. In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, CHI 2020, pp. 1–13. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3313831.3376873

14. Lai, V., Tan, C.: On human predictions with explanations and predictions of
machine learning models: a case study on deception detection. In: Proceedings
of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp.
29–38. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3287560.3287590. https://dl.acm.org/doi/10.1145/3287560.3287590

15. Lin, W., Lan, H., Li, B.: Generative causal explanations for graph neural networks.
In: Proceedings of the 38th International Conference on Machine Learning, pp.
6666–6679. PMLR (2021). https://proceedings.mlr.press/v139/lin21d.html. ISSN:
2640-3498

16. Linsley, D., Shiebler, D., Eberhardt, S., Serre, T.: Learning what and where to
attend (2019). https://openreview.net/forum?id=BJgLg3R9KQ

17. Luo, D., et al.: Parameterized explainer for graph neural network. In: Advances
in Neural Information Processing Systems, vol. 33, pp. 19620–19631. Cur-
ran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/hash/
e37b08dd3015330dcbb5d6663667b8b8-Abstract.html

18. Magister, L.C., et al.: Encoding concepts in graph neural networks
(2022). https://doi.org/10.48550/arXiv.2207.13586. http://arxiv.org/abs/2207.
13586. arXiv:2207.13586

19. Magister, L.C., Kazhdan, D., Singh, V., Liò, P.: GCExplainer: human-in-the-loop
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Abstract. Graph Machine Learning (GML) has numerous applica-
tions, such as node/graph classification and link prediction, in real-world
domains. Providing human-understandable explanations for GML mod-
els is a challenging yet fundamental task to foster their adoption, but
validating explanations for link prediction models has received little
attention.

In this paper, we provide quantitative metrics to assess the quality
of link prediction explanations, with or without ground-truth. State-of-
the-art explainability methods for Graph Neural Networks are evalu-
ated using these metrics. We discuss how underlying assumptions and
technical details specific to the link prediction task, such as the choice
of distance between node embeddings, can influence the quality of the
explanations.

Keywords: Graph Machine Learning · Explainable Artificial
Intelligence · Link Prediction · Explanation Evaluation

1 Introduction

Intelligent systems in the real world often use machine learning (ML) algorithms
to process various types of data. However, graph data present a unique chal-
lenge due to their complexity. Graphs are powerful data representations that
can naturally describe many real-world scenarios where the focus is on the con-
nections among numerous entities, such as social networks, knowledge graphs,
drug-protein interactions, traffic and communication networks, and more [9].
Unlike text, audio, and images, graphs are embedded in an irregular domain,
which makes some essential operations of existing ML algorithms inapplica-
ble [17]. GML applications seek to make predictions, or discover new patterns,
using graph-structured data as feature information: for example, one might wish
to classify the role of a protein in a biological interaction graph, predict the role
of a person in a collaboration network, or recommend new friends in a social
network.

Unfortunately the majority of GML models are black boxes, thanks to their
fully subsymbolic internal knowledge representation - which makes it hard for
humans to understand the reasoning behind the model’s decision process. This
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widely recognized fundamental flaw has multiple negative implications: (i) dif-
ficulty of adoption from domain experts [19], (ii) non-compliance to regulation,
(e.g. GDPR) [14], (iii) inability to detect learned spurious correlations [34], and
(iv) risk of deploying biased models [25]. The eXplainable Artificial Intelligence
(XAI) research field tackles the problem of making modern ML models more
human-understandable. The goal of XAI techniques is to extract from the trained
ML model comprehensible information about their decision process. Explain-
ability is typically performed a posteriori - it is a process that takes place after
the ML model has been trained, and possibly even deployed. Despite a growing
number of techniques for explaining GML models, most of them target node and
graph classification tasks [47]. Link Prediction (LP) is a paradigmatic problem,
but it has been relatively overlooked from the explainability perspective - espe-
cially since it has been often ascribed to knowledge graphs. There are many ML
techniques to tackle the LP problem, but the most popular approaches are based
on an encoder/decoder architecture that learns node embeddings. In this case,
LP explanations are based on the interaction of pairs of node representations.
It is still not clear how different graph ML architectures affect the explainer’s
behavior, and in the particular case of link prediction we have observed how
explanations can be susceptible to technical choices for the implementation of
both the encoding and the decoding stages.

Regarding the validation of explanation and explainers, few works have con-
sidered the study and evaluation of GML explainers for LP [20]. Furthermore,
despite growing interest regarding the validation of explanations, there is cur-
rently no consensus on the adoption of any standard protocol or set of metrics.
Given a formal definition for the problem of explaining link predictions, our
Research Questions are therefore the following:

– RQ1. How can we validate LP explainers and measure the quality of their
explanations?

– RQ2. What hidden characteristics of LP models can be revealed by the
explainers? What can we learn about the different LP architectures, given
the explanations to their decisions?

In this paper, we propose a theoretical framing and a set of experiments
for the attribution of GML models on the LP task, considering two types of
Graph Neural Networks: Variational Graph Auto-Encoders (VGAE) [21] and
Graph Isomorphism Networks (GIN) [42]. We first perform a validation of the
explanation methods on synthetic datasets such as Stochastic Block Models and
Watts-Strogatz graphs, where we can define the ground truth for the expla-
nations and thus compute the confusion matrices and report sensitivity (TPR)
and specificity (TNR) for the attribution results. For real-world datasets with no
ground-truth (CORA, PubMed and DDI) [31,39], we exploit an adaptation of the
insertion/deletion curves, a technique originally designed to validate computer
vision models [26] that allows to quantitatively compare the produced expla-
nations against a random baseline by inserting/removing features and/or edges
based on their importance with respect to the considered attribution method.
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2 Related Work

2.1 State-of-the-Art Explainers for GML Models

Considering the blooming research in the field of XAI for GNNs, and the increas-
ing quantity of new methods that are proposed, we refer to the taxonomy iden-
tified in Yuan et al. [47] to pinpoint the basic foundational principles underlying
the different methods and choose few well-known models as representatives for
broader classes of methods and use them in the remainder of the paper. Namely,
we consider attribution methods based on perturbation methods, gradient-based
approaches, decomposition - plus a hybrid one. A more detailed description of
these classes and the selected explainers will be given in Sect. 3. We note that
all these methods were originally discussed only in the context of node/graph
classification.

Perturbation-based explainers study the output variations of a ML model
with respect to different input perturbations. Intuitively, when important
input information is retained, the predictions should be similar to the orig-
inal predictions. Existing methods for computer vision learn to generate a
mask to select important input pixels to explain deep image models. Brought
to GML, perturbation-based explainers learn masks that assign an impor-
tance to edges and/or features of the graph [24,29,48]. Arguably, the most
widely-known perturbation-based explainer for GNNs is GNNExplainer [45].
Gradients/features-based methods decompose and approximate the input impor-
tance considering the gradients or hidden feature map values [30,32,33,35,52].
While other techniques just need to query the ML black-box at will (model-
agnostic methods), explainers of this class require access to the internal weights
of the ML model, and are therefore labelled as model-aware or model-dependent.
Another popular way to explain ML models is decomposition methods, which
measure the importance of input features by decomposing the final output of
the model layer-by-layer according to layer-specific rules, up to the input layer.
The results are regarded as the importance scores of the corresponding input
features.

2.2 Link Prediction

Link prediction is a key problem for network-structured data, with the goal of
inferring missing relationships between entities or predict their future appear-
ance. Like node and graph classification, LP models can exploit both node fea-
tures and the structure of the network; typically, the model output is an esti-
mated probability, for a non-existing link. Due to the wide range of real-world
domain that can be modelled with graph-based data, LP can be applied to
solve a high number of tasks. In social networks, LP can be used to infer social
interactions or to suggest possible friends to the users [11]. In the field of net-
work biology and network medicine, LP can be leverage in predicting results
from drug-drug, drug-disease, and protein-protein interactions to advance the
speed of drug discovery [1]. As a ML task, LP has been widely studied [22],



Evaluating Link Prediction Explanations for Graph Neural Networks 385

and there exists a wide range of link prediction techniques. These approaches
span from information-theoretic to clustering-based and learning-based; deep
learning models represent the most recent techniques [50]. The idea of enriching
link prediction models with semantically meaningful auxiliary information has
been seldom explored for simpler models, such as recommender systems [7], or
with hand-crafted feature extraction [12]. These approaches do not pair with
the complex nature of deep GML models, where the feature extraction phase is
part of the learning process, and models learn non-interpretable embeddings for
each node. Finally, even though there are many LP approaches more advanced
than VGAE and GIN, these two architectures are the base of many popular
LP approaches [4] and should be sufficient for the evaluation of the selected
explanation techniques.

Regarding methods explicitly proposed to explain/interpret GNN-based LP
models, Wang et al. [37] follow the intuition of focusing on the embeddings
of pairs of nodes. Their explanations correspond to the attention scores of the
aggregation step for the contexts interactions, and therefore they only give a
first useful indication of important edges (and not features) for the prediction,
but this preliminary information should be paired with a downstream explainer,
as the authors point out. For Xie et al. [40], an explanation is a subgraph of the
original graph that focuses on important edges, but ignores node features in the
explanation, which are an important aspect in the decision process of a GNN.
While the overall settings have differences, our work and their approach share the
idea of considering embedding representations to produce graph explanations.

The task of explaining LP black-box models has been considered in the con-
text of Knowledge Graphs [16,27], but KGs consider labeled relations that must
be taken into account and contribute actively to the explanation. When consid-
ering unlabeled edges, a different approach for explaining the LP task is required.
Regarding the LP frameworks that incorporate features such as distance encod-
ing and hyperbolic encoding [10,43,51,54], we believe that there should be a
community-wide discussion about how such features can be incorporated in the
proposed explanations. In our view, while these frameworks are very powerful
for capturing features that are important for the LP task, none of the current
attribution methods is able to assign an explanation to such features.

Closely related to our work, recent attention has been posed onto the topic of
systematically evaluating the produced explanations [2,3,13,28], but exclusively
for node/graph classification tasks. Here we fill the gap for the LP task.

3 Explaining Link Predictions

Given a graph G = (V,E) with set of nodes V and set of edges E ⊆ 2V ×V , and a
node-feature matrix X ∈ R

|V |×F , link prediction estimates the probability that
an unseen edge between two nodes i, j ∈ V , (i, j) /∈ E is missing (e.g. when
reconstructing a graph or predicting a future edge). Formally, a link prediction
model is a function φG,X : V ×V �→ [0, 1] that given G and X maps every pair of
nodes in V to a probability p ∈ [0, 1]. A common approach for LP tasks is to learn
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a node representation in a vector space (encoder EncG,X : V �→ R
d), and then

estimate edge probability from pairwise distances in this latent space (decoder
Dec : Rd ×R

d �→ [0, 1]). Most encoders are currently based on a message-passing
mechanism that learns a latent representation of the nodes via a aggregate-
update iterative mechanism. At each iteration, of each node in the graph receives
messages coming from neighboring nodes (their current embeddings). The mes-
sages are then aggregated through a permutation-invariant function and the
node embedding is subsequently updated using a non-linear learnable function
of the current node embedding and the aggregated messages, such as a multi-
layer perceptron [8,53]. Decoders for link prediction usually compute a similarity
function between node embeddings, such as the inner product between two node
embeddings, followed by a normalization function, such as a sigmoid function,
to obtain the probability of a link between the two nodes.

3.1 Attribution Methods for Link Prediction

A LP explainer implements a function that, given an edge (i, j) and a model
to explain, maps the edges in E and the node features in X to their respec-
tive explanation scores. The higher the explanation score, the more important
the edge (or the feature) is for the model to estimate the probability of (i, j).
For this work, we have selected representative LP explainers basing our choice
on (i) their belonging to different classes of the taxonomy described by Yuan
et al. [47] to have a representative set of explainers, and (ii) their adoption and
availability of code. Namely, we consider attribution methods based on pertur-
bation (GNNExplainer [23]), gradient-based approaches (Integrated Gradients
(IG) [36]), decomposition (Deconvolution [49]) - plus a hybrid one (Layer-wise
relevance propagation (LRP) [5]).

GNNExplainer [23] searches for a subgraph GS , and a subset of features XS

of the original dataset G, X that maximises the mutual information between
the outputs of G,X and GS ,XS . Since LP outputs a probability, the goal is
reduced to finding a GS that maximizes the probability of the model output
while enforcing sparseness in GS . Therefore, explanation scores are defined as a
mask on edges and node features. GNNExplainer provides explanations for LP
with no change to its optimization goal, but the model’s encoder and decoder
must be plugged in so that the edge and feature masks can be properly estimated.
In our setting, when a model predicts a link (i, j), GNNExplainer learns a single
mask over all links and features that are in the computation graphs of i and j.

Integrated Gradients (IG) [36] is an axiomatic attribution method that aims
to explain the relationship between a model’s predictions in terms of its features.
It oughts to satisfy two axioms: sensitivity and implementation invariance, by
analysing the gradients of the model with respect to its input features. In the case
of link prediction, IG assigns positive and negative explanation scores to each
link and each node feature, depending on how sensible the model’s prediction is
as these inputs change.

Deconvolution [49], first introduced for the explanation of convolutional neu-
ral networks in image classification, is a saliency method that uses a deconvo-
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lution operation to perform a backward propagation of the original model. It
allows to highlight which feature or edge is activated the most and the attribu-
tion output consists in positive and negative scores for edges and node features.

Layer-wise relevance propagation (LRP) [5] is based on a backward propa-
gation mechanism applied sequentially to all layers of the model. For a target
neuron, its score is represented as a linear approximation of neuron scores from
the previous layer. Here, the model output score represents the initial relevance
which is decomposed into values for each neuron of the underlying layers, based
on predefined rules. In this paper we use the ε − stabilized rule as in [6].

To illustrate how the above attribution methods work in practice for LP,
we start with a white-box message-passing model for link prediction on a toy
example given by the graph shown in Fig. 1(left) with 5 nodes and 3 edges,
V = (a, b, x, y, z), E = {(a, x), (a, y), (a, z)} and a feature matrix X with two
node features defined as

X =

⎡
⎢⎢⎢⎢⎣

0.5 0.5
1 0
1 0
0 1

0.5 0.5

⎤
⎥⎥⎥⎥⎦

. (1)

We define the embeddings ei ∈ R
d, i ∈ V of the graph nodes as

eia =
1

|∂i|
∑
j∈∂i

Xja + Xia, a = 1, . . . , d, (2)

where ∂i ≡ {j ∈ V : i �= j, (i, j) ∈ E} indicates the set of first neighbors to
node i. The probability of an edge between two nodes (the decoder) is the cosine
similarity between the node embeddings.
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Fig. 1. Toy graph (left) and explanations (mask and attribution) for the link (a, b) in
the toy graph for GNNExplainer (center) and Integrated Gradients (right) attribution
methods. The edge color in the right panel indicates positive (orange) and negative
(blue) importance. The explanations produced by Deconvolution and LRP are similar
to Integrated Gradients. (Color figure online)

We ask to explain the prediction for link (a, b). Here the edge (a, x) has
positive score because it “pulls” the embedding of a closer to b, while the edge
(a, y) has negative score because it “pushes” the embedding of a away from b.
The edge (a, z) is neutral. Figure 1 shows the edge explanations provided by
GNNExplainer (center) and IG (right). IG is able to reflect the ground truth
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as it provides both positive and negative scores, while GNNExplainer consid-
ers positive masks only, thus returning a partial result. The explanations from
Deconvolution and LRP are similar to the one produced with IG.

3.2 Validating Explanations

The validation of explanations is a generally overlooked topic in XAI, and LP
tasks are no exceptions. Here, we suggest two different approaches, respectively
to deal with ground-truth cases, and with no-ground-truth cases.

When ground truth is available, we use metrics from information retrieval.
The ground truth is defined as a binary mask over E and X where (i, j) is true
if the edge is important to the model prediction (and false otherwise), and a
binary mask over features that follows the same logic. The explanation scores
are binarized, fixing a standard threshold for the explanation scores, e.g. 0.5
for the positive defined masks of GNNExplainer and 0 for the other explain-
ers considered here, or selecting the optimal threshold based on the ROC curve
of true positive rate and false positive rate obtained varying the threshold, so
that we can calculate a confusion matrix. True positives are considered when a
high explanation score is assigned to an edge (or a feature) that is important
according to the ground truth. False positives are considered when high expla-
nation scores are assigned to non-important edges (or features). True negatives
(and accordingly, false negatives) are considered when low explanation scores are
assigned to unimportant (or important) edges or features. Finally, metrics such
as precision, recall, specificity and sensitivity are calculated for each explainabil-
ity technique. Here we focus on specificity and sensitivity, i.e., the true positive
and true negative rates.

When ground truth explanations are not available, we resort to a valida-
tion method borrowed from explainability for computer vision, proposed first
by Petsiuk et al. [26], that we adapt for graph explanations. To the best of our
knowledge this is the first time this validation method is used in this context.
This method consists in progressively removing/inserting features and/or edges
based on their importance with respect to the attribution method considered.
The feature and edge attributions are sorted by decreasing score and in the dele-
tion case they are gradually removed. In the insertion case, they are gradually
inserted in decreasing order of score starting with no features/edges. Intuitively,
if the explainer’s output is correct, removing or adding the most important fea-
tures will cause the greatest change in the model output. The area under the
curve of the fraction of features inserted/removed versus the output of the model
provides a quantitative evaluation of the explanation.

To quantitatively compare different attribution methods, we define the fol-
lowing area score: referring to Fig. 2, for the insertion case, consider the area
A+ comprised between the explainer curve γe and the random curve γr when
γe > γr, and the area above γr, U. The ratio A+

U ∈ [0, 1] describes the portion
of the graph where the explainer performs better than the random baseline.
Consider then the area A− comprised between the explainer curve γe and the
random curve γr when γe < γr, and the area below γr, L. The ratio A−

L ∈ [0, 1]
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Fig. 2. Illustration of the area score for the feature insertion (left) and feature deletion
(right) procedures. γe is the insertion (deletion) curve when features are sorted accord-
ing to their explanation scores, while γr is the random insertion (deletion) curve. The

area score for the insertion procedure is given by
A+
U

− A−
L

. The area score for the

deletion procedure is
A−
L

− A+
U

.

corresponds to the portion of the graph where the explainer performs worse than
the random baseline. We define the final score as

sins ≡ A+

U
− A−

L
∈ [−1, 1]. (3)

Similarly, for the deletion case the score is given by

sdel ≡ A−
L

− A+

U
∈ [−1, 1]. (4)

The area score is a summary metric for the insertion and deletion proce-
dures, and reflects the ability of the explainer to assign higher scores to the
most influential features/edges for the considered prediction. Ideally, a perfect
explainer should give high scores to very few edges and/or features that carry
almost all the information necessary for the prediction. In this case, inserting
these features would be sufficient to recover the output of the model when all
the features/edges are present, and deleting it would cause a great drop in the
output of the model. In this case the area score would be equal or close to 1.
In the case of random explanation scores, removing/inserting the features/edges
with the highest score would not have, on average, a strong impact on the output
of the model. In this case the area score would be 0. A negative value of the area
score indicates a performance worse than the random baseline.

Note that the absolute values of the area score for the insertion and deletion
procedure are not directly comparable since the normalization is different. This
score is particularly useful for comparing the performance of different explainers
with respect to the random baseline under the same procedure. The deletion
curve is closely related to the fidelity and sparsity metrics [47], but the area
score has the advantage of providing a single metric that coherently summarizes
the two for easier readability. The insertion curve complement the deletion curve,
in the sense that instead of considering the distance between the original model
output and the output obtained by iteratively removing the most important



390 C. Borile et al.

feature by explanation score, it considers the distance between the original model
and the output obtained by starting with all null features and iteratively adding
the most important features by explanation score.

4 Experiments

In this section we report the results of evaluating LP explanations in two distinct
scenarios – one with ground-truth explanations, and another without. In the first
scenario, we use synthetic data, where graph datasets are generated along with
their respective ground truth explanations for the created edges. This approach
allows us to assess the explanations in a controlled setting, where we know the
true explanations.

In the second scenario, we turn to empirical data from three different
datasets. Here, without the availability of ground-truth explanations, we assess
the quality of explanations produced by the explanation methods through the
area score defined in Sect. 3.2. This provides a means to measure the performance
of explanation methods in real-world, less controlled conditions.

Our experiments consist of four steps: (i) dataset preparation, (ii) model
training, (iii) attribution, and (iv) attribution evaluation. Edges are split into
training and test sets, with the same proportion of positive and negative edges,
and attributions are performed on the test set. To ensure reproducibility and fair
comparison, we test all explainers with the same trained model and train-test sets
for each dataset. Multiple realizations of the attribution process with different
random seeds account for the stochastic nature of ML training. For each dataset,
we consider 2 encoders (VGAE, GIN), 2 decoders (Inner product, Cosine dis-
tance), and 4 explainers (GNNExplainer, Integrated Gradients, Deconvolution,
and LRP). In Fig. 3 we show an example of the explanations given by each of
the explainers considered for a GIN network predicting a missing edge on the
Watts-Strogatz dataset (see Sect. 4.1).

4.1 Synthetic Data

We consider two generative models, namely the Stochastic Block Model
(SBM) [18] and the Watts-Strogatz model (WS) [38], as examples of graphs
where we can reconstruct the ground truth attributions for the link prediction
task. In these experiments, whether an edge is present or not is clearly defined
by the generative model. The small proportion of random edges introduced by
the two stochastic generative models are not used to evaluate the explainers.
We assume that a model trained on a sufficient number of data points is able
to reflect the logic of the generative model, therefore an explainer should reflect
this aspect in its attributions. For the SBM, a link should be present if two nodes
belong to the same block, while for WS a link should be predicted if two nodes
belong to a triangle completion. The node features in both cases are simply the
one-hot encodings of the node ids, i.e. X corresponds to the identity matrix.
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Fig. 3. Explanations for GIN trained on Watts-Strogatz graph data for the presence
of an edge between the two nodes in red. The two nodes should be connected based
on the triangle closure (green nodes). IG and Deconvolution give good explanations,
while GNNExplainer considers important most of the computational graph, and LRP
fails to identify the important edges. (Color figure online)

This is a common choice to use as node features in the absence of meaningful
ones [46].

For both models, the experiments are designed as follows: we generate a
graph G = (V,E) of given size |V |, and we train a GML model for the LP task
on a training fold of G. Then, the explainer is asked to explain each edge in
the test set (except for the random edges). We compare the attributions to the
ground truth, computing a confusion matrix of the results. We get a score for
each predicted edge, obtaining the error distribution for the explainer.

For the sake of readability, we summarize the results with two metrics, namely
specificity and sensitivity. Specificity measures the proportion of true negatives,
that is, the number of edges that receive small importance from the explainer
and that are in fact not important for the considered edge, over the number
of true negatives; similarly, sensitivity is the ratio between predicted and true
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positives. Sensitivity and specificity together completely describe the quality of
the attribution, but should not be considered separately. Figure 4 shows the
sensitivity and specificity distributions for the four explainers tested on a GIN
model trained on SBM (left) and WS (right) graphs.

In the SBM case (left), GNNExplainer demonstrates better specificity than
other explainers but suffers from poor sensitivity due to numerous true posi-
tives in an SBM block. This is because it tends to produce sparse masks, often
missing many true positives. This issue is particularly evident in SBM, where
explanations involve numerous nodes, while in the WS graph, GNNExplainer’s
performance is in line with other explainers due to the sparse explanation.

Fig. 4. Sensitivity and specificity distributions on the Stochastic Block Model (top) and
Watt-Strogatz (bottom) graphs for the four considered attribution methods: GNNEx-
plainer (GE), Integrated Gradients (IG), Deconvolution (DC) and Layer-wise Rele-
vance Propagation (LRP).

The similarity measure used in the decoder significantly impacts the explana-
tion quality. Common measures like cosine similarity pose challenges for current
explainability techniques. Issues arise when nodes become more similar as infor-
mation is masked, leading to degenerate solutions like empty subgraphs and the
masking of all features. Consequently, for explainers that search for a subgraph
that maximizes the model output such as GNNExplainer, no edges or features
are deemed important when using cosine similarity between node embeddings.
To highlight the impact of the decoder in producing explanations, we show in
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Fig. 5. Difference in the performance (specificity and sensitivity) of the IG attribution
method for two GCN models with same encoder but different decoders, one based on
scalar product and other based on cosine similarity, respectively.

Fig. 5 the sensitivity and specificity distributions for the IG explainer (but the
results are similar for all explainers) when applied to two different GNN models
that differ only in the decoder: the first uses a inner product of the node embed-
dings followed by a sigmoid, and the second uses a cosine similarity decoder.
The explanation quality drops drastically if the model uses the cosine distance.
This metric, due to normalization, is prone to produce explanation scores that
are close to zero.

4.2 Empirical Data

In this section we focus on the validation of explainability methods when ground
truth explanations are not available. In order to do so, we consider three empir-
ical datasets: Cora and PubMed [31], plus a drug-drug interaction (DDI) net-
work obtained from DrugBank [39]. The graph G and the node features X are
constructed according to Yang et al. [44]: the bag-of-words representation is
converted to node feature vectors and the graph is based on the citation links.
The Cora dataset has 2,708 scientific publications classified into seven classes,
connected through 5,429 links. The PubMed dataset has 19,717 publications
classified into three classes, connected through 44,338 links. Although origi-
nally introduced for the node classification task, these two datasets are com-
mon benchmarks for the evaluation of current state-of-the-art GML models for
the LP task, allowing a precise comparison of the performance of the models
that we are explaining. The DDI dataset has 1,514 nodes representing drugs
approved by the U.S. Food and Drug Administration, and 48,514 edges repre-
senting interaction between drugs. The dataset does not provide node features,
that are provided as node embedding vectors of fixed dimension 128 computed
using Node2Vec [15]. For this dataset, link prediction is a critical task, aim-
ing to anticipate potential drug-drug interactions that have yet to be observed.
Predicting these interactions can mitigate their adverse effects and health risks,
thereby promoting patient safety through preventive healthcare measures.
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Fig. 6. Examples of insertion and deletion curves for edges (top) and features (bottom)
for a GIN model with Inner product decoder.

We train two state-of-the art types of GNN encoders that are suitable
for the link prediction task, namely the VGAE [21] and GIN [41]. For both
encoder architectures, we use the inner product of node embeddings followed
by a sigmoid as the decoder. Training the GNNs on CORA we reach an AUC
test score of 0.952 (accuracy = 0.744) for VGAE and an AUC test score of
0.904 (accuracy = 0.781) for GIN. Training on PubMed we reach AUC test
score of 0.923 (accuracy = 0.724) for VGAE and AUC test score of 0.893
(accuracy = 0.742) for GIN. Lastly, on DDI we reach AUC test score of 0.881
(accuracy = 0.667) for VGAE and AUC test score of 0.920 (accuracy = 0.751)
for GIN. Once the model is trained we consider the edges in the test set and look
at the explanation scores for node features and edges resulting from the attribu-
tion methods. These scores define insertion and deletion curves as described in
Sect. 3.2. In Fig. 6 we show an example of insertion and deletion curves for node
features and edges attributions obtained for a single edge predicted by a GIN
model trained on CORA. The x axis refers to the ratio of edges/features that
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Fig. 7. Score distribution for feature and edge insertion and deletion. For each edge in
the test set, we produce their respective insertion and deletion curves for features and
edges, and calculate the area score according to the procedure illustrated in Fig. 2. The
violin plots show the distribution of scores for each explainability method: GNNEx-
plainer (GE), Integrated Gradients (IG), Deconvolution (DC) and Layer-wise Rele-
vance Propagation (LRP).

have been inserted/removed by attribution importance, and the y axis shows
the variation in the model output, for the selected class, in presence/absence of
these features or edges. Each curve represents a single explainer, plus a curve
(in purple) that represents the random insertion/deletion baseline. The random
baseline is computed by adding/removing features or edges at random without
taking in consideration any attribution score. Many realization of the random
curve are then averaged in order to obtain a robust baseline. We then compute
the area score defined in Sect. 3.2 for all the considered attribution methods
and all the edges in the test set. In Fig. 7 we show the distribution of scores
obtained from the CORA dataset with a GIN model. In Table 1 we report the
results for all tested explainability methods for the three datasets using the GIN
architecture as the encoder.

The case of edge deletion/insertion is particularly interesting when compar-
ing the two different GNN architectures. Even if they perform comparably on
the task of link prediction, the area score for the attribution on the VGAE model
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drops drastically for all attribution methods, suggesting that most of the signal
of the data is taken from the node features alone, while the GIN model shows a
very different scenario, where also the edges, and thus the network structure, are
important for the model. In Fig. 8 we show the distribution of gain in the area
score when inserting/deleting edges ordered by the IG mask versus random dele-
tion, both for the VGAE and GIN models. We can see that while the VGAE has
almost no gain, the GIN model is consistently better than the random baseline.
We obtained similar results for the other explainers (not shown).

Table 1. Area scores (median ± std) for insertion (top) and deletion (bottom) for the
selected explainers: GNNExplainer (GE), Integrated Gradients (IG), Deconvolution
(DC) and Layer-wise Relevance Propagation (LRP). Area scores are calculated by
taking into consideration the explanation scores produced by the explainers for LP
models with GIN architecture as the encoder, trained with the three datasets: Cora,
PubMed and DDI.

Cora PubMed DDI

edge feature edge feature edge feature

Insertion scores GE 0.13 ± 0.22 0.86 ± 32 0.28 ± 0.30 0.68 ± 0.32 0.93 ± 0.38 0.71 ± 0.31

IG 0.72± 0.27 0.96± 22 0.89± 0.25 0.92± 0.24 0.96± 0.29 0.88± 0.24

DC 0.67 ± 0.31 0.70 ± 0.27 0.77 ± 0.29 0.65 ± 0.30 0.92 ± 0.27 −0.12 ± 0.10

LRP 0.02 ± 0.32 0.01 ± 0.40 0.03 ± 0.40 0.13 ± 0.41 −0.1 ± 0.35 −0.04 ± 0.28

Deletion scores GE 0.08 ± 0.11 0.11 ± 0.20 0.03 ± 0.10 0.05 ± 0.20 0.22 ± 0.12 0.10 ± 0.14

IG 0.23± 0.11 0.31± 0.18 0.26± 0.15 0.26± 0.22 0.43± 0.15 0.19± 0.21

DC 0.23 ± 0.11 0.05 ± 0.18 0.24 ± 0.15 0.12 ± 0.11 0.38 ± 0.13 0.01 ± 0.15

LRP 0.01 ± 0.25 0.01 ± 0.44 −0.11 ± 0.38 −0.36 ± 0.39 0.23 ± 0.31 0.03 ± 0.33

5 Discussion of Findings

In the previous section we devised different approaches for a quantitative com-
parison of explanation methods applied to the link prediction task.1 Synthetic
data offers the advantage of having a ground truth available and complete con-
trol over its construction, but methods for a quantitative evaluation of real-
world data, where no information is available a priori, are also necessary. For
the latter we introduced the area score, a single-valued metric based on the
insertion and deletion curves introduced in [26] that quantifies the gain in per-
formance with respect to the random baseline when node features and/or edges
are inserted/removed according to the attribution scores.

IG performs better in all cases, and this is coherent with previous results on
GCNs for node and graph classification tasks [13,28]. Deconvolution is a good
alternative. We note that GNNExplainer, despite the acceptable performance,
needs to be trained, and its output is strongly dependent on the choice of its
hyperparameters. This makes it difficult to use GNNExplainer as a plug-and-
play method for the attribution of GNN models. It has the advantage of being
model-agnostic, contrary to the other methods.
1 The complete source code is available at https://github.com/cborile/eval lp xai.

https://github.com/cborile/eval_lp_xai
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Fig. 8. Area score difference between VGAE and GIN models for edge insertion (left)
and deletion (right) on the CORA dataset. The VGAE model has almost no gain with
respect to the random baseline, while the GIN model is consistently better. This is
suggestive of a different exploitation of topological features, that is, edges, in the graph
by different encoder architectures when learning the link prediction task.

Applied to the DDI dataset, the utility of the area score and the insertion
and deletion curves is particularly clear, since the drug-drug interaction graph
is much more dense than the other examples. When looking for the reason of
a link prediction output obtained through a Black-Box GML model, there are
normally too many neighboring edges contributing to the model output even for
1- or 2- layers Graph Neural Networks, i.e., GNNs that consider only 1- or 2-
hop neighborhoods in their computation graphs. A good area score on the edges
means that most of the neighboring edges can be discarded for explaining the
model output, thus increasing the interpretability for experts of what drugs can
explain the interaction between a new candidate drug and existing ones.

Finally, we showed that technical details of the GNN black-box models can
result in very different attributions for the same learned task, and even make
some explanation methods completely inapplicable. Some of these details, like
the choice of the distance function in the decoder stage, are inherent for the link
prediction task and must be taken carefully into account when explainability
is important. Also, different graph neural network architectures can result in
drastic changes in the explanations, as some architectures can weigh more the
network structure, while others can extract more signal from the node features.

6 Conclusions and Future Work

We introduced quantitative metrics for evaluating GML model explanations in
LP tasks using a synthetic dataset testbed with known ground truth and adapted
insertion/deletion curves for empirical datasets. This provided metrics for vali-
dating attribution methods when ground truth is unavailable. We tested repre-
sentative XAI methods on GML models with different architectures and datasets,
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and our metrics enabled comparison of LP explanations with each other and with
random baselines.

The thorough comparison of explanations we performed revealed hidden pit-
falls and unexpected behaviors. For example, we identified cases where two
models with similar performance produce drastically different explanations, and
how seemingly minor choices, like embedding similarity in decoders, signifi-
cantly impact explanations. The integration of feature and edge explanation
scores, often overlooked in GML XAI, is a promising area for future research.
We strongly advocate for comparative validation of XAI techniques, enabling
informed selection of explainers, and we believe that the development of valida-
tion metrics and benchmarks is the first step towards establishing quantitative,
comparative validation protocols for XAI techniques. This, in turn, would enable
awareness in the choice of both GML models and explainers, and critical accep-
tance of the produced explanations.

Besides its technical challenges, explainable LP is a task that might pos-
itively impact several real-world scenarios, spanning from social networks, to
biological networks and financial transaction networks. Each of these applica-
tion domains displays unique characteristics and behaviors, both on the prag-
matical and semantic level, and might therefore require the careful selection of
an explainer in order to trust the final explanation. A pipeline that seamlessly
integrates a GML model with an explainer, combining results of both model
performance and explanation accuracy with the area score, might help mitigate
the well-known black-box problems: difficulty of adoption from domain experts
and debugging from developers, legal risk of non-compliance to regulation, and
moral risk of inadvertently deploying biased models.
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Abstract. Pre-trained language models like BERT have shown remark-
able success in many areas, including the detection of propaganda in
text messages. However, recent studies have uncovered the vulnerability
of these language models to adversarial text attacks. Attacks are perpe-
trated by perturbing or paraphrasing original text instances to hack the
detection model. A crucial task for performing the attack is identifying
critical message words on which the detection model leverages. In this
sense, this work focuses on the role of the malicious use of eXplainable
Artificial Intelligence (xAI) in increasing the effectiveness of adversarial
text attacks or, dually, the aid its correct use may provide in measur-
ing the robustness of propaganda detection models. The approach pro-
posed here leverages xAI and Adversarial Text Generation techniques
to simulate malicious attacks and measure the robustness of a propa-
ganda detection model based on BERT. The attacks involve generating
a new dataset by perturbing critical words in the original one identified
with the aid of xAI (SHAP and LIME). The effectiveness of terms deter-
mined using xAI methods is compared with a statistical keyword extrac-
tor (YAKE!). These methods are adopted to detect the most important
words as perturbation targets. The goal is to quantify the impact of
disrupted instances on learning model performance. Experiments on the
SemEval 2020 task 11 dataset reveal that modifying words detected by
xAI methods significantly affects classification performance by reduc-
ing accuracy by 30%. These results demonstrate the effectiveness of xAI
methods in system fooling attempts, highlighting the need to enhance
learning system robustness.
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1 Introduction

The spread of fast and low-budget access to the Internet encouraged people
to share their own thoughts about different topics (politics, social events, etc.)
through posts published on social networks (e.g., Facebook, Reddit, Twitter,
etc.) or personal blog/site reaching a vast audience worldwide. On the one hand,
this increasing trend indeed promotes the freedom of speech, but on the other
hand, it makes the society vulnerable and undefended in the presence of eventual
news manipulation coming from multiple sources. This is evident in the recent
large-scale misinformation and disinformation events concerning US presidential
campaign and Brexit in 2016, as well as the global infodemic related to the Covid-
19 pandemic and vax-no-vax debate. Social networks can boost the effectiveness
and spread of disinformation so that tailor-made content may strongly affect
users’ beliefs by using persuasive language. Contrary to classical disinformation
(e.g., hoaxes, fake news), propaganda is not based on false statements but appeals
to the user’s sentiment to drive his/her opinions to meet the writer’s needs and
intents that may be of different kinds (e.g., economic, political, social, etc.).

The propaganda detection problem has been approached mainly through
Machine and Deep Learning-based solutions [4,6] that had a relevant explo-
sion in the last years in many areas. Moreover, parallel with the spread of such
techniques, eXplainable Artificial Intelligence (xAI) reached great attention for
building result explanations and helping experts in making decisions. However,
if, on the one hand, xAI substantially improves the transparency of results of
“black-box” models, on the other hand, it leaves the system vulnerable to adver-
sary attacks [3]. Employing a specific jargon (e.g., argot, cryptolect) or word
manipulations can easily fool detection systems. An example of a similar trick
regards supporters of QAnon (an American political conspiracy theory and polit-
ical movement) who may use different nicknames (e.g., “17Anon”) to identify
themselves and avoid the banning from social media sites [18].

Fooling learning models, especially in disinformation counterfeiting, can be
seen as a form of cyber-attack aiming at leading detection systems to fail. This
paper presents a framework that utilizes xAI technologies, namely SHAP and
LIME, and a statistical keyword extractor (i.e., YAKE!) to test the robustness of
a pre-trained Transformer-based propaganda detection classifier and its capacity
to withstand cyber-attacks. By simulating a text manipulation attack through
Adversarial Text Generation, the framework identifies and changes the most
critical words for propaganda detection and reclassifies the text for analyzing
system performances. The study reveals the superiority of xAI-based methods
in detecting significant words for propaganda detection and their potential to
combat cyber-attacks on propaganda detection systems. That outcome suggests
that devoting efforts to cybersecurity solutions by leveraging xAI methods could
give good results.

The paper is organized as follows: Sect. 2 introduces the topic background;
Sect. 3 discusses related work; Sect. 4 presents the method and its features; Sect. 5
reports experiments and results achieved. Conclusions close the paper.
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2 Preliminaries

This section presents a complete background about xAI domain and frameworks
for feature selection.

2.1 xAI Technologies

In 2017, USA Defense Advanced Research Projects Agency (DARPA) started the
Explainable AI (xAI) Program [13]. The main rationale behind the xAI program
is to allow design and building of new models easier to understand without
affecting model performances and high accuracy rate (accuracy of predictions)
achieved with AI methods. Furthermore, another xAI aim is to allow humans
understand, completely trust, and deal with the next generation of AI partners.

xAI techniques can work on generating explanations on local aspects (i.e.,
specific inputs) or at global level (i.e., explanations of the entire model). The
main xAI principles are summarized below:

– Model Specific or Model Agnostic: This refers to evaluate if the inter-
pretation method is restricted or not to a specific model. In details, Model-
Specific methods and tools have been clearly designed for a specific model.
On the contrary, Model Agnostic methods are not constrained to work with
a specific ML model. In this latter case, accessing to Internal model data,
including weights and structural details, is not allowed.

– Intrinsic or Extrinsic (post-hoc): This feature is meant to distinguish
among models that are interpretable on their own and models requiring exter-
nal methods examining models after training for achieving explainability. For
instance, easy-to-understand models (e.g., decision trees) are intrinsic. The
employment of an interpretation strategy after training to get interpretations
lies within extrinsic techniques.

– Local or Global: This is intended to classify interpretation methods among
those meant to depict one single data record and those describing a global
behavior of the model considered. Therefore, Global methods are in charge of
interpreting the whole model, whereas Local methods are targeted to explain
a single prediction.

2.2 Frameworks for Feature Selection

The extraction of meaningful document keywords is a well-established problem
and solutions to deal with it have been proven to be successful for solving many
tasks, including text summarization, clustering, opinion mining, thesaurus build-
ing, recommendation, query expansion, information visualization, retrieval and
more [2,9]. Generally, solutions may be designed for two broad tasks: keyword
assignment and keyword extraction. The former concerns multi-label text clas-
sification associating a set of keywords taken from a controlled vocabulary (dic-
tionary or thesaurus) with an instance of data (documents). The latter, instead,
refers to the mere process of extracting keywords from the documents by using
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unsupervised [2] or supervised [9] methods. These methods focus on local text
features and statistical information, such as term co-occurrence and frequencies,
to extract keywords [2,9]. Other approaches employ xAI technologies to allow
feature extraction explainability [16,22].

In this paper, three frameworks have been considered: two xAI-based (LIME
and SHAP) and a statistical one (YAKE!). Their features are summarized below.

LIME. Local Interpretable Model-agnostic Explanations (LIME) is a framework
that aims to provide an individual-level explanation of single predictions (Local)
in an extrinsic (Post-hoc) way and can explain a model without having to ‘peak’
into it (Model-Agnostic) [22]. After perturbing input in its neighborhood, it
evaluates the model predictions to establish which portions of the interpretable
input contribute to the prediction itself. Then it creates an entirely novel dataset
of modified samples and the corresponding black box model predictions. Based
on how similar the sampled examples are to the instance of interest, LIME
weights the interpretable model it trains on this new dataset.

SHAP. SHapley Additive exPlanations (SHAP) framework [16] evaluates the
contribution of each feature to the final prediction of an instance x in order
to explain the prediction of that instance. It is a Local -based, Post-hoc, and
Model-Agnostic paradigm, similar to LIME. Coalitional game theory is used by
the SHAP explanation approach to calculate Shapley values. Shapley values are
feature values of a data instance acting as coalition members. Shapley values
indicate how evenly dispersed the forecast is across the characteristics. A player
could consist of several feature values or just one. In contrast to LIME, SHAP
does not need the establishment of a local model; instead, the Shapley values
for each dimension are computed using the same function.

YAKE!. Yet Another Keyword Extractor (YAKE!) [2] library allows the detec-
tion of the most important keywords exploiting methods to extract text statis-
tical features from the article. YAKE! consists in five principal steps: (1) text
pre-processing and identification of candidate terms; (2) feature extraction; (3)
term score computation; (4) n-gram generation and candidate keyword score cal-
culation; and (5) data deduplication and ranking. The first step is in charge of
turning the document into a machine-readable format for detection of potential
candidate terms. The second phase receives a list of individual terms in input
that are represented as a set of statistical features. The third step employs a
heuristic to asses a unique score from the combination of the acquired features
to represent term importance. The fourth step employs an n-gram construction
method to produce the candidate keywords so that each one of them is associated
with a score based on candidate importance. Last step exploits the deduplication
distance similarity measure to spot similar keywords.

3 Related Work

This section explores related work in two reference domains: online propaganda
detection and monitoring, and text manipulation cyberattacks.
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3.1 Propaganda

Concerning online propaganda, the most explored topic in literature is propa-
ganda detection from texts [7,10,14,19]. In [14], authors introduce a technique
for dataset labeling on persuasive text, run topic modeling, and then perform a
corpora imbalance assessment to detect propaganda. In [7], a method is designed
exploiting different methodologies and technologies, including GloVe, BERT and
LSTM, to build word representation, pre-train the model and detect propagan-
distic text, respectively. Another approach [10] designs a method to analyze text
at the fragment level, bridging TF/IDF, word and character n-grams, which
are then used to build a propagandistic text classifier. In [19], authors propose
a Machine Learning model for propaganda detection, including a preliminary
data process, feature extraction algorithms and a binary classification to detect
propaganda at the article and sentence level. Other trends are directed at ana-
lyzing propaganda on social networks to help countermeasure definitions, such as
[11] proposing a framework to analyze social dynamics of social influence within
ISIS supporters by using activity-connectivity maps based on patterns related
to network and temporal activities. Another study focuses on sentiment employ-
ment [21] by introducing a hybrid deep learning approach bridging Word2Vec for
word semantics extraction and an emotional dictionary built with VADER sen-
timent analysis to detect propaganda from texts better. A reference work for the
classification of propaganda is [6], where the authors present 14 different classes
that characterize the world of propaganda. Another work [4] presents ensemble
models employing RoBERTa-based neural architectures, additional CRF layers,
and transfer learning to handle span identification and technique learning.

Concerning methods that employed xAI techniques to explain results accom-
plished by pre-trained models, in [23], the authors propose an approach that
processes BERT model results with two xAI techniques, namely Local Inter-
pretable Model-Agnostic Explanations (LIME) and Anchors, to check fake news
data including short pieces of text such as tweets or headlines. However, no xAI
approach working on BERT models has been found dealing with propaganda
detection. To the best of our knowledge, this paper introduces, for the first time,
an xAI-based approach to extracting the most significant words for detecting
propaganda from texts.

3.2 Adversarial Attacks

The main objective of adversarial attacks is to lead Machine Learning and Deep
Learning systems to fail on purpose by giving them adversarial examples as
input data which forces the system to get incorrect outputs. To prevent real
cyberattacks, techniques of Adversarial Attacks may be used to improve exist-
ing models and achieve more robust learning systems to withstand cyberattacks
better. In this regard, the approach proposed in [8] helps discover vulnerabil-
ities for Deep Learning models by introducing an attack algorithm generating
adversarial malware binaries to make DL models more robust.
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Adversarial attacks have also been explored to improve the performances of
DL methods for tasks in specific domains. An example of such a use is the study
proposed in [5] that demonstrates the efficacy of adversarial attacks to improve
fake news detection and social bot detection models.

Other researchers investigated the combination of xAI technologies and
adversarial attacks to enhance the trustworthiness of AI methods. To this pur-
pose, the authors in [12] demonstrated that Adversarial Perturbations could
strongly affect the xAI outcomes, even in the case of failed attacks.

Some other trends focus on the employment of adversarial techniques to
outwit hackers by making AI systems robust against attacks. In this regard, some
researchers propose new solutions to improve existing models; for example, the
authors in [24] improved the adversarial robustness of DNN classifiers without
using adversarial training. Some other approaches are targeted at re-defining
adversarial attacks to be used for adversarial robustness evaluation of specific
models. To this purpose, the authors in [25] design new attacks to generate
adversarial examples over affine transformations.

From the xAI point of view, the term robustness usually refers to the effects
of small changes to the input on explanations provided by xAI techniques [17].
However, in this work, robustness is associated with the learning model and
its capacity to react to adversarial attacks (i.e., examples constructed to fool
the model). In this sense, xAI techniques, studied to give an explanation to
the model’s responses, can become a double-edged sword leveraged to intercept
features to modify that most affecting final results [20]. So, Adversarial Text
Generation is employed jointly with xAI frameworks to detect the most signifi-
cant words for propaganda detection and change them in the dataset to fool the
model and test its robustness.

4 Methodology

This section introduces the proposed methodology to analyze the robustness
of a propaganda detection model toward adversarial attacks aimed at deceiv-
ing the system in the classification process. A complete workflow is shown in
Fig. 1. The first step concerns the detection of propaganda from texts by using
a pre-trained Transformer-based model; the achieved results are then processed
to extract features ranked by their impact; the third step allows changing the
extracted features in the dataset by using Adversarial Text Generation (ATG)
techniques. Finally, the last step runs the pre-trained Transformer-based model
on the updated dataset to get newer propaganda classification results, that are
compared to the early ones for assessing the robustness of the evaluated model
against adversarial attacks.
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Fig. 1. Methodology Workflow: 1) Propaganda in texts is detected using a pre-trained
Transformer model; 2) xAI methods extract impactful features; 3) the dataset is
updated using Adversarial Text Generation (ATG) on features previously selected;
4) the updated dataset is used to run the pre-trained Transformer-based model again,
generating newer propaganda classification results.

4.1 Transformer-Based Propaganda Classification

A Transformer network based on a DistilBERT pre-trained model is employed
to classify text propaganda. The pre-trained model is fine-tuned on the SemEval
2023 Task 3 training dataset (which, at the time of writing, is yet to be public
but only available for competition participants) for the propaganda detection
task [1]. The dataset provided by the SemEval-2023 Task 3 organizers for Subtask
3 specific for the English language contains 446 training news and web articles
and 9498 paragraphs, where 5738 are labeled as “No Propaganda” and 3760
fall under at least one of the 23 propaganda techniques. Data is subjected to a
preprocessing step to clean the text and remove punctuation. To fine-tune the
Transformer Distilbert-Base-Uncased, the following hyperparameters are used:
the batch size of 16; learning rate of 2e−5; AdamW optimizer; 4 epochs.

The constructed model is tested on the corresponding dev set consisting of
90 articles and 3127 paragraphs whose 2007 are “No Propaganda” and 1120
“Propaganda”. Tests provide an accuracy of around 90%.

4.2 Feature Extraction

To extract the features (i.e., words) with the highest impact on propaganda
detection results, frameworks described in Sect. 2.2 are adopted. In detail, two
different xAI technologies (i.e., SHAP and LIME) and a statistical keyword



412 D. Cavaliere et al.

extractor (i.e., YAKE!) are used for the task. The three methods return as much
as ranked lists of words that mostly affected propaganda predictions. Such words
are selected at this stage to change the original dataset and then test the robust-
ness of the propaganda detection model.

Let us show a running example for which the classification changes after the
adversarial attempts. Starting from the following instance, “Are You Kidding
Me, Ted Cruz? Don’t “Blame The Police Office” Who Admitted Killing Botham
Jean? FOX 26 asked Cruz to respond to his Democratic midterm rival, Beto
O’Rourke, who called for officer Guyger to be fired” the system extracts the first
five most important words by each method. In particular, LIME detects the
subsequent ones: midterm, Killing, rival, officer, Democratic.

4.3 Adversarial Text Generation (ATG)

At this stage, each word detected as crucial at the previous step is looked for
in the dataset and replaced with alternative words calculated using Adversarial
Text Generation (ATG) techniques. ATG refers to the practice of generating new
instances by slightly perturbing inputs to fool the learning models. Algorithms
for ATG can select words among nearest neighbors in the embedding space, out-
of-vocabulary, or through generative models. In this work, five different methods
are used for generating words that are semantically and syntactically similar to
the original ones; they are (1) space insert, (2) character delete, (3) character
swap, (4) Substitute-C (Sub-C), (5) Substitute-W (Sub-W) [15]. Method (1)
consists in inserting a space into the word, method (2) deletes a middle character,
method (3) swaps two adjacent characters in a word, method (4) replaces a
character in a word with a visually similar one (i.e., ‘1’ with ‘l’) and method (5)
replaces a word with its top k nearest neighbors in a context-aware word vector
space. The word replacement algorithm applies the five methods in sequence
to the extracted N-ranked words, from the highest-ranked word to the lowest-
ranked one. Finally, the updated dataset is processed with the Transformer-based
propaganda classification model to get the propaganda detection results after the
ATG-based changes.

Recalling the example in the previous section, by applying the character
delete technique to all five words, the starting instance becomes as follows:
“Are You Kidding Me, Ted Cruz? Don’t “Blame The Police Office” Who Admit-
ted Kiling Botham Jean? FOX 26 asked Cruz to respond to his Demoratic
miderm rial , Beto O’Rourke, who called for officer Guyger to be fired”. Then,
the propaganda detection model classifies the new instance and the changed oth-
ers, and performance is registered.

Comparing the accuracy of the updated dataset and the original one allows
for determining how much the extracted words contributed to determining pro-
paganda sentences. In detail, the higher the accuracy gap, the higher the impact
of words in detecting propaganda and, consequently, the risk of corrupting the
model by modifying them.
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5 System Evaluation

The experimentation was aimed at evaluating the proposed methodology. It is
carried out by comparing the performance of the propaganda detection model
before and after adversarial attacks conducted systematically on words identified
as significant by the three chosen methods: XAI-based (SHAP and LIME) and
statistical keyword extraction (YAKE!). More in detail, the experimentation
follows subsequent steps:

– Creation of the dataset;
– Feature extraction and ATG attempts generation;
– Results collection.

The steps are detailed in the following subsections.

5.1 Creation of the Dataset

The dataset used for the experimentation is SemEval 2020 task 11, subtask
Technique Classification. The task aims to associate labels representing the pro-
paganda technique employed by choosing from an inventory of 14, given a specific
text fragment in the context of a whole document [6]. The dataset is provided
with the start and end coordinates of the span within a paragraph and the
propaganda technique or techniques, if more than one, that characterize such
paragraph. The label “Propaganda” is associated with paragraphs containing
these spans. Paragraphs without any propaganda spans are labeled as “No Pro-
paganda”. An operation of down-sampling assures the balancing of the dataset
with 1000 final instances.

Applying the constructed propaganda detection model on the described
dataset returns an accuracy of 88%.

5.2 Feature Extraction and ATG Attempts Generation

Given the propaganda detection model and the dataset, LIME, SHAP and
YAKE! are asked to extract features (in this case, words) crucial for the final
classification. First, each framework produces a ranked list of words. Then, adver-
sarial attacks on these words are generated. Attacks, as previously described, are
inspired by the TextBugger framework consisting of five text editing techniques.
Thus, five correlated words are generated for each word extracted, corresponding
to five new instances, which the propaganda detection model must classify. The
performance of new classifications is described in the following subsection.

5.3 Results Collection

Table 1 presents the prediction results after modifying the most important word
for each method. On average, modifying words detected by two xAI-based meth-
ods significantly decreases the model performance, leading it to lose 10% accu-
racy. In particular, with the SUB-C technique on the words identified by LIME,
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there is a quite significant decrease of 13%. Regarding the YAKE! statistical
method, its performance decrease is at maximum around 3%, which is way less
significant than that observed for the two xAI methods.

Table 1. Performance of Propaganda Detection Model with and without adversarial
attacks on the most important word extracted by each method. The table shows how
the accuracy of the model changes after the first word deemed most relevant by the
different methods is perturbed with the different ATG techniques.

METHODS NO ATG INSERT DELETE SWAP SUB-C SUB-W

SHAP 0,88 0,78 0,79 0,79 0,80 0,80

LIME 0,88 0,79 0,79 0,81 0,75 0,83

YAKE! 0,88 0,85 0,85 0,86 0,85 0,88

Table 2. Performance of Propaganda Detection Model after attacks on the five most
important words extracted by the SHAP method. The table shows the accuracy for
each ATG technique as the perturbations progressed. For example, in column ‘2’, the
model was tested by making perturbations on the first and second most important
words extracted from SHAP. In column ‘5’, the model is tested on a text where the
first five most relevant words have been perturbed.

SHAP 0 1 2 3 4 5

INSERT 0,88 0,78 0,74 0,71 0,68 0,67

DELETE 0,88 0,79 0,74 0,70 0,68 0,65

SWAP 0,88 0,79 0,74 0,71 0,68 0,66

SUB-C 0,88 0,80 0,73 0,69 0,66 0,64

SUB-W 0,88 0,80 0,74 0,69 0,67 0,64

After an initial experiment attacking only the first-ranked word in terms of
importance, the investigation is extended to the first five words extracted by
each technique. Results shown in Tables 2, 3 and 4 confirm what was already
experienced for the first-ranked word: words detected by SHAP and LIME are
more relevant for the final accuracy, leading the model to fail more often, even
with small perturbations. After perturbing five words, SHAP and LIME cause
a decrease in model accuracy, which is greater than 20%, except for the SUB-W
technique on LIME. Regarding LIME, it is impressive to analyze the impact
of the SUB-C technique, in which case the model accuracy decreases by 31%.
The other techniques also perform very well, with the most significant decrease,
with the SHAP method being 24%. The same thing does not happen when using
YAKE!: with this method, the most significant decrease always occurs with the
SUB-C technique, scoring 14%, much lower than the 31% of LIME. Moreover,
YAKE! causes a 10% accuracy decrease, on average, by perturbating the first five
words, while the other methods cause an equivalent decrease after perturbating
just the first word.
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Fig. 2. Technical ATGs compare the first five words for each feature extraction method.
The figure shows on each graph how the accuracy decreases as the number of perturbed
words increases. In particular, (a) shows the comparison using the INSERT technique,
(b) the DELETE technique, (c) the SWAP technique, (d) the SUB-C technique and
finally, (e) the SUB-W technique.

Another consideration should be made about the techniques: SUB-C is the
most effective. Figure 2(d) shows how performance drops steadily by adopting
this technique focused on a visual perturbation. The least effective technique is
SUB-W which replaces the word with the top k nearest neighbors in a context-
aware word vector space. Figure 3, which shows a numerical comparison between
the accuracy of the initial model and the model after perturbing the first five
words for each method, confirms what has been analyzed so far: the SUB-C
technique is the most effective in deceiving the model. Finally, let us notice that
the words identified by LIME also cause a higher accuracy decrease than those
detected by the other methods, except for the SUB-W technique (see Fig. 2).
Therefore, the last analysis consists in measuring the accuracy decrease after
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Table 3. Performance of Propaganda Detection Model after attacks on the five most
important words extracted by the LIME method. The table shows the accuracy for each
ATG technique as the perturbations progressed, meaning that in column ‘5’, the model
is tested on a text where all the first five most relevant words have been perturbed.

LIME 0 1 2 3 4 5

INSERT 0,88 0,79 0,71 0,68 0,65 0,63

DELETE 0,88 0,79 0,73 0,69 0,66 0,63

SWAP 0,88 0,81 0,75 0,71 0,66 0,64

SUB-C 0,88 0,75 0,66 0,62 0,60 0,57

SUB-W 0,88 0,83 0,80 0,78 0,78 0,75

Table 4. Performance of Propaganda Detection Model after attacks on the five most
important words extracted by the YAKE! method. The table shows the accuracy for
each ATG technique as the perturbations progressed, meaning that in column ‘5’,
the model is tested on a text where the all first five most relevant words have been
perturbed.

YAKE! 0 1 2 3 4 5

INSERT 0,88 0,85 0,84 0,80 0,79 0,77

DELETE 0,88 0,85 0,84 0,81 0,78 0,78

SWAP 0,88 0,86 0,84 0,83 0,79 0,77

SUB-C 0,88 0,85 0,82 0,79 0,76 0,74

SUB-W 0,88 0,87 0,84 0,84 0,82 0,81

each perturbation. In particular, Fig. 4 shows the average decrease after each
perturbation for each technique and each word extraction method. Let us notice
that the reported statistics display the relevance of the SUB-C technique, with
an average decrease of 6% after each attack. The figure also shows how YAKE!
is less effective than the other two methods.

The results emerging from the experimentation can be summarized as follows:

1. xAI-based framework performs better than a statistical one in selecting the
most important feature (i.e., words) of a Transformer-based classifier for pro-
paganda detection;

2. Perturbing words can significantly decrease the performance of a propaganda
detection model;

3. Among perturbation techniques proposed by the TextBugger framework (i.e.,
space insert, character delete, character swap, Sub-C, Sub-W), the most effec-
tive in terms of model tricking is Sub-C, namely replacing a character with a
visually similar one (i.e., ‘1’ with ‘l’).
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Fig. 3. Decreasing of Accuracy after ATG attempts on the first five-ranked words. The
figure describes with a bar graph how much the model’s accuracy decreases with the
perturbation of each technique’s first five words identified by each method.

Fig. 4. The average decreases in accuracy after each word modification. The figure
describes how much, on average, the model declines in accuracy after each perturbation.
It does so for each technique for each method.

6 Conclusion

This paper proposed a novel framework that employs xAI and statistical methods
(SHAP, LIME, and YAKE!) with Adversarial Text Generation techniques to sim-
ulate malicious attacks and measure the robustness of a pre-trained Transformer-
based propaganda classifier. Experimental results on the SemEval 2020 task 11
dataset showed that perturbing critical words detected by xAI methods signif-
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icantly affect classification performance, pointing out the effectiveness of xAI
methods in the system fooling attempts. The findings highlight the need for
xAI-based solutions to enhance the robustness of learning models and prevent
potential cyberattacks on propaganda detection systems.

Overall, the proposed framework can be extended in terms of the application
domain and adopted models. Moreover, solutions against Adversarial Text Gen-
eration attacks can be studied by, for example, enhancing the training model
leveraging just adversarial attacks suggested by xAI methods.
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Abstract. EXplainable AI (XAI) techniques can be employed to help
identify points of concern in the objects analyzed when using image-based
Deep Neural Networks (DNNs). There has been an increasing number
of works proposing the usage of DNNs to perform Failure Analysis (FA)
in various industrial applications. These DNNs support practitioners by
providing an initial screening to speed up the manual FA process. In this
work, we offer a proof-of-concept for using a DNN to recognize failures in
pictures of Printed Circuit Boards (PCBs), using the boolean information
of (non) faultiness as ground truth. To understand if the model correctly
identifies faulty connectors within the PCBs, we make use of XAI tools
based on Class Activation Mapping (CAM), observing that the output
of these techniques seems not to align well with these connectors. We
further analyze the faithfulness of these techniques with respect to the
DNN, observing that often they do not seem to capture relevant features
according to the model’s decision process. Finally, we mask out faulty
connectors from the original images, noticing that the DNN predictions
do not change significantly, thus showing that the model possibly did not
learn to base its predictions on features associated with actual failures.
We conclude with a warning that FA using DNNs should be conducted
using more complex techniques, such as object detection, and that XAI
tools should not be taken as oracles, but their correctness should be
further analyzed.
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1 Introduction

In the last decade, Deep Neural Networks (DNNs) and, more specifically, Con-
volutional Neural Networks (CNNs) have been widely adopted to solve several
classification and regression problems involving images, consistently achieving
state-of-art results on several vision benchmark tasks [1,2] and often surpassing
human accuracy. One field where DNNs have been extensively used in recent
times is Failure Analysis (FA). FA can be seen as the activity to identify and
trace back the root of failures. A failure is defined as «the termination of the abil-
ity of an item to perform a required function» [3]. Human-led FA is often applied
in-situ by human experts, who carefully examine potentially faulty objects in
search of possible anomalies and defects [4]. The examination can be carried out
visually or with the aid of other tools or methodologies. While these tests are
usually accurate, they can be time-consuming and expensive since they have to
be executed by expert figures. Thus, there have been many attempts to design
semi-autonomous tools to aid human experts in speeding up their evaluations.
In many cases, these systems work on raw images of the objects to be inspected:
thus, CNN-based techniques are a natural direction for their development.

In the present work, we start by training a CNN to perform FA on Printed
Circuit Motherboards (PCBs) of a model specifically created for the project by
the company ASAC srl. We will provide additional information on these boards
in Sect. 3.1. Our initial aim is to furnish a professional figure with an automatic
diagnosis specifying whether a given PCB is faulty, possibly highlighting areas
the CNN considers defective. The training is performed on several images of
these PCBs on the premise that the ground truth fed to the CNN is a boolean
value indicating whether the motherboard is defective or not. We are able to
obtain a validation-set accuracy of 91.61%.

We follow this initial training by conducting an extensive qualitative and
quantitative critical analysis of the results produced by the CNN. Specifically, we
aim to provide a proof-of-concept using eXplainable Artificial Intelligence (XAI)
tools, namely Class Activation Mapping (CAM) [5] and Gradient-weighted CAM
(GradCAM) [6] based techniques, to answer the following research questions:
i. Is the CNN able to identify components of the defective PCBs? We investigate

this aspect by comparing the output of the XAI tools with the underlying
ground truth (i.e., the defective components). We show that these outputs
do not align well with the actual faulty areas of the PCBs, sometimes high-
lighting parts of the motherboards containing no circuits or even parts of the
background.

ii. Are these XAI tools faithful or correct? I.e., are they highlighting areas of
the images that are effectively relevant to CNN for producing its output? We
show that in 94.5% of our test images, masking out the portions of the images
which seem most relevant according to those XAI tools do not lead to a change
in classification, thus revealing low faithfulness. We continue the analysis by
showing that even masking out all of the faulty components of the PCBs does
not lead to a change in classification, highlighting the ineffectiveness of the
CNN to capture areas that are connected to faultiness.
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Thus, we conclude that, despite showcasing good results accuracy-wise on a
validation set, performing FA using a CNN trained with the sole information
that a given PCB is faulty/healthy does not yield semantically good results, as
the CNN seems unable to correctly identify defective components of the PCB.

In addition, we provide a warning for the community not always to trust the
heatmaps produced by CAM and its variants, as they could display a low level
of faithfulness or correctness with respect to the model they are applied to, and
can, thus, result in inaccurate representations of the inner functioning of a CNN.

Our code and dataset are available on https://github.com/LeonardoArrighi/
PCB_Analysis.

2 Related Works

2.1 Failure Analysis on PCBs

Failure analysis on PCBs is a critical procedure for determining the underlying
cause of PCB malfunctions. PCBs are widely utilized in electronic devices and
may fail due to a variety of reasons, such as design flaws, manufacturing defects,
environmental stress, and aging. Typically, these steps encompass visual inspec-
tion of the faulty PCB to detect any apparent damage or defects, along with
non-destructive testing techniques. FA on PCBs is a crucial process that ensures
the reliability and performance of electronic devices.

Lewis [7] exhaustively described the principles of FA applicable to polymers.
These principles are therefore suited to the identification of failures in PCBs.
In particular, identifying corrosion-related defects, such as rust formation, color
changes, and other possible evidence, is primarily performed by visual inspection.
Kanimozhi and Krishnan [8] proposed an excellent survey summarizing the state-
of-art of automatic FA techniques on PCBs. In particular, as in, e.g., [9], the
usefulness of studying techniques based on a visual inspection of the PCB was
highlighted. For a thorough review of the PCB failure detection approaches
proposed in the last three decades, we refer the reader to Ling and Isa [4].

2.2 Explainable Artificial Intelligence

Many XAI techniques have been proposed in order to make ANNs more trans-
parent, explainable, and interpretable [10–12]. Concentrating on CNNs, of par-
ticular interest, are methods focused on visualizing internal representations or
dynamics learned by the networks. Bach et al. [13] underlined the importance
of understanding and interpreting classification decisions of automated image
classification systems; they proposed using a layer-wise relevance propagation
technique to visualize, by means of a heatmap, the relevant part of an input in
the decision process of a neural network. Their technique makes use of a linear
approximation of the class scoring function in the neighborhood of a data point.

Building on the same ideas of visualization-based XAI tools, Zhou et al. [5]
proposed a technique called Class Activation Mapping (CAM); the method aims

https://github.com/LeonardoArrighi/PCB_Analysis
https://github.com/LeonardoArrighi/PCB_Analysis
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to visualize predicted class scores on any image fed to CNNs for classification
using a heatmap that can highlight which parts of the image are most significant
for the network itself to perform the task. Inspired by CAM, numerous other
techniques have been proposed to generalize the technique to different DNNs or
to improve its precision [6,14–20].

CAM-based techniques have been used to perform localization in CNNs
trained on image classification (i.e., without explicit information on the position
of an object within an image): Zhou et al. [5] applied CAM to a classification-
trained CNN to perform object detection without using bounding boxes for
training. Cheng et al. [21,22] developed a similar idea, expanding the so-called
weakly supervised object detection concept by exploiting CAM-based techniques.

Despite seeing extended usage, XAI tools are difficult to assess quantitatively.
Studies that apply these techniques to DNNs are often limited to qualitative
considerations on a subset of their datasets, offering mere visual evaluations,
e.g., the overlap between semantic features and the outputs of these tools [23,24].
An extensive line of research exists to develop quantitative or objective ways of
evaluating XAI techniques. Nauta et al. [25] summarized many of these works by
proposing a unified framework to review these tools. Popular metrics for CAM
include the aforementioned correctness or faithfulness or localization, i.e., the
ability to localize instances of objects within the images correctly.

An additional point of concern is that these tools are frequently applied as
oracles without investigating their correctness. Some works have raised concerns
with CAM-based techniques, such as low faithfulness [20,26], or inability to
capture multiple instances of objects in an image [27], or still difficulty in precise
instance localization [28]. These considerations serve as a base for a critical usage
of CAM-based techniques.

3 Materials and Methods

3.1 The Dataset

To begin the present work, we constructed a dataset of images of PCBs specifi-
cally designed to run lifetime testing. All standard updated technical features are
presented and suitable for investigation/testing. For the present research, three
features have been investigated. We considered circular welding bases (used to
assemble discrete components such as power line capacitors), rectangular weld-
ing bases (used to assemble Surface-Mount Device components such as micro-
controllers), and parallel electrical tracks (used to transfer signals). Specifically,
such electrical tracks are designed with different interspace distances, distributed
on single and multi-layers, to cover all configurations used in actual PCBs.

The dataset was constructed starting from a batch of 7 PCBs of the described
model. Six of these boards were rendered faulty by subjecting them to an aging
process: they were immersed in a saline solution (5% salt) for 96 hours, observing
the procedure described in [29]. The remaining one was left untouched. This
procedure aimed at reproducing faults to the PCBs, which can be attributed to
age/corrosion in a realistic usage setting.
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Fig. 1. The structure assembled to take pictures for creating the dataset. It is composed
of a rack server as a dark room, a Raspberry Pi 4 with which the whole mechanism is
controlled, a Raspberry camera with a 1:1 (magnification of the lens) lens, an RGBW
LED lamp mounted on the top of the rack server, a LED lamp mounted on the side of
the rack server, and a 3D printed rotating platform.

In order to artificially increase the number of samples, each PCB image was
acquired using a rotating platform where we placed one PCB, a fixed camera,
and a set of lights. We could control the orientation and rotation of the board
with respect to the camera and toggle light conditions. Some pictures of the
structure assembled to take pictures can be seen in the Fig. 1. Each board was
divided into 4 regions of equal size. Each picture included only one specific region
of the PCB. After each shot, the board was rotated by 10◦ (without contextu-
ally rotating the camera), and the next shot of the same region was taken.The
whole method was repeated three times: we introduced two sets of different light
colors in distinct positions, which were combined in different ways:(i) one white
lamp above the board, on the axis of rotation of the platform, and (ii) a nat-
ural soft yellow placed on the cabinet wall to form an angle of 30◦ with the
center of the platform, of which we modulated the intensity. This process was
aimed at reproducing different light conditions and shot angles. We took the
pictures at a resolution of 1024× 768 pixels. An example of the images obtained
using this protocol can be appreciated in Fig. 2. Our goal was to have models,
which we trained on this dataset, robust with respect to various factors (such as
light conditions and object pose). This would enable the final user to employ it
without using a standardized protocol for shooting pictures, even concentrating
solely on specific regions of the PCB. We remain available to provide additional
information concerning the creation of the dataset for reproducibility purposes.

Once the images were obtained, they were classified as “Defective” (3207
images) or “Non-defective” (2653 images) according to a visual inspection of
the components carried out by an expert. We further divided the dataset into
a train, validation, and test split: 70% of the images were randomly allocated
to the training set (for a total of 4102 pictures), leaving 20% of them in the
validation split, and 10% of them in the test set.
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Fig. 2. Examples of two images composing our dataset: both pictures depict the same
PCB with the same pose with respect to the camera but with different light conditions,
which significantly alter its appearance.

3.2 CNN for PCB Classification

For performing the PCB classification task, we used a ResNet50d CNN [2,30],
characterized by a sequential stack of residual blocks. Residual blocks are struc-
tures containing multiple convolutional layers. The input to a block is cloned
along two paths, the first being processed sequentially by the convolutional lay-
ers and the second being left untouched (skip connection), or, in some instances,
downsampled by means of other convolutional layers. The data in the skip con-
nection is then summed to the output of the last convolutional layer of the first
path. The residual block is designed as in Fig. 3. This architecture stacks 12 of
these blocks for a total of 50 convolutional layers. Finally, a fully-connected layer
for performing the final classification is applied.

3.3 Implementation Details

We conducted the experiments on a computing node with an Nvidia Tesla V100
GPU, employing Python version 3.8.12 and the Pytorch1 library. We fine-tuned
the ResNet50d pre-trained model on ImageNet [31]. We recovered the pre-trained
parameters released alongside the timm library2. We made use of the RAdam
optimizer [32]. We trained the model for 300 epochs. We set the batch size to
64. We employed dropout [33] with the dropout rate set to 0.1. We used the
categorical cross-entropy loss function. Considering that the dataset was built
by encompassing a certain variability in rotation and light conditions, we used
a small set of additional data augmentation techniques: horizontal and vertical
flip and planar homography.

1 https://pytorch.org/.
2 https://github.com/huggingface/pytorch-image-models.

https://pytorch.org/
https://github.com/huggingface/pytorch-image-models
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Fig. 3. The schematization of the residual block used in the ResNet50d. The input
is duplicated along the two paths. The bottom path passes through a sequence of 3
convolutional layers (orange) with different kernel sizes and stride values. The upper
path (the skip connection) is left untouched unless a downsampling of the input is
needed: in this case, a sequence of two layers, depicted in green,—an average pooling
(“AvgPool”) and a convolutional layer of kernel size 1 and stride 1—are applied.

3.4 XAI Techniques Used

We used several XAI tools to assess whether the trained CNN correctly identifies
features relevant to the FA task on our PCBs. The various techniques adopted
are based on CAM [5], an XAI technique specific for CNNs used to display,
through an approximate activation map, the parts of an image the CNN has
used to classify that specific image in a specific category. According to the def-
initions provided by Dwivedi et al. [34], CAM, and CAM techniques are local
post hoc XAI tools. Post hoc means they are applied to a model after it has
been trained without modifying its parameters, while local indicates that they
produce explanations for single data points which are input to the CNN, rather
than giving explanations which are valid globally for the whole model, regardless
of its input.

The first relevant technique employed is GradCAM, proposed by Selvaraju
et al. [6]. It produces an activation map GC given by the linear combination of
the feature map activations of the last convolutional layer of the network (Ak),
weighted by the gradients of the loss function with respect to the neurons of this
layer (wC

k ):

GC = ReLU

(∑
k

wC
k ·Ak

)
. (1)

GradCAM++ [14] is a more advanced version of GradCAM: it calculates the
weights wk using a more elaborate procedure, which includes both the aforemen-
tioned activations and gradients of the loss function.
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Axiom-based GradCAM (XGradCAM) [18] integrates into the generation of
the map a series of axioms such as sensitivity (i.e., that each component of the
explanation should be proportional to the impact of removing the corresponding
feature from the input on the model’s output) or conservation (i.e., the property
that the sum of the components of the explanation should match the magnitude
of the model’s output).

LayerCAM [19] generates attention maps for all layers of the CNN, employing
GradCAM, and then combines them into a single attention map for the whole
image. Thus, LayerCAM provides an interpretation of the model’s decision-
making process that considers the contribution of each layer of the CNN.

High-Resolution CAM (HiResCAM) [20] aims at improving GradCAM. The
latter calculates weights by averaging gradients (Eq. (1)); this leads to an approx-
imation of the heatmap, corresponding to a deficiency in its representation. The
attention map in HiResCAM is generated by element-wise multiplying the gra-
dient and the activations (as in Eq. (1)) but without computing the average of
the gradients.

FullGrad [15], is fundamentally different. It generates heatmaps by computing
the gradients of the output of the CNN with respect to both the input image and
the bias term in the network. It does not depend on the class used to compute
the gradient being propagated; it can produce similar outputs across different
classes.

AblationCAM [16] proposes a substantial change to the way the map is gen-
erated: the weights of the Eq. (1) are calculated using the slope, i.e., a function
defined as the measure of the effect of ablation of unit k (i.e., an individual acti-
vation cell in the feature map Ak of the final convolutional layer of the CNN)
on the class activation score y.

Finally, EigenCAM [17] is based on a hypothesis: important spatial features
in the input image that the CNN model learns are preserved during the opti-
mization process. Non-relevant or unnecessary features are either smoothed out
or regulated, ensuring only relevant spatial features are used to generate the
localization map. The activation map of EigenCAM is generated by projecting
the output of the last convolutional layer of the CNN onto the first eigenvector
of its singular value decomposition.

3.5 Evaluation Metrics

We evaluated our model on accuracy (i.e., the fraction of images correctly clas-
sified by the model) and the area under the receiver operating characteristics
curve (AUC-ROC), a popular metric for binary classification problems. In addi-
tion, we provide the confusion matrix to quickly quantify the number of false
positives and negatives. All these quantities were calculated on the validation
split of the dataset.
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Table 1. Metrics (Table 1a) and confusion matrix (Table 1b) for the model ResNet50d
evaluated on the validation datset.

(a) Metrics evaluation

Metric Value (%)

Accuracy 91.61
AUC-ROC 97.78

(b) Confusion matrix

Prediction
Ground truth Defective Non-defective

Defective 318 27
Non-defective 25 250

4 Results

The performances of the proposed ResNet model are summarized in the Table 1a.
The model achieved an accuracy of 91.61%: as seen from the Confusion Matrix
(Table 1b), 568 out of 620 test set images are correctly classified. Furthermore,
an AUC-ROC of 97.78% reinforces the conclusion that the model behaved effec-
tively.

Among the 318 images of the test set correctly classified by the network as
“Defective”, we randomly selected 10 of them to perform the following investiga-
tion. We analyzed those pictures with the CAM techniques described in Sect. 3.4
using the implementations by Gildenblat and contributors [35]. We evaluated the
output of the CAM models choosing as target the last convolutional layer of the
ResNet50d.

As we can notice in Fig. 4, the first aspect is that the CNN is apparently
unable to identify specific patterns that refer to the failures: semantically mean-
ingless areas are highlighted by the various techniques. In many cases, these
areas are not even located within the boundaries of the PCBs. At this point, we
were interested in determining whether these areas represent relevant features
for the classification by the CNN. As mentioned in Sect. 2.2, we removed the
topical areas identified by CAM-based techniques. Following a visual inspection,
we set a threshold at 0.4 and binarized the outputs of CAM-based methods
according to this value, thus creating a binary mask that identifies the topical
regions. We then applied these masks to the original images by replacing the
pixels of these areas with specific colors/patterns, as shown in Fig. 5. After the
masking, the new dataset comprised 400 pictures. We re-evaluated these images
on the CNN. The result is that 22 of the 400 photos (5.5%) were reclassified as
“Non-Defective”, while the remaining ones (94.5%) were still classified as “Defec-
tive”. As a last test, to check whether the CNN was learning relevant features
for the classification, we operated directly on the original 10 images by masking
out the faulty components with the same 5 modalities mentioned above. Of the
50 images thus obtained, 45 were evaluated as “Defective” by the model. There-
fore, in 90% of the images, the classification did not change. This shows how the
CNN, originally thought to perform well on our dataset, is, on a deeper level,
unable to learn features connected to true failures.
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Fig. 4. Examples of a single image analyzed through CAM-based techniques: the pic-
ture of a region of a PCB (a), classified as “Defective” due to the defective compo-
nents highlighted in (b), is overlapped with the heatmaps generated by GradCAM (c),
GradCAM++ (d), AblationCAM (e), LayerCAM (f), XGradCAM (g), FullGrad (h),
EigenCAM (i), and HiResCAM (j).

Fig. 5. Examples of masks applied to original images by transforming GradCAM out-
put. The patterns adopted are: all white (a), all black (b), random pixels (c), the color
of the green surface of the board (d), and the color of the background of the area
outside the board (e). (Color figure online)

5 Conclusions

In this paper, we proposed using a Deep Neural Network (DNN) to identify
failures on Printed Circuit Motherboards (PCBs) by classifying images of por-
tions of the boards as flawless when there were no evident defects and as defective
when there was a visible defect. We showed how we obtained a seemingly accurate
and robust binary classifier with a Convolutional Neural Network (CNN), specif-
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ically a ResNet50d. We also provided a proof-of-concept using Class Activation
Mapping (CAM)-based eXplainable Artificial Intelligence (XAI) techniques to
investigate whether the model could identify defective PCB components within
pictures of portions of motherboards. We showed that, by and large, the tech-
niques we employed did not correctly highlight the defective areas of the boards.
Furthermore, we proceeded to assess the faithfulness of these techniques with
respect to the decision process of the CNN. We masked out the areas empha-
sized by the CAM-based techniques in the test images. We found that these
areas did not correspond to significant features used by the CNN for the clas-
sification. We also proceeded to mask out the defective PCB components in a
selection of test images, showing that this did not significantly change the clas-
sification operated by the CNN. Based on the evidence, it can be inferred that
the Convolutional Neural Network (CNN) utilized in the analysis may not pos-
sess an accurate understanding of the concept of failure. This suggests that the
classification of the images may have been influenced by various visual cues and
features identified by the model.

Our findings prompt us to posit that Failure Analysis using DNNs should
be conducted using more suitable and complex methods like object detection
or segmentation to capture the defective components better and that the sole
PCB-level information of defect is insufficient for training a well-functioning
model. Furthermore, we conclude with a call towards a more responsible usage
of local post hoc XAI tools, specifically CAM-based techniques: they should not
be regarded as oracles since, as we showed in the present work, their outputs
might be misleading. We advocate in favor of a critical usage of such tools—
appropriate in-depth analyses should always be carried out to confirm their
reliability.
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Abstract. State-of-the-art object detectors are treated as black boxes
due to their highly non-linear internal computations. Even with unprece-
dented advancements in detector performance, the inability to explain
how their outputs are generated limits their use in safety-critical appli-
cations. Previous work fails to produce explanations for both bounding
box and classification decisions, and generally make individual expla-
nations for various detectors. In this paper, we propose an open-source
Detector Explanation Toolkit (DExT) which implements the proposed
approach to generate a holistic explanation for all detector decisions
using certain gradient-based explanation methods. We suggests various
multi-object visualization methods to merge the explanations of mul-
tiple objects detected in an image as well as the corresponding detec-
tions in a single image. The quantitative evaluation show that the Single
Shot MultiBox Detector (SSD) is more faithfully explained compared to
other detectors regardless of the explanation methods. Both quantitative
and human-centric evaluations identify that SmoothGrad with Guided
Backpropagation (GBP) provides more trustworthy explanations among
selected methods across all detectors. We expect that DExT will moti-
vate practitioners to evaluate object detectors from the interpretability
perspective by explaining both bounding box and classification decisions.

Keywords: Object detectors · Explainability · Quantitative
evaluation · Human-centric evaluation · Saliency methods

1 Introduction

Object detection is imperative in applications such as autonomous driving [15],
medical imaging [5], and text detection [18]. An object detector outputs bounding
boxes to localize objects and categories for objects of interest in an input image.
State-of-the-art detectors are deep convolutional neural networks [54] with high
accuracy and fast processing compared to traditional detectors. However, convo-
lutional detectors are considered black boxes [37] due to over-parameterization
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and hierarchically non-linear internal computations. This non-intuitive decision-
making process restricts the capability to debug and improve detection systems.
The user trust in model predictions has decreased and consequently using detec-
tors in safety-critical applications is limited. In addition, the process of verifying
the model and developing secure systems is challenging [12,52]. Numerous previ-
ous studies state interpreting detectors by explaining the model decision is crucial
to earning the user’s trust [32,40,48], estimating model accountability [20], and
developing secure object detector systems [12,52].

Fig. 1. A depiction of the proposed approach to
interpret all object detector decisions. The corre-
sponding explanations are provided in the same col-
ored boxes. This breakdown of explanations offers
more flexibility to analyze decisions and serves as a
holistic explanation for all the detections.

With a range of users
utilizing detectors for safety
critical applications, provid-
ing humanly understandable
explanations for the category
and each bounding box coor-
dinate predictions together
is essential. In addition, as
object detectors are prone
to failures due to non-local
effects [30], the visualiza-
tion techniques for detec-
tor explanations should inte-
grate explanations for multi-
ple objects in a single image
at the same time. Previous
saliency map-based methods
explaining detectors [17,26,
46] focus on classification or
localization decisions individ-
ually, not both at the same
time.

In this paper, we consider
three deficits in the literature:
methods to explain each cate-
gory and bounding box coor-

dinate decision made by an object detector, visualizing explanations of multiple
bounding boxes into the same output explanation image, and a software toolkit
integrating the previously mentioned aspects.

This work concentrates on providing individual humanly understandable
explanations for the bounding box and classification decisions made by an
object detector for any particular detection, using gradient-based saliency maps.
Figure 1 provides an illustration of the proposed solution by considering the
complete output information to generate explanations for the detector decision.

Explanations for all the decisions can be summarized by merging the saliency
maps to achieve a high-level analysis and increasing flexibility to analyze detec-
tor decisions, improving improving model transparency and trustworthiness. We
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suggest methods to combine and visualize explanations of different bounding
boxes in a single output explanation image as well as an approach to analyze
the detector errors using explanations.

This work contributes DExT, software toolkit, to explain each decisions
(bounding box regression and object classification jointly), evaluate explana-
tions, and identify errors made by an object detector. A simple approach to
extend gradient-based explanation methods to explain bounding box and classi-
fication decisions of an object detector. An approach to identify reasons for the
detector failure using explanation methods. Multi-object visualization methods
to summarize explanations for all output detections in a single output expla-
nation. And an evaluation of gradient-based saliency maps for object detector
explanations, including quantitative results and a human user study.

We believe our work reveals some major conclusions about object detector
explainability. Overall quantitative metrics do not indicate that a particular
object detector is more interpretable, but visual inspection of explanations indi-
cates that recent detectors like EfficientDet seem to be better explained using
gradient-based methods than older detectors (like SSD or Faster R-CNN, shown
in Fig. 2), based on lack of artifacts on their heatmaps. Detector backbone has
a large impact on explanation quality (Fig. 6).

The user study (Sect. 4.4) reveals that humans clearly prefer the convex
polygon representation, and Smooth Guided Backpropagation provides the best
detector explanations, which is consistent with quantitative metrics. We believe
these results are important for practitioners and researchers of object detection
interpretability. The overall message is to explain both object classification and
bounding box decisions and it is possible to combine all explanations into a sin-
gle image using the convex polygon representation of the heatmap pixels. The
appendix of this paper is available at https://arxiv.org/abs/2212.11409.

2 Related Work

Interpretability is relatively underexplored in detectors compared to classifiers.
There are post hoc [17,26,46] and intrinsic [21,51] detector interpretability
approaches. Detector Randomized Input Sampling for Explanation (D-RISE)
[26] in a model-agnostic manner generates explanations for the complete detec-
tor output. However, saliency map quality depends on the computation bud-
get, the method is time consuming, and individual explanations for bounding
boxes are not evaluated. Contrastive Relevance Propagation (CRP) [46] extends
Layer-wise Relevance Propagation (LRP) [7] to explain individually the bound-
ing box and classification decisions of Single Shot MultiBox Detector (SSD).
This procedure includes propagation rules specific to SSD. Explain to fix (E2X)
[17] contributes a framework to explain the SSD detections by approximating
SHAP [24] feature importance values using Integrated Gradients (IG), Local
Interpretable Model-agnostic Explanations (LIME), and Probability Difference
Analysis (PDA) explanation methods. E2X identifies the detection failure such
as false negative errors using the explanations generated. The individual expla-
nations for bounding box decisions and classification decisions are unavailable.

https://arxiv.org/abs/2212.11409
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Fig. 2. Comparison of the classification and all bounding box coordinate explanations
corresponding to the cat detection (red-colored box) across different detectors using
SGBP is provided. The bounding box explanations from EfficientDet-D0 illustrate the
visual correspondence to the respective bounding box coordinates. The explanations
from Faster R-CNN illustrate a sharp checkerboard pattern. (Color figure online)

The intrinsic approaches majorly focus on developing detectors that are
inherently interpretable. Even though the explanations are provided for free,
currently, most of the methods are model-specific, do not provide any evalua-
tions on the explanations generated, and includes complex additional designs.

Certain attention-based models such as DEtector TRansformer (DETR) [10]
and detectors using non-local neural networks [49] offer attention maps improv-
ing model transparency. A few previous works with attention reveal contradict-
ing notions of using attention for interpreting model decisions. [19,35] illustrate
attention maps are not a reliable indicator of important input region as well
as attention maps are not explanations, respectively. [8] have revealed saliency
methods provide better explanations over attention modules.

We select the post hoc gradient-based explanation methods because they
provide better model translucency, computational efficiency, do not affect model
performance, and utilize the gradients in DNNs. Finally, saliency methods are
widely studied in explaining DNN-based models [3]. A detailed evaluation of
various detectors reporting robustness, accuracy, speed, inference time as well
as energy consumption across multiple domains has been carried out by [4]. In
this work, the authors compare detectors from the perspective of explainability.

3 Proposed Approach

3.1 Explaining Object Detectors

This work explains various detectors using gradient-based explanation methods
as well as evaluate different explanations for bounding box and classification
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decisions. The selected detectors are: SSD512 (SSD) [23], Faster R-CNN (FRN)
[28], and EfficientDet-D0 (ED0) [43]. The short-form tags are provided in the
bracket. SSD512 and Faster R-CNN are widely used single-stage and two-stage
approaches, respectively. Explaining the traditional detectors will aid in extend-
ing the explanation procedure to numerous similar types of recent detectors. Effi-
cientDet is a relatively recent state-of-the-art single-stage detector with higher
accuracy and efficiency. It incorporates a multi-scale feature fusion layer called
a Bi-directional Feature Pyramid Network (BiFPN). EfficientDet-D0 is selected
to match the input size of SSD512. The variety of detectors selected aids in
evaluating the explanation methods across different feature extractors such as
VGG16 (SSD512), ResNet101 (Faster R-CNN), and EfficientNet (EfficientDet-
D0). The gradient-based explanation methods selected in this work to explain
detectors are: Guided Backpropagation (GBP) [41], Integrated Gradients (IG)
[42], SmoothGrad [39] + GBP (SGBP), and SmoothGrad + IG (SIG). GBP pro-
duces relatively less noisy saliency maps by obstructing the backward negative
gradient flow through a ReLU. For instance, an uncertainty estimate of the most
important pixels influencing the model decisions is carried out using GBP and
certain uncertainty estimation methods [50]. This combines uncertainty estima-
tion and interpretability to better understand DNN model decisions. IG satisfies
the implementation and sensitivity invariance axioms that are failed by various
other state-of-the-art interpretation methods. SmoothGrad aids in sharpening
the saliency map generated by any interpretation method and improves the
explanation quality. These four explanation methods explain a particular detec-
tor decision by computing the gradient of the predicted value at the output
target neuron with respect to the input image.

The object detector decisions for a particular detection are bounding box
coordinates (xmin, ymin, xmax, ymax), and class probabilities (c1, c2, ..., ck), where
k is the total number of classes predicted by the detector. Usually these are
output by heads at the last layer of the object detector. The classification head is
denoted as modelcls(x), while the bounding box regression head is modelbbox(x).
Considering that an explanation method computes a function expl(x, ŷ) of the
input x and scalar output prediction ŷ (which is one output layer neuron), then
a classification explanation ecls is:

ĉ = modelcls(x) k = arg max
i

ĉi ecls = expl
(
x, l̂k

)
(1)

A bounding box explanation consists of four different explanations, one for each
bounding box component exmin , eymin , exmax , eymax :

x̂min, ŷmin, x̂max, ŷmax = modelbbox(x) (2)

exmin = expl (x, x̂min) eymin = expl (x, ŷmin) (3)

exmax = expl (x, x̂max) eymax = expl (x, ŷmax) (4)

In case of explaining the bounding box coordinates, the box offsets predicted
by an object detectors are converted to normalized image coordinates before
computing the gradient. In case of classification decisions, the logits (l̂k, before
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Fig. 3. Overview of the Multi-object visualizations pipeline to jointly visualize all
detections.

softmax probability, ĉ = softmax(l̂)) are used to compute the gradient. Figure 2
illustrates the explanations generated for each decisions of the cat detection by
across detectors. Saliency explanations can be computed for each bounding box
of interest in the image.

3.2 Multi-object Visualization

In order to summarize the saliency maps of all detections, the individual saliency
maps corresponding to each detection are represented using a canonical form.
This representation illustrates the most important pixels for the decision expla-
nation. This paper proposes four different methods for combining detection
explanations into a single format: principal components, contours, density clus-
tering, and convex polygons. Each method uses a different representation, allow-
ing for detected bounding box, and category to be marked using same colors on
the input image. The general process is described in Fig. 3. An example the four
multi-object visualizations are illustrated in Fig. 4. Appendix F provides addi-
tional details on the multi-object visualization approaches and how different
combination methods work. including explanation heatmap samples.

Fig. 4. Multi-object visualizations generated to jointly visualize all detections from
EfficientDet-D0 and the corresponding classification explanations generated using SIG
in the same color. The combination approach is specified in sub-captions. Explanation
pixels are colored same as the corresponding bounding box that is being explained.

4 Experiments

Section 4.1 visually analyzes the explanations generated for different detector and
explanation method combinations. Section 4.3 provides the quantitatively eval-
uates different detector and explanation method combinations. Finally, Sect. 4.4
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estimates an overall ranking for the explanation methods based on user pref-
erences of the explanations produced for each decision. In addition, the multi-
object visualization methods are ranked based on user understandability of the
detections. In Section G (Appendix), the procedure to analyze the failures of
detector using the proposed approach is discussed.

Most of the experiments use ED0, SSD, and FRN detectors detecting com-
mon objects from COCO [22]. The additional details about these detectors are
provided in Table 2 (Appendix). In cases requiring training a detector, different
versions of SSD with various pre-trained backbones detecting marine debris pro-
vided in Table 3 are used. The marine debris detectors are trained using a train
split of the Marine Debris dataset [47] and explanations are generated for the
test images. These detectors are used only to study how are the explanations
change across different backbones and different performance levels (epochs) in
Sect. 4.1.

4.1 Visual Analysis

Across Target Decision and Across Detectors. The saliency maps for the
classification and bounding box decisions generated using a particular explana-
tion method for a specific object change across different detectors as shown in
Fig. 2. All the bounding box explanations of EfficientDet-D0 in certain scenarios
provide visual correspondence to the bounding box coordinates.

Across Different Target Objects. Figure 5 illustrate that the explanations
highlight different regions corresponding to the objects explained. This behav-
ior is consistent in most of the test set examples across the classification and
bounding box explanations for all detectors.

Figure 6 illustrates the classification explanations for the wall detection across
the 6 different backbones. Apart from the attribution intensity changes, the pix-
els highlight different input image pixels, and the saliency map texture changes.
MobileNet and VGG16 illustrate thin horizontal lines and highlight other object
pixels, respectively. ResNet20 highlights the wall as a thick continuous segment.
Figure 18 illustrate the ymin and ymax bounding box coordinate explanations
for the chain detection across different backbones. The thin horizontal lines of
MobileNet are consistent with the previous example. In addition, VGG16 illus-
trates a visual correspondence with the ymin and ymax bounding box coordinate
by highlighting the upper half and lower half of the bounding box respectively.
However, this is not witnessed in other detectors. This behavior is consistent over
a set of 10 randomly sampled test set images from the Marine Debris dataset.

The explanations generated using SSD model instances with ResNet20 back-
bone at different epochs are provided in Fig. 7. The model does not provide
any final detections at lower epochs. Therefore, the explanations are generated
using the target neurons of the output box corresponding to the interest decision
in the final detections from the trained model. Figure 7 illustrate variations in
the saliency maps starting from a randomly initialized model to a completely
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Fig. 5. Comparison of classification and bounding box explanations for all detections
from EfficientDet-D0 using SIG is provided. Each row provides the detection (red-
colored box) followed by the corresponding classification and all bounding box expla-
nation heatmaps. (Color figure online)

Fig. 6. Comparison of class “wall” classification explanations across different SSD back-
bones. The detections from each SSD backbone are provided in the first row. The
explanations of the wall detection (white-colored box) vary across each backbone.

trained model for the classification decision of the chain detection. The explana-
tions extracted using the random model are dispersed around the features. The
explanations slowly concentrate along the chain object detected and capture the
object feature to a considerable amount. This behavior is qualitatively analyzed
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by visualizing the explanation of 10 randomly sampled test set images from the
Marine Debris dataset. In the case of the small hook explained in Appendix
Fig. 19, the variations between the random model and the trained model are not
as considerable as the previous chain example. This illustrates the variations
change with respect to each class.

Ground Truth Chain Random Model Epoch 5 Epoch 11 Epoch 17 Epoch 26

SSD-ResNet20 Classification Decision Explanation Using Guided Backpropagation Over Epochs

Epoch 134

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Classification explanation for class “chain” across different epochs (along
columns) of SSD-ResNet20 using GBP is illustrated. The first column is the chain
ground truth annotation (white-colored box).

4.2 Error Analysis

The section analyzes detector errors by generating explanations using the pro-
posed detector explanation approach. The saliency map highlighting the impor-
tant regions can be used as evidence to understand the reason for the detector
failure rather than assuming the possible reasons for detector failure. The fail-
ure modes of a detector are wrongly classifying an object, poorly localizing an
object, or missing a detection in the image [26]. As the error analysis study
requires ground truth annotations, the PASCAL VOC 2012 images are used.
The PASCAL VOC images with labels mapping semantically to COCO labels
are only considered as the detectors are trained using the COCO dataset. For
instance, the official VOC labels such as sofa and tvmonitor are semantically
mapped to couch and tv, respectively, by the model output trained on COCO.

The procedure to analyze a incorrectly classified detection is straightforward.
The output bounding box information corresponding to the wrongly classified
detection can be analyzed in two ways. The target neuron can be the correct
class or the wrongly classified class to generate the saliency maps (Fig. 8). More
examples of error analysis are available in Section G in the appendix.

4.3 Quantitative Evaluation

Evaluating detector explanations quantitatively provides immense understand-
ing on selecting the explanation method suitable for a specific detector. This
section performs the quantitative evaluation of saliency explanations.
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Fig. 8. Example error analysis using gradient-based explanations. EfficientDet-D0
wrongly classifies the dog (red-colored box) in ground truth as cat (red-colored box).
We display two saliency explanations (GBP and SIG). In this figure, it is clear the
model is imagining a long tail for the dog (GBP) and wrongly classifies the dog as a
cat. The saliency map highlights certain features of the dog and the background stripes
pattern along the edges of the dog body (GBP and SIG). In order to illustrate the tail
clearly which is predominant in cats available in COCO dataset, the saliency map is
only shown without overlaying on the input image. (Color figure online)

Evaluation Metrics. The quantitative evaluation of the explanations of a
detector incorporates causal metrics to evaluate the bounding box and classi-
fication explanations. This works by causing a change to the input pixels and
measuring the effect of change in model decisions. The evaluation aids in esti-
mating the faithfulness or truthfulness of the explanation to represent the cause
of the model decision. The causal metrics discussed in this work are adapted
from the previous work [25,26,33]. The two variants of causal evaluation metrics
based on the cause induced to alter the prediction are deletion and insertion
metric. The deletion metric evaluates the saliency map explanation by removing
the pixels from the input image and tracking the change in model output. The
pixels are removed sequentially in the order of the most important pixels starting
with a larger attribution value and the output probability of the predicted class
is measured. The insertion metric works complementary to the deletion metric
by sequentially adding the most important pixel to the image and causing the
model decision to change. Using deletion metric, the explanation methods can
be compared by plotting the fraction of pixels removed along x-axis and the
predicted class probability along y-axis. The method with lower Area Under the
Curve (AUC) illustrates a sharp drop in probability for lesser pixel removal.
This signifies the explanation method can find the most important pixels that
can cause a significant change in model behavior. The explanation method with
less AUC is better. In the case of insertion metric, the predicted class probabil-
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ity increases as the most relevant pixels are inserted. Therefore, an explanation
method with a higher AUC is relatively better. [26] utilize constant gray replac-
ing pixel values and blurred image as the start image for deletion and insertion
metric calculation respectively.

Effects Tracked. The previous work evaluating the detector explanations uti-
lize insertion and deletion metric to track the change in the bounding box Inter-
section over Union (IoU) and classification probability together. [26] formulate
a vector representation involving the box coordinates, class, and probability.
The similarity score between the non-manipulated and manipulated vectors are
tracked. However, this work performs an extensive comparison of explanation
methods for each decision of a detector by tracking the change in maximum
probability of the predicted class, IoU, distance moved by the bounding box (in
pixels), change in box height (in pixels), change in box width (in pixels), change
in top-left x coordinate of the box (in pixels), and change in top-left y coordinate
of the box (in pixels). The box movement is the total movement in left-top and
right-bottom coordinates represented as euclidean distance in pixels. The coordi-
nates distances are computed using the interest box corresponding to the current
manipulated image and the interest box corresponding to the non-manipulated
image. This extensive evaluation illustrates a few explanation methods are more
suitable to explain a particular decision. As declared in the previous sections, the
image origin is at the top-left corner. Therefore, a total of 7 effects are tracked
for each causal evaluation metric.

Evaluation Settings. The previous section establishes the causal deletion and
insertion metric along with the 7 different effects. In this section, two different
settings used to evaluate the detectors using the causal metrics are discussed.

Single-box Evaluation Setting. The detector output changes drastically when
manipulating the input image based on saliency values. We denote principal box
to the bounding box detecting the object in the original image. In this setting,
seven principal box effects are tracked across insertion and deletion of input
pixels. This aids in capturing how well the explanation captures true causes of
the principal box prediction. The effects measured for the single-box setting are
bounded because the principal box value is always measurable. This is called a
single-box setting because only the changes in the principal box are tracked.

Realistic Evaluation Setting. In this evaluation setting, all 7 effects are tracked
for the complete object detector output involving all bounding boxes after the
post-processing steps of a detector. In this setting, the current detection for
a particular manipulated input image is matched to the interest detection by
checking the same class and an IoU threshold greater than 0.9. For various
manipulated input images, there is no current detection matching the interest
detection. Therefore, depending on the effect tracked and to calculate AUC, a
suitable value is assigned to measure the effect. For instance, if the effect tracked
is the class probability for deletion metric and none of the current detection
matches with the interest detection, a zero class probability is assigned. Similarly,
if the effect tracked is box movement in pixels for deletion metric, the error in
pixels increases to a large value.
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Interpretation Through Curves. Given the causes induced to change model
output, effects tracked, and evaluation setting for the detector, this work uses
28 causal evaluation metrics. These correspond to causes ↓ Deletion (D) and ↑
Insertion (I), Effects tracked Class Maximum Probability (C), Box IoU (B),
Box Movement Distance (M), Box X-top (X), Box Y-top (Y), Box Width (W),
Box Height(H), and evaluation settings Single-box (S) and Realistic (R).

To interpret a causal evaluation metric, a graph is drawn tracking the change
of the effect tracked along the y-axis and the fraction of pixels manipulated
along the x-axis. For instance, consider the scenario of deleting image pixels
sequentially to track the maximum probability of the predicted class at single-
box evaluation setting. The x-axis is the fraction of pixels deleted. The y-axis
is the maximum probability of the predicted class at the output of the box
tracked. In this work, the curve drawn is named after the combination of the
causal evaluation metrics, effects tracked, end evaluation settings. The curves are
the DCS curve, DBS curve, ICS curve. For instance, the DCS curve is the change
in the maximum probability for the predicted class (C) at the single output box
(S) due to removing pixels (D). The curves are the evaluation metrics used in
this work and also called as DCS evaluation metric (deletion + class maximum
probability + single-box setting), DBS (deletion + box IoU + single-box setting)
evaluation metric, and so on.

In order to compare the performance of explanation methods to explain a sin-
gle detection, as stated before, the AUC of a particular evaluation metric curve
is estimated. The corresponding AUC is represented as AUC<evaluation metric>.
In order to estimate a global metric to compare the explanation methods
explaining a particular decision of a detector, the average AUC, represented
as AAUC<evaluation metric>, is computed. As the explanations are provided for
each detection, the evaluation set is given by the total number of detections. The
total detections in the evaluation set are the sum of detections in each image
of the evaluation set. The average evaluation metric curve is computed by aver-
aging the evaluation metric curve at each fraction of pixels manipulated across
all detections. AAUC of a particular evaluation metric curve is the AUC of the
average evaluation metric curve.

Results. Figure 9 illustrates the AAUC computed by evaluating the explana-
tions of each bounding box coordinate is similar across different evaluation met-
rics curves. This similarity is consistent for all the detectors and explanation
methods combinations evaluated. Therefore, the explanation methods quantita-
tively explain each bounding box coordinate decisions with similar performance.
In this work, the AAUC for the bounding box decision is computed by averaging
the AUC of all the evaluation metric curves corresponding to all the box coor-
dinate explanations. This offers the means to evaluate the explanation methods
across all the bounding box coordinate decisions.

Figure 10 and Fig. 11 illustrate quantitatively complementary trends in the
evaluation metric curves plotted by tracking box movement distance in pixels and
box IoU. The IoU decreases and box movement distance increases as the pixels
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Fig. 9. The figure illustrates the average AUC, AAUC, for the evaluation metric curves
obtained by tracking box IoU (a, c) and box movement distance (b, d) as the pixels
are deleted sequentially. Each bar corresponds to the AAUC estimated by evaluating
explanations generated for each bounding box coordinate decisions using the explana-
tion methods specified in the x-axis of all detection made by EfficientDet-D0 in the
evaluation set images. AAUC is computed by averaging the AUC of all the evaluation
metric curves generated using the combination specified in the sub-captions. Lower
AAUC is better in all the plots.

are deleted sequentially as shown in Fig. 10. Similarly, Fig. 11 illustrates the
increase in box IoU and decrease in box movement distance as pixels are inserted
to a blurred version of the image. There is a large difference in the AAUC between
the single-stage and two-stage detectors. This is primarily due to the RPN in the
two-stage detectors. The proposals from RPN are relatively more sensitive to the
box coordinate change than the predefined anchors of the single-stage detectors.
In addition, Fig. 10d and Fig. 11d indicates the steady change of box coordinates
in the final detections of the EfficientDet-D0. However, SSD and Faster R-CNN
saturate relatively sooner. In the remainder of this work, the ability of the box
IoU effect is used for quantitative evaluation. This is only because the box IoU
effect offers the same scale between 0 to 1 as the class maximum probability
effect. In addition, both box IoU and class maximum probability effect follow
the trend lower AUC is better for the deletion case. However, it is recommended
to consider all the box IoU and box movement distance effects at the level of
each box coordinate for a more accurate evaluation.

Figure 12 and Appendix Fig. 17 aids in understanding the explanation
method interpreting both the classification and bounding box decision of a par-
ticular detector more faithful than other explanation methods. Figure 12a illus-
trate SSD512 classification decisions are better explained by SGBP at single-
box setting for deletion metrics. However, the bounding box decisions are not
explained as well as the classification decisions. Figure 12b illustrate a similar
scenario for SGBP with EfficientDet-D0 and Faster R-CNN at the realistic set-
ting for deletion metrics. However, all selected explanation methods explain the
bounding box and classification decisions of SSD512 relatively better at the
single-box setting for insertion metrics. In general, none of the selected expla-
nation methods explain both the classification and bounding box regression
decisions substantially well compared to other methods for all detectors. This
answers EQ13. Similarly, none of the detectors is explained more faithfully for
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Fig. 10. Comparison of average curves obtained by tracking box IoU (a, c) and box
movement distance (b, d) as the pixels are deleted sequentially. Each average curve
is the average of the evaluation curves plotted by evaluating the explanations of all
bounding box coordinate decisions across all the detections by the respective detector.
The explanations are generated using GBP. The evaluation metric curve is generated
using the combination specified in the sub-captions.

Fig. 11. Comparison of average curves obtained by tracking box IoU (a, c) and box
movement distance (b, d) as the pixels are inserted sequentially. Each average curve
is the average of the evaluation curves plotted by evaluating the explanations of all
bounding box coordinate decisions across all the detections by the respective detector.
The explanations are generated using GBP. The evaluation metric curve is generated
using the combination specified in the sub-captions.

both classification and bounding box decisions among the selected detectors by
a single method across all evaluation metrics discussed. This is illustrated by
no explanation methods (by different colors) or no detectors (by different char-
acters) being represent in the lower left rectangle or upper right rectangle in
Fig. 12 and Appendix Fig. 17 respectively.

Figure 14a and Fig. 14c illustrate AAUC of the classification saliency maps
and the saliency maps combined using different merging methods are different
in certain scenarios while tracking the maximum probability. The AAUC of all
the box coordinate saliency maps is provided for a baseline comparison. This
denotes the effect on maximum probability by removing pixels in the order of
most important depending on the all box coordinates saliency maps. Similarly,
Fig. 14b and Fig. 14d illustrate the similarity in the AAUC of all box coordi-
nate explanations and the merged saliency maps while tracking the box IoU.
In Fig. 14a, the evaluation of the GBP classification saliency map is less faith-
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Fig. 12. Comparison between the Deletion AAUC of the evaluation metric curves for
the classification and all bounding box coordinate explanations generated across the
chosen explanation methods and detectors. Explanation methods (highlighted with dif-
ferent colors) placed at a lower value in the x-axis and y-axis perform relatively better
at explaining the box coordinates and classification decisions respectively. Detectors
(marked with different characters) placed at a lower value in x-axis and y-axis are rela-
tively better explained for the box coordinates and classification decisions respectively.

Fig. 13. Multi-metric comparison of quantitative results. According to these metrics,
all methods perform similarly when considering all object detectors. The user study
and visual inspection of explanation heatmaps reveal more information.

ful than the merged saliency map. Therefore, the merged saliency map repre-
sents the classification decision more faithfully than the standalone classification
explanation in the case of EfficientDet-D0. However, Fig. 14a and Fig. 14c illus-
trate in the case of SGBP explaining EfficientDet-D0 and certain cases of Faster
R-CNN respectively separately classification saliency maps are more faithful in
depicting the classification decision. The larger AAUC for all the box coordinate
saliency maps generated using each method for Faster R-CNN indicate the box
saliency maps are not faithful to the bounding box decisions of Faster R-CNN.
This is coherent with the visual analysis. Therefore, in certain scenarios merg-
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Fig. 14. Comparison of average AUC, AAUC, for the evaluation metric curves obtained
by tracking maximum probability (a, c) and box IoU (b, d) as the most important pixels
based on the explanation generated using the explanation methods specified in the x-
axis are deleted sequentially. All the explanations are generated for detection made by
EfficientDet-D0 (left) and Faster R-CNN (right) in the evaluation set images. Lower
AAUC is better in both plots.

ing is helpful to represent the reason for a particular decision. However, each
individual saliency map provides peculiar information about the detection. For
instance, the visual correspondence shown in Fig. 2 to each bounding coordinate
information is seen only at the level of individual box coordinate explanations.

An overall comparison of all quantitative metrics is shown in Fig. 13. For the
purpose of understanding, the ranking of explanation methods explaining a par-
ticular detector is provided in Table 1. SGBP performs relatively better across
all selected detectors. In addition, IG is ranked least across all the selected detec-
tors. SSD detector is better explained by all the explanation methods. One of
the reasons can be SSD is a simpler architecture compared to EfficientDet-D0
and Faster R-CNN. EfficientDet-D0 and Faster R-CNN include a Bi-directional
Feature Pyramid Network (BiFPN) and Region Proposal Network (RPN) respec-
tively. However, further experiments should be conducted for validation.

4.4 Human-Centric Evaluation

The human-centric evaluation ranks the explanation methods for each detector
and ranks the multi-object visualization methods with a user study. All impor-
tant details of the user study are presented in Appendix H.

Ranking Explanation Methods. Previous work assess the user trust in the
model explanations generated by a particular explanation method [26,29,34]. As
user trust is difficult to evaluate precisely, this work in contrast to previous works
estimate the user preferability of the explanation methods. The user preferabil-
ity for the methods GBP, SGBP, IG, and SIG are evaluated by comparing two
explanations corresponding to a particular predictions. In this study, the expla-
nation methods are compared directly for a particular interest detection and
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Table 1. Ranking of all the explanation methods for a particular detector based on
the quantitative evaluation metrics. A lower value is a better rank. The explanation
method better explaining a particular detector is awarded a better rank. Each detector
is ranked with respect to each evaluation metric considering a particular explanation
method. The column names other than the last column and the first two columns
represent the average AUC for the respective evaluation metric. The overall rank is
computed by calculating the sum along the row and awarding the best rank to the
lowest sum. OD - Object detectors, IM - Interpretation method.

OD IM DCS ICS DBS IBS DCR ICR DBR IBR Overall Rank

ED0 GBP 4 3 1 2 4 3 3 1 3
SGBP 1 2 2 4 1 2 2 2 2
IG 3 4 4 3 3 4 4 4 4
SIG 2 1 3 1 2 1 1 3 1

SSD GBP 2 3 2 3 1 3 2 3 3
SGBP 1 2 1 2 2 2 1 1 1
IG 4 4 4 4 4 4 7 4 4
SIG 3 1 3 1 3 1 3 2 2

FRN GBP 4 3 1 2 2 1 1 1 1
SGBP 1 1 2 1 1 3 2 2 2
IG 3 4 4 4 4 4 4 4 4
SIG 2 2 3 3 3 2 3 3 3

interest decision across SSD, EDO, and FRN detector separately. The evalua-
tion identifies the relatively more trusted explanation method by the users for
a particular detector. The explanation methods are ranked by relatively rating
the explanations generated using different explanation methods for a particular
detection made by a detector. The rating serves as a measure of user preference.

A pair of explanations generated by different explanation methods using the
same interest decision and same interest detection for the same detector is shown
to a number of human users as shown in Fig. 38. The detector, interest decision,
interest detection, and explanation method used to generate explanations are
randomly sampled for each question and each user. In addition, the image cho-
sen for a particular question is randomly sampled from an evaluation set. The
evaluation set is a randomly sampled set containing 50 images from the COCO
test 2017. This avoids incorporating any bias into the question generation pro-
cedure. Each question is generated on the fly for each user performing the task.
The explanations are named Robot A explanation and Robot B explanation to
conceal the names of the explanation methods to the user. The robots are not
detectors. In this study, the robots are treated as explanation methods. Robot
A explanation and Robot B explanation for each question is randomly assigned
with a pair of explanation method output. This is done to reduce the bias due
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Fig. 15. Ranking obtained for the explanation methods from the user trust study
for each detector selected in this work. An initial Elo rating of 1000 is used for all
explanation methods. The explanation method with a higher Elo rating has gained
relatively more user preferability in the random pair-wise comparisons of explanations
for each detector. The rank of a particular method is provided on the top of the bar
corresponding to the method.

to positioning and ordering bias of the explanations as shown to users. The task
provided for the user is to rate the quality of the Robot A explanation based on
the Robot B explanation. The scoring gives scores in the range [−2, 2] depending
if Robot A or B is better. The available options are provided in Table 5.

A single question in the evaluation is treated as a game between two ran-
domly matched players. The explanation methods are the players. The game
result depends on the explanation quality produced by the competing explana-
tion methods for a particular detection decision. In case of a draw, both explana-
tion methods receive the same score. During non-draw situations, the points won
by a particular explanation method are the points lost by the other explanation
method. By treating all the questions answered by numerous users as individual
games, the global ranking is obtained using the Elo rating system [13]. Each
explanation method is awarded an initial Elo rating of 1000.

Ranking Multi-object Visualization Methods. The rank for multi-object
visualization methods is obtained by voting for the method producing the most
understandable explanation among the four methods. Each user is asked a set
of questions showing the multi-object visualization generated by all four meth-
ods. The user is provided with a None of the methods option to chose during
scenarios where all the multi-object visualizations generated are confusing and
incomprehensible to the user. The methods are ranked by counting the total
number of votes each method has obtained. The experiment is performed using
COCO 2017 test split and the VOC 2012.

Results. Each user is requested to answer 10 questions, split as 7 and 3 between
Task 1 and Task 2, respectively. 52 participants have answered the user study
for both task 1 and task 2. The participants range across researchers, students,
deep learning engineers, office secretaries, and software engineers.

Figure 15 indicates SGBP provide relatively more reasonable explanations
with higher user preferability for both single-stage detectors. Similarly, SIG is
preferred for the two-stage detector. Figure 16a illustrates the top two ranks are
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obtained by SmoothGrad versions of the SGBP and IG for all detectors. GBP
relatively performs in the middle rank in the majority of cases. SGBP achieves
the first rank in both the human-centric evaluation and functional evaluation.
Figure 16a illustrates the overall ranking taking into account all the bounding
box and classification explanations together. The ranking is similar in analyzing
the bounding box and classification explanations separately.

Fig. 16. Ranking obtained from the user study
considering all user answers. The rank of a par-
ticular method is provided on the top of the bar
corresponding to the method.

The ranking of multi-object
visualization methods clearly
illustrate that majority of the
users are able to understand
convex polygon-based explana-
tions. 18 answers among the
total 156 are None of the meth-
ods because none of the four
other methods provided a leg-
ible summary of all the expla-
nation methods and detections.
The users have selected prin-
cipal component-based visual-
ization in cases involving less
than 3 detections in an image.
In addition, None of the meth-

ods is chosen in most of the cases involving more than 9 detections or more
than 3 overlapping detections in an image. Among the total participants, only
89 users (57%) agree with the convex polygon-based visualization. Therefore,
by considering the remaining 43% users, there is a lot of need to improve the
multi-object visualization methods discussed in this work and achieve a better
summary.

5 Conclusions and Future Work

Explaining convolutional object detectors is crucial given the ubiquity of detec-
tors in autonomous driving, healthcare, and robotics. We extend post-hoc
gradient-based explanation methods to explain both classification and bounding
box decisions of EfficientDet-D0, SSD512, and Faster R-CNN. In order to inte-
grate explanations and summarize saliency maps into a single output images,
we propose four multi-object visualization methods: PCA, Contours, Density
clustering, and Convex polygons, to merge explanations of a particular decision.

We evaluate these detectors and their explanations using a set of quantita-
tive metrics (insertion and deletion of pixels according to saliency map impor-
tance) and with a user study to understand how useful these explanations are
to humans. Insertion and deletion metrics indicate that SGBP provides more
faithful explanations in the overall ranking. In general there is no detector that
clearly provides better explanations, as a best depends on the criteria being
used, but visual inspection indicates a weak relationship that newer detectors
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(like EfficientDet) have better explanations without artifacts (Fig. 2), and that
different backbones do have an influence on the saliency map quality (Fig. 6).

The user study reveals a human preference for SGBP explanations for SSD
and EfficientDet (and SIG for Faster R-CNN), which is consistent with the quan-
titative evaluation, and for multi-object explanation visualizations, convex poly-
gons are clearly preferred by humans.

We analyze certain failure modes of a detector using the formulated expla-
nation approach and provide several examples. The overall message of our work
is to always explain both object classification and bounding box decisions, and
that it is possible to combine explanations into a single output image through
convex polygon representation of the saliency map.

Finally, we developed an open-source toolkit, DExT, to explain decisions
made by a detector using saliency maps, to generate multi-object visualizations,
and to analyze failure modes. We expect that DExT and our evaluation will con-
tribute to the development of holistic explanation methods for object detectors,
considering all their output bounding boxes, and both object classification and
bounding box decisions.

Limitations. Firstly, the pixel insertion/deletion metrics might be difficult to
interpret [16] and more advanced metrics could be used [45]. However, the met-
ric selected should consider the specifics of object detection and evaluate both
classification and bounding box regression. Moreover, as detectors are prone to
non-local effects, removing pixels from the image [30] can cause bounding boxes
to appear or disappear. Therefore, special tracking of a particular box is needed.
We extend the classic pixel insertion/deletion metrics [3] for object detection
considering these two aspects.

The second limitation is about the user study. Given the challenges in for-
mulating a bias-free question, we ask users to select which explanation method
is better. This is a subjective human judgment and does not necessarily have
to correspond with the true input feature attribution made by the explanation
method. Another part of the user study is comparing multi-object visualization
methods, where we believe there is a much clearer conclusion. The novelty of
our work is to combine quantitative, qualitative, and a user study, to empirically
evaluate saliency explanations for detectors considering object classification and
bounding box regression decisions.

In general, saliency methods are prone to heavy criticisms questioning the
reliability of the methods. This study extends a few gradient-based saliency
methods for detectors and conducts extensive evaluation. However, we acknowl-
edge that there are other prominent saliency methods to study.

Our work evaluates and explains real-world object detectors without any toy
example. The literature has previously performed basic sanity checks on toy
usecases that does not include multiple localization and classification outputs.
In addition, object detectors are categorized on the basis of number of stages
(single-stage [23,43] and two-stage [28]), availability of anchors (anchor-based
[23,43] and anchor-free [27,44]), and vision transformer based detectors [9,10].
We explain detectors specific to certain groups (SSD512, Faster R-CNN, and
EfficientDet) and leave anchor-free and transformer-based detectors for future.
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Even though fully white-box interpretable models would be the best solution
[31], this is not yet available at the model scale required for high object detection
performance.
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52. Zablocki, É., Ben-Younes, H., Pérez, P., Cord, M.: Explainability of vision-based
autonomous driving systems: review and challenges. Computing Research Reposi-
tory (CoRR) abs/2101.05307 (2021)

53. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

54. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Computing
Research Repository (CoRR) abs/1905.05055 (2019)

https://icml.cc/
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53


Unveiling Black-Boxes: Explainable Deep
Learning Models for Patent Classification

Md Shajalal1,2(B), Sebastian Denef3, Md. Rezaul Karim4, Alexander Boden1,5,
and Gunnar Stevens2

1 Fraunhofer-Institute for Applied Information Technology FIT, Sankt Augustin,
Germany

md.shajalal@fit.fraunhofer.de
2 University of Siegen, Siegen, Germany

3 AGENTS.inc., Berlin, Germany
4 RWTH Aachen University, Aachen, Germany

5 Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany

Abstract. Recent technological advancements have led to a large num-
ber of patents in a diverse range of domains, making it challenging
for human experts to analyze and manage. State-of-the-art methods for
multi-label patent classification rely on deep neural networks (DNNs),
which are complex and often considered black-boxes due to their opaque
decision-making processes. In this paper, we propose a novel deep
explainable patent classification framework by introducing layer-wise rel-
evance propagation (LRP) to provide human-understandable explana-
tions for predictions. We train several DNN models, including Bi-LSTM,
CNN, and CNN-BiLSTM, and propagate the predictions backward from
the output layer up to the input layer of the model to identify the rele-
vance of words for individual predictions. Considering the relevance score,
we then generate explanations by visualizing relevant words for the pre-
dicted patent class. Experimental results on two datasets comprising
two-million patent texts demonstrate high performance in terms of vari-
ous evaluation measures. The explanations generated for each prediction
highlight important relevant words that align with the predicted class,
making the prediction more understandable. Explainable systems have
the potential to facilitate the adoption of complex AI-enabled methods
for patent classification in real-world applications.

Keywords: Patent Classification · Explainability · Layer-wise
relevance propagation · Deep Learning · Interpretability

1 Introduction

Patent classification is an important task in the field of intellectual property man-
agement, involving the categorization of patents into different categories based
on their technical contents [1]. Traditional approaches to patent classification
have relied on manual categorization by experts, which can be time-consuming
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Longo (Ed.): xAI 2023, CCIS 1902, pp. 457–474, 2023.
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and subjective [2]. However, due to the exponential growth of patent applica-
tions in recent times, it has become increasingly challenging for human experts
to classify patents. The international patent classification (IPC) system, which
consists of 645 labels for the general classes and over 67,000 labels for the sub-
groups, reflects the magnitude of challenges in multi-level patent classification
tasks [1]. Furthermore, patent texts are generally lengthy and contain irregular
scientific terms, making them a challenging field of application for text classifi-
cation approaches, as patents often include highly technical and scientific terms
that are not commonly used in everyday language, and authors often use jargon
to make their patents unique and innovative [3]. These factors contribute to the
significant challenges associated with patent classification.

However, recent advancements in machine learning (ML) and deep neural
network (DNN) have made significant progress in automating the patent clas-
sification process. In the past, classical ML models, such as support vector
machine (SVM), K-nearest neighbour, and naive bayes, have been widely used
to automatically classify patent texts [4]. However, more recently, several DNN
models have been proposed to address the challenges associated with patent clas-
sification. Generally, these models represent patent text using word embedding
and transformer-based pre-trained models [1,2,5–7]. The DNN models, includ-
ing recurrent neural networks (RNN) and their variants such as convolutional
neural networks (CNN), long short-term memory networks (LSTM), bidirec-
tional LSTM (Bi-LSTM), and gated recurrent unit (GRU), can learn to classify
patents based on their textual content [2,5,7–9]. Hence, these enable faster and
more reliable categorization of patents and scientific articles.

Mathematically, DNN-based classification approaches are often complex in
their architecture, and the decision-making procedures can be opaque [10,11].
While these approaches may exhibit efficient performance in classifying patents,
the decisions they make are often not understandable to patent experts, or even
to practitioners of artificial intelligence (AI). As a result, it is crucial to ensure
that the methods and decision-making procedures used in patent classification
are transparent and trustworthy, with clear explanations provided for the reasons
behind each prediction. This is particularly important because patents are legal
documents, and it is essential to comprehend the reasoning behind the classifica-
tion decisions made by the model. Therefore, patent classification models should
be designed to be explainable, allowing the reasons and priorities behind each
prediction to be presented to users. This will help build trust in the predictive
models and promote transparency among users and stakeholders.

For text-based uni-modal patent classification tasks, explanations can be pro-
vided by highlighting relevant words and their relevance to the prediction, thus
increasing trust of users in the accuracy of predictions. In recent years, there has
been a growing interest in developing explainable artificial intelligence (XAI) to
unveil the black-box decision-making process of DNN models in diverse fields,
including image processing [12], text processing, finance [13,14], and health appli-
cations [15,16]. These XAI models can provide insights into the decision-making
process, explaining the reasoning behind specific predictions, the overall model’s
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priorities in decision making, and thereby enhancing the transparency and trust-
worthiness of the application [10–12,17,18].

In this paper, our goal is to develop a patent classification framework that not
only predicts the classes of patents but also provides explanations for the pre-
dicted classes. To achieve this, we propose a new explainable method for patent
classification based on layer-wise relevance propagation (LRP). This method can
break down the contribution of patent terms that are crucial in classifying a given
patent into a certain class. We start by representing the patent terms using a
high-dimensional distributed semantic feature vector obtained from pre-trained
word-embedding models. Next, we proceed to train several DNN-based models,
including Bi-LSTM, CNN, and CNN-BiLSTM, which are capable of predicting
the patent class. Finally, the LRP-enabled explanations interface highlights rel-
evant words that contributed to the final prediction, providing an explanation
for the model’s decision.

We conducted experiments using two benchmark patent classification
datasets, and the experimental results demonstrated the effectiveness of our
approach in both classifying patent documents and providing explanations for
the predictions. Our contributions in this paper are twofold:

1. We propose an LRP-based explainability method that generates explanations
for predictions by highlighting relevant patent terms that support the pre-
dicted class.

2. Our developed DNN models show effective performance in terms of multiple
evaluation metrics on two different benchmark datasets, and performance
comparison with existing works confirms their consistency and effectiveness.

Overall, explainable DNN models offer promising solutions for patent classifi-
cation, enabling faster and more accurate categorization while providing insights
into the decision-making process. With the increasing volume of patent applica-
tions, the development of such explainable models could be beneficial in auto-
matically categorizing patents with efficiency and transparency.

The rest of the paper is structured as follows: Sect. 2 presents the summary of
existing research on patent classification. Our proposed explainable deep patent
classification framework is presented in Sect. 3. We demonstrate the effectiveness
of our methods in classifying patents and explaining the predictions in detail in
Sect. 4. Finally, Sect. 5 concluded our findings with some future directions in
explainable patent classification research.

2 Related Work

In recent years, the patent classification task has gained significant attention in
the field of natural language processing (NLP) research, as evidenced by several
notable studies [2,3,19]. Various methods have been employed for classifying and
analyzing patent data, and the methods can be categorized based on different
factors such as the techniques utilized, the tasks’ objectives (e.g., multi-class or
multi-level classification), and the type of resources used to represent the patent
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data (i.e., uni-modal vs multi- modal) [7,9,20]. However, traditional approaches
have relied on classical ML and bag-of-words (BoW)-based text representation,
which have limitations in capturing semantic and contextual information of the
text, as they can only capture lexical information. With the advent of different
word-embedding techniques such as word2vec by Mikolov et al. [21,22], Glove by
Pennington et al. [23], and FastText by Bojanowski et al. [24], the NLP research
has been revolutionized with the ability to represent text using high-dimensional
semantic vector representations [25–27]. More recently, there has been a growing
trend in employing transformer-based pre-trained models, including deep bidi-
rectional transformer (BERT) [28], robust optimized BERT (RoBERTa) [29],
distilled BERT (DistilBERT) [30], and XLNet [31], for text representation in
NLP tasks.

Shaobo et al. [2] introduced a deep patent classification framework that uti-
lized convolutional neural networks (CNNs). They started by representing the
text of patents, which was extracted from the title and abstract of the USPTO-
2 patent collection, using a skip-gram-based word-embedding model [2]. They
then used the resulting high-dimensional semantic representations to train CNN
model. Similarly, Lee et al. [3] also employed a CNN-based neural network model,
however, they fine-tuned a pre-trained BERT model for text representations. A
DNN-based framework employing Bi-LSTM-CRF and Bi-GRU-HAN models has
been introduced to extract semantic information from patents’ texts [7].

A multi-level classification framework [9] has been proposed utilizing fine-
tuned transformer-based pre-trained models, such as BERT, XLNet, RoBERTa,
and ELECTRA [32]. Their findings revealed that XLNet outperformed the base-
line models in terms of classification accuracy. In another study, Roudsari et
al. [20] addressed multi-level (sub-group level) patent classification tasks by
fine-tuning a DistilBERT model for representing patent texts. Jiang et al. [6]
presented a multi-modal technical document classification technique called Tech-
Doc, which incorporated NLP techniques, such as word-embedding, for extract-
ing textual features and descriptive images to capture information for technical
documents. They modelled the classification task using CNNs, RNNs, and Graph
neural networks (GNNs). Additionally, Kang et al. [33] employed a multi-modal
embedding approach for searching patent documents.

A patent classification method called Patent2vec has been introduced, which
leverages multi-view patent graph analysis to capture low-dimensional represen-
tations of patent texts [8]. Pujari et al. [34] proposed a transformer-based multi-
task model (TMM) for hierarchical patent classification, and their experimental
results showed higher precision and recall compared to existing non-neural and
neural methods. They also proposed a method to evaluate neural multi-field
document representations for patent text classification. Similarly, Aroyehun et
al. [35] introduced a hierarchical transfer and multi-task learning approach for
patent classification, following a similar methodology. Roudsari et al. [36] com-
pared different word-embedding methods for patent classification performance.
Li et al. [37] proposed a contrastive learning framework called CoPatE for patent
embedding, aimed at capturing high-level semantics for very large-scale patents
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to be classified. An automated ensemble learning-based framework for single-
level patent classification is introduced by Kamateri et al. [38].

However, to the best of our knowledge, none of the existing patent classifica-
tion methods are explainable. Given the complexity of the multi-level classifica-
tion task, it is crucial for users and patent experts to understand the reasoning
behind the AI-enabled method’s predictions, as it classifies patents into one
of more than 67,000 classes (including sub-group classes). Therefore, the aim of
this paper is to generate explanations that highlight relevant words, helping users
understand the rationale behind the model’s predictions. Taking inspiration from
the effectiveness and interpretability of layer-wise relevance propagation (LRP)
in other short-text classification tasks [39–41], we have adopted LRP [12] as the
method for explaining the complex neural networks-based patent classification
model.

Deep Patent Modelling
(Bi-LSTM, CNN, CNN-BiLSTM)

Semantic Patent 
Representation

C, Patent Class

Input Layer

Output Layer

Explaining prediction highlighting
relevant words related to a class C

- LRP Backwards propagation flow- A Neuron - Network Forward Flow

Hidden Layer Hidden Layer Explanation generated 
by LRP

Fig. 1. A conceptual overview diagram of our explainable patent classification frame-
work.

3 Explainable Patent Classification

Our proposed explainable patent classification framework consists of two major
components, i) training DNN-based classification model using the semantic rep-
resentation of patent text, and ii) explanation generation component leveraging
layer-wise relevance propagation (LRP). The conceptual diagram with major
components is depicted in Fig. 1. Our method first represents preprocessed
patent texts semantically by high-dimensional vector leveraging pre-trained word
embedding models. Then, the semantic representations for patent text are fed to
train multiple DNN-based classification models including Bi-LSTM, CNN, and
CNN-BiLSTM. For a particular deep patent classification model, our introduced
LRP algorithm computes the relevance score towards a certain class for a given
patent by redistributing the relevance score with backward propagation from the
output layer to the input layer. Eventually, we get the score for patent terms that
highlight the relevancy related to the predicted class of a given input patent.
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3.1 Training Deep Neural Models

Before training any specific DNN-based patent classification model, we employ
FastText word-embedding model to represent each word of patent text with a
high-dimensional feature vector and the element of each vector carries semantic
and contextual information of that word. FastText is a character n-gram-based
embedding technique. Unlike, Glove and Word2Vec, it can provide a word vector
for out-of-vocabulary (OOV) words. Patents’ text contains less used scientific
terms and some words that are higly context specific. For example, patent in
the field of chemistry has a lot of reagents and chemical names, even for some
new patents the reagents’ names might be completely new, proposed by the
inventors. Considering this intuition, we chose FastText embedding instead of
Glove and word2vec. We make a sequence of embedding of the words for each
patent and then fed it into the deep-learning model. Our trained different neural
network models includes bidirectional LSTM (Bi-LSTM), convolutional neural
networks (CNN), CNN-BiLSTM, a combination of CNN and Bi-LSTM.

3.2 Explaining Predictions with LRP

Let c denotes the predicted class for the input patent p. The LRP algorithm
applies the layer-wise conservation principle to calculate the relevance score for
features. The computation starts from the output layer and then redistributes
the relevance weight, eventually back-propagating it to the input layers [39,
40]. In other words, the relevance score is computed at each layer of the DNN
model. Following a specific rule, the relevance score is attributed from lower-layer
neurons to higher-layer neurons, and each immediate-layer neuron is assigned a
relevance score up to the input layers, based on this rule.

The flow of propagation for computing the relevance is depicted by the red
arrow that goes from the output towards the input layers in Fig. 2. The figure
conceptually reflects how the semantic representation of patent text leads to a
particular class in DNN models and back-propagates the relevance score from
the output layer to the input layer for explanations highlighting relevant terms
aligned with the predicted class.

The prediction score, fc(p) by our deep patent classification model, which
is a scalar value corresponding to the patent class c. Using LRP, our aim is
to identify the relevance score for each dimension d of a given patent vector p
for the target patent class c. Our objective is to compute the relevance score
of each input feature (i.e., words) that illustrates how positively (or negatively)
contributes to classifying the patent as class c (or another class).

Let zj be the neuron of the upper layer and the computation of the neuron
is calculated as

zj =
∑

i

zi · wij + bj , (1)

where wij be the weight matrix and bj denotes the bias [40]. Given that the
relevance score for upper-layer neurons zj is Rj and we move towards lower-
layer neurons to distribute that relevance. In the final layer, there is only one
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Fig. 2. A conceptual overview diagram illustrating the working flow of layer-wise rel-
evance propagation (LRP) (Figure created based on [39]).

neuron (i.e., the prediction score) and in that case, Rj is the prediction score
by the function fc(p). The redistribution of the relevance to the lower layers is
done by following two major steps. We need to compute relevance messages to
go from upper-layer to lower-layer neurons [40].

Let i be the immediate lower layer and its neurons are denoted by zi. Com-
putationally, the relevance massages Ri←j can be computed as followings [40].

Ri←j =
zi · wij + ε·sign(zj)+δ·bj

N

zj + ε · sign(zj)
· Rj . (2)

The total number of neurons in the layer i is denoted as N and ε is the
stabilizer, a small positive real number (i.e., 0.001). By summing up all the
relevance scores of the neuron in zi in layer i, we can obtain the relevance in layer
i, Ri =

∑
i Ri←j . δ can be either 0 or 1 (we use δ = 1) [40,41]. With the relevance

messages, we can calculate the amount of relevance that circulates from one
layer’s neuron to the next layer’s neuron. However, the computation for relevance
distribution in the fully connected layers is computed as Rj→k = zjk∑

j zjk
Rk [39].

The value of the relevance score for each relevant term lies in [0,1]. The higher
the score represents higher the relevancy of the terms towards the predicted
class.

4 Experiments

This section presents the details about the datasets, experiment results, and
discussion of generated explanation with LRP.
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4.1 Dataset

AI-Growth-Lab Patent Dataset: We conducted experiments on a dataset
containing 1.5 million patent claims annotated with patent class1. According
to the CPC patent system, the classification is hierarchical with multiple levels
including section, class, subclass, and group. For example, there are 667 labels
in the subclass level [42]. However, for a better understanding of the generated
explanations and the reasons behind a prediction for a given patent, we modeled
the patent classification task with 9 general classes including Human necessi-
ties, Performing operations; transporting, Chemistry; metallurgy, Textiles; paper,
Fixed constructions, Mechanical engineering; lighting; heating; weapons; blasting
engines or pumps, Physics, Electricity and General.

BigPatent Dataset: BigPatent2 dataset is prepared by processing 1.3 million
patent texts [43]. However, the classification dataset contains in total of 35k
patent texts with 9 above-mentioned classes as labels. They provided the dataset
by splitting it into training, validation, and testing set, the number of samples
are 25K, 5K, and 5K, respectively. There are two different texts for each patent,
one is a raw text from patent claims and another version is the human-generated
abstract summarized from the patent claims.

Number of patents

Human necessities

Performing operations

Chemistry

Textiles

Fixed constructions

Mechanical engineering

Physics

Electricity

General

Fig. 3. The distribution of the patents for different class on AI-growth-Lab data

However, the number of samples per patent class is varied widely for both
datasets, which means both are imbalanced dataset. The horizontal bar chart
in Fig. 3 and 4 show the level of imbalance for both datasets. This imbalance
distribution of samples per class poses an additional challenge in this multi-level
classification task.
1 Dataset: https://huggingface.co/AI-Growth-Lab [42].
2 Dataset: https://huggingface.co/datasets/ccdv/patent-classification/tree/main.

https://huggingface.co/AI-Growth-Lab
https://huggingface.co/datasets/ccdv/patent-classification/tree/main
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Fig. 4. The distribution of the patents for different class on BigPatent data

4.2 Experimental Setup

We conducted experiments using three different DNN models, namely Bi-LSTM,
CNN, and CNN-BiLSTM, utilizing the FastText pre-trained word-embedding
model for text representation in the embedding layers. The Bi-LSTM model
consists of a layer of Bi-LSTM with 64 units after embedding layer, followed
by another Bi-LSTM layer with 32 units, and then two fully-connected layers
with 64 and 9 units, respectively. We applied the rectified linear units (ReLU)
activation function in the hidden dense layer, and the softmax activation function
in the output layer. For the CNN model, after the embedding layer, we have a
1-dimensional convolutional layer followed by a global average pooling layer,
and finally, the output layer is a fully-connected layer with 9 units. The CNN-
BiLSTM model has a convolutional layer followed by a global average pooling
layer, and then the Bi-LSTM part is similar to the above-mentioned Bi-LSTM
model. The activation functions in the fully connected hidden and output layers
are ReLU and softmax, respectively. We implemented our methods using scikit-
learn and Keras, and represented the patent text using the FastText pre-trained
word-embedding model3. For implementing LRP for the Bi-LSTM network, we
followed the method described in [40]4. For the BigPatent dataset, the training,
testing, and validation sets are already split. For the AI-Growth-Lab data, the
ratio for the training and testing set is 80% and 20%, respectively.

3 https://fasttext.cc/docs/en/crawl-vectors.html.
4 https://github.com/ArrasL/LRP for LSTM.

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/ArrasL/LRP_for_LSTM
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Table 1. The performance of different deep patent classification models on two datasets
in terms of precision, recall and f1-score. The best result is in bold.

Dataset Method Precision Recall F1-Score

AI-Growth-Lab Bi-LSTM 0.69 0.70 0.69

CNN 0.62 0.63 0.62

CNN-BiLSTM 0.69 0.68 0.69

BigPatent Bi-LSTM 0.79 0.78 0.78

CNN 0.75 0.76 0.76

CNN-BiLSTM 0.77 0.76 0.76

4.3 Performance Analysis

The performance of the proposed classification models was evaluated using three
evaluation metrics, including Precision, Recall, and F1-Score, on two datasets, as
shown in Table 1. The results demonstrate consistent performance across most of
the deep classification models. Among them, the Bi-LSTM model exhibited bet-
ter performance in terms of all evaluation metrics on both datasets. However, the
performance of the other two models, CNN and CNN-BiLSTM, was also consis-
tent and effective, though slightly lower than the Bi-LSTM model. Specifically,
for the first dataset, CNN-BiLSTM performed equally well in terms of Precision
(0.69) and F1-Score (0.69), while the performance of the CNN-based model was
comparatively lower for the AI-Growth-Lab dataset, with a Precision of 62%,
which was 7% lower than the best-performing Bi-LSTM model. However, for the
BigPatent dataset, the CNN model exhibited considerably better performance,
with a Precision of 75%, which was only 4% lower than the Bi-LSTM model.
The performance difference between the models for the other two metrics was
even lower, at 2%.

Table 2. Class-wise performance of Bi-LSTM model on BigPatent Dataset

Patent Class label Precision Recall F1-score

Human necessities 1 0.79 0.91 0.85

Performing operations 2 0.74 0.66 0.70

Chemistry 3 0.75 0.88 0.81

Textiles 4 0.71 0.74 0.73

Fixed constructions 5 0.65 0.70 0.67

Mechanical engineering 6 0.60 0.84 0.70

Physics 7 0.75 0.82 0.78

Electricity 8 0.78 0.86 0.82

General 9 0.71 0.46 0.41
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The performance of all DNN-based classifiers on the BigPatent dataset is
significantly superior compared to the first dataset. This may be attributed to
the fact that the BigPatent dataset includes finely-grained abstracts of patents
which are generated by human assessors, taking into consideration the patent
texts. As a result, the semantic representation of the fine-tuned text in the Big-
Patent dataset is enriched compared to the raw patent claims in other dataset.
We present the performance of Bi-LSTM model by showcasing the class-wise
performance on the BigPatent dataset. Table 2 displays the performance across
nine different patent classes. The Bi-LSTM model demonstrates favorable and
consistent performance across most patent classes, with the exception of the gen-
eral category. It is hypothesized that the patents in the “general” category may
contain more commonly used terms compared to patents in other area-specific
categories. Consequently, the captured semantic information may not be suffi-
cient, potentially resulting in lower performance in terms of recall and F1-Score
for the “general” class compared to other classes.

Table 3. Performance comparison with related works

Method Precision Recall F1-Score

Out Method 0.79 0.78 0.78

Roudsari et al. [9] (Bi-LSTM) 0.7825 0.6421 0.68.42

Roudsari et al. [9] (CNN-BiLSTM) 0.7930 0.6513 0.6938

Shaobo et al. [2] (DeepPatent) 0.7977 0.6552 0.6979

We compared the performance of our models with similar models (Table 3)
that used FastText embedding for patent text representation. Compared to
existing works by Roudsari et al. [9] and Shaobo et al. [2], the performance
of our trained models is effective. Roudsari et al. also trained similar models
with semantic text representation with a pre-trained FastText word-embedding
model. They also develop similar DNN models including Bi-LSTM and CNN-
BiLSTM. Shaobo et al. [2] introduced CNN-based deep patent modelling employ-
ing FastText word-embedding model. The performance of our methods on Big-
Patent data is higher than their models for all evaluation metrics except Pre-
cision. The comparison shows the effectiveness of our methods in classifying
patents.

4.4 Generated Explanation for Prediction

We attempted to unbox the black-box nature of the deep patent classification
model by adopting a layer-wise relevance propagation technique to compute the
relevance score for each term by back-propagating the prediction score from the
output layer to input layers. To represent the explanation per predicted class
for a given patent text, we highlighted the related words that contributed to
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Fig. 5. An example explanation for a patent classified as Chemistry patents highlight-
ing relevant words. The higher the intensity of the color, the better the relevancy of
the words contributing to the prediction. (Color figure online)

Fig. 6. An example explanation for a patent classified as Chemistry patents highlight-
ing relevant words. The higher the intensity of the color, the better the relevancy of
the words contributing to the prediction.

the classifier’s prediction. As an example explanation, a patent is classified as
Chemistry, and the related words that contributed to the prediction are high-
lighted in red color in Fig. 5. The figure shows the explanation highlighting
relevant words for the patent that classified as chemistry. The intensity of the
color represents the contributions of a particular word. The higher the inten-
sity of the color (red), the better the relevancy the word is. We can see that
from the figure, the most relevant words include, alkali, alkyl, monomer, acid,
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acrylate, acrylonitrile, acetate, polymer, ether. We can observed that the high-
lighted words are completely related to terms used in organic chemistry and
the explanation makes sense why this patent has been classified as a chemical
patent. The next relevant list of words is soluble, water, stiffness, enhanching,
etc.. These words are directly related to chemistry except stiffness and enhanc-
ing. Since enhancing the stiffness of the paper or paperboard is the objective
of this patent, these words are selected as relevant. Figure 6 shows explanation
for another Chemistry patent. We can also see that the relevant words are high-
lighted including pulp, alcohol, sanitizer, calcium, carbonate, etc., are directly
related to the chemistry field. To understand the impact of particular words, we
vidualize the words in the form of word cloud in Fig. 7. The larger the word, the
higher the relevancy of the word to the certain class.

Fig. 7. An example explanation for a patent classified as Chemistry patent highlighting
relevant words in word cloud. The larger the font of the word, the better the relevancy
of the words contributing to the prediction.

For another example patent in the field of Electricity, Fig. 8 illustrates the
explanations highlighting relevant words that contributed to the classifier to
decide that the patent is from electricity field. The most relevant words, in
this case, include power, channel, modem, device, bonded, bandwidth, data, etc.
We can see that all identified related words are used in electricity literature.
The word device is used for common use in some other fields also, but this
word also can be used to mention any electrical instrument in electricity-related
explanation. Similar to the Fig. 7, we present the word cloud for explanation
in Fig. 9. However, there are some words selected as relevant for both examples
which are not relevant to the specific fields but can be used in literature for any
field. One plausible reason is that those also might carry considerable importance
in describing the any scientific object (i.e., explaining chemical reaction) and
capture good contextual and semantic information in FastText embedding.
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Fig. 8. An example explanation for a patent classified as Electricity patents highlight-
ing relevant words. The higher the intensity of the color, the better the relevancy of
the words contributing to the prediction.

Fig. 9. An example explanation for a patent classified as Electricity patent highlighting
relevant words in word cloud. The larger the font of the word, the better the relevancy
of the words contributing to the prediction.

4.5 Limitations

Our model can explain the prediction for multi-label classification. Since the
patents are classified in different levels and the patent classification system has
a huge set of classes to classify in different levels, it should be explainable for
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multi-level classification also. This will be more challenging to explain the predic-
tion for different subgroups-level classes. Another limitation is that our utilized
pre-trained word-embedding model is not trained on the patent corpus. The
local word-embedding model trained with patent corpus might capture better
contextual and semantic information for scientific terms and jargon. Hence, the
performance might be better than the current approach.

5 Conclusion and Future Direction

This paper aimed at explaining the predictions from DNN-based patent classi-
fication models with layer-wise relevance propagation technique to identify the
relevance of different words in the patent texts for a certain predicted class.
Layer-wise relevance propagation technique can capture context-specific explana-
tory and relevant words to explain the predictions behind certain predicted
classes. The experimental results demonstrated the effectiveness of classifying
patent documents with promising performance compared to existing works. We
observed that the explanations generated by the LRP technique make it eas-
ier to understand why a certain patent is classified as a specific patent class.
Most of the captured words have high relevancy with the patent domain, even
though a few words marked as related are not that relevant (which, however,
should also provide useful information to human expert in assessing the predic-
tions). Even though our approach would still need to be evaluation with users,
we can observe that the explanations are helpful to understand the question why
a certain patent was classified into a specific class, and to assess the results of
deep-learning-based complex artificial intelligence-enabled models.

Since patents have a lot of scientific and uncommon words and phrases (i.e.,
jargon) that are not often used in other texts, we plan to train a local word-
embedding model with patent texts to have better representation in our future
work. It would be interesting to apply a transformer-based approach for the
same purpose. The explanations for sub-group level prediction and capturing
the sub-group context will be even more explanatory. However, the generated
explanations will need to be evaluated by human experts in the patent industry.
Therefore, we plan to have a user-centric evaluation for the generated explana-
tions and elicit more human-centric requirements to be addressed in the future
for better adoption real-word applications.
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Abstract. Convolutional Neural Networks (CNNs) are nowadays the
model of choice in Computer Vision, thanks to their ability to automa-
tize the feature extraction process in visual tasks. However, the knowl-
edge acquired during training is fully sub-symbolic, and hence difficult
to understand and explain to end users. In this paper, we propose a
new technique called HOLMES (HOLonym-MEronym based Semantic
inspection) that decomposes a label into a set of related concepts, and
provides component-level explanations for an image classification model.
Specifically, HOLMES leverages ontologies, web scraping and transfer
learning to automatically construct meronym (parts)-based detectors for
a given holonym (class). Then, it produces heatmaps at the meronym
level and finally, by probing the holonym CNN with occluded images, it
highlights the importance of each part on the classification output. Com-
pared to state-of-the-art saliency methods, HOLMES takes a step fur-
ther and provides information about both where and what the holonym
CNN is looking at. It achieves so without relying on densely annotated
datasets and without forcing concepts to be associated to single com-
putational units. Extensive experimental evaluation on different cate-
gories of objects (animals, tools and vehicles) shows the feasibility of
our approach. On average, HOLMES explanations include at least two
meronyms, and the ablation of a single meronym roughly halves the
holonym model confidence. The resulting heatmaps were quantitatively
evaluated using the deletion/insertion/preservation curves. All metrics
were comparable to those achieved by GradCAM, while offering the
advantage of further decomposing the heatmap in human-understandable
concepts. In addition, results were largely above chance level, thus high-
lighting both the relevance of meronyms to object classification, as well
as HOLMES ability to capture it. The code is available at https://
github.com/FrancesC0de/HOLMES.
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1 Introduction

In recent years, the application of Machine Learning (ML) models has impacted
the most disparate fields of application. In particular, Deep Learning (DL) mod-
els called Convolutional Neural Networks (CNNs) have become the de-facto
standard approach to tackle Computer Vision (CV) problems, spanning from
autonomous driving to image-based medical diagnosis, from satellite observa-
tion to advertisement-driven social media analysis [28].

Unfortunately, DL models are black-boxes, as their fully sub-symbolic inter-
nal knowledge representation makes it impossible for developers and users to
understand the rationale behind the model decision process. This widely recog-
nized limitation has multiple negative implications: (i) difficulty of adoption from
domain experts [14], (ii) GDPR non-compliance [12], (iii) inability to detect
learned spurious correlations [34], and (iv) risk of deploying biased models [22].

Due due this plethora of issues, the field of eXplainable Artificial Intelli-
gence (XAI) has flourished in an attempt to make these black-box models more
understandable from human developers and users [13].

In the specific case of CV tasks and CNN models, most XAI approaches
are based on saliency and produce heatmaps [29], quantifying explanations in
the form of this image depicts a cat because of the highlighted region. On the
one hand, this approach can be sufficient to spot wrong correlations when the
heatmap focuses on the wrong portion of the image, such as the background.
On the other hand, a reasonably-placed heatmap is not a sufficient guarantee
that the DL model is in fact implementing the desired task, and we argue that
these shallow explanations are not enough for a human user to fully trust the
algorithmic decision, nor for a developer to sufficiently debug a model in order
to assess its learning progress. These approaches provide context-less label-level
heatmaps: ironically, they pair deep models with shallow explanations. Con-
versely, when asked to justify an image-classification task, humans typically
rely on the holonym-meronym (whole-part) relationship and produce part-based
explanations, e.g. this image depicts a cat (holonym), because there are pointy
ears up there and a tail there, etc. (meronyms).

There is evidence that CNNs are capable of learning human-interpretable
concepts that, although not explicitly labelled in the training set, are useful to
detect classes for which labels are provided; for instance, scenes classification
networks learn to detect objects present in scenes, and individual units may
even emerge as objects or texture detectors [3]. At the same time, CNNs were
shown to take shortcuts, relying on contextual or unwanted features for their
final classification [8]; other works found CNNs being over-reliant on texture,
rather than shape, for their final classification [9]. In this work, we tackle the
important issue of how, and to what extent, post-hoc explanations can be linked
to underlying, human-interpretable concepts implicitly learned by a network,
with minimal effort in terms of annotation and supervision.

Our Research Question is therefore the following: can we decom-
pose the given label (holonym) into a set of related concepts
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(meronyms), and provide component-level explanations for an image
classification DL model?

In this paper we propose HOLMES (HOLonym-MEronym based Semantic
inspection), a novel XAI technique that can provide explanations at a low-
granularity level.

Given an input image of a given class, its parts (meronyms) are extracted
from a Knowledge Base through the holonym-meronym (whole-part) relation-
ship. Images depicting each part are either extracted from a densely anno-
tated dataset or collected through Web scraping, and then used to train a
meronym model through transfer learning. The resulting model is therefore
a part dectector for the component of the image. The application of XAI
techniques on the meronym model can thus produce part-based explanations.
HOLMES can therefore highlight the occurrence and locations in the image of
both labelled objects and their parts. We evaluated our approach through inser-
tion/deletion/preservation metrics, showing how the parts highlighted by our
approach are crucial for the predictions.

The rest of the paper is organized as follows. In Sect. 2 we connect the pro-
posed technique with other existing approaches in the XAI literature. In Sect. 3
we go through the core concepts behind HOLMES. In Sects. 4 and 5, we report
experimental validation of the HOLMES pipeline. Finally, in Sects. 6 and 7 we
discuss advantages and limitations of the proposed approach, as well as future
studies we plan to conduct to enhance HOLMES capabilities.

2 Related Work

2.1 Feature Extraction and Transfer Learning

Deep Convolutional Neural Networks (CNNs) have been the de-facto standard
models for computer vision in the last years [28]. These models typically encom-
pass a number of convolutional layers, which act as feature extractors, followed
by dense layers used for classification. The major drawback of these models is
that, due to the large amount of parameters, training from scratch requires a
vast amount of data and computational resources [33]. A common technique
exploited to circumvent this problem is transfer learning [36], in which a model
developed for a task is reused as the starting point for a model on a second task.
The typical approach for CV tasks is to select a CNN that was pre-trained on
the standard dataset of Imagenet [7], and reset and re-train the last dense layers
on the new task. The underlying intuition of this approach is that CNNs learn
a hierarchy of features in convolutional layers at different depths, starting from
Gabor filters in the first layers to complex shapes in the last ones [36].

2.2 Interpretable and Explainable Machine Learning

The eXplainable Artificial Intelligence (XAI) research field tackles the problem
of making modern ML models more human-understandable. XAI approaches
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typically belong to one of two paradigms, namely, interpretability and post-
hoc explainability [1,13]. Interpretable ML models are designed and trained in
order to be, to some degree, passively transparent - that is, so that compre-
hensible information about the inner logic of the model is available without the
application of other algorithms. Instead, explainability typically is performed a
posteriori - it is a process that takes place after the ML model has been trained,
and possibly even deployed. Explainability techniques apply external algorithms
to the ML model in order to extract human-understandable information about
the decision process that was produced by the training process.

Explainability methods can be further classified according to two orthogonal
binary attributes: local/global and model agnostic/aware. Local methods provide
an explanation for a single data point, while global methods aim to explain the
behavior of the model as a whole, e.g., providing a joint explanation for all data
points in the dataset. Model-agnostic methods can explain indifferently any type
of black-box model, regardless of their typology or architecture, accessing input
and outputs only. For instance, they could be applied even if the source code
of the ML model is obfuscated or can be only accessed through APIs, provided
that those can be invoked at will. Conversely, model-aware (also called model-
specific) models exploit (and require access to) internal details of the black-box,
such as gradients, and are therefore developed for specific kinds of ML models.

2.3 XAI for Computer Vision

Arguably the two most famous XAI approaches are LIME [24] and SHAP [17],
both being local and model-agnostic. An important counterpoint in the field
is the concept of global and model-specific approaches, as exemplified by
TCAV [15]. This methodology allows for global interpretability, focusing on
understanding high-level concepts used by the model across a broad set of inputs.
However, for the specific task of computer vision, most approaches are model-
aware and based on saliency.

When explaining image classification models, saliency methods compute
pixel-level relevance scores for the model final output. These scores can be visu-
alized as heat-maps, overlaid on the classified images, in order to be visually
inspected by humans. One of these approaches is the Gradient-weighted Class
Activation Mapping (Grad-CAM) [29], a model-aware, local, post-hoc XAI tech-
nique. Grad-CAM uses the gradient information flowing into the last convolu-
tional layer of the CNN to assign importance values to each neuron for a par-
ticular decision of interest, such as a target concept like dog. By visualizing the
positive influences on the class of interest (e.g., dog) through a global heatmap,
Grad-CAM provides insight into which regions of the input image are ‘seen’ as
most important for the final decision of the model. By overlaying this heatmap
onto the input image, Grad-CAM facilitates a deeper understanding of the cor-
relation between specific image features and the final decision.

Saliency maps methods such as Grad-CAM ask where a network looks when
it makes a decision; the network dissection approach takes a step further and
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asks what a network is looking for. In [3], the authors find that a trained net-
work contains units that correspond to high-level visual concepts that were not
explicitly labeled in the training data. For example, when trained to classify or
generate natural scene images, both types of networks learn individual units that
match the visual concept of a tree even though the network was never taught the
tree concept during training. The authors investigate this phenomenon by first
identifying which individual components strongly correlate with given concepts
(taken from a labelled segmentation dataset), and then turn off each component
in order to measure its impact on the overall classification task. Following this
line of investigation, [40] seeks to distill the information present in the whole acti-
vation feature vector of a neural network’s penultimate layer. It achieves this by
dissecting this vector into interpretable components, each shedding light on dif-
ferent aspects of the final prediction. Our work differs from the network dissection
literature in the following ways: (i) we allow for representations of concepts that
are scattered across neurons, without forcing them to be represented by a single
computational unit; (ii) we do not require additional, domain-specific ground
truth sources, relying instead on web scraping and general purpose-ontologies
and (iii) we do not focus on the specific scene recognition task, embracing instead
the part-of relationships of labels in the more general image classification task.

2.4 Ontologies and Image Recognition

Ontologies, and structured representation of knowledge in general, are typically
ignored in most DL for image processing papers [28]. However, there are notable
exceptions where efforts have been made to merge sub-symbolic ML models
together with ontologies.

In [10], the authors leverage the fact that ImageNet labels are WordNet nodes
in order to introduce quantitative and ontology-based techniques and metrics to
enrich and compare different explanations and XAI algorithms. For instance, the
concept of semantic distance between actual and predicted labels for an image
classification task allows to differentiate a labrador VS husky misclassification
as milder with respect to a labrador VS airplane case.

In [25], the authors introduced a hybrid learning system designed to learn
both symbolic and deep representations, together with an explainability metric
to assess the level of alignment of machine and human expert explanations. The
ultimate objective is to fuse DL representations with expert domain knowledge
during the learning process so it serves as a sound basis for explainability.

Among the global methods for explainability, TREPAN [6] is able to distill
decision trees from a trained neural network. By pairing an ontology to the
feature space, the authors use the ontological depth of features as a heuristic
to guide the selection of splitting nodes in the construction of the decision tree,
preferring to split over more general concepts.
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Fig. 1. HOLMES pipeline. Given an input image of class c, its parts (meronyms) are
extracted from a Knowledge Base (a). Images depicting each part are either extracted
from a densely annotated dataset or collected through Web scraping (b), and then
used to train a meronym model by exploiting, through transfer learning, the implicit
knowledge embedded in the original holonym model (c). The meronym model then
produces part-based explanations, highlighting the most relevant parts for the class
prediction (d).

3 Methodology

The proposed method, Holonym-Meronym based Semantic inspection
(HOLMES), is a post-hoc approach that aims to explain the classification given
by a CNN image classifier to an image in terms of its parts. It is indeed a model-
dependent method, specifically tailored for CNNs. Hence, HOLMES takes as
input the image whose class has been predicted, recovers its meronyms, and
provides an explanation in terms of its parts.

Problem Formulation

Let us define the image classifier as a function H : x ∈ R
h×w×ch �→ c ∈ C,

where x is an input image with dimensions h × w × ch and C is the set of image
classes. Lets assume that H is a CNN that can be expressed as a combination
of two functions, a feature extractor fH

F : x �→ f and a feed forward classifier
fH
C : f �→ c, where f is a feature vector. Let us define a holonym-meronym

relationship mapping HolMe : c ∈ C �→ {p1, ..., pn} meaning that a whole object
of class c, i.e. a holonym, is made of its parts, or meronyms Pc = {p1, ..., pn}. The
goal of HOLMES is to explain the classification H(x) = c through the meronyms
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Pc, by highlighting which of the meronyms are important for the classification
result. The explanation takes the form of a function ξ : x �→ {(x(pi), si), pi ∈ Pc},
where x(pi) is a saliency map that highlights the meronym pi in the original image
x, and si is an explanation score associated to x(pi).

HOLMES solves this problem by training a new meronyms classifier Mc :
x �→ pi ∈ Pc as a combination of the same feature extractor fH

F that is part
of the image classifier H and a new feed forward classifier fM

Pc
: f �→ pi ∈ Pc.

The meronyms classifier is then used to determine which parts pi are present in
the input image x and to create saliency maps that correspond to these parts.
Finally, each saliency map x(pi) is used to create a mask on x, which is then
classified by H, and the drop of the classifier confidence in the class c is used to
determine the importance of the selected parts.

The HOLMES pipeline comprises the following steps:

A) Meronyms Extraction: given an image x and its predicted class c, this
first step consists of retrieving the list of the object parts Pc (Fig. 1(a)).

B) Meronyms Image Data Collection: once the object parts list Pc is avail-
able, a distinct dataset for each part shall be created in this second step
(Fig. 1(b)).

C) Meronyms model Training: in this third step, the auxiliary meronyms
models Mc are trained to recognize the object parts Pc by exploiting the
knowledge (about the parts) embedded in the original CNN H (Fig. 1(c)).

D) Explanations: in this last step, a set of part-based explanations is pro-
duced, highlighting those parts which are most relevant for the class predic-
tion (Fig. 1(d)).

3.1 Meronyms Extraction

The first step of the pipeline consists of constructing the holonym-meronym rela-
tionship mapping HolMe : c ∈ C �→ Pc by retrieving the visible parts Pc associ-
ated to the holonym concept c. Hence, HOLMES relies on external Knowledge
Bases (KBs) which include part-of relationships, i.e. containing class concepts
(e.g., camel, horse, etc.) and their respective list of parts (e.g., head, legs, etc.),
along with information about their visibility. Thus, for obtaining the parts of an
holonym concept, HOLMES queries one selected knowledge base for the desired
holonym concept and results its associated visible meronyms. Concepts that are
not present in the chosen reference KB are mapped to the respective WordNet
[19] ontology concepts, and the hypernym/hyponym relationship is exploited:
the WordNet semantical hierarchy is climbed back up to the first hypernym
(i.e., a broader class, like bird for seagull) which occurs in the reference KB,
and its associated (more generic) parts are then assigned to the initial holonym
concept.

The meronyms extracted in the previous step are then divided in two cate-
gories: hyper-meronyms and hypo-meronyms. Given a generic list of meronyms,
P = {p1, p2, . . . , pn}, hypo-meronyms are parts whose visual space is completely
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within any other part in P . The other parts whose visual space is not com-
pletely within any other part in P are the hyper-meronyms. For instance, for
the holonym concept cat, the hyper-meronyms would be head, legs, feet, tail,
given that none of them is visually contained in any other part, but rather, can
only contain hypo-meronyms (e.g., mouth, whiskers, etc.).

For the final list of meronyms, only the hyper-meronyms are retained while
hypo-meronyms are discarded. The final list of parts is thus defined as Pc =
{p1, p2, . . . , pn}.

3.2 Meronyms Image Data Collection

Once the part set Pc for the target class c is available, the next step is to create
a dataset Xc = {(x0, y0), ..., (xn, yn)} where x0, ...,xn are images corresponding
to parts y0, ..., yn ∈ Pc. HOLMES can rely on a pre-existing labelled dataset,
or it can exploit web image scraping to incrementally build a dataset for each
meronym. In this scenario, HOLMES queries different web search engines for
each part, by prefixing the holoynm first (e.g. sorrel fur, sorrel head, etc.) and
downloads the associated images from each of those engines.

Due to the limited reliability of search engine results (discussed in Sect. 4),
some obtained images could be still extraneous to the desired part concept.
Moreover, duplicates could be present in the scraped parts’ datasets. For these
reasons, HOLMES integrates two additional sub-steps:

1. deduplication: duplicates are detected by means of the pHash [26] hash-
based deduplication method, then they are removed from each meronym
dataset.

2. outlier removal: meronyms images are mapped to a feature vector repre-
sentation (e.g. using the output of the feature extractor or the activations of
one of the feedforward layers of the classifier). The feature vectors are then
fed to an outlier detection algorithm. The detected outliers are then removed
from the meronym dataset.

3.3 Meronyms Model Training

The training phase is the core of the HOLMES method. In this step the concept
parts are visually learned, so that they can later be provided as explanations.
This is achieved by training an auxiliary CNN model Mc, trained and evaluated
on the collected meronym dataset Xc (training and evaluation are performed in
disjoint sets).

Let us recall that the goal of HOLMES is to explain the target holonym
CNN H(x) = ŷ, where x is an holonym image of class c and ŷ its predicted
class. Let us also recall that the CNN can be expressed as a combination of
two functions H(x) = fH

C (fH
F (x)), where fH

F (·) is a feature extractor, and fH
C (·)

is a feedforward classifier. Previous works already demonstrated that the units
contained in the last convolutional layers of a CNN tend to embed objects, and
more specifically, objects parts as well [3,11], and HOLMES leverages on this
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fact to learn the parts by defining Mc(x) = fM
Pc

(fH
F (x)), where the feature

extraction fH
F (·) is shared among the holonym H and meronym Mc models,

whereas a feedforward classifier fM
Pc

(·) is trained anew for each class c and each
part list Pc.

The idea is to learn the parts concepts by using the same features learned
by the original reference CNN model H, such that the base knowledge for learn-
ing both the concept parts and the concepts themselves would be the same:
effectively, HOLMES relies on transfer learning [36] for learning objects parts.
Under the reasonable assumption that characteristic object parts, and conse-
quently their associated features, are useful for the classification of the whole
object itself, the same units which activate in the presence of the parts will also
activate in presence of the object. For instance, a unit activating in the presence
of a wheel, will also be likely to activate in the presence of a wheeled vehicle like
a car. Hence, training M by keeping the feature extractor fH

F intact will later
allow us to understand if the knowledge about the parts was already available
and embedded in the original model H. Specifically, the feature maps obtained in
the presence of the individual parts will be useful to create a visual explanation
for the (holonym) predictions of the original model.

A held-out test set is used to calculate the per-part calibrated F1-score [31]
to determine the degree to which each part was learned and distinguished by the
others. The F1-score is calibrated to be invariant to the class prior, enabling the
comparison of models trained on different numbers of meronyms.

3.4 Explanations

At the end of the previous step a trained meronyms CNN model Mc is obtained.
For any input holonym image x, this model outputs a set of prediction scores
Yp = {yp1 , . . . , ypn

}, where n is the the number of parts the model was trained
on, and yp1 , . . . , ypn

are the scores produced for each different part. Hence, by
feeding the network with an holonym sample (such as a car image), a score
about each of its parts (e.g., wheel, bumper, etc.) will be produced. Intuitively,
the output scores reflect how much of each part the network sees in the input
holonym image. Exploiting the fact that the network can ‘see’ the part concepts
within an holonym image sample, we can look where the network exactly sees
the parts, i.e., in which portion of the input image.

Specifically, the visualization of each part in the holonym image is obtained
trough the state-of-the-art saliency method Grad-CAM [29]. After obtaining a
saliency map x(pi) related to each part that the network can recognize, each
saliency map x(pi) is thresholded into a binary segmentation mask m(pi) ≡
(x(pi) ≥ T (pi)), where T (pi) is set to the qth percentile of the corresponding
saliency map pixel distribution. We later feed the same input holonym image
into the original CNN model, and verify whether each part is fundamental for
the original network prediction, by ablating one part from the image at a time
based on the meronyms masks m(pi). By observing the score drop for the origi-
nal predicted holonym class label (calculated in percentage, with respect to the
original holonym score), we can determine how much the removed meronym was
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important in order to predict that class label: the more consistent the drop, the
more significant the visual presence in the image of the part would be for the
original model.

At this point, the input image x is associated to a set of saliency maps
x(pi) for each part pi ∈ Pc, and each saliency map is associated to a score drop
si ∈ S = {s1, s2, ..., sn}. Additionally, the per-part calibrated F1-score previ-
ously computed is used to measure the reliability of the part identification. We
assume that a meronyms model which had difficulties to learn and distinguish a
part, would have consequently achieved a low F1-score for that part. Hence, the
parts whose holonym score drop si exceeds a threshold Ts and whose meronyms
model are above a F1-score threshold TF1 are provided as part-based explana-
tions for the original model prediction, as it would mean that those parts are
both correctly detected by the meronym model and deemed relevant for the
classification of the holonym.

4 Experimental Settings

HOLMES can generate part-based explanations for any model that can be
expressed as a feature extractor and a feed forward classifier. In our experi-
ments, we explain the outputs of a VGG16 [33] image classifier pre-trained on
the ImageNet [7] dataset. In this section, we describe the application of the
HOLMES pipeline in two different experimental settings to explain the outputs
of the VGG16 model. In the first experiment, we exploit bounding boxes for
objects and their parts from the PASCAL-Part dataset to explain and validate
the results. In the second one, we first build a part-based mapping for many Ima-
geNet classes, then we use scraping to build a dataset for training the meronyms
models, and finally we generate part-based explanations and evaluate the results
with insertion, deletion and preservation curves. Examples of HOLMES expla-
nation on both datasets are provided in Fig. 2.

4.1 PASCAL-Part Dataset

The PASCAL-Part [5] dataset contains additional annotations over the PASCAL
VOC 2010 dataset, i.e., bounding boxes for objects and their parts, that can
be used as the holonym-meronym relationship mapping (HolMe). We held out
a set of 50 images for each of the selected holonyms and their corresponding
cropped meronym images that are used exclusively to evaluate the HOLMES
explainability and part localization performance. The other images were used in
the meronym models Mc training.

Meronyms Extraction Settings: The twenty classes in the Pascal VOC 2010
dataset can be divided in four macro-classes: (1) person, (2) animals (bird, cat,
cow, dog, horse, sheep), (3) vehicles (aeroplane, bicycle, boat, bus, car, motor-
bike, train) and (4) indoor objects (bottle, chair, dining table, potted plant, sofa,
tvmonitor). Two of the classes (person and potted plant) have no corresponding
class in the ImageNet 1000 classes and thus are discarded. Other five classes
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Fig. 2. HOLMES Explanation example for the horse class – PASCAL-Part (a) and
sorrel class – ImageNet (b). For each part, the corresponding ablation mask (grey), the
per-part calibrated F1-score and the holonym score drop are shown. For PASCAL-Part,
the ablation masks are compared against the ground truth bounding boxes (green). The
final heatmap(s) show the part-based explanations. Two and one part are included
in the explanations for examples (a) and (b), respectively, as they exceed both the
holonym score drop threshold Ts (0.1) and the calibrated F1-score threshold TF1 (0.7).

were discarded because they do not have part-based annotations (boat, chair,
dining table, sofa, and tvmonitor). For each of the 13 remaining classes, the
respective meronyms Pc were extracted from the PASCAL-Part parts list. For
the six animal classes we performed hyper-meronym selection as in [38], and for
the remaining classes we selected the hyper-meronyms by majority voting. The
final HolMe mapping is thus:
– Pbird = Pcat = Pdog = Phorse = {head, torso, leg, tail}
– Pcow = {head, torso, leg, horn}
– Psheep = {head, torso, leg}
– Paeroplane = {stern, wheel, artifact wing, body, engine}
– Pbicycle = {saddle, wheel, handlebar}
– Pmotorbike = {saddle, wheel, handlebar, headlight}
– Pcar = Pbus = {window, wheel, headlight, mirror, door, bodywork, license plate}
– Ptrain = {coach, locomotive, headlight}
– Pbottle = {body, cap}

Meronyms Image Extraction Settings: Once the holonym-meronym rela-
tionship mapping is defined, we extract the images to train the meronyms mod-
els. For each holonym image, we retrieved the bounding box coordinates associ-
ated with their parts Pc, and cropped the holonym image accordingly to produce
a set of meronym images.

To obtain images compatible with the square VGG16 input, while preserving
the aspect ratio and shape of each part, before cropping we extended the bound-
ing box in the x or y direction to obtain a square crop, with the constraint of
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not overlapping other bounding boxes in the same image. Then, if a 1:1 aspect
ratio was not completely reached, we applied padding to get a final square crop.

Moreover, the number of crops extracted for each meronym might be very
different, e.g., for a horse meronym, there are more leg parts with respect to just
one head. To avoid high class unbalance, we used data augmentation to balance
the number of samples in each meronyms class. Specifically, we applied both ran-
dom rotation and random shear, and one among the gaussian blur, emboss, and
gaussian noise transformations to each cropped image. Finally, for each holonym
class, the extracted meronyms samples were split into training/validation/test
folds with ratios of 0.81/0.09/0.1.

Training and Explanations Settings: For each holonym, we built a sepa-
rate meronym model Mc and we retrained a feed forward classifier fM

Pc
(·) with

the same structure of the original VGG16 classifier using Cross Entropy Loss.
Common data augmentation techniques were employed: horizontal flipping, rota-
tion, cropping, color jittering, and random gray scale. Each meronym model was
trained for 100 epochs, with a batch size of 64 and learning rate of 0.001 (deter-
mined experimentally). Early stopping policy with patience set to 5 was used to
avoid overfitting.

Regarding the explanations, the activations of the last convolutional layer
of VGG16 were used to produce the Grad-CAM meronyms heatmaps, which
are then binarized using a threshold T (pi). We found T (pi) = 83th percentile
by performing a grid search upon the [75, 90] percentile values and by finding
the best trade-off between different causal metrics performance (described in
the Evaluation section) on the whole PASCAL-Part training set, comprising all
training holonym image samples. The masked pixels were ablated by replacing
with the gray RGB value (as the ImageNet mean pixel is gray) for retaining the
natural image statistics [27]. Finally, the Ts and TF1 thresholds were set to 10
and 0.7, respectively.

Evaluation Settings: The whole HOLMES pipeline was run and tested upon
each validation image sample associated to each selected class. The meronyms
localization performance was measured by computing the per-pixel AUC score
of the HOLMES meronym heatmap versus the same meronym ground truth.
To calculate this metric, each pixel was assigned the corresponding heatmap
value as score: true positive pixels were those belonging to the actual part (i.e.,
falling within the bounding box), while the remaining pixels were labeled as false
positives. The performance is compared to the per-pixel AUC score of the Grad-
CAM holonym heatmap as baseline. Moreover, the faithfulness of HOLMES
explanations was assessed by means of common causal metrics based on the
deletion/insertion/preservation curves [16,23].

As mentioned before, HOLMES produces a set of part-based explanations,
which are obtained by computing a set of saliency maps X(Pc) = {x(pi), pi ∈ Pc},
each associated a specific part pi. However, to assess the global quality of such
explanations, all part-based saliency maps need to be merged into a unique
heatmap, comprising all parts. Given the set of saliency maps X(Pc), and the
corresponding score drops S = {s1, s2, ..., sn} associated with the ablation of
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each part, the HOLMES global heatmap is obtained through a weighted linear
combination of the part-based saliency maps. First, normalized score drops Z =
{z1, ..., zn} are calculated by dividing each score drop by the L1-Norm of S. Then,
the global heatmap is obtained by summing each weighted heatmap element-
wise: G =

∑
i∈nx(pi)zi

. This weighting scheme emphasizes parts whose ablation
causes a significant holonym class score drop.

After obtaining the global heatmap G for an input image in this way, it is
possible to use causal metrics such as the areas under the insertion [23], the
deletion [23] and the preservation curves [16] to assess the overall quality of the
part-based explanations, whose information is combined into G. These metrics
were computed for all held out PASCAL-Part validation images. Notably, dis-
tinct from simply replicating Grad-CAM results, our global heatmap stresses
the pivotal role of part-based explanations, serving as an integral instrument to
appraise the global effectiveness of the part-based explanations.

4.2 ImageNet

HOLMES can be applied in scenarios where part-level annotated datasets are
not available. In this case, we leverage ontologies and image scraping to construct
the required meronym datasets. In particular, we exploit the connection between
Imagenet [7] labels and WordNet [19] nodes in order to retrieve a list of parts of
the object-label, relying on the holonym-meronym (whole-part) relationship.

Meronyms Extraction Settings: Across the ImageNet 1000 class concepts,
81 of them were selected and treated as holonym classes. The selected holonym
classes belong to two main categories:

1. Medium- or large-size animals
2. Medium- or large-size man-made objects

The size constraint is necessary to obtain acceptable training sets. In fact, the
smaller the holonym (e.g., bugs in the animals category), the more troublesome
it becomes to retrieve images of distinct parts by querying web search engines.
Specifically, when querying for such parts, the engines tend to return images
of the whole holonym concept instead (e.g., the whole butterfly when querying
for a butterfly head). This would consequently result in meronyms datasets very
similar among each other and with a strong visual overlap, thus greatly hindering
the associated meronym model performance.

Therefore, for each of the 81 classes, the respective meronyms were extracted
from the Visual Attributes for Concepts (VISA) [32] dataset. Hyper-meronyms
were further extracted by manual filtering: the meronyms obtained from the
ontology were manually categorized into hyper-meronyms and their respective
hypo-meronyms. In this way, for each occurrence of a hyper-meronym, the asso-
ciated hypo-meronyms were automatically filtered out.

Meronyms Image Scraping Settings: The Google and Bing web search
engines were selected and queried for downloading the images. The number of
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downloads per part over all the engines was forcibly limited, since the perti-
nence of the images with respect to the desired part concept naturally decreases
as more images are downloaded (e.g., after too many downloads for sorrel head,
an engine would for instance start returning images depicting plants and flow-
ers); a good rule-of-thumb is to limit the download to the first 100 items [18,20].
Finally, in order to further increase the dataset size for each part, the Visually
similar images function of Google was exploited: for each downloaded image, the
most visually similar ones are searched in this way and then added to the parts’
samples. The download limit, i.e., the number of images to be downloaded for
each part by each engine, was set to 40 for Google and 60 for Bing, since Bing
showed to be slightly more reliable. The visually similar images download limit
was instead set to 5. Duplicates and near-duplicates [21] are detected by means of
the pHash [26] hash-based deduplication method. For outlier removal, meronyms
images are mapped to a feature vector using the activations of the penultimate
FC layer of VGG16 [33], which are then given as input to the PCA outlier
detection algorithm [30], with the outlier contamination rate hyper-parameter
set to 0.15. The scraped data was split into training/validation/test folds with
proportions of 0.81, 0.09 and 0.1 respectively.

Training and Explanations Settings: The training and explanation steps
are carried out with the same settings as detailed for the PASCAL-Part dataset
(Sect. 4.1).

Evaluation Settings: The global heatmap is evaluated using the insertion,
deletion, and preservation curves as detailed for the PASCAL-Part dataset
(Sect. 4.1).

5 Results

The HOLMES pipeline was quantitatively and qualitatively evaluated in all its
steps. Experimental validation aimed at determining i) to what extent HOLMES
is able to correctly identify and locate meronyms?, ii) to what extent the clas-
sification score can be attributed to individual meronyms and iii) how good are
the explanations generated by HOLMES?

RQ1: How well can HOLMES classify and locate meronyms?
As introduced in Sect. 4.1, the PASCAL-Part ontology contains 13 classes

with an average of ≈4 visible parts per class. Following the procedure described
in the experimental setting, on average ∼750 sample per meronym were collected
(∼1400 after data augmentation), for a total of 74,772 training samples. For
ImageNet, 81 classes were selected, with an average of ≈7 visible parts per
image. Thus, web scraping was performed for a total of 559 meronyms, yielding
on average ∼450, of which 18% were detected as duplicates and 11% as outliers,
and hence, eliminated. The final average number of images per part is ∼320.

First, we assess HOLMES ability to classify different meronyms by reporting
the distribution of the calibrated F1-scores of the Mc models, trained upon
each training set Xc for each of the selected classes, is reported in Fig. 3 for both
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Fig. 3. Distribution (violin plot) of the average per-part calibrated F1-score.

Fig. 4. Average per-part calibrated score as a function of the number of parts per
holonym class (colored dots represent a holonym, blue line is the mean average per-
part F1-score). (Color figure online)

PASCAL-Part and ImageNet dataset. The average F1-score was good in both
cases, but higher on PASCAL-Part (0.9 ± 0.05 vs. 0.7 ± 0.16). This difference
can be attributed, at least partially, to the higher precision of the PASCAL-Part
reference standard, for which bounding boxes are available.

On the other hand, it can be observed from Fig. 4 how the performance
degrades with the number of parts per class. This is especially evident for the
ImageNet dataset, since the ontology is richer with more classes and more parts
per classes. As the number of parts increases, the likelihood of visual overlap
between images belonging to different parts also increases, negatively impacting
the performance of the trained Mc model. Additionally, different class categories
tend to be associated with a lower/higher number of meronyms: for instance,
tools tend to have between one and four parts, animals between three and eight,
and vehicles more than eight. Thus, we cannot exclude that the category may also
play a role either by influencing the quality of the scraping, or the differentiation
of the meronyms themselves.

The HOLMES meronyms localization performance was measured by comput-
ing the per-pixel AUC score of each HOLMES meronym heatmap against their
PASCAL-Part ground truth bounding boxes. As a baseline, we could assume
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Table 1. The HOLMES meronyms localization performance is measured by computing
the average per-pixel AUC score of each HOLMES meronym heatmap (top row) against
the holonym heatmap extracted the Grad-CAM (bottom row).

Method horse cat bird cow dog sheep aeroplane bicycle bottle bus car motorbike train Avg

HOLMES 0.77 0.74 0.8 0.77 0.74 0.75 0.74 0.76 0.67 0.75 0.68 0.74 0.71 0.74
Grad-CAM 0.68 0.68 0.71 0.66 0.71 0.62 0.76 0.63 0.6 0.65 0.62 0.66 0.62 0.66

Fig. 5. Distribution (violin plots) of the average score drop and maximum score drop (in
percentages) per image on the PASCAL-Part (a) and ImageNet (b) validation sets. The
score drop is calculated for each image and meronym by ablating the corresponding
mask; then, the average and maximum score drop are computed over all meronyms
appearing in an image.

that either the meronym could be randomly assigned to any region of the image
(in this case, AUC = 0.5), or we could focus on the actual holonym as extracted
by the Grad-CAM algorithm and assume that the meronym is inside the region
of the Grad-CAM holonym heatmap. This second choice offers a baseline that is
harder to beat, but as reported in Table 1, the HOLMES meronyms explanations
consistently localize the parts better and more precisely, compared to the whole
Grad-CAM heatmaps which instead localize the entire object.

RQ2: To what extent the classification score can be attributed to
individual meronyms?

Having established the ability to classify meronyms, the next step is to eval-
uate their impact on the holonym classifier H, as exemplified in Fig. 2.

The distribution of the per-meronym score drop, i.e., the score drop observed
for the holonym when the corresponding meronym is ablated, is reported in
Fig. 5. The average score drop is 49% for PASCAL-Part and 42% for ImageNet,
respectively, meaning that on average, the ablation of a single meronym roughly
halves the holonym model confidence. When considering only the most significant
part (i.e., the one associated with the highest score drop for each test image), the
score drop increases to 82% on PASCAL-Part. Hence, in this dataset, individual
meronyms have a substantial impact on the classifier output and, in most cases,
the classification can almost be fully explained or attributed to a single meronym.
On the other side, on ImageNet the mean maximum drop is lower (73%). In
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Fig. 6. Top-5 meronyms distribution. For each class, the top-5 meronyms are computed
(i.e., the meronyms with the highest score drops on average). For each meronym, the
total number of associated holonyms (blue) is compared with their frequency in the
Top-5 meronym list (red). Meronyms are listed in descending order of frequency. (Color
figure online)

fact, the mean (± standard deviation) number of meronyms included in each
explanation was 2.28 ± 2.46. Examples of explanations with one, two, three or
more meronyms are provided in the Supplementary Material.

Conversely, when grouping images according to their holonym labels, the
mean average drop and mean maximum drop were 50% and 80% for PASCAL-
Part, and 46% and 73% for ImageNet, respectively. While the score distribu-
tion in Fig. 5 characterizes HOLMES behavior at the instance (image) level, the
mean values provide insight into the general properties of the holonym classes.
For instance, the mean maximum score drop on PASCAL-Part shows a bimodal
distribution, with animal classes having a higher mean maximum drop than
vehicles and man-made objects (78.5% vs. 62.1%). This entails that, on average,
explanations for image belonging to animal classes are highly focused, with only
one meronym almost explaining the entire holonym concept, whereas for other
classes explanations require the combination of two or more meronyms. On Ima-
geNet, we did not find a large difference between animals (70%), tools (73%),
and vehicles (74%); however, we observed a wider variation between classes, with
mean maximum drop ranging from 23% (zebra) to 95% (persian cat).

Different holonym classes may have an overlapping set of meronyms: this is
especially evident for the richer ImageNet ontology. For instance, most of the
animal classes have a head and a tail (although each class will be associated
with its own training dataset and its own classifier Mc). From this observation,
we sought to understand if certain parts induced a consistent and substantial
holonym score drop (Fig. 6). For instance, for classes belonging to the animal
category, the meronyms head, tail, and legs frequently cause a consistent drop
when ablated from the image. Similarly, for vehicles, the door, wheels and win-
dow meronyms have the highest impact on the holonym class prediction.

RQ3: How good are the explanations generated by HOLMES?
Finally, the overall quality of the generated explanations was evaluated. For

the purpose of evaluating against Grad-CAM, which is not designed to provide
part-based explanations, part-level heatmaps are linearly combined in a global
heatmap, as detailed in Fig. 7. The AUC values under the insertion, deletion,
and preservation curves are summarized in Table 2.
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Fig. 7. HOLMES Global Explanation. Starting from an input image, the per-part
heatmaps and the respective holonym score drops are obtained. Then, by a linear com-
bination of the heatmaps, the global heatmap is obtained, and its quality is measured
by means of the insertion/deletion/preservation metrics.

Table 2. Deletion/Insertion/Preservation AUCs for HOLMES and Grad-CAM.

Dataset Method Deletion ↓ Insertion ↑ Preservation ↑
PASCAL- HOLMES 0.050±0.053 0.487±0.269 0.392±0.255
Part GradCAM 0.052±0.060 0.505±0.277 0.381±0.264
ImageNet HOLMES 0.112±0.113 0.660±0.252 0.538±0.257

GradCAM 0.111±0.107 0.684±0.242 0.539±0.261

Fig. 8. Insertion/Deletion Ratio distribution (violin plot) for the PASCAL-Part (a)
and ImageNet (b) datasets. The average insertion ratio (left) and the average deletion
ratio (right) are calculated with respect to the random baseline (dotted black line).
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On PASCAL-Part, the HOLMES insertion AUC is, on average, 0.96 times
the GradCAM insertion AUC, while the average deletion AUC is 0.95 and the
average preservation AUC is 1.03 times the respective GradCAM score. Analo-
gously, on ImageNet, the average insertion, deletion, and preservation AUCs are
0.96, 1.01, and 0.99 times the corresponding GradCAM scores.

Additionally, we compared HOLMES against a random baseline obtained
by dividing the images in super-pixels, which are then erased in random order.
The random baseline is designed to account for the object scale: in fact, a good
heatmap for a small object will yield a lower deletion AUC than an equally
good heatmap for a larger object. As shown in Fig. 8, HOLMES metrics are
substantially higher than the random baseline, with average insertion AUC 0.58
lower and average insertion AUC 1.77 higher than the baseline.

6 Discussion

Unlike previous methods [3], HOLMES does not require a densely annotated
dataset with pixel-level annotations. Instead, it can be trained using weak
annotations either in the form of bounding boxes, such as those available in
the PASCAL-Part dataset [5], or relying on the potentiality of web scraping,
which drastically reduces the annotation effort, whilst forgoing the limiting
closed-world assumption intrinsic to traditional labelled datasets. The effective-
ness of web scraping for object recognition has been established in previous
works [18,35], which HOLMES capitalizes on and extends, using deduplication
and outlier removal to reduce noise and increase variety in the training dataset.
At the same time, retrieving high quality images for meronyms, as opposed to
holonyms, introduces additional challenges which may impact dataset quality
and, thus, the meronym models. Qualitatively, we observed that the pertinence
of the retrieved images is generally good, but may decrease depending on the
popularity of the meronym as a search term. Another specific challenge is the
visual overlap, as it is difficult to find images that precisely isolate one and only
one meronym.

Overall, quantitative evaluation on PASCAL-Part allowed us to conclude
that the meronym models are capable of detecting object parts and locating
their position within the image. This is achieved by exploiting, without any
retraining or fine-tuning, the features learned by the holonym model, thus fur-
ther supporting the conclusion that knowledge about object parts is implicitly
embedded in deep neural networks [2,3,39].

Partly due to the imperfect background, the ablated mask does not always
provide a perfect segmentation of the part itself, as shown in Fig. 2. In some
cases, the ablated masks for different parts could be very similar, especially for
meronyms that are physically next to each other. An example is provided by
the meronyms legs and hooves for the holonym sorrel, as shown again in Fig. 2.
Less frequently, it may occur that the ablated part may include a portion of
the background; for instance, in the case of legs, some terrain or grass may
be included. This may have an impact on the score drop observed when the
corresponding part is deleted, and the resulting metrics.
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The average F1-score for most holonyms ranges roughly between 0.6 and 1.0
for ImageNet, and between 0.8 and 1.0 for PASCAL-Part, spanning different
categories of objects (animals, tools and vehicles), and up to 14 visible parts
per class. The F1-score depends on the quality of the ground truth, but also
on the number of meronyms that compose each object. Increasing the quality
of scraping, and thus the meronym model, could allow HOLMES to recognize
and include in the provided explanations an even larger pool of meronyms. In
addition, HOLMES provides intrinsic safeguards against this type of noise, as
only meronyms with sufficient F1-score are included in the explanations, and the
user can readily inspect the heatmaps associated to each individual meronym.

Quantitative causal metrics based on the deletioninsertionpreservation curves
confirm that the part-based explanations provided by HOLMES are effective in
identifying those parts that are most relevant to the final classification, achieving
results comparable to the state-of-the-art GradCAM method, and substantially
above chance level. However, unlike GradCAM, HOLMES provides an articu-
lated set of heatmaps, associated to human-interpretable concepts, and allows
exploration of the impact of individual meronyms on the holonym classification,
at both instance and class level.

HOLMES was evaluated on two distinct datasets, PASCAL-Part and Ima-
geNet. Since both pipelines evaluate the same classifier, we attribute absolute
differences in the insertion/deletion/preservation curves to the dataset them-
selves (e.g., how the images were sourced), and possibly to the domain shift
between ImageNet and PASCAL-Part (given that the holonym classifier H was
trained on ImageNet). However, the relative performance with respect to both
baselines shows similar behavior, despite wide differences in how the meronym
datasets Xc were sourced. HOLMES performs slightly better on PASCAL-Part,
especially in terms of the deletion and preservation curves. Also, explanations
on PASCAL-Part appear to be concentrated, on average, on fewer parts than
ImageNet. Beyond the meronym datasets Xc, other factors could account for
these differences: on the one hand, PASCAL-Part includes fewer and more dis-
tinct classes than ImageNet, thus potentially it includes images that are ‘easier’
to classify. On the other hand, the KB derived from PASCAL-Part annotations
is simpler, with fewer meronyms (≈ 4 vs. ≈ 7 parts per class), and less visual
overlap. Overall, HOLMES shows to be robust to the choice of experimental
settings, and performs well even when exploiting more cost-effective annotations
sourced through general purpose KBs and web scraping.

7 Conclusions and Future Work

In this paper we introduced HOLMES, an eXplainable Artificial Intelligence
technique able to enrich image classification tasks with part-level explanations.
Our approach allows to take a further step with respect to the standard label-
level heatmaps which represent the state of the art in XAI for image classifica-
tion. It proves valuable in integrating image classification models into decision
support systems, as it provides more detailed explanations. These explanations
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can help both the model developer, aiding in debugging the classifier before
deployment, and also the end user, assisting in assessing the level of trust in the
classifier’s predictions for previously unseen data.

Furthermore, HOLMES sheds light on how holonyms are learned and stored
within a CNN during and after the training phase. Other recent research works
proposed relevant contributions, such as [3,4], but with additional requirements
(focus on scene recognition, need for a segmented ground truth) and without the
connection of a DL model with a symbolic knowledge base such as an ontology.

We adopt a strategy that avoids confining concepts to a single computational
unit. We contend that this approach aligns better with the robust learning capa-
bilities of DL models while also facilitating greater expressive power in the sym-
bolic domain. As shown in [2], models with equivalent discriminative abilities
can exhibit varying degrees of interpretability, influenced by factors such as the
architecture, regularization, and learning task.

Given the novelty of our proposed pipeline, there is room for exploration
concerning alternatives for many components. First, a more refined scraping
method could be employed to both increase the training sample size and its
quality, for instance using more complex semantic expansion techniques, by using
more robust outlier detection algorithms such as Robust and Kernel PCA, or by
incorporating novel data purification techniques to obtain cleaner data [37].

Second, it could be useful to study the effects of using the activations of units
belonging to different convolutional layers, or even sets of such layers, for pro-
ducing HOLMES explanations; units belonging to different convolutional layers
could better match some specific (part) concepts, and, accordingly, by means
of their activations, a better explanation could be hence generated for those
concepts. Also, more model architectures can be tested to see how this method
results change according to the model which is used. For instance, shallower
(e.g., VGG13) or deeper (e.g., VGG19) model architectures, or even different
types of networks (e.g., Deep Residual Networks) could be inspected.

Third, alternative perturbation techniques can be tried for removing the rel-
evant pixels of the parts; it was observed that substituting pixels with just con-
stant values introduces contiguous shapes in the image, thus biasing, if even min-
imally, the prediction towards certain types of objects having a similar shape.
Moreover, other types of semantic relationship can be studied for both retrieving
the desired (visible) parts of a specific concept (either alternative or complemen-
tary to the proposed holonym-meronym relationship), and for mapping differ-
ent concepts between different knowledge bases (in alternative to the proposed
hypernym-hyponym relationship).

Finally, it emerges from the final results that the method performs better
when considering for an object a small number of parts, preferably spaced enough
to minimize visual overlap. Hence, a new strategy for selecting and filtering the
meronyms of an object can be also studied.
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Abstract. Analysis of how semantic concepts are represented within
Convolutional Neural Networks (CNNs) is a widely used approach in
Explainable Artificial Intelligence (XAI) for interpreting CNNs. A moti-
vation is the need for transparency in safety-critical AI-based systems,
as mandated in various domains like automated driving. However, to use
the concept representations for safety-relevant purposes, like inspection
or error retrieval, these must be of high quality and, in particular, stable.
This paper focuses on two stability goals when working with concept rep-
resentations in computer vision CNNs: stability of concept retrieval and
of concept attribution. The guiding use-case is a post-hoc explainability
framework for object detection (OD) CNNs, towards which existing con-
cept analysis (CA) methods are successfully adapted. To address concept
retrieval stability, we propose a novel metric that considers both concept
separation and consistency, and is agnostic to layer and concept represen-
tation dimensionality. We then investigate impacts of concept abstraction
level, number of concept training samples, CNN size, and concept repre-
sentation dimensionality on stability. For concept attribution stability we
explore the effect of gradient instability on gradient-based explainability
methods. The results on various CNNs for classification and object detec-
tion yield the main findings that (1) the stability of concept retrieval can
be enhanced through dimensionality reduction via data aggregation, and
(2) in shallow layers where gradient instability is more pronounced, gra-
dient smoothing techniques are advised. Finally, our approach provides
valuable insights into selecting the appropriate layer and concept repre-
sentation dimensionality, paving the way towards CA in safety-critical
XAI applications.
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1 Introduction

Advancements in deep learning in the last decade have led to the ubiquitous
use of deep neural networks (DNNs), in particular CNNs, in computer vision
(CV) applications like object detection. While they exhibit state-of-the-art per-
formance in many fields, their decision-making logic stays opaque and unclear
due to their black-box nature [4,44]. This fact raises concerns about their safety
and fairness, which are desirable in fields like automated driving or medicine.
These demands are formalized in industrial standards or legal regulations. For
example, the ISO26262 [1] automotive functional safety standard recommends
manual inspectability, and the General Data Protection Regulation [13] as well
as the upcoming European Union Artificial Intelligence Act [43] both demand
algorithm transparency. The aforementioned concerns are subject of XAI.

XAI is a subfield of AI that focuses on revealing the inner workings of black-
box models in a way that humans can understand [5,27,37]. One approach
involves associating semantic concepts from natural language with internal rep-
resentations in the DNN’s latent space [37]. In computer vision, a semantic con-
cept refers to an attribute that can describe an image or image region in natural
language (e.g., “pedestrian head”, “green”) [10,23]. These concepts can be asso-
ciated with vectors in the CNN’s latent space, also known as concept activation
vectors (CAVs) [23]. Post-hoc CA involves acquiring and processing CAVs from
trained CNNs [2,23,30], which can be used to quantify how concepts attribute to
CNN outputs and apply it to verification of safety [35] or fairness [23]. However,
in literature two paradigms of post-hoc CA have so far been considered sepa-
rately, even though they need to be combined to fully compare CNN learned
concepts against prior human knowledge. These paradigms are: supervised CA,
which investigates pre-defined concept representations [10,23,35], and unsuper-
vised CA, which retrieves learned concepts [11,49] and avoids expensive labeling
costs. Furthermore, current XAI approaches are primarily designed and evalu-
ated for small classification and regression tasks [2,35], whereas more complex
object detectors as used in automated driving require scalable XAI methods that
can explain specific detections instead of just a single classification output.

Besides adaptation to object detection use-cases, high-stakes applications
like safety-critical perception have high demands regarding the quality and reli-
ability of verification tooling [19, Chap. 11]. A particular problem is stability:
One should obtain similar concept representations given the same CNN, pro-
vided concept definitions, and probing data. Instable representations that vary
strongly with factors like CA initialization weights [31] or imperceptible changes
of the input [40] must be identified and only very cautiously used. Stability issues
may arise both in the retrieval of the concept representations, as well as in their
usage. Retrieval instability was already identified as an issue in the base work
[23], and may lead to concept representations of different quality or even differ-
ent semantic meaning for the same concept. Instability in usage may especially
occur when determining local concept-to-output attribution. In particular, the
baseline approach proposed by Kim et al. [23] uses sensitivity, which is known
to be brittle with respect to slight changes in the input [40,41].
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This work tackles the aforementioned problems of OD-ready supervised and
unsupervised CA, and measurement and improvement of stability in CA retrieval
and attribution. Concretely, to solve these problems, we propose an XAI frame-
work based on supervised and unsupervised CA methods for ODs. The unsuper-
vised method is used to automatically mine concept samples, which are jointly
used for supervised concept analysis with manually labeled concepts. Further-
more, stability metrics are suggested and tested. The respective main contribu-
tions of our work are:

– Proposal of two metrics and methodology for testing of concept retrieval sta-
bility and concept attribution stability in CA;

– Experimental study of stability influence factors in six diverse CNN models
with different backbones with the main findings that CAV dimensionality
reduction may improve stability, and that gradient smoothing may be beneficial
for concept attribution stability in shallow layers;

– Adaptation of supervised and unsupervised concept-based analysis methods
for CA on common ODs;

– Introduction of a post-hoc, label-efficient, concept-based explainability frame-
work for classifiers and ODs allowing for concept stability estimation (Fig. 1).

In the following, we will first take a look at related work on concept analy-
sis in Sect. 2. Our approaches for combining supervised and unsupervised CA,
for CA in OD, and for stability measurement are then detailed in Sect. 3. Our
experimental setup can be found in Sect. 4 with results detailed in Sect. 5.

2 Related Work

This section presents an overview of relevant supervised and unsupervised CA
methods. Comprehensive XAI and CA surveys can be found in [4,36,44].

2.1 Supervised Concept Analysis

There are two primary paradigms in supervised CA methods: scalar-concept
representation [6,25,34] and vector-concept representation [3,10,23]. Scalar con-
cept representations refer to disentangled deep neural network (DNN) layer
representations with a one-to-one correspondence between neurons and distinct
semantic concepts. A prominent example and base work are Concept Bottleneck
Models [25] (CBM). These introduce an interpretable bottleneck layer to DNNs
by assigning each neuron to a specific concept, i.e., scalar-concepts. An exten-
sion CBM-AUC [34], enhances the model’s capability by automatically learning
unsupervised concepts (AUC) that describe the residual variance of the feature
space. In contrast to the previous examples, Concept Whitening [6] is a post-hoc
approach towards scalar-concepts. It transforms a feature space of a layer and
reduces redundancy between neurons, making it more likely for each neuron to
correspond to a single concept. IIN [9] is another post-hoc approach that trains
an invertible neural network to map a layer output to a disentangled version,
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using pairwise labels. However, standard CNNs are typically highly entangled
[22]. Hence, such scalar-concept approaches have to enforce the disentangled
structure during training or utilize potentially non-faithful proxies [29]. Further-
more, they are limited to explaining a single layer.

Vector-concepts, on the other hand, associate a concept with a vector in the
latent space. The base work in this direction still disregarded the distributed
nature of CNN representations: The Network Dissection approach [3] aims to
associate each convolutional filter in a CNN with a semantic concept. Its suc-
cessor Net2Vec [10] corrects this issue by associating a concept with a linear
combination of filters, resulting in a concept being globally represented by a
vector in the feature space, the concept activation vector (CAV) [23]. A sib-
ling state-of-the-art method for associating concepts with latent space vectors is
TCAV [23], which also uses a linear model attached to a CNN layer to distin-
guish between neurons (in contrast to filters as in Net2Vec) relevant to a given
concept and the rest. TCAV also proposes a gradient-based approach that allows
for the evaluation of how sensitive a single prediction or complete class is to a
concept. The concept sensitivity (attribution) for a model prediction is calcu-
lated by taking the dot product between the concept activation vector and the
gradient vector backpropagated for the desired prediction. These vector-concept
baselines for classification (TCAV) and segmentation (Net2Vec) of concepts have
been extended heavily over the years, amongst others towards regression con-
cepts [14,15], multi-class concepts [21], and locally linear [46,47] and non-linear
[21] CAV retrieval. However, the core idea remained untouched.

While the TCAV paper already identifies stability as a potential issue, they
reside to significance tests for large series of experiments leaving a thorough
analysis of stability (both for concept retrieval and concept attribution) open,
as well as investigation of improvement measures. Successor works tried to sta-
bilize the concept attribution measurement. For example, Pfau et al. [30] do not
use the gradient directly, but the average change of the output when perturbing
the intermediate output towards the CAV direction in latent space in different
degrees. This gradient stabilization approach follows the idea of Integrated Gra-
dients [41], but no other approaches like Smoothed Gradients [40] have been
tried. Other approaches also suggest improved metrics for global concept attri-
bution [15]. However, to our knowledge, stability remained unexplored so far.

We address this gap by utilizing TCAV as a baseline global concept vector
representation for the stability estimation. Moreover, as gradient-based method,
it be adapted to estimate concept attributions in other model types, such as ODs
(see Sect. 3.2). It is important to note that our stability assessment method is
not limited to TCAV and can potentially be applied to evaluate the stability of
other global concept representations.

2.2 Unsupervised Concept Analysis

Unsupervised methods for analyzing concepts are also referred to as concept
mining [36]. These methods do not rely on pre-defined concept labels, but the
acquired concepts are not always meaningful and require manual revision. There
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are two main approaches to concept mining: clustering and dimensionality reduc-
tion. Clustering methods, such as ACE [12] and VRX [11] group latent space
representations of image patches (superpixels), obtained through segmentation
algorithms. The resulting clusters are treated as separate concepts and can be
used for supervised concept analysis. Invertible Concept Extraction (ICE) [49]
is a dimensionality reduction method based on non-negative matrix factoriza-
tion. It mines non-negative concept activation vectors (NCAVs) corresponding
to the most common patterns from sample activations in intermediate layers of
a CNN. The resulting NCAVs are used to map sample activations to concept
saliency maps, which show concept-related regions in the input space.

To reduce the need in concept labeling, we opted to use ICE for unsupervised
concept mining due to (1) its superior performance regarding interpretability and
completeness of mined concepts compared to clustering [49], and (2) its simpler
and more straightforward pipeline with less hyperparameters. Unlike ACE, it
does not rely on segmentation and clustering results as an intermediate step,
which makes it easier to apply.

2.3 Concept Analysis in Object Detection

There are only a few existing works that apply concept analysis methods to
object detection, due to scalability issues. In [35] the authors adapt Net2Vec for
scalability to OD activation map sizes, which is later used to verify compliance of
the CNN behavior with fuzzy logical constraints [38]. Other TCAV-based works
apply lossy average pooling to allow large CAV sizes [7,14], but do not test
OD CNNs. However, these methods are fully supervised and require expensive
concept segmentation maps for training, resulting in scalability issues regarding
concept label needs. In order to reduce the need for concept labels, we propose
adapting and using a jointly supervised and unsupervised classification approach
for object detection, and investigate the impact of CAV size on stability. This
also closes the gap that, to our knowledge, no unsupervised CA method has been
applied to OD-sized CNNs so far.

3 Proposed Method

The overall goal targeted here is a CA framework that allows stable, label-
efficient retrieval and usage of interpretable concepts for explainability of both
classification and OD backbones. To address this, we introduce a framework
that combines unsupervised CA (for semi-automated enrichment of the avail-
able concept pool) with supervised CA (for retrieval of CAVs and CNN eval-
uation) together with an assessment strategy for its stability properties. An
overview of the framework is given in the following in Sect. 3.1, with details on
how we adapted CA for OD in Sect. 3.2. Section 3.3 then presents our proposal of
CAV stability metrics. Lastly, one of the potential influence factors on stability,
namely CAV dimensionality and parameter reduction techniques, is presented
in Sect. 3.4.
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Fig. 1. The framework for estimation of CAV stability and concept attribution stability.
The proposed solution utilizes unsupervised ICE to aid concept discovery and labeling,
while supervised TCAV is used for the generation of concept representations.

3.1 Stability Evaluation Framework

The framework depicted in Fig. 1 aims to efficiently combine supervised and
unsupervised CA methods for use in explainability or evaluation purposes, like
our CA stability evaluation. To achieve this it (1) builds an extensible Concept
Pool containing human-validated Mined Concepts extracted from trained Model
Under Test, and (optionally) existing manually Labeled Concepts; and it (2) uses
these concepts to obtain CAVs and, e.g., conduct CAV Stability and Concept
Attribution Stability tests on object detection and classification models.

Concept Pool Creation/Extension. In some CV domains, it can be challeng-
ing to find publicly available datasets with high-quality concept labels. In order
to streamline the manual annotation process and speed up concept labeling, we
utilize unsupervised concept mining. The left side of Fig. 1 depicts the process
of creating the Concept Pool (or extending it, if we already have an initial set of
Labeled Concepts) by employing the Concept Miner. A concept in the concept
pool is represented by a set of images or image patches showing the concept. To
extract additional Mined Concepts, the Concept Miner identifies image patches
that cause common patterns in the CNN Image Activations. The activations are
extracted from the layer of interest of the Backbone of the Model Under Test
for Input Images from the mining set. In our work, we utilize ICE [49] as the
Concept Miner to obtain the image patches. The workflow of ICE is as follows:
(1) it first mines NCAVs; then, for each NCAV and each sample from a test set
(2) it applies NCAV inference, i.e., obtains a (non-binary) heatmap of where the
NCAV activates in the image, and (3) masks the input image with the binarized
heatmap. For details see Sect. 2.2 and [49]. The sets of mined image patches,
alias concepts, next undergo Manual Concept Validation: A human annotator
assigns a label to each Mined Concepts. These Interpreted Concepts, if meaning-
ful, can either directly be added to the set of Labeled Concepts or be utilized in
Synthetic Concept Generation to obtain more complex synthetic concept samples
(see Sect. 4.4 and Fig. 3 for more details and visual examples). It should be noted
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that the Concept Pool, once established, is model-agnostic and can be reused for
other models, and that the ICE concept mining approach can be exchanged by
any other suitable unsupervised CA method that produces concept heatmaps
during inference.

Concept Stability Analysis. Now that the Concept Pool is established, we can
perform supervised CA to obtain CAVs for the concepts in the pool. The CAV
training is done on the Concept Activations, i.e., CNN activations of concept
images from the Labeled Concepts in the Concept Pool. Given CAVs, we can
then calculate per-sample concept attribution using, e.g., backpropagation-based
sensitivity methods [23]. The resulting CAVs and Concept Sensitivity Scores can
then be used for local and global explanation purposes. To ensure their quality,
this work investigates stability (CAV Stability and Concept Attribution Stability)
of these for OD use-cases, as detailed in Sect. 3.3.

For supervised CA we use the base TCAV [23] approach: A binary linear
classifier is trained to predict presence of a concept from the intermediate neu-
ron activations in the selected CNN layer. The classifier weights serve as CAV,
namely the vector that points into the direction of the concept in the latent
space. The CAVs are trained in a one-against-all manner on the labeled concept
examples from the Concept Pool. For concept attribution, we adopt the sensitiv-
ity score calculation from [23]: for a sample is the partial derivative of the CNN
output in the direction of the concept, which is calculated as the dot product
between the CAV and the gradient vector in the CAV layer. In this paper, we
are interested in the stability of this retrieval process for obtaining CAVs and
respective concept attributions.

3.2 Concept Analysis in Object Detectors

The post-hoc concept stability assessment framework described above, in par-
ticular the used TCAV and ICE methods, is out-of-the-box suitable for use
with classification models. However, object detection networks pose additional
challenges: besides larger sizes, they have different prediction heads and employ
suppressive post-processing of the output.

Multiple Predictions. Unlike classification models that produce a single set
of predictions per sample, object detectors may produce multiple predictions,
requiring adaptions to TCAV and ICE.

For ICE the concept weights and importance estimation component require
adjustments. The pipeline assesses the effect of small modifications to each con-
cept on the final class prediction. For classification, this estimation is performed
on a per-sample basis. For object detection, we switch that calculation to the
per-bounding box approach.

The TCAV process of calculating CAVs remains unchanged. However, TCAV
employs gradients backpropagated from the corresponding class neuron and con-
cept CAV to assess the concept sensitivity of the desired output class. In object
detectors, concept sensitivity can be computed for each prediction, or bound-
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ing box, by starting the backpropagation from the desired class neuron of the
bounding box.

It is important to note that some object detection architectures predict an
objectness score for each bounding box, which can serve as an alternative starting
neuron for the backpropagation [24]. Nonetheless, we only use class neurons for
this purpose in our experiments.

Suppressive Post-processing. Another challenge in object detection is expla-
nation of False Negatives (FNs), which refer to the absence of detection for a
desired object. Users may be especially interested in explanations regarding FN
areas, e.g., for debugging purposes. While the raw OD CNN bounding box pre-
dictions usually cover all image areas, post-processing may filter out bounding
boxes due to low prediction certainty or suppress them during Non-Maximum
Suppression (NMS). To still evaluate concept sensitivity for FNs, we compare
the list of raw unprocessed bounding boxes with the desired object bounding
boxes specified by the user. We then use Intersection over Union (IoU) to select
the best raw bounding boxes that match the desired ones, and these selected
bounding boxes (i.e., their output neurons) are used for further evaluation.

3.3 Evaluation of Concept Stability

Concept Retrieval Stability. We are interested in concepts that are both
consistent and separable in the latent space. However, these two traits have not
been considered jointly in previous work. Thus, we define the generalized concept
stability SLk

metric for a concept C in layer Lk applicable to a test set X as

SC
Lk

(X) := separabilityCLk
(X) × consistencyCLk

, (1)

where, separabilityCLk
(X) represents how well tested concepts are sepa-

rated from each other in the feature space, consistencyCLk
denotes how similar

are representations for the same concept when obtained with different initializa-
tion conditions.

Separability. The binary classification performance of each CAV reflects how
effectively the concept is separated from other concepts, when evaluated in
a concept-vs-other manner rather than a concept-vs-random approach. In the
concept-vs-other scenario, the non-concept-class consists of all other concepts,
whereas it is a single randomly selected other concept in the concept-vs-random
scenario [23]. We choose the separability from Eq. 1 for a single concept C on
the test set X as:

separabilityCLk
(X) := f1CLk

(X) := 1
N

∑N
i=1 f1(CAV C

Lk,i
;X) ∈ [0, 1] (2)

where f1CLk
is the mean of relative F1-scores f1(−;X) on X for CAVC

Lk,i
of C

in layer Lk for N runs i with different initialization conditions for CAV training.

Consistency. In TCAV, during the CAVs training, a limited amount of concept
samples may lead to model underfitting, and significant inconsistency between
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CAVs obtained for different training samples and initialization conditions [23].
Since cosine similarity was shown to be a suitable similarity measure for CAVs
[10,23] we set the consistency measure to the mean cosine similarity between the
CAVs in layer Lk of N runs:

consistencyCLk
:= cosCLk

:= 2
N(N−1)

N∑

i=1

i−1∑

j=1

cos(CAVC
Lk,i

,CAVC
Lk,j

) , (3)

where cos(−,−) is cosine similarity, here between CAVs of the same concept C
and layer Lk obtained during different runs i, j.

Concept Attribution Stability. Small changes in the input space may signifi-
cantly change the output and, thus, the gradient values. TCAV requires gradients
to calculate the concept sensitivity (attribution) of given prediction. Hence, gra-
dient instability may have an impact on the explanations, and, in the worst case,
change it from positive to negative attribution or vice versa.

We want to check, if such instability of gradient values influences concept
detection. For this, we compare the vanilla gradient approach against a stabi-
lized version using the state-of-the-art gradient stabilization approach Smooth-
Grad [40]. It diminishes or negates the gradient instability in neural networks
by averaging vanilla gradients obtained for multiple copies of the original sam-
ple augmented with a minor random noise. For comparison purposes, first the
vanilla gradient is propagated backward with respect to the detected object’s
class neuron. This neuron is remembered and used then for the gradient back-
propagation for noisy copies of SmoothGrad. TCAV concept attributions can
naturally be generalized to Smoothgrad, defining them as:

attr∗
C(x) := CAVC ◦ ∇∗fLk→(f→Lk

(x)) , (4)

where attr∗
C is the attribution of concept C in layer Lk for vanilla gradient (∗ =

grad) or SmoothGrad (∗ = SG) for a single prediction for sample x, CAVC =
CAVC

Lk,.
, and f→Lk

is the CNN part up to Lk, fLk→ the mapping from Lk

representations to the score of the selected prediction and class.

Acc. As one approach, for each tested layer we build a confusion matrix for
multiple test samples and bounding boxes therein, where ytrue = sign(attrgradi )
and ypredicted = sign(attrSG

i ) are predictions to compare the sign of concept
attribution for SmoothGrad and vanilla gradient. On this, accuracy (Acc) is used
to show the fraction of cases where SmoothGrad and vanilla gradient concept
attributions have the same sign, i.e., where gradient instability has no impact.

CAD. As a second approach, to qualitatively evaluate the difference between the
concept attribution of SmoothGrad and the vanilla gradient in the tested layer,
we introduce the Concept Attribution Deviation (CAD) metric. It shows the
average absolute attribution value change for all used concepts C and N runs,
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and, thus, describes the impact of gradient instability on concept attribution in
a layer:

CAD(x) :=

∑
C

∑N
i

∣
∣
∣attrgradC,i (x) − attrSG

C,i(x)
∣
∣
∣

∑
C

∑N
i

∣
∣
∣attrgradC,i (x)

∣
∣
∣

. (5)
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Fig. 2. Concept activation vectors (CAVs) of different dimensions.

3.4 CAV Dimensionality

The stability can be greatly affected by the number of CAV parameters, which
is especially important in object detectors with large intermediate representa-
tions. Moreover, the larger CAV size leads to increased memory and computation
requirements. The original TCAV paper proposes using 3D-CAV-vectors [23].
However, alternative translation invariant 1D- [10,49] and channel invariant
2D-CAV-representations, which have less parameters, are possible. If 3D-CAV’s
dimensions of OD’s arbitrary intermediate layer are C×H×W , then dimensions
of 1D- and 2D-CAV are C × 1× 1 and 1×H ×W respectively, where C, H and,
W denote channel, height and, width dimensions respectively (see Fig. 2).

The 1D-CAV provides during inference one presence score per channel, and
possesses the property of translation invariance. This implies that only the pres-
ence or absence of a concept in the input space matters, rather than its size or
location. In contrast, the 2D-CAV concentrates solely on the location of the con-
cept, providing one presence score for each activation map pixel location. This
can also be advantageous in certain circumstances (e.g., for the concepts “sky”
or “ground”). The 3D-CAV provides during inference a single concept presence
score for the complete image, depending both on location, size, and filter distri-
bution of the concept. Meanwhile, it comes with the disadvantage of larger size
and higher computational requirements.

Original 3D-CAVs do not require special handling of the latent space. But
for evaluation of 1D- and 2D-CAVs, we preprocess incoming latent space vectors
to match the CAV dimensionality by taking the mean along width and height,
or channel dimensions respectively, as already successfully applied in previous
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work [7,14]. In other words, for the calculation of CAV with reduced dimensions,
we aggregate activation functions and gradients along certain dimensions. CAV
dimension size is a hyperparameter, which may impact CAV memory consump-
tion, CAV stability, the overall performance of concept separation, CAV training
speed, and following operations with CAVs (e.g., evaluation of the concept attri-
bution). Thus, we also propose using our stability metrics for the selection of
the optimal CAV dimension size.

4 Experimental Setup

We use the proposed framework to conduct the following experiments for OD
and classification models: 1) evaluation of concept representation stability via
the selection of representation dimensionality; 2) inspection of the impact of
gradient instability in CNNs on concept attribution. The process of concept
analysis in classifiers can be carried out using the default approaches proposed
in the original papers [23,49], and it does not require any special handling.

In the following subsections, we describe selected experimental datasets and
concept data preparation, models, model layers, and hyperparameter choices.
Experiment results and interpretation are described later in Sect. 5.

4.1 Datasets

Object Detection. For unsupervised concept mining in object detectors and
experiments with ODs, we use the validation set of MS COCO 2017 [26] dataset,
containing 5000 real world images with 2D object bounding box annotations,
including many outdoor and urban street scenarios. We mine concepts from
bounding boxes of person class with the area of at least 20000 pixels, so the
mined concept images have reasonable size and can be visually analyzed by a
human. The resulting subset includes more than 2679 bounding boxes of people
in different poses and locations extracted from 1685 images.

Classification. For concept stability experiments with classification model, we
use BRODEN [3] and CycleGAN Zebras [50] datasets. BRODEN contains more
than 60,000 images image and pixel-wise annotations for almost 1200 concepts
of 6 categories. CycleGAN Zebras contains almost 1500 images of zebras suitable
for supervised concept analysis.

4.2 Models

To evaluate the stability of semantic representations in the CNNs of different
architectures and generations, we selected three object detectors and three clas-
sification models with various backbones.

Object Detection Models:
– one-stage YOLOv5s1 [20] (residual DarkNet [16,32] backbone);
– two-stage FasterRCNN2 [33] (inverted residual MobileNetV3 [17] backbone);
1 https://github.com/ultralytics/yolov5.
2 https://pytorch.org/vision/stable/models/faster_rcnn.

https://github.com/ultralytics/yolov5
https://pytorch.org/vision/stable/models/faster_rcnn
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– one-stage SSD3 [28] (VGG [39] backbone).

All evaluated object detection models are pre-trained on MS COCO [26]
dataset. The models are further referred to as YOLO5, RCNN, and SSD.

Classification Models:

– residual ResNet504 [16];
– compressed SqueezeNet1.15 [18]
– inverted residual EfficientNet-B06 [42]

Classification models are pre-trained on ImageNet1k [8] dataset. The models
are further referred to as ResNet, SqueezeNet, and EfficientNet.

Table 1. Shorthands li of selected classification CNN intermediate layers for Concept
Analysis (l=layer, b=block, f=features, squeeze=s).

Classifier layers
l1 l2 l3 l4 l5 l6 l7

ResNet l1.1.c3 l2.0.c3 l2.2.c3 l3.1.c3 l3.4.c3 l4.0.c3 l4.2.c3

SqueezeNet f.3.s f.4.s f.6.s f.7.s f.9.s f.10.s f.11.s

EfficientNet f.1.0.b.2.0 f.2.0.b.3.0 f.3.0.b.3.0 f.4.0.b.3.0 f.5.0.b.3.0 f.6.0.b.3.0 f.7.0.b.3.0

Table 2. Shorthands li of selected OD CNN intermediate layers for Concept Analysis
(b=block, f=features, e=extra, c=conv).

OD layers
l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

YOLO5 3.c 4.cv3.c 5.c 6.cv3.c 7.c 8.cv3.c 10.c 14.c 17.cv3.c 18.c

RCNN 3.b.2.0 4.b.3.0 5.b.3.0 6.b.3.0 7.b.2.0 8.b.2.0 10.b.2.0 11.b.3.0 13.b.3.0 15.b.3.0

SSD f.5 f.10 f.14 f.17 f.21 e.0.0 e.1.0 e.2.0 e.3.0 e.4.0

4.3 Layer Selection for Concept Analysis

To identify any influence of the layer depth on extracted concept stability, we
must analyze the latent space of DNNs across multiple layers. To accomplish

3 https://pytorch.org/vision/stable/models/ssd.
4 https://pytorch.org/vision/stable/models/resnet.
5 https://pytorch.org/vision/stable/models/squeezenet.
6 https://pytorch.org/vision/stable/models/efficientnet.

https://pytorch.org/vision/stable/models/ssd
https://pytorch.org/vision/stable/models/resnet
https://pytorch.org/vision/stable/models/squeezenet
https://pytorch.org/vision/stable/models/efficientnet
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Fig. 3. Examples of synthetic concept samples generated using concept superpixels
obtained from MS COCO.

this, we extract intermediate representations and concepts from ten intermedi-
ate convolutional layers of ODs and seven intermediate convolutional layers of
classifiers. These layers are uniformly distributed throughout the backbones of
CNNs. The names of the selected layers for each network are listed in Table 1
and Table 2, where each layer is identified by a symbolic name in the format of
lx, where x denotes the relative depth of the layer in the backbone (i.e., layers
from l1 to l7 for classifiers and from l1 to l10 for ODs).

In experiments, we use semantic concepts of medium-level (e.g., composite
shapes) or high-level (e.g., human body parts) abstraction (Sect. 4.4). Shallow
layers are ignored, as they mostly recognize concepts of low-level abstraction
(e.g., color, texture), whilst deeper layers recognize complex objects and their
parts [45,48].

4.4 Synthetic Concept Generation and Concept Selection

Object Detection. To conduct concept analysis experiments with object detec-
tors, we generate synthetic concept samples using concept information extracted
from MS COCO (see Fig. 1 and Sect. 3.1). We used ICE [49] to mine concept-
related superpixels (image patches) from MS COCO bounding boxes of the per-
son class that have an area of at least 20,000 pixels. Then, we visually inspected
30 mined concepts (10 for each following YOLO5 layer: 8.cv3.c, 9.cv1.c, and
10.c; see caption of Table 2 for notations) and selected 3 concepts semantically
corresponding to labels “legs”, “head”, and “torso”. Interestingly, we found that
several concepts (e.g., “head”, “legs”) were present in more than one layer. We
only picked one of the concepts of the same type based on the subjective qual-
ity. For each selected concept, we save 100 concept-related superpixels using a
concept mask binarization threshold of 0.5.

Examples of the MS COCO synthetic concepts can be seen in Fig. 3. To
generate a synthetic concept sample of a size of 640× 480 pixels, 1 to 5 concept-
related superpixels are selected and placed on a background of random noise
drawn from a uniform distribution (alternatively, images of natural environments
can be used as a background). Additionally, random scaling is applied to the
superpixels before placement with a random factor between 0.9 and 1.1.
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Classification. We use labeled concepts “stripes”, “zigzags”, and “dots” from
BRODEN dataset to analyze the stability of concept representation and attribu-
tion in classification models on the examples of zebra images from the CycleGAN
dataset.

4.5 Experiment-Specific Settings

Experiment 1: CAV Stability and Dimensionality. We conduct CAV-
stability experiments for 1D-, 2D-, and 3D-CAVs (see Sect. 3.4) with YOLO5,
RCNN, SSD, ResNet, SqueezeNet, and EfficientNet models to measure the
potential concept retrieval stability in different networks and setups. For sta-
bility measurement, the number N of CAV retrieval runs with different initial-
ization parameters is set to 15, which is similar to the ensemble size in [31], as
we observed it is a good trade-off regarding computational speed. In each run,
we utilize 100 samples per concept, dividing them into 80 for concept extraction
and 20 for validation (estimation of f1).

To further examine the influence of the number of concept training samples
on CAV stability, we also test three additional setups with 20, 40, and 60 training
concept samples. The test has been conducted for all six networks.

Experiment 2: Gradient Stability in Concept Detection. For gradient
stability experiments, ResNet and YOLO5 are selected as models with the best
CAV stability from Experiment 2. Moreover, we validate setups with 1D- and
3D-CAVs to see how gradient instability affects concept attribution in CAVs
of different dimensionality. For the computation of SmoothGrad, we use the
hyperparameter values recommended in [40]: the number of noisy copies N is
set to 50, and the amount of applied Gaussian noise is set to 10%.

5 Experimental Results

Table 3. Stability of generated CAVs of different dimensions for YOLO5.

CAV l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

cos 1D 0.977 0.980 0.972 0.971 0.956 0.955 0.859 0.927 0.923 0.929
2D 0.522 0.342 0.483 0.526 0.729 0.590 0.670 0.670 0.715 0.666
3D 0.346 0.378 0.467 0.553 0.577 0.617 0.664 0.707 0.652 0.602

f1 1D 0.749 0.763 0.854 0.904 0.930 0.958 0.956 0.924 0.909 0.906
2D 0.427 0.404 0.400 0.458 0.499 0.488 0.547 0.571 0.558 0.523
3D 0.576 0.592 0.663 0.723 0.858 0.872 0.941 0.884 0.876 0.852

SLk
1D 0.732 0.748 0.830 0.878 0.889 0.915 0.821 0.857 0.839 0.841
2D 0.223 0.138 0.193 0.241 0.364 0.288 0.366 0.383 0.399 0.349
3D 0.199 0.224 0.310 0.400 0.495 0.538 0.625 0.626 0.571 0.513
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Table 4. Stability of generated CAVs of different dimensions for RCNN.

CAV l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

cos 1D 0.965 0.977 0.979 0.976 0.970 0.973 0.980 0.946 0.933 0.893
2D 0.243 0.565 0.539 0.349 0.480 0.612 0.672 0.514 0.684 0.832
3D 0.271 0.649 0.436 0.393 0.626 0.650 0.605 0.577 0.638 0.688

f1 1D 0.528 0.588 0.730 0.550 0.762 0.809 0.724 0.888 0.946 0.944
2D 0.530 0.582 0.533 0.420 0.486 0.506 0.448 0.543 0.521 0.659
3D 0.536 0.552 0.586 0.563 0.680 0.741 0.637 0.753 0.873 0.941

SLk
1D 0.509 0.574 0.715 0.537 0.739 0.787 0.710 0.840 0.882 0.843
2D 0.129 0.329 0.287 0.147 0.233 0.309 0.301 0.279 0.357 0.548
3D 0.145 0.358 0.255 0.221 0.426 0.482 0.385 0.435 0.557 0.647

Table 5. Stability of generated CAVs of different dimensions for SSD.

CAV l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

cos 1D 0.972 0.965 0.961 0.947 0.954 0.945 0.916 0.917 0.927 0.933
2D 0.549 0.574 0.670 0.672 0.694 0.730 0.801 0.809 0.868 0.923
3D 0.244 0.370 0.504 0.547 0.549 0.580 0.777 0.789 0.789 0.844

f1 1D 0.666 0.758 0.909 0.888 0.949 0.962 0.897 0.846 0.874 0.858
2D 0.413 0.418 0.440 0.406 0.429 0.421 0.492 0.523 0.652 0.614
3D 0.556 0.596 0.636 0.738 0.831 0.891 0.870 0.880 0.856 0.843

SLk
1D 0.647 0.731 0.873 0.841 0.905 0.909 0.821 0.776 0.810 0.801
2D 0.227 0.240 0.295 0.273 0.298 0.307 0.394 0.423 0.566 0.567
3D 0.136 0.221 0.320 0.404 0.456 0.517 0.676 0.694 0.675 0.712

Table 6. Stability of generated CAVs of different dimensions for ResNet.

CAV l1 l2 l3 l4 l5 l6 l7

cos 1D 0.969 0.955 0.959 0.919 0.953 0.882 0.869
2D 0.861 0.918 0.839 0.906 0.972 0.945 0.976
3D 0.726 0.684 0.672 0.749 0.705 0.624 0.648

f1 1D 0.668 0.856 0.847 0.910 0.944 0.983 0.960
2D 0.402 0.369 0.406 0.588 0.598 0.356 0.423
3D 0.716 0.867 0.871 0.920 0.956 0.988 0.967

SLk 1D 0.647 0.817 0.812 0.836 0.900 0.868 0.834
2D 0.346 0.339 0.340 0.533 0.581 0.336 0.413
3D 0.520 0.593 0.585 0.689 0.673 0.616 0.626
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Table 7. Stability of generated CAVs of different dimensions for SqueezeNet.

CAV l1 l2 l3 l4 l5 l6 l7

cos 1D 0.935 0.959 0.935 0.922 0.918 0.924 0.905
2D 0.806 0.839 0.799 0.862 0.847 0.860 0.809
3D 0.773 0.750 0.779 0.758 0.795 0.807 0.760

f1 1D 0.547 0.654 0.863 0.883 0.920 0.948 0.968
2D 0.381 0.364 0.377 0.409 0.453 0.551 0.506
3D 0.620 0.668 0.863 0.877 0.911 0.932 0.961

SLk 1D 0.511 0.627 0.807 0.815 0.845 0.876 0.876
2D 0.307 0.306 0.301 0.352 0.384 0.474 0.409
3D 0.479 0.501 0.673 0.665 0.724 0.752 0.731

Table 8. Stability of generated CAVs of different dimensions for EfficientNet.

CAV l1 l2 l3 l4 l5 l6 l7

cos 1D 0.924 0.929 0.936 0.933 0.892 0.898 0.767
2D 0.773 0.751 0.711 0.772 0.754 0.769 0.884
3D 0.787 0.744 0.770 0.835 0.668 0.843 0.638

f1 1D 0.377 0.628 0.810 0.922 0.954 0.986 0.978
2D 0.337 0.506 0.483 0.526 0.540 0.561 0.580
3D 0.370 0.688 0.836 0.922 0.960 0.968 0.979

SLk 1D 0.348 0.583 0.758 0.860 0.851 0.885 0.750
2D 0.260 0.380 0.344 0.406 0.407 0.431 0.513
3D 0.291 0.512 0.643 0.770 0.641 0.816 0.625

Fig. 4. Impact of number of concept samples on CAVs stability for YOLO5
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5.1 CAV Stability and Dimensionality

The CAV stability results for 1D-, 2D- and 3D-CAVs in different layers of
YOLO5, RCNN, SSD, ResNet, SqueezeNet, and EfficientNet networks are pre-
sented in Tables 3 to 8. In addition, Figs. 4 to 9 visualize the impact of number
of training concept samples on the overall stability of 1D-, 2D- and 3D-CAVs.

CAV Dimensionality Impact. 3D-CAVs are obtained without intermediate
representation aggregation, and they demonstrate good concept separation (f1)
that can sometimes even outperform that of 1D-CAVs. This is typical for classi-
fiers, where, for instance, in all layers of ResNet (Table 6) f1 of 3D-CAVs is the
highest. However, they for all models exhibit mediocre CAV consistency (cos),
possibly due to the larger number of parameters and a relatively small number
of training concept samples. Overall, 3D-CAVs are less stable than 1D-CAVs,
but still can be used for CA.

In contrast, 2D-CAVs exhibit relatively high consistency (e.g., in Table 6,
layers l5, l6, and l7 have the top cos values for 2D-CAVs), but they have the
worst concept separation (f1), as observed in all tables. As a result, the over-
all 2D-CAV stability in all models is the worst. In 2D-CAVs, no distinction is
made between different channels in the latent space due to 3D-to-2D aggrega-
tion. The noticeable reduction of concept separation (f1) in 2D-CAVs reinforces
the assumption made in other works (e.g., [3,10]) that concept information is
encoded in different convolutional filters or their linear combinations.

1D-CAVs achieve the best overall CAV-stability due to their (mostly) best
consistency (cos) and good concept separation (f1). Moreover, 1D-CAVs have
the advantage of fast computation speed since they have fewer parameters. These
unique features of 1D-CAVs make them highly stable even in shallow layers,
where other CAVs may experience low stability. For example, in Table 3, the
stability of 1D-CAVs in layer l1 SLk

= 0.732 is substantially higher than that of
2D- and 3D-CAVs, which are only 0.223 and 0.199, respectively.

Based on our empirical findings, we recommend using 1D-CAV as the default
representation for most applications due to its superior overall stability. How-
ever, for safety-critical applications, we advise using our stability assessment
methodology prior to CA.

Concept Abstraction Level Impact. In OD models, experiments are con-
ducted with concepts of medium-to-high levels of abstraction (complex shapes
and human body parts), which are usually detected in middle and deep layers of
the network [45]. Thus, it is expected that there will be worse concept separation
(f1) in shallow layers, and this has indeed been observed across all dimension
sizes of CAVs (as shown in Tables 3–8).

However, this observation is not always valid for 2D-CAVs, as results have
shown that concept separation drops in some deeper layers. For instance, in
Table 4 l4 and l7 have f1 values 0.420 and 0.448, while for l1 it is 0.530. Also,
Table 4 shows that the increase of f1 for 2D-CAVs is not as high as it is for
1D- and 3D-CAVs. The range of f1 for 2D-CAVs is between 0.420 to 0.659,
whereas for 3D-CAVs, it is between 0.536 to 0.941. These findings further support
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Fig. 5. Impact of number of concept samples on CAVs stability for RCNN

Fig. 6. Impact of number of concept samples on CAVs stability for SSD

the hypothesis that concept information is encoded in linear combinations of
convolutional filters [3,10].

Impact of Number of CAV Training Samples. Figures 4 to 9 demonstrate
that increasing the number of training concept images has a positive impact
on the stability of CAV. However, labeling concepts is a time-consuming and
expensive process. Therefore, we recommend using at least 40 to 60 concept-
related samples for training each CAV. In most cases, the stability obtained with
80 samples is only marginally better than that obtained with 40 (see Fig. 8) or
60 samples (see Fig. 4 and Fig. 6).

CNN Architecture Impact. From Tables 3 to 8 we see that top CAV stability
(SLk

) values achieved by ODs and classifiers for CAVs trained on the same
concept datasets are very similar. However, due to architectural differences, the
top stability values are achieved at different relative layer depths. For example,
the top stabilities for 1D-CAVs in YOLO5, RCNN, and SSD object detectors
are achieved in layers l6, l9, and l6, respectively, with corresponding values of
0.915, 0.882, and 0.909 (see Tables 3, 4, and 5). Similarly, the top stability values
for 1D-CAVs for ResNet, SqueezeNet, and EfficientNet classifiers are achieved
in layers l5, l7, and l6, respectively, with corresponding values of 0.900, 0.876,
and 0.885 (Table 6, 7, and 8). The same tables show that the layers with top
stability values may vary for different sizes of CAV dimensions even within the
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Fig. 7. Impact of number of concept samples on CAVs stability for ResNet

Fig. 8. Impact of number of concept samples on CAVs stability for SqueezeNet

same model (e.g., in Table 3, the YOLO5 top stabilities for 1D-, 2D-, and 3D-
CAV are obtained in layers l6, l9, and l8, respectively).

The CAV stability differences among inspected architectures can also be
observed in Figs. 4 to 9. For example, in the case of 1D-CAV of ResNet (Fig. 7)
and 1D- and 3D-CAVs of SqueezeNet (Fig. 8), we observe that the stability value
quickly reaches its optimal values in the first one or two layers and remains sim-
ilar in deeper layers. In other cases, such as 3D-CAV of SSD (Fig. 6) or all
CAV dimensions of RCNN (Fig. 5), stability gradually increases with the rela-
tive depth of the layer. Finally, the stabilities of 1D- and 3D-CAVs of YOLO5
(Fig. 4) or 1D- and 3D-CAVs of EfficientNet (Fig. 9) grow until an optimal layer
in the middle and slowly shrink after it.
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Fig. 9. Impact of number of concept samples on CAVs stability for EfficientNet

Table 9. Gradient stability in layers of ResNet for 1D-CAV.

Measure l1 l2 l3 l4 l5 l6 l7

TP 669 748 731 709 728 677 500
TN 718 697 704 727 724 791 1000
FP 52 26 33 30 26 19 0
FN 61 29 32 34 22 13 0
Acc 0.92 0.96 0.96 0.96 0.97 0.98 1.00
CAD, % 20.7 13.6 14.1 14.4 10.5 6.0 0.6

Table 10. Gradient stability in layers of ResNet for 3D-CAV.

Measure l1 l2 l3 l4 l5 l6 l7

TP 667 709 693 716 886 789 500
TN 687 721 721 709 561 688 1000
FP 80 41 43 41 26 13 0
FN 66 29 43 34 27 10 0
Acc 0.90 0.95 0.94 0.95 0.96 0.98 1.00
CAD, % 31.3 17.5 19.5 18.0 12.8 5.8 0.7

Table 11. Gradient stability in layers of YOLO5 for 1D-CAV.

Measure l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

TP 973 997 979 1012 998 989 998 1046 1065 771
TN 1014 994 1009 990 989 1038 1069 1042 1024 1331
FP 73 66 61 58 80 53 36 23 22 21
FN 76 79 87 76 69 56 33 25 25 13
Acc 0.93 0.93 0.93 0.94 0.93 0.95 0.97 0.98 0.98 0.98
CAD, % 24.1 27.4 26.4 28.0 27.9 22.5 17.6 13.8 10.9 14.5
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Table 12. Gradient stability in layers of YOLO5 for 3D-CAV.

Measure l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

TP 959 1010 985 985 973 1001 1054 1032 1039 785
TN 1025 1012 1002 1007 980 990 1015 1057 1047 1321
FP 75 58 74 74 87 80 28 22 29 11
FN 77 56 75 70 96 65 39 25 21 19
Acc 0.93 0.95 0.93 0.93 0.91 0.93 0.97 0.98 0.98 0.99
CAD, % 27.2 29.6 28.5 29.7 30.6 29.2 15.7 14.3 11.5 14.1

5.2 Gradient Stability in Concept Detection

Based on the experimental results, it can be concluded that the negative impact
of gradient instability on concept analysis using TCAV is minimal. The results
presented in Tables 9 and 10 are based on 1500 concept attribution predictions
(see Eq. 4) for 500 images and 3 concepts per image, for each tested layer of
ResNet with 1D- and 3D-CAVs, respectively. Similarly, Tables 11 and 12 are
built for each tested layer of YOLO5 with 1D- and 3D-CAVs, respectively, using
2136 concept attribution predictions for 712 bounding boxes and 3 concepts per
bounding box.

SmoothGrad Impact. In the Tables 9 to 12, the relative depth of CNN back-
bone layers is increasing from left to right, while gradient backpropagation depth
from outputs to CAV layer is increasing in right to left order. As expected, the
gradient is becoming more unstable with backpropagation depth [40], resulting in
higher CAD values in shallow layers compared to deeper layers. The higher num-
ber of concept attribution sign flips is observed in shallow layers (see Sect. 3.3),
where accuracy (Acc) values in those layers are low. These observations confirm
the negative correlation between CAD and Acc, where CAD increases as Acc
decreases. This suggests that gradient smoothing techniques, such as Smooth-
Grad, can have a higher impact on concept attribution values in shallow layers,
where the gradient instability is higher.

Despite the negative correlation between CAD and Acc values, the overall
accuracy values remain above 0.9 for all layers in the provided tables. The lowest
accuracy value for ResNet of Acc = 0.90 is observed in Table 10 for l1. For
YOLO5 the lowest Acc = 0.91 is obtrained in l5 (Table 12). This indicates that
the sign of concept attribution is only changed for a minority of predictions across
all tested networks and configurations. However, it is worth noting that CAD
values can be high in shallow layers, for instance, CAD = 31.3% at layer l1 of
Table 10, resulting in a higher rate of concept attribution sign flipping compared
to deeper layers.

The use of SmoothGrad comes at a higher computational cost compared to
vanilla gradient. It is more than N times (number of noisy copies) computation-
ally expensive, and mostly impacts concept attribution in shallow and middle
layers of networks. Therefore, it is advisable to use SmoothGrad when conduct-
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ing concept analysis in shallow layers of networks with large backbones such as
ResNet101 or ResNet152.

CAV Dimensionality Impact. The use of 1D-CAV representations generally
results in lower CAD values than 3D-CAVs, typically with a difference of 2–3%.
This behavior can be attributed to the higher stability of 1D-CAVs, which is in
turn caused by the lower number of parameters. The observation is consistent
across all layers of ResNet and the majority of YOLO5 layers, as shown in
Tables 9 to 12. However, the dimensionality of CAV does not affect the behavior
of gradient instability in other regards: CAD remains higher and Acc lower in
shallow layers regardless of the CAV dimensionality.

6 Conclusion and Outlook

This study proposes a framework and metrics for evaluating the layer-wise sta-
bility of global vector representations in object detection and classification CNN
models for explainability purposes. We introduced two stability metrics: concept
retrieval stability and concept attribution stability. Also, we proposed adaptation
methodologies for unsupervised CA and supervised gradient-based CA methods
for combined, labeling-efficient application in object detection models.

Our concept retrieval stability metric jointly evaluates the consistency and
separation in the feature space of concept semantic concept representations
obtained across multiple runs with different initialization parameters. We used
the TCAV method as an example to examine factors that affect stability and
found that aggregated 1D-CAV representations offer the best performance. Fur-
thermore, we determined that a minimum of 60 training samples per concept is
necessary to ensure high stability in most cases.

The second metric, concept attribution stability, assesses the impact of gra-
dient smoothing techniques on the stability of concept attribution. Our obser-
vations suggest that 1D-CAVs are more resistant to gradient instability, partic-
ularly in deep layers, and we recommend using gradient smoothing in shallow
layers of deep network backbones.

Our work provides valuable quantitative insights into the robustness of con-
cept representation, which can inform the selection of network layers and concept
representations for CA in safety-critical applications. For future work, it will be
interesting to apply the proposed approaches and metrics to alternative global
concept vector representations and perform comparative analysis.
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Abstract. Images are loaded with semantic information that pertains
to real-world ontologies: dog breeds share mammalian similarities, food
pictures are often depicted in domestic environments, and so on. How-
ever, when training machine learning models for image classification, the
relative similarities amongst object classes are commonly paired with
one-hot-encoded labels. According to this logic, if an image is labelled as
spoon, then tea-spoon and shark are equally wrong in terms of training
loss. To overcome this limitation, we explore the integration of additional
goals that reflect ontological and semantic knowledge, improving model
interpretability and trustworthiness. We suggest a generic approach that
allows to derive an additional loss term starting from any kind of seman-
tic information about the classification label. First, we show how to apply
our approach to ontologies and word embeddings, and discuss how the
resulting information can drive a supervised learning process. Second, we
use our semantically enriched loss to train image classifiers, and analyse
the trade-offs between accuracy, mistake severity, and learned internal
representations. Finally, we discuss how this approach can be further
exploited in terms of explainability and adversarial robustness.

Keywords: Computer Vision · eXplainable Artificial Intelligence ·
Ontologies · Word Embeddings

1 Introduction

Deep Learning (DL) models have become the go-to method for addressing numer-
ous Computer Vision (CV) tasks, such as image classification. Unlike traditional
approaches that require manual feature extraction, DL streamlines the devel-
opment of end-to-end pipelines that seamlessly integrate images as inputs to
the learning process, thereby automating feature extraction and enhancing over-
all efficiency. This automation enables the training of DL models over extensive
image datasets, which subsequently leads to enhanced model accuracy. However,
the “black-box” nature of DL models presents challenges, as Machine Learning
(ML) practitioners often struggle to understand the chain of transformations
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that a DL model adopts to map an image into the final prediction. This lack
of transparency is considered to be hampering the adoption of DL models in
real-world scenarios, due to a plethora of reasons: lack of trust from domain
experts, impossibility of thorough debugging from practitioners, lack of compli-
ance to legal requirements regarding explainability, and potential systemic bias
in the trained model [18]. The research field of eXplainable Artificial Intelligence
(XAI) tackles this problem by trying to provide more insights about the inner
decision process of ML models [11]. However, most XAI techniques for CV are
post-hoc: they are applied on trained ML models, and typically try to correlated
portions of the image to the resulting label by means of input perturbation or
maskings [30,32,34]. A few other approaches try to modify the training proce-
dure itself, hoping to gain more control over the model’s internals, while at the
same time maintaining competitive classification performances.

With this in mind, we remark how the standard DL pipeline for image classi-
fication trains the model to learn a mapping from images to labels. As inputs,
images are loaded with semantic information that pertains to real-world ontolo-
gies: dog breeds share mammalian similarities, food pictures are often depicted
in domestic environments, and so on. As outputs, labels are typically one-hot-
encoded (OHE), implementing a rigid binary logic of ‘one is class correct, all
other classes are wrong’. There is therefore no semantics attached to these labels,
as all dimensions of these OHE vectors are orthogonal. As a defective byproduct
of this common ML framing, if an image is labelled as spoon, then tea-spoon and
shark are equally wrong predictions, and would be equally penalised in terms
of training loss during a training phase. However, labels can often be linked
them to external sources of knowledge representation, ranging from structured
knowledge bases such as ontologies [12] to embedding vectors [37] produced by
language models. Our Research Question (RQ) is therefore the following:

RQ: How can we inject semantic information into a standard
image classification learning process?

In order to answer this question, in this paper we introduce a general app-
roach that allows to inject any kind of auxiliary semantic vectors to OHE labels,
and produce enriched vectors that we call Semantically-Augmented Labels (S-
AL). S-AL can be used as ground truth with standard loss functions and neural
architectures in ML tasks such as image classification. We can thus formulate
additional Research Sub-Questions:

– RsQ1: How does S-AL perform ML-wise, both in terms of
quantity and quality of errors?

– RsQ2: What is the impact of S-AL concerning the learned
internal representation of concepts?

– RsQ3: What is the impact of S-AL on XAI?
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We answer all these questions empirically: first, we show how to encode both
hierarchical information extracted from an ontology, and embedding vectors pro-
duced by a language model. Then we train several ML models using S-AL as
targets, together with baseline models for benchmarking. We then analyse these
models in terms of ML performance, structure of the feature space, and XAI
heatmaps. We show how S-AL allows to maintain competitive classification accu-
racy while allowing for less semantically severe mistakes, and we show how the
injection of semantic information improves both the space of learned features
and the relative similarities of produced image explanations.

The remainder of the paper is structured as follows: Sect. 2 describes related and
relevant research work, while Sect. 3 introduces our approach S-AL. Section 4
describes how we operationalise the answer to the sub-research questions RsQ1,
RsQ2, and RsQ3, and in Sect. 5 we show and discuss our experimental results.
Section 6 draws the final considerations and directions for future work.

2 Related Work

Neural Networks for Image Classification
Neural networks have proven to be effective in solving complex image classifi-
cation tasks. Convolutional Neural Networks (CNNs) are the most widely used
type of neural network for image classification. CNNs consist of multiple lay-
ers of convolutional and pooling operations that extract features from the input
image. The extracted features are then fed into fully connected layers, which
output the final classification probabilities. One of the most influential works in
this field was the AlexNet architecture proposed in 2012 [17]. The architecture
used five convolutional layers and three fully connected layers to achieve state-
of-the-art performance on the ImageNet [8] dataset. Since then, many improve-
ments have been made to the CNN architecture, such as the VGGNet [33] -
however, the main structure of convolutional layers for feature extraction fol-
lowed by dense layers for feature-to-label classification became a standard. A
notable further development was the introduction of residual connections, start-
ing from ResNet [15]. More recently, attention-based neural networks have been
proposed for image classification. These models use attention mechanisms to
selectively focus on important image regions, improving performance. SENet [16]
is an example of this approach, achieving state-of-the-art performance on the
ImageNet by using attention modules to selectively amplify important features.
Overall, neural networks have shown great success in image classification tasks,
and their performance continues to improve with new advancements in archi-
tecture and training techniques. However, the image classification training pro-
cess commonly involves one-hot encoding for class labels and cross-entropy as
a loss function. The problem of hierarchical classification was initially explored
in the literature (see survey [31]), but never incorporated into standard training
pipelines.
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Semantic Auxiliary Information Sources
Including semantic information has proved beneficial in multiple contexts, such
as model interpretability [10], image summarization [23], and image classifica-
tion [4] itself. However, in standard image classification tasks, labels are OHE
and convey any contextual information regarding their semantic value: breakfast,
lunch and mountain are three equally-independent dimensions of a OHE ground
truth vector. Clearly, structured representations of knowledge could provide aux-
iliary information concerning relations between (the concepts represented by)
labels. The most common pairing of image classification dataset with exter-
nal semantic information is Imagenet-Wordnet. ImageNet, as mentioned above,
is a common benchmark for image classifiers; WordNet [12] is a large lexical
database of English. Nouns, verbs, adjectives, and adverbs are grouped into sets
of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are
interlinked by means of conceptual-semantic and lexical relations. The already-
available link between the two is that all ImageNet are also nodes (synsets)
within the WordNet graph. We remark that exploiting structured representa-
tion of knowledge like WordNet is surely an interesting research direction. Still,
it excludes a plethora of other unstructured semantic information sources, such
as word embeddings [37]. A word embedding is a learned latent representation
for text that allows words with similar meaning to have a similar representation
and is commonly used for Natural Language Processing downstream tasks [5].
Typically, the representation is a real-valued vector that encodes the meaning
of the word in such a way that words that are closer in the vector space are
expected to be similar in meaning. We remark that for word embeddings there
is no underlying data structure connecting different terms: instead, reasoning
task can exploit the pairwise similarity between embeddings.

Injecting Semantics in Image Classification Tasks
In recent times, some research work has again proposed to integrate image classi-
fication with auxiliary information regarding the semantic context of labels. The
most common procedure is to exploit structured representations of knowledge,
such as ontologies, and extract from them a hierarchy of labels. The existing
approaches differ on how they incorporate class hierarchies in the training pro-
cess: the literature distinguishes them among label embedding, hierarchical loss,
and hierarchical architecture-based methods.

Label-embedding approaches encode hierarchies directly into the class label rep-
resentation using soft embedding vectors rather than one-hot encoding. Some
works directly use the taxonomic hierarchy tree of class to derive soft labels, also
known as hierarchical embedding [1–4,13,19,39]. Barz and Denzler [2] derive a
measure of semantic similarity between classes using the lowest common ancestor
(LCA) height in a given hierarchy tree. The loss function combines two terms:
a standard cross-entropy loss for the image classification target and a linear loss
to enforce similarity between the image representations and the class semantic
embedding. Bertinetto et al. [4] also adopt the LCA to derive soft labels which
encode the semantic information and use standard cross-entropy loss. Using tax-
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onomic hierarchy trees to encode hierarchies allows the direct use of prior seman-
tic knowledge without needing external models or training procedures. On the
other hand, it limits its application to problems for which a taxonomic hierarchy
tree is available. Other works proposed in the context of zero-shot classification
avoid the use of taxonomies by exploiting text embeddings [1,13,39]. For exam-
ple, DeViSE [13] derives class embedding using a pre-trained word2vec model
on Wikipedia; these works were originally proposed in the context of zero-shot
classification. Few works explore both hierarchical and text embeddings. For
example, Liu et al. [19] combine the hyperbolic embedding learned with Word-
Net hierarchy with the word ones using the Glove model but for the context of
zero-shot recognition.

Hierarchical loss methods integrate hierarchical semantic information by modi-
fying the training loss function [4,7,14,36,38] belong to this category. Bertinetto
et al. [4] propose a hierarchical cross-entropy (HXE) which is the weighted sum
of the cross-entropies of the conditional probabilities derived by conditioning
the predictions for a particular class on the parent-class probabilities. Garg et
al., in Hierarchy Aware Features (HAF) [14], propose a multi-term loss function
to optimize fine label prediction while capturing hierarchical information. The
approach leverages multiple classifiers, one at each level of the taxonomic tree
hierarchy, with a shared feature space. In our work, we include semantic infor-
mation directly via soft labels and also generalize for non-hierarchical semantic
information.

Hierarchical architecture-based methods integrate the class hierarchy directly
into the model architecture at the structural level. Approaches as [6,22,27] fall
into this category. Hierarchical architecture-based methods are suitable for only
hierarchy-based semantic information. We propose to encode class relations from
generic semantic information, from hierarchy trees to word embeddings.

Our work proposes a label-embedding strategy that encodes semantics into class
similarity embedding from general semantic information, be it taxonomic tree
hierarchies or word embeddings. Moreover, differently than existing approaches,
we explicitly address the assessment of the semantic-aware representation in the
derived models.

eXplainable and Interpretable Artificial Intelligence
Explainable Artificial Intelligence (XAI) refers to the ability of an AI system to
explain its decisions and reasoning in a way that humans can easily understand.
The need for XAI arises from the fact that many AI systems, particularly deep
learning models, operate as black boxes, making it difficult for humans to under-
stand how they arrive at their decisions [11]. There are two main approaches
to achieving XAI: ex-post explainability and the design of intrinsically inter-
pretable architectures. Ex-post explainability involves analyzing the outputs of
a trained AI model and deriving explanations from them ( [24,28,30,32,34], inter
alia). This approach is commonly used with standard black-box models that lack
inherent interpretability, such as deep neural networks. In contrast, interpretable
architectures aim to be intrinsically (more) transparent from the outset. These
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models typically use simpler algorithms (such as decision trees or rule-based
systems) as building blocks, or provide prototype-based explanations [29].

In the specific case of explainability for image classification, it is worth mention-
ing that one of the driving domains is medical diagnosis [35]. From the algorithmic
standpoint, most approaches belong to the ex-post category, and therefore extract
explanation from already-trained, standard image classifiers. One popular tech-
nique is Saliency Mapping [32], a method for computing the spatial support of a
given class in a given image (image-specific class saliency map) using a single back-
propagation pass through a classification convolutional model. Other approaches
are gradient-based attributions, such as Integrated Gradients [34] and Input X
Gradient [30]: these algorithms assign an importance score to each input feature
by approximating the integral of gradients of the model’s output with respect to
the inputs along the path (straight line) from given baselines/references to inputs.
The common outputs of these systems are heatmaps - graphical representations
of the importance of different regions in an image for the classification decision
made by the neural network. Heatmaps are typically overlayed on the original
image, in order to better inspect the highlighted areas. Explaining image classi-
fiers through heatmaps has notably received criticism [29], as heatmaps explaining
different classes often correspond to very similar heatmaps. For instance, in the
famous example reported in Fig. 1, Rudin et al. [29] showed how the heatmaps for
Siberian Husky and Transverse Flute were very similar.

Fig. 1. Same model, same image, different classes, similar heatmaps [29].

3 Semantically-Augmented Labels

In this Section, we formally define our approach S-AL. We combine OHE ground
truth vectors with auxiliary information, thus creating semantically augmented
labels. Such labels can then be used in supervised image classification tasks
in place of standard OHE vectors, so that no custom training loss or model
architecture is necessary.

3.1 Semantic-Augmented Labels

Consider an image classification dataset, with X images and Y labels, and
assume that ȳ indicates the OHE ground-truth label spanning over C differ-
ent classes (e.g. 10 in MNIST [9], 1000 in ImageNet [8]). Suppose we want
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to train a ML model in order to learn a mapping from X to Y . Then, if
for an image x ∈ X the model predicts the vector ŷ, the loss function is
Cross-Entropy (ȳ, ŷ) = −∑

i∈C ȳ(i) � log(ŷ(i)).

Now, let ej ∈ R
D be a D-dimensional real vector containing auxiliary information

for class j ∈ C. Let EM ∈ R
C×D be the embedding matrix stacking ej , ∀j ∈ C.

We then compute the Gram matrix of the set of vectors ej , i.e. EM · EMT ,
and call it the auxiliary information matrix ; furthermore, ∀j ∈ C, we call EM ·
EMT [j] = ỹ the auxiliary label for class j. Every ỹ vector has C elements and
represents the similarities of the auxiliary information of the given class with all
other auxiliary vectors.

In a first formulation, one can then define an enriched loss function as

−
[

β
∑

i∈C

ȳ(i) � log(ŷ(i)) + (1 − β)
∑

i∈C

ỹ(i) � log(ŷ(i))

]

(1)

where the parameter β governs the balance between standard cross-entropy (left-
most addendum) and the novel regularisation term pertaining to the auxiliary
information (rightmost addendum).

However, the OHE labels ȳ and the auxiliary labels ỹ can be combined into
augmented labels

+
y as follows:

+
y ≡ β ȳ + (1 − β) ỹ (2)

We can then merge Eq. 1 with Eq. 2, thus producing the loss function:

−
∑

i∈C

+
y(i) � log(ŷ(i)) (3)

which corresponds to Cross-Entropy(
+
y, ŷ). Therefore, we can enrich OHE

ground truth vectors ȳ with custom auxiliary information vectors ỹ, producing
semantically-augmented label vectors

+
y that can be plugged as ground truth vec-

tors for in a standard cross-entropy loss function, and exploit them, for instance,
for an image classification training/learning process.

Algorithm 1. Generation of Semantically-Augmented Labels
Require: class number C, auxiliary vectors e1, ..., eC
1: OHE matrix ← identity matrix C × C
2: Embedding matrix EM ← Stack([e1, ..., eC ])
3: Auxiliary matrix AM ← EM · EMT

4: Augmented matrix S-AL ← βOHE + (1 − β)AM
5: return S-AL
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Our approach is summarised in Algorithm 1. In a nutshell, we can collect auxil-
iary information about the labels, stack them in an embedding matrix EM (line
2), then compute the Gram matrix of EM (line 3) and use its vectors as auxil-
iary labels for each class. We then compute a weighted sum of OHE labels with
the auxiliary matrix AM and obtain semantically-augmented labels

+
y ∈ RC×C

(line 4) that can be used downstream as ground truth in standard cross-entropy
loss. We stress that our approach is general, as it exploits the pairwise similari-
ties of auxiliary labels, regardless of whether they belong to an ontology or not.
In order to exemplify our approach and drive the experimental section, in the
next Subsections we will discuss how to generate S-AL for two selected sources
of auxiliary information: label hierarchies and word embeddings.

3.2 Exploiting Taxonomies

An ontology is a description of classes, properties, and relationships in a domain
of knowledge. If the labels of the image classification task can be organised in
an ontology, their relative position in the data structure can provide additional
information about the relative similarity of the semantic concepts - e.g., one
would expect the path from spoon to tea-spoon to be considerably shorter than
the path from spoon to shark. A classical example of this link from the neural
domain to the symbolic one is the aforementioned ImageNet-Wordnet link: every
ImageNet label is a node in the Wordnet ontology. In principle, this allows to
exploit semantic information when training or explaining ImageNet-based image
classification ML models; however, this resourceful connection has seldom been
exploited. In this paper, we focus on CIFAR1001, a common image classification
benchmarking dataset with the additional feature that its labels are connected
in a taxonomy, outlined in Fig. 2.

Fig. 2. Supporting taxonomy for the CIFAR100 labels.

CIFAR100 includes 100 classes, represented by the leaves of the tree. The authors
of the dataset further group the 100 labels into 20 five-sized macro-classes, also
called coarse labels or superclasses. For instance, the labels maple, oak, palm,
pine, willow are clustered together in the macro-class trees. This original two-
layered taxonomy corresponds to the two lowest layers of Fig. 2. The taxonomy
was further extended with additional layers, corresponding to even larger group-
ings of labels. The resulting taxonomy encompasses 100 level-0 labels, 20 level-1

1 http://www.cs.toronto.edu/$\sim$kriz/cifar.html.

http://www.cs.toronto.edu/$sim $kriz/cifar.html
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labels, 8 level-2 and 4 level-3 labels, and 2 level-4 labels, with the single level-5
label corresponding to the root node of the taxonomy. Throughout the paper,
we will often refer to hierarchical depths or levels.

In order to extract auxiliary information vectors from this taxonomy, we first
extract the leave-to-root path of each class, and then stack the OHE of every
step in the path. For instance, a class with path 23-45-5 will be encoded as the
concatenation of three OHE vectors, with hot elements in position 23, 45 and 5
respectively. For CIFAR100, the resulting embedding matrix EM is depicted in
Fig. 3.

Fig. 3. Taxonomy-derived embedding matrix EM for the CIFAR100 labels.

This matrix has 100 rows, encoding all classes in C. Since the hierarchy has 5
levels, we obtain an embedding dimension D of 500, due to the stacking of 5 100-
units OHE vectors. One can observe that the leftmost part of EM corresponds
to the identity matrix of the single classes, whereas the rightmost part has only
hot elements in the first two columns, since the level-4 labels can only be 0 or
1. As a minor implementation detail, we remark that the zero-padding will have
no influence when computing the Gram matrix of EM in order to obtain the
semantically-augmented labels.

For CIFAR100, the auxiliary labels EM ·EMT are computed from the embedding
matrix EM depicted in Fig. 3. By combining the auxiliary labels with the OHE
labels, the resulting S-AL matrix is depicted in Fig. 4a.

Re-arranging the CIFAR100 classes for semantic similarity (Fig. 4b), one can
visually inspect the S-AL. We observe how these labels capture similarities at
various hierarchical depths, represented by coloured blocks of different size. The
diagonal represent self-similarities, while the small regular five-by-five blocks
along the diagonal represent the similarities within macro-groups of labels (cor-
responding to the coarse labels in CIFAR100, such as the tree case mentioned
above). Larger blocks correspond to higher levels in the taxonomy. The S-AL
depicted in Fig. 4a will be used as ground truth to train image classifiers in the
experimental part of the paper. We remark that the re-arrangement is for visu-
alisation purposes, and that the matching between class index and S-AL is never
modified.

For further visual inspection, in Fig. 5 we report a t-SNE [21] embedding of
the hierarchy-augmented labels for CIFAR100. t-SNE (t-distributed Stochastic
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Fig. 4. Taxonomy-derived S-AL matrix for the CIFAR100 labels. The original class
order (a) can be taxonomically sorted (b) for visual inspection.

Neighbour Embedding) is an unsupervised dimensionality reduction technique for
embedding high-dimensional data in a low-dimensional space of two dimensions.

Fig. 5. t-SNE compression of the S-AL for CIFAR100 classes.

The color-coding is applied afterwards and corresponds to labels at different hier-
archical depths, going from level-1 (original 100 CIFAR100 coarse labels) to level-
4 (two macro-groups below the root in Fig. 2). At level-0 all data points would
be coloured with 100 independent colours, whereas level-5 would be monochro-
matic, so we omit these two panels. Instead, we depict the color-coding for all
other depths in the taxonomy, showing how S-AL display similarities at every
aggregation level. The intuition that will drive our experiments is that these
augmented labels can be a better ground truth, with respect to simple/standard
OHE vectors, for image classification tasks.
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3.3 Exploiting Word Embeddings

It is not always the case that labels belong to an ontology or can be arranged in a
hierarchical taxonomy. Our approach allows to exploit any auxiliary information
about a label, provided that it can be expressed as a vector. We argue that
Word Embeddings represent the perfect candidate for this: it is straightforward
to obtain vector representations for labels, and the Euclidean distance (or cosine
similarity) between two word vectors provides an effective method for measuring
the linguistic or semantic similarity of the corresponding words.

Fig. 6. GloVe-derived embedding matrix EM for the CIFAR100 labels.

In this paper we exploit GloVe [25] (Global Vectors for Word Representation) to
obtain the vector representations of all 100 classes of CIFAR100. The resulting
augmented labels are depicted in Fig. 6. One can observe how these vectors
are denser, compared to the ones extracted from the ontology and displayed in
Fig. 3. However, we follow the same procedure outlined in Algorithm 1, thus
obtaining a S-AL matrix that we will later use as image classification ground
truth for the experimental phase. We remark that in this case we are not tapping
into CIFAR00’s provided taxonomy - instead, we are interested in exploring
the contextual relationship between labels (emerging from GloVe embeddings)
when paired with the visual similarities that occurs in CIFAR100 images. The
GloVe-derived S-AL for CIFAR100 are depicted in Fig. 7a. In Fig. 7b, we show a
different class arrangement, defined through a hierarchical clustering procedure.
We remark again that this is merely for visualisation purposes, and has no impact
on the downstream training task.

As for the taxonomical case, we ran our S-AL through t-SNE in order to visually
inspect whether they preserve some structure at different hierarchical depths. We
remark that, in this case, the hierarchical structure is not part of the augmented
labels, which are computed from OHE labels and GloVe embeddings; instead,
we use hierarchical levels to visualise and inspect the obtained S-AL.

It is not surprising that the t-SNE embedding of GloVe augmented labels in
Fig. 8 is less clustered when compared to the hierarchical labels in Fig. 5, but
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Fig. 7. GloVe-derived S-AL matrix for the CIFAR100 labels.

Fig. 8. t-SNE visualisation of the GloVe-augmented labels

at the same time one can appreciate the structure emerging at levels 3 and 4.
These augmented labels derive from word embeddings, so their relative simi-
larities might follow a different logic with respect to the hierarchical ones: for
instance, in panel 3 there is a lonesome light blue dot in the lower half, sur-
rounded by red ones. That dot is sea, and amongst the surrounding red dots
we have aquarium_fish, crab, crocodile, dolphin, flatfish, otter, shark, trout, tur-
tle, whale. These marine (or at least aquatic) animals are taxonomically very
different from sea, and this is captured by the different colour-coding, but they
clearly share semantic similarities with sea and the proximity of these points in
the (t-SNE reduced) S-AL space shows how the semantic information extracted
from GloVe embeddings carries this information.

4 Experimental Settings

In this section we describe the experimental settings that we adopted to train
models and evaluate the impact of injecting knowledge in the image classification
process through S-AL.
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4.1 Data and Models

As mentioned in the previous Section, we focus on CIFAR100, an image clas-
sification dataset commonly used as benchmark. We exploited the CIFAR100
taxonomy and GloVe embeddings of the labels to generate S-AL; furthermore,
we refer to the taxonomy in Fig. 2 when discussing depths/levels.

The set of image classifiers we trained for our experimental phase is the following:

– XENT: we trained a Wide ResNet model with standard cross-entropy, to
be used as a reference point for fine-grained image classification accuracy,
and as a baseline for all other evaluations.

– HAF refers to the Hierarchy Aware Features (HAF) model as described
in Garg et al. [14]. We used the available code and re-trained the model
for comparison with S-AL when dealing with taxonomically-enriched labels.
However, we remark that HAF is explicitly trained on the hierarchy, and
therefore cannot be used for comparison in the GloVe-based set of experi-
ments.

– SOFT* refers to the soft-label approach of Bertinetto et al. [4]. As we did
for HAF, we adopted already used values for the hyperparameters, in order
to reproduce the original results. For SOFT*, we trained two parametrised
versions, SOFT4 and SOFT30. Also SOFT* is limited to be used for the
taxonomical case only.

– HT-AL* is a family of models trained with our S-AL approach, where the
auxiliary information is obtained from the hierarchical taxonomy (HT), as
discussed in Subsect. 3.2. For every model HT-ALx, x indicates the value of
β used to compute the S-AL.

– WE-AL*, analogously, is a family of models trained with our S-AL app-
roach, where the auxiliary information is obtained from a word embedding
(WE), as discussed in Subsect. 3.3.

The synopsis of these models is summarised in Table 1.

Table 1. Overview of models of the experimental phase

Model(s) Label Notes

XENT OHE Baseline
SOFT4 Hierarchy Cannot encode embeddings
SOFT30 Hierarchy Cannot encode embeddings
HAF Hierarchy Cannot encode embeddings
HT-ALβ Hierarchy-augmented Our approach
WE-ALβ GloVe-augmented Our approach
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We briefly report how, while we kept all architecture models as similar as pos-
sible, including the number of training epochs, we observed how HAF required
more training time with respect to all other models (with a factor spanning
from ×3 to ×4). We conjecture that this is due to the higher complexity of the
architecture (multiple classification heads) and the fact that the training loss is
composed by four independent terms.

4.2 Image Classification

The very first metric to be taken into account is, obviously, classification accuracy
- that is, the percentage of (out-of-sample) datapoints that a model is able to
correctly classify. We extend this metric by evaluating it at every ontological
depth: for instance, since maple and oak (level-0 labels) are both trees (level-1
label), a maple image which is classified as oak will be considered a level-0 error,
but a level-1 correct classification.

Second, we measure the average mistake severity, a performance measure intro-
duced by Bertinetto et al. [4]. The mistake severity takes into account misclassi-
fied images, and measures the lowest common ancestor (LCA) distance between
true and predicted labels; the average LCA across all misclassifications is then
reported. This error metric ignores the quantity of mistakes made by the model,
trying to characterise their quality instead. Clearly, this entails that if model
A classifies all images correctly but one, and in that single case the semantic
distance is high (e.g. maple - rocket), and model B misclassifies all images but
always predicting ontologically similar classes (e.g. maple - oak), the mistake
severity will rank B as the best method of the two. Therefore, we argue that
mistake severity, albeit informative, should also be paired with other metrics,
such as explainability.

4.3 Representation Learning

We are interested in investigating whether S-AL impacts the inner knowledge
representation learned by a ML model. To do so, we use all models as feature
extractors and analyse the feature space on which the out-of-sample images are
projected. Intuitively, standard OHE-supervised training forces the ML model
to project all images of one class to a compact point cloud, but there is nothing
enforcing that point clouds of similar classes should be close to each other. Our
hope is that, by injecting semantic information, the compactness of single point
clouds is preserved, but the feature space is reorganised in such a way that
semantically similar classes are geometrically close. To measure this, for each
taxonomy level x we assign each feature vector to its corresponding level-x label
- e.g., for level-1 we label trees each feature vector corresponding to images
of maples, oaks, etc. We then run several clustering evaluation metrics on the
resulting partition system to inspect the compactness of the emerged clusters.
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4.4 Explainability

Finally, we test the impact of our approach on the produced explanations. We
conduct our experiments in order to inspect whether S-AL, by injecting auxiliary
information in the image classification process, manages to mitigate the husky-
flute effect mentioned in Sect. 2. Ideally, the similarity of two heatmaps should
be proportional to the ontological proximity of the two classes they explain.

We exploiting three standard explainers (Integrated Gradients, Input-X Gradi-
ent, and Saliency), all available within the Captum library2. We then produce
explanations (heatmaps) for every image in the CIFAR100 test set, for every ML
model listed above, and every output neuron, corresponding to a class. We are
interested in comparing the true class, and true class heatmap, with all other
classes. For instance, referring again to the famous example in Fig. 1, we are
interested in comparing the classes of husky and flute, and the heatmaps pro-
duced for husky and for flute. For brevity, we will refer to the true class heatmap
as true_heatmap and to any currently explained class heatmap as expl_heatmap.

We rely on the CIFAR100 ontology to define the semantic pairwise distance
between classes. We observe that there is no consensus regarding metrics for
heatmap comparison or benchmarking, and we therefore implemented several
custom functions:

– Mean Absolute Difference: average absolute value of the per-pixel dif-
ference between true_heatmap and expl_heatmap.

– Deletion Curve Distance: using the true_heatmap to rank pixels, span-
ning from the highest-scoring to the lowest-scoring locations, we progres-
sively remove elements from both true_heatmap and expl_heatmap. At each
step we compute the sum of the two remaining heatmaps, and compare the
two resulting curves. This metric is inspired by the Deletion Curve [26].

– Spearman Distance: we compute the Spearman-ranking correlation
between the two heatmaps, normalising it in the 0–1 range.

– Progressive Binarisation: we extract a set of progressive thresholds from
the true_heatmap and use them to binarise both heatmaps. We then check
the intersection of the resulting pairs of masks at each step.

5 Experimental Results

5.1 Image Classification

Our first goal is to verify how S-AL models perform in terms of image classi-
fication error quantity and quality: we report our results in Table 2. Each row

2 https://captum.ai/.

https://captum.ai/
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Table 2. Accuracy and mistake severity for all trained ML models.

Error@1 Error@5 MS HD@1 HD@5 HD@20

XENT 22.462 6.234 2.364 0.531 2.242 3.178
SOFT-4 32.580 16.480 2.206 0.719 1.235 2.223
SOFT-30 26.650 8.940 2.331 0.621 1.375 2.798
HAF 22.420 6.414 2.251 0.505 1.422 2.640
HT-AL (β = 0.30) 23.390 7.690 2.237 0.523 1.233 2.195
HT-AL (β = 0.35) 22.820 7.510 2.252 0.514 1.236 2.195
HT-AL (β = 0.40) 22.718 7.398 2.218 0.504 1.233 2.192
HT-AL (β = 0.45) 22.760 7.060 2.219 0.505 1.242 2.194
HT-AL (β = 0.50) 22.710 7.240 2.262 0.514 1.256 2.199
WE-AL (β = 0.30) 23.230 7.640 2.303 0.535 1.836 2.808
WE-AL (β = 0.35) 23.270 7.240 2.312 0.538 1.841 2.817
WE-AL (β = 0.40) 23.260 7.040 2.311 0.538 1.851 2.822
WE-AL (β = 0.45) 22.870 6.920 2.320 0.530 1.849 2.815
WE-AL (β = 0.50) 22.760 6.820 2.291 0.521 1.864 2.823
WE-AL (β = 0.55) 22.380 6.820 2.332 0.522 1.879 2.824
WE-AL (β = 0.60) 22.490 6.490 2.349 0.528 1.887 2.833
WE-AL (β = 0.65) 22.450 6.290 2.325 0.522 1.907 2.834
WE-AL (β = 0.70) 22.206 6.314 2.307 0.512 1.914 2.843
WE-AL (β = 0.75) 22.270 6.420 2.302 0.513 1.931 2.853

indicates a model; the columns indicate the top-1 and top-5 classification error
percentage (Error@1, Error@5 ), the average hierarchical distance between true
and predicted labels for misclassifications, also called mistake severity (MS ), and
the average hierarchical distance when taking into account the top-k predictions
(HD@1, HD@5, HD@20 ). We remark that MS takes only into account misclas-
sified data points, while HD@k includes all cases. We thus successfully repro-
duced [4,14] the results of XENT, HAF and SOFT*. We observe that SOFT4
and SOFT30 do not produce competitive results in terms of accuracy, and we
therefore exclude them for further experiments. HAF, on the other hand, yields
competitive scores and will be kept. Regarding our models, reasonable choices
for β seem to be 0.4 for HT-AL and 0.7 for WE-AL: from now on we will there-
fore conduct experiments with HT-AL (β = 0.4) and WE-AL (β = 0.7), which
we will simply indicate as HT-AL and WE-AL.

We therefore select XENT, HAF, HT-AL and WE-AL. For these models we run
multiple experiments with different seeds in order to obtain error bars. We report
the results in the first row of Table 3, corresponding to level-0. Furthermore, for
the selected models we report error and MS at different hierarchical depths. The
results of Table 3 can be also visualised as scatterplots, and we do so in Fig. 9.
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Table 3. Error and MS, at all hierarchical depths, for our selected models.

Level XENT HAF HT-AL WE-AL

0 Error@1 22.462 ± 0.283 22.420 ± 0.203 22.718 ± 0.267 22.206 ± 0.430
Error@5 6.234 ± 0.118 6.414 ± 0.230 7.398 ± 0.148 6.314 ± 0.080
MS 2.364 ± 0.025 2.251 ± 0.018 2.218 ± 0.021 2.307 ± 0.022

1 Error@1 14.002 ± 0.170 13.470 ± 0.188 13.554 ± 0.153 13.598 ± 0.396
Error@5 3.058 ± 0.086 3.966 ± 0.187 5.218 ± 0.114 3.556 ± 0.151
MS 2.188 ± 0.027 2.082 ± 0.029 2.042 ± 0.023 2.134 ± 0.027

2 Error@1 9.182 ± 0.184 8.372 ± 0.107 8.312 ± 0.128 8.652 ± 0.283
Error@5 1.322 ± 0.032 2.256 ± 0.143 3.672 ± 0.064 1.770 ± 0.154
MS 1.812 ± 0.026 1.741 ± 0.030 1.698 ± 0.020 1.782 ± 0.013

3 Error@1 4.488 ± 0.108 3.780 ± 0.129 3.552 ± 0.119 4.088 ± 0.167
Error@5 0.396 ± 0.030 0.976 ± 0.093 2.238 ± 0.093 0.790 ± 0.095
MS 1.661 ± 0.020 1.641 ± 0.034 1.635 ± 0.018 1.656 ± 0.012

4 Error@1 2.966 ± 0.131 2.424 ± 0.177 2.254 ± 0.094 2.682 ± 0.144
Error@5 0.196 ± 0.021 0.626 ± 0.087 1.660 ± 0.091 0.404 ± 0.066
MS 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Fig. 9. Error and MS, ad different hierarchical depths, for the selected models.

In accordance with the previous Sections, each panel represents a specific depth,
or level, in the CIFAR100 hierarchy. We omit the panel of level-5, since it cor-
responds to the hierarchy root, and level-4, since at that level there are only
two sub-groups, and therefore the mistake severity has constant value of 1. Con-
cerning accuracy (error, x-axis), we observe how all alternative models (HT-AL,
WE-AL and HAF) perform comparably to XENT at level-0 (fine labels, standard
classification), but outperform it for all other levels. Concerning MS, the model
ranking is the same at all depths: HT-AL performs best, followed by HAF, then
WE-AL, and finally XENT. We remark that HT-AL and HAF were trained on
labels derived from CIFAR100, while WE-AL was not. We observe how HAF’s
MS error bar widens as the levels progress. In general, these experiments con-
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firm our expectation that the injection of auxiliary knowledge can mitigate the
hierarchical distance of misclassifications of a ML model at all hierarchical levels
while maintaining competitive accuracy results.

5.2 Representation Learning

Besides confirming that S-AL produces models which are competitive in terms
of classification accuracy, we are also interested in peeking into the internal rep-
resentation of knowledge that they have learned. In order to do so, we use our
selected trained models XENT, HAF, HT-AL and WE-AL as feature extractors,
mapping all images of the test set of CIFAR100 into a 512-dimensional latent
feature space. As a first experiment, we use t-SNE again to reduce the dimen-
sionality of the feature space, so that it can be visually inspected. We color-code
all data points according to their label at different hierarchical levels, and report
the resulting scatterplot in Fig. 10. As a second step of analysis, we compute
the pairwise cosine similarities between feature vectors, and report it in Fig. 11.
We observe how XENT shows no emerging structure besides the diagonal, HAF
displays similarity blocks at different depths. Also HT-AL displays similarity
blocks, but with strong visual importance to level-4 (two macro-blocks); finally,
WE-AL shows shows a visually weaker structure.

Fig. 10. t-SNE compression of the feature vectors extracted from the CIFAR100 test
set. Colour-coded afterwards according to level-k labels.
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Fig. 11. Visual inspection of the feature spaces for the selected models. From left to
right: XENT, HAF, HT-AL, and WE-AL.

However, besides intuitive visual inspections, we are interested in quantitatively
characterising the feature space of each model. In order to do so, for each model
and hierarchy level k, we partition the feature vectors into clusters according to
their level-k labels, and run cluster validation metrics to assess the compactness
of the emerging point clouds. We report the results in Table 4. The selected clus-
ter evaluation metrics are the Silhouette score, (a standard choice), the Calinski-
Harabasz score, and S-Dbw, the best metric according to a comparative review
by Liu et al. [20] Our results show that our models systematically outperform
XENT at every hierarchical level in terms of cluster validation metrics. Fur-
thermore, HT-AL provides better S-Dbw scores than HAF. This confirms our
expectation: S-AL allows for a structured internal representation learning, so
that ontologically-similar labels are projected into contiguous areas of the fea-
ture space.

Table 4. Clustering evaluation for all feature spaces.

Level Metric XENT HAF HT-AL WE-AL

0 Silhouette (↑) 0.211 ± 0.002 0.232 ± 0.002 0.280 ± 0.003 0.299 ± 0.004
Calinski-Harabasz (↑) 162.5 ± 1.3 271.4 ± 3.1 298.3 ± 3.2 181.3 ± 2.2
S-Dbw (↓) 0.613 ± 0.001 0.512 ± 0.002 0.493 ± 0.002 0.588 ± 0.002

1 Silhouette (↑) 0.083 ± 0.001 0.163 ± 0.002 0.110 ± 0.000 0.100 ± 0.001
Calinski-Harabasz (↑) 178.1 ± 1.7 552.8 ± 4.4 583.9 ± 3.7 185.4 ± 0.9
S-Dbw (↓) 0.863 ± 0.001 0.698 ± 0.001 0.688 ± 0.001 0.859 ± 0.001

2 Silhouette (↑) 0.052 ± 0.001 0.156 ± 0.001 0.098 ± 0.001 0.059 ± 0.001
Calinski-Harabasz (↑) 221.0 ± 2.0 841.8 ± 3.9 1200.1 ± 7.4 250.9 ± 1.6
S-Dbw (↓) 0.918 ± 0.001 0.763 ± 0.001 0.717 ± 0.001 0.906 ± 0.001

3 Silhouette (↑) 0.043 ± 0.001 0.146 ± 0.001 0.121 ± 0.002 0.050 ± 0.002
Calinski-Harabasz (↑) 253.9 ± 4.2 1040.1 ± 5.4 2239.8 ± 11.3 327.6 ± 4.5
S-Dbw (↓) 0.933 ± 0.002 0.802 ± 0.002 0.736 ± 0.003 0.922 ± 0.001

4 Silhouette (↑) 0.037 ± 0.001 0.136 ± 0.002 0.311 ± 0.002 0.050 ± 0.001
Calinski-Harabasz (↑) 302.6 ± 8.9 1519.2 ± 19.1 5111.6 ± 38.5 467.4 ± 6.9
S-Dbw (↓) 0.989 ± 0.001 0.917 ± 0.000 0.799 ± 0.000 0.975 ± 0.001
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5.3 Explainability

Finally, we inspect the heatmaps produced by XAI algorithms, looking for cor-
relations between ontological label proximity and generated heatmap similarity.
We generate 48 million distance measures (10000 images in the CIFAR100 test
set × 100 possible classes × 4 selected models × 3 XAI algorithms × 4 distance
metrics), and partition them according to the original two-levels CIFAR100 tax-
onomy or the more relevant five-levels one, thus approaching the 100M data
points. For space constraints, below we only show a selected subset of results.
For Fig. 12, we focused on the Progressive Binarisation metric, and we parti-
tioned on the original two-levels CIFAR100 taxonomy - which is why the x-axis
has violins for the semantic distances of 0, 1, and 2. Every row of panels cor-
responds to an explainer (respectively, Integrated Gradients, Input X Gradients
and Saliency), and every column corresponds to a selected model: XENT, HAF,
HT-AL, WE-AL. For all panels, a violin plot at position k represents the aggre-
gation of heatmap distances that involved labels at ontological distance k. For
the husky-flute example image, the husky label has distance 0 (true label), the
dog label has distance 1 (similar label), and the flute label has distance 2 (far-
away concept). Thus, the husky-heatmap/dog-heatmap distance would end up
in the 2-distance violin (regardless of model, metric, and explainer). We note
that all distance-0 violins correspond to trivial same-heatmap comparisons, and
therefore correspond to 0. Our goal is to have higher/wider violins for distance-2,
with respect to distance-1. We observe that XENT has a non-null baseline, and
this is likely due to the visual similarity of images belonging to similar classes.

Fig. 12. Relation between ontological label distance and produced heatmaps
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HAF produces almost identical violins for distance 1 and distance 2 in all pan-
els. Conversely, S-AL models produce pairs of distinguishable violins - especially
for the HT-AL model: this shows that the auxiliary information injected in the
augmented labels positively conditioned the model’s training. Finally, we note
how Saliency systematically fails to detect any ontology-driven distance.

Fig. 13. Relation between ontological label distance and produced heatmaps

For Fig. 13, we used the full 5-levels CIFAR100 ontology, all models (one per
column), all distance metrics (one per row), and we focused on the Integrated
Gradients explainer. As for the previous case, we observe how XENT has a non-
trivial baseline, HAF does not capture the taxonomical hierarchy information,
while HT-AL does. Curiously, the heatmaps corresponding to distance-5 labels
seem remarkably more different than the others, while only minor differences
appear from distance-1 to distance-4 labels. This seems to correlate with the
two blocks visible in Fig. 11, second panel.
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6 Conclusions and Future Work

In this paper, we introduced Semantically-Augmented Labels, a general
approach to combine OHE labels with arbitrary auxiliary semantic information
so that the resulting augmented ground truth can be used for image classification
training procedures, without the need for custom loss functions or model archi-
tectures. Starting from the benchmark dataset of CIFAR100, we showed how
to apply our approach to ontological information (HT-AL) and GloVe-derived
word embedding vectors (WE-AL). We conducted experiments and analysed
the impact and implications of our approach in terms of machine learning per-
formance, organisation of the learned feature space, and characterisation of the
produced explanation heatmaps. We showed how our approach allows to train
ML models whose accuracy is competitive with respect to a classically trained
baseline; at the same time, our models showed interesting results in terms of
generalisation to super-classes (level > 1 error rates), organisation of the fea-
ture space (cluster quality) and differentiation between explanations (heatmap
distances).

We hope this approach can provide a useful middle ground in the debate between
post-hoc explainability and the design of custom interpretable models. With the
former, we share the goal of exploiting as much as possible existing standard
architectures and loss functions, since (i) they have proved to work very well and
(ii) this allows to tap into a plethora of boilerplate code and existing repositories.
On the other hand, we share with the latter the intuition that intervening in the
learning phase, rather than after it, allows for more room for action.

Concerning directions for future work, the first natural evolution is to tackle
bigger datasets, such ad iNaturalist or ImageNet. While both image datasets are
paired with hierarchical taxonomies of labels, we are interested in exploring the
impact of injecting different types of embedding-based semantic information.

Another line of research we are already exploring is whether S-AL models can
display increased robustness to adversarial attacks. Intuitively, it is often spec-
ulated that adversarial attacks exploit anomalies in the decision boundary of
an image classifier. The injection of auxiliary semantic information could allow
for more control of the learned feature space, thus making it more adherent
to human intuition - for instance, projecting turtle and rifle images on non-
neighbouring areas. This might make the decision boundary smoother and less
prone to human-counterintuitive mistakes.
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Abstract. In the field of Computer Vision (CV), the degree to which
two objects, e.g. two classes, share a common conceptual meaning, known
as semantic similarity, is closely linked to the visual resemblance of their
physical appearances in the data: entities with higher semantic sim-
ilarity, typically exhibit greater visual resemblance than entities with
lower semantic similarity. Deep Neural Networks (DNNs) employed for
classification exploit this visual similarity, incorporating it into the net-
work’s representations (e.g., neurons), resulting in the functional simi-
larity between the learned representations of visually akin classes, often
manifesting in correlated activation patterns. However, such functional
similarities can also emerge from spurious correlations — undesired aux-
iliary features that are shared between classes, such as backgrounds or
specific artifacts. In this work, we present the Function-Semantic Con-
trast Analysis (FSCA) method, which identifies potential unintended
correlations between network representations by examining the contrast
between the functional distance of representations and the knowledge-
based semantic distance between the concepts these representations were
trained to recognize. While natural discrepancy is expected, our results
indicate that these differences often originate from harmful spurious cor-
relations in the data. We validate our approach by examining the pres-
ence of spurious correlations in widely-used CV architectures, demon-
strating that FSCA offers a scalable solution for discovering previously
undiscovered biases, that reduces the need for human supervision and is
applicable across various Image Classification problems.
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1 Introduction

In recent years, Deep Learning has exhibited remarkable progress in address-
ing the diverse challenges in the field of Computer Vision (CV) [21], such as
image classification [24,79], object detection [77,80], and semantic segmentation
[39,50]. This success can be largely attributed to the powerful hierarchical rep-
resentations learned by DNNs, which are capable of capturing intricate patterns
and features within visual data [7]. However, a prevailing concern remains the
inherent obscurity of the learned representations within these models. As a con-
sequence, DNNs are often referred to as “black-box” systems, since their internal
mechanisms are not readily interpretable or comprehensible to human observers.

While being powerful in capturing intricate patterns within the data, DNNs
are susceptible to learning spurious correlations—coincidental relationships,
often driven by an unobserved confounding factor, which may lead the model to
identify and rely on such misleading patterns [31,68]. Model dependence on such
artifactual features could lead to poor generalization performance of the model
on different datasets and pose a substantial risk in the case of safety-critical
areas. As such, the identification and subsequent mitigation of these spurious
correlations within models are crucial for the development of robust and trust-
worthy Computer Vision systems.

In this work, we propose a new method called Function-Semantic Contrast
Analysis (FSCA)1, which aims to identify spurious correlations between the
neural representations (i.e. neurons) given that target concepts of each represen-
tation are known. The proposed approach is based on the idea of analyzing the
contrast between two distinct metrics: the functional distance, which measures
the relationships between representations based on the correlations in activation
patterns, and the knowledge-based semantic distance between concepts, these
representations were trained to encode. Hypothesizing that spurious correlations
frequently arise between semantically distant classes due to the influence of an
unobserved factor, FSCA analyzes the contrast between these two distance mea-
sures, ultimately identifying potentially spurious pairs with high disagreement
between metrics. FSCA offers a scalable approach that considerably reduces
dependence on human supervision, thereby providing a robust means for the
comprehensive evaluation of “black-box” models.

2 Related Works

To address the problem of the opacity of Deep Neural Networks given their
widespread popularity across various domains, the field of Explainable AI (XAI)
has emerged [27,36,49,61,62]. The primary goal of XAI is to provide insights into
the decision-making processes of complex AI systems, allowing humans to com-
prehend, trust, and effectively manage these systems [67]. One important class
of explainability approaches, known as post-hoc explainability methods, seeks to
1 The code for FSCA can be accessed via the following GitHub link: https://github.

com/lapalap/FSCA.

https://github.com/lapalap/FSCA
https://github.com/lapalap/FSCA
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explain the decision-making processes of trained models without interfering in
their training procedure [38,70]. These methods can be broadly classified into
two types based on the scope of their analysis: local explanation methods, which
focus on explaining model decisions for specific inputs, and global explanation
methods, which aim to interpret general decision-making strategies, allowing for
audits and investigations of models across diverse populations and shedding light
on the roles of various model components.

Local explanation methods often provide explanations to the decision-making
process on a given data point in the form of attribution maps, distributing rele-
vance scores among features of the input, emphasizing the most critical attributes
for the prediction. Various methods, such as Layer-wise Relevance Propagation
(LRP) [3], GradCAM [64], LIME [58], Integrated Gradients [73], and SHAP [45]
have been introduced, and have proven to be effective in explaining the decision-
making process in Computer Vision models [15,75], including Bayesian Neural
Networks [13,19]. To tackle the interpretability issue of attribution maps, several
enhancing techniques were introduced, such as SmoothGrad [71], NoiseGrad [18],
and Augmented GradCam [51]. Significant focus has been devoted to examining
and assessing the effectiveness of local explanation techniques [30,33,34]. How-
ever, the primary limitation of local explanation methods lies in their ineffective-
ness in probing the unknown behaviors of the models. While they prove beneficial
for examining existing, known hypotheses, they are ineffective when it comes to
uncovering unknown hypotheses, including the identification of unknown spuri-
ous correlations and shortcuts [1].

Conversely, global explanation methods aim to interpret the general decision-
making strategies employed by the models by shedding light on the roles of spe-
cific components such as neurons, channels, or output logits, which are often
referred to as representations. Such approaches enable a more general insight
into the decision-making strategies of the models, thus facilitating the discovery
of unknown and unexpected behavior within these models. Methods such as Net-
work Dissection [4,5], Compositional Explanations of Neurons [52], and MILAN
[35] have been developed to explain the functionality of these latent representa-
tions by associating them with human-comprehensible concepts. Activation Max-
imization Methods [25], on the other hand, aim to explain the concept behind
the model’s representations by identifying the inputs that maximally activate a
particular neuron or layer in the network and hence, visualize the features that
have been learned by the specific representation. These activation maximization
images, also referred to as signals, embody the features that the representations
have learned to detect and they could be either sampled from an existing dataset
[11,17] or generated artificially through an optimization procedure [53–55].

2.1 Spurious Correlations in Computer Vision Models

While excelling at various Computer Vision tasks by being able to learn complex
and intricate representations of the data, Deep Neural Networks are susceptible
to learning spurious correlations from data. Such correlations represent appar-
ently related variables that, upon closer inspection, reveal a connection rooted
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in mere coincidence or an underlying, often obscured, factor [31,68]. This phe-
nomenon, commonly referred to as “Shortcut learning” or “Clever-Hans effect”
[2,42,76], often manifesting in a strong contrast between desired and actual
learning strategy within the model. In the following discussion, we provide a
general overview of these correlations, which have been identified across a range
of CV tasks.

Co-occurring Objects. In the field of image classification, as well as in other
CV subdomains, images often contain not only the primary object of interest
but also secondary objects in the background. Deep Neural Networks (DNNs)
trained on such data can establish associations between the primary objects and
frequently occurring secondary objects. Examples of such learned correlations
could be fingers and band-aids [69], trains on tracks, or bees and flowers [40].
[66] observed that classifiers heavily depend on the context in which objects
are situated, performing poorly in less common contexts, e.g., the absence of
a typical co-occurring object. In experiments using the MS COCO dataset [44]
it was discovered that classifiers for specific classes, like “Keyboard”, “Mouse”,
and “Skateboard”, are highly sensitive to contextual objects and exhibit poor
performance when encountered outside their usual context, such as for instance,
keyboards often go unrecognized without a nearby monitor [66].

Object Backgrounds. A prevalent type of spurious correlation arises between
background features and target labels [78]. For example, a classifier may rely
on a snowy background to identify huskies in images, instead of focusing on
the target feature “Husky” [58]. Such correlations could stem from selection bias
in training datasets, as demonstrated by the Waterbirds dataset [60], where the
target label (“Waterbird” or “Landbird”) is spuriously correlated with background
features (water or land) in most training images [29]. Another example involves
classifying cows and camels [6], where the target label (“Cow” or “Camel”) is
spuriously correlated with background features (green fields or desert) in most
images. [69] identified numerous instances of background spurious features in
ImageNet.

Biases and Stereotypes. Racial and gender biases stand as notable exam-
ples of undesired behavior, leading to adverse real-world consequences, partic-
ularly for marginalized groups. These biases can materialize in various ways,
such as underdiagnosis in chest radiographs among underrepresented populations
[65], or racially discriminatory facial recognition systems that disproportion-
ately misidentify darker-skinned females [16]. Researchers have found instances
of racial, religious, and Americentric biases embedded in the representations of
the CLIP model [57]. Generative models like Stable Diffusion [59] also exhibit
biases that perpetuate harmful racial, ethnic, gendered, and class stereotypes
[8]. Other harmful spurious correlations have been found, such as associations
between skin tone and sports or gender and professions [72,82].
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Artifacts. Spurious correlations often arise from the presence of artifacts in
images across various classes. These artifacts are secondary objects that hold no
semantic connection with the primary class, and their coincidental association is
unnatural and irregular. For instance, in the ImageNet dataset, Chinese water-
marks have been found to influence numerous classes, such as “carton”, “monitor”,
“broom”, “apron” and “safe” [20], resulting in up to 26.7% drop in performance
when watermarks are added to every class in the validation dataset [43]. This
phenomenon has also been observed in the PASCAL VOC 2007 dataset [26],
where a photographer’s watermark frequently appears in images from the “horse”
class [42]. Consequently, the trained model inadvertently learns this association,
affecting its overall performance. Additionally, spurious correlations caused by
artifacts have been noted in medical applications, such as skin lesion detectors,
where artifacts like rulers and human-made ink markings or stains are present
[10]. Similarly, hospital-specific metal tokens in chest X-ray scans [28,81] and
radiologist input artifacts in brain tumor MRI classification [76] have been found
to impact the accuracy of these applications.

2.2 Finding and Suppressing Spurious Correlations

The primary challenge in identifying spurious correlations stems from the lack
of a concrete definition or criteria that differentiate them from “permissible” cor-
relations. This ambiguity is reflected in the majority of methods’ reliance on
extensive human oversight. Spectral Relevance Analysis (SpRAy) was designed
to aid in the identification of spurious correlations by clustering local attri-
bution maps for future manual inspection [2,42]. However, the dependence on
local explanations restricts the range of spurious correlations identified to basic,
spatially static artifacts. This limitation necessitates a significant amount of
human supervision and tailoring of the method’s various hyperparameters to
suit the specific problem at hand, which subsequently constrains the detection of
unknown, unexpected correlations. The Data-Agnostic Representation Analysis
(DORA) method approaches the problem of spurious correlations from a differ-
ent angle, by analyzing relationships between internal representations [17]. The
authors introduced the functional Extreme-Activation distance measure between
representations, demonstrating that representations encoding undesired spurious
concepts are often observed to be outliers in this distance metric.

A subsequent challenge is to revise or update the model after identifying spu-
rious correlations. The Class Artifact Compensation framework was introduced,
enabling the suppression of undesired behavior through either a fine-tuning pro-
cess or a post-hoc approach by injecting additional layers [2]. An alternative
method involves augmenting the training dataset after uncovering an artifact,
so that the artifact is shared among all data points, rendering it an unusable fea-
ture for recognition by the model [43]. To suppress spurious behavior in transfer
learning, a straightforward method was proposed to first identify representations
that have learned spurious concepts, and then, during the fine-tuning phase,
exclude these representations from the fine-tuning process [20].
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2.3 Visual-Semantic Relationship in Computer Vision

In the field of Computer Vision, both visual and semantic similarities play cru-
cial roles in the comprehension and interpretation of images and their underlying
concepts. Visual similarity refers to the resemblance between two images based
on their appearances, whereas semantic similarity denotes the extent of relat-
edness between the meanings or concepts associated with the images. A widely
accepted definition of semantic similarity takes into account the taxonomical or
hierarchical relationships between the concepts [32]. There is a general obser-
vation that semantic and visual similarities tend to be positively correlated, as
an increase in semantic similarity between categories is typically accompanied
by a rise in visual similarity [14,23]. DNNs trained on Computer Vision tasks
demonstrate the ability to indirectly learn class hierarchies [9].

3 FSCA: Function-Semantic Contrast Analysis

Fig. 1. Various cases of function-
semantic relationship. This figure
illustrates four primary scenarios
of potential relationships between
functional and semantic distances.
In our analysis, we mainly focus
on instances where representations
exhibit high functional similar-
ity, while the concepts they were
trained to detect differ semanti-
cally, illustrated in the first quad-
rant of the figure.

In this work, we propose a novel method
called Function-Semantic Contrast Analysis
(FSCA). This method allows to identify pairs
of output representations that may possess
spurious associations. FSCA capitalizes on the
functional distance between representations,
which can be calculated using the activa-
tions of representations on the given dataset,
and the knowledge-based semantic distance
between concepts, obtained from taxonomies
or other knowledge databases. By examining
the contrast between the two distance met-
rics, our primary focus lies in revealing pairs
of representations that exhibit a high degree
of functional similarity but whose underly-
ing concepts are semantically very different,
i.e., which are located in the first quadrant
of Fig. 1. While disagreements between func-
tional and semantic distances are often nat-
ural, as some concepts may share visual sim-
ilarity while remaining semantically distinct
[14], we observe that such behavior frequently
results from undesired correlations present in
the training data.

3.1 Method

Let us consider a neural network layer F = {f1, ..., fk}, consisting of k distinct
functions, fi(x) : D → R,∀i ∈ 1, ..., k, referred to as neural representations, that
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are mappings from the data domain D to the activation of the i-th neuron in the
layer. We further assume that the concepts associated with each representation
are known, and define a set of concepts C = {c1, ..., ck}, where ci denotes the
concept underlying the representation fi(x),∀i ∈ 1, ..., k. Thus, we can define the
set P = {(f1, c1), . . . , (fk, ck)} ⊂ F ×C, as a collection of representation-concept
pairs.

We consider that two distance metrics, dF and dC , that are defined on the
respective sets F and C: dF : F×F → R, dC : C×C → R, where dF is measuring
the functional distance between learned representations in the networks, and dC
measures the semantic distance between the concepts these representations are
trained to encode. Accordingly, we define two k× k distance matrices, F and C,
as follows:

F =

⎡
⎢⎣
dF (f1, f1) . . . dF (f1, fk)

...
. . .

...
dF (fk, f1) . . . dF (fk, fk)

⎤
⎥⎦ , C =

⎡
⎢⎣
dC(c1, c1) . . . dC(c1, ck)

...
. . .

...
dC(ck, c1) . . . dC(ck, ck)

⎤
⎥⎦ . (1)

Given two neural representations fi, fj ∈ F with corresponding concepts
ci, cj ∈ C, one can assess the contrast between functional and semantic distance
by comparing the values between dF (fi, fj) and dC(ci, cj). However, such an app-
roach might not be optimal since functional and semantic distance measures can
possess distinct scales. To overcome this challenge, we suggest a non-parametric
approach, where the ranks of distances within their corresponding distributions
are analyzed instead.

In the following, a collection of unique distances are collected from the upper
triangular portion of the distance matrices, including the main diagonal and all
elements above it:

FΔ = {dF (fi, fj) | ∀i ∈ {1, . . . , k},∀j ∈ {i, . . . , k}} , (2)
CΔ = {dC(ci, cj) | ∀i ∈ {1, . . . , k},∀j ∈ {i, . . . , k}} . (3)

We define matrices F ∗, C∗ as

F ∗ =

⎡
⎢⎣
d∗

F (f1, f1) . . . d∗
F (f1, fk)

...
. . .

...
d∗

F (fk, f1) . . . d∗
F (fk, fk)

⎤
⎥⎦ , C∗ =

⎡
⎢⎣
d∗

C(c1, c1) . . . d
∗
C(c1, ck)

...
. . .

...
d∗

C(ck, c1) . . . d∗
C(ck, ck)

⎤
⎥⎦ , (4)

where ∀i, j ∈ {1, . . . , k}
d∗

F (fi, fj) = cdf−1
FΔ

(dF (fi, fj)) , d∗
C(ci, cj) = cdf−1

CΔ
(dC(ci, cj)) , (5)

and cdf−1 correspond to the inverse of the cumulative distribution function
(percentile).

Finally, for every pair of neural representations we define the function-
semantic contrast score based on the difference between the percentile of the
functional distance, and the percentile from the semantic distance between cor-
responding concepts.
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Definition 1. Given P = {(f1, c1), . . . , (fk, ck)} ⊂ F × C, as a collection of
representation-concept pairs, corresponding to the outputs of a DNN and two
metrics dF , dC defined on F , C, respectively. Furthermore, let FΔ, CΔ be a collec-
tion of unique distances among neural representations and concepts, respectively.
For pi, pj ∈ P we define contrast score as

fsc (pi, pj) = cdf−1
CΔ

(dC(ci, cj)) − cdf−1
FΔ

(dF (fi, fj)) . (6)

Contrast scores range from −1 to 1, with high contrast scores indicating
cases where representations display significant functional similarity, while the
underlying concepts are semantically distinct. This particular type of function-
semantic relationship is our primary focus and is illustrated in Fig. 1.

In practice, to detect spurious correlations within the output representations,
each pair of representations is assigned a contrast score, and pairs are sorted in
descending order. Pairs with the highest contrast scores highlight the discrep-
ancy between the model’s perception and the human-defined semantic distance.
Subsequently, each pair can be manually investigated by a human to determine
the causal reason for such contrast.

3.2 Selecting a Distance Metric Between Representations

A crucial aspect of our proposed method’s performance lies in the choice of an
appropriate distance metric for the comparison of the output representations,
which must reflect the similarity in activation patterns between pairs of rep-
resentations within the network. Consider the dataset D = {x1, . . . , xN} ⊂ D,
consisting of N independent and identically distributed data points from the
data distribution. For a layer F with k representations, we define vector
Ai = (fi(x1), . . . , fi(xN )) ⊂ R

N ,∀i ∈ {1, . . . , k}, which contains the activa-
tions of the i-th representation across the dataset. We assume that all vectors
Ai,∀i ∈ {1, . . . , k} are standardized, with a sample mean of 0 and a standard
deviation of 1.

Our approach permits flexibility in choosing the distance metric between
representations. In this work, we utilize the Extreme-Activation (EA) distance
metric, derived from the analysis of natural data [17]. Drawing inspiration from
the study of Activation-Maximization signals (AMS), which are data points that
maximally activate a given representation, the EA distance quantifies the extent
to which two representations are activated by each other’s AMS. This provides
insights into how the representations are influenced by the features present in
the AMS.

To calculate the pair-wise Extreme-Activation distance, the dataset D is par-
titioned into n disjoint blocks, D =

⋃n
i=1 Dt,Dt =

{
xtd+1, ..., x(t+1)d+1

}
,∀t ∈

{0, ..., n−1}, each of length d. Subsequently, for each representation fi ∈ F ,∀i ∈
{1, . . . , k}, we define a set of natural Activation-Maximization signals (n-AMS)
as Si =

{
si
1, ..., s

i
n

}
, where

si
t = argmax

x∈Dt

fi (x) ,∀t ∈ {0, ..., n − 1}. (7)
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For every two representations fi, fj ∈ F , we define their pair-wise represen-
tation activation vectors (RAVs) rij , rji as:

rij =
(

1
n

∑n
t=1 fi

(
si

t

)
1
n

∑n
t=1 fj

(
si

t

)
)
, rji =

⎛
⎝

1
n

∑n
t=1 fi

(
sj

t

)

1
n

∑n
t=1 fj

(
sj

t

)
⎞
⎠ . (8)

Subsequently, we define the pair-wise Extreme-Activation distance between
two representations as the cosine of the angle between their corresponding RAVs.

Definition 2 (Extreme-Activation distance). Let fi, fj be two neural repre-
sentations, and rij , rji be their pair-wise RAVs. We define a pair-wise Extreme-
Activation distance as

dF (fi, fj) =
1√
2

√
1 − cos (rij , rji), (9)

where cos(A,B) is the cosine of the angle between vectors A,B.

Extreme-Activation distance quantifies the activation of n-AMS between two
representations, offering a valuable metric for examining the relationships among
intricate non-linear functions [17]. In contrast to other metrics, such as Pearson
correlation, the EA distance utilizes a small subset of n-AMS for each represen-
tation, enabling a straightforward visual inspection of Activation-Maximization
signals. This metric, grounded in the measure of how two representations are co-
activated on their most activating signals, allows practitioners to easily discern
the shared visual features between two sets of n-AMS.

Figure 2 demonstrates the EA distance between two representations, corre-
sponding to the “Snow leopard” and “Crossword puzzle” classes, derived from
an ImageNet [22] pre-trained DenseNet161 network [37]. This figure enables an
effortless assessment of the functional similarity between the two representa-
tions. We can observe that the RAVs are not perpendicular, implying a func-
tional dependence between the representations. Moreover, a visual inspection of
the n-AMS for both representations reveals a similar black-and-white texture
pattern that both representations have learned to detect.

EA distance measure varies between 0 and 1. Low values correspond to small
angles between RAVs, indicating that both representations are highly activated
on each other’s AMS. Perpendicular RAVs, which represent cases where the
representations are indifferent to each other’s AMS, yield a distance equal to
1√
2

≈ 0.7071. Higher EA distance signifies situations where the n-AMS of the
representations negatively affect one another, meaning the AMS of one repre-
sentation deactivates the other.
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Fig. 2. Interpreting the Extreme-Activation Distance. Given two output representa-
tions from the DenseNet161 network, fi and fj , corresponding to the “Snow leopard”
and “Crossword puzzle” classes respectively, two sets of n-AMS signals were sampled
(orange and blue, respectively). The left figures display the distribution of activations
for both representations across the ImageNet-2012 validation dataset, with the posi-
tions of the n-AMS indicated. The right figure presents the pair-wise RAVs, alongside
activation of all data points (gray) and representations-specific n-AMS (blue, orange).
The EA distance measures the cosine of the angle between RAVs vectors. (Color figure
online)

3.3 Selecting a Distance Metric Between Concepts

The choice of functional and semantic distances between representations and
concepts, respectively, is critical. Semantic distance should encapsulate human-
defined relationships, particularly ensuring that these distances do not rely on
spurious or undesired correlations. Function-Semantic Contrast Analysis (FSCA)
can utilize any concept metric, including expert-defined knowledge-based dis-
tance measures. For example, semantic distances can be derived from the Word-
Net database [48], which groups English words into synsets connected by seman-
tic relationships.

In this work, we employ the Wu-Palmer (WUP) distance metric defined on
the WordNet taxonomy database. The WUP distance is based on the depth of
the least common subsumer (LCS), which is the most specific synset that is an
ancestor of both input synsets [56]. The WUP distance computes relatedness
by considering the depth of the LCS and the depths of the input synsets in the
hierarchy.

Definition 3. Let ci, cj ∈ C, be two concepts, and let wi, wj be the correspond-
ing synsets from the WordNet taxonomy database. The Wu-Palmer distance is
defined as:

dC(ci, cj) = 1 − 2
l(r, lcs(wi, wj))
l(r, wi) + l(r, wj)

,
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Fig. 3. Illustration of functional and semantic distance matrices. From left to right: EA
distance between DenseNet161 output representations, Wu-Palmer distance between
1000 ImageNet classes, and a visualization of the location of several highly interesting
hyperclasses within the distance matrices.

where lcs(x, y) is the Least Common Subsumer [56] of two synsets x and y, r is
the taxonomy root, and l(x, y) is the length of the shortest path between WordNet
synsets x, y.

The WUP distance takes into account the specificity of the common ancestor,
rendering it more robust to the structure of the WordNet hierarchy in comparison
to other semantic distance metrics such as Shortest-Path distance or Leacock-
Chodorow [17,63]. Moreover, the Wu-Palmer distance offers a more fine-grained
measure of relatedness. Figure 3 demonstrates the Wu-Palmer distance between
1000 ImageNet classes that share natural connections to WordNet synsets. The
structure of the semantic distance matrix (center) aligns with the location of the
primary groups of classes within the dataset, as illustrated in the figure to the
right.

4 Experiments

This section provides a detailed examination of various implemented experi-
ments. These include an evaluation of the performance of the FSCA method in
light of the given ground truth. Furthermore, we explore the practical applica-
tion of FSCA to the widely-employed DenseNet-161 model. Finally, we conduct
a broad assessment of ImageNet-trained models, focusing on the relationship
between performance and the functional similarities between representations.

4.1 Evaluation Given the Ground Truth

To evaluate the effectiveness and suitability of the proposed methodology, we
investigated its capability to identify instances of representation pairs previ-
ously acknowledged to exhibit spurious correlations. This analysis utilized two
ImageNet-trained models, specifically GoogLeNet [74] and DenseNet-161 [37],
both previously reported to possess a significant proportion of output represen-
tations susceptible to watermark text detection [20].
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Consider PG,PD as collections of representation-concept pairs for 1000
output representations - essentially, the pre-softmax output logit representa-
tions from the two networks. For each of these models, employing a technique
akin to that described in [20], we identified subsets ZG ⊂ PG,ZD ⊂ PD of
representation-concept pairs with high discriminatory capability (AUROC > 0.9)
towards watermarked images, implying that such representations exhibit spuri-
ous correlations towards watermarked images and generally assign higher activa-
tions to the images, where the watermark is present. For GoogLeNet there were
found |ZG| = 21 output representations, such as “carton”, “broom”, “apron” and
others, while for DenseNet-161 there were found |ZD| = 22 high-discriminatory
representations. We applied FSCA to both sets PG and PD using the func-
tional Extreme-Activation distance, computed over n = 10 n-AMS with param-
eter d = 5000. For the semantic distance between concepts, we chose the Wu-
Palmer distance, considering the inherent link between ImageNet concepts and
the WordNet taxonomy. After calculating Function-Semantic Contrast (FSC)
scores for each pair of representations, we compared these scores between two
groups: those pairs known to be susceptible to spurious correlations and the rest.
More specifically, we defined two sets:

FSC−
G = {fsc(pi, pj) | ∀pi, pj ∈ PG, i > j, pj ∈ PG \ ZG} , (10)

FSC+
G = {fsc(pi, pj) | ∀pi, pj ∈ ZG, i > j} , (11)

where FSC−
G denotes the set of FSC scores for representation-concept pairs from

GoogLeNet, in which at least one representation was not identified as being
susceptible to Chinese watermark detection. Conversely, FSC+

G represents the
FSC scores for the representation-concept pairs where both representations were
recognized to be susceptible to spurious correlations. We similarly defined sets
FSC−

D and FSC+
D for the DenseNet-161 model. GoogLeNet and DenseNet-161,

210 and 231 pairs of representations were respectively flagged as exhibiting spu-
rious correlation, among a total of 499500 pairs.

Figure 4 visually presents the differences between the FSC− and FSC+ dis-
tributions for both models. For each model, the FSC scores for “watermark”
pairs, defined as pairs of representations where both classes were identified as
susceptible to watermark detection, are consistently higher than those for other
representation pairs. This observation was further corroborated by the Mann-
Whitney U test [46] under a standard significance level (0.05).

If we constrain the FSCA analysis solely to representation pairs exhibiting
substantial functional similarity, specifically those falling within the top 2.5%
(d∗

F ≤ 0.025), the results for GoogLeNet indicate 8 spurious pairs (out of 210)
among the top 1000 pairs with the highest FSC, 38 within the top 5000, and 52
within the top 10000. Implementing the same methodology with DenseNet-161
yields no spurious pairs (out of 231) within the top 1000, 32 pairs within the top
5000, and 42 within the top 10000. This infers that by focusing exclusively on
representation pairs with high functional similarity, we can recover 25% (52 pairs
out of 210) and 18% (42 pairs out of 231) of pairs displaying known spurious
correlations, merely by scrutinizing 2% (10000 pairs) of the total representation
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pairs. Our results suggest that FSCA tends to allocate high FSC scores to pairs of
representations known to be susceptible to spurious correlations, thereby lending
further credibility to the proposed methodology. However, it’s important to note
a limitation in this experiment: while we have a knowledge of spurious correla-
tions due to the reliance on Chinese watermarks, we cannot ascertain potential
correlations among other pairs.

Fig. 4. The contrast between the distribution of FSC scores among pairs of represen-
tations known to be susceptible to spurious correlations (Chinese watermarks, orange),
and all other pairs (blue). The figure demonstrates that FSCA typically assigns higher
FSC scores to pairs recognized as having spurious correlations. (Color figure online)

4.2 Identifying Spurious Correlations in ImageNet Trained
DenseNet-161

To demonstrate the potential utility and relevance of our proposed approach,
we investigated in detail the results of the FSCA of the widely-used ImageNet-
trained DenseNet-161 model. Hyperparameters for the analysis were kept the
same as in the previous experiment, namely, we employed functional Extreme-
Activation distance metric with n = 10, allowing us to analyze the co-activation
of representations based on the 10 Activation-Maximization images, providing
a straightforward method for interpreting the shared features that the repre-
sentations are trained to recognize. Due to the impracticality of examining all
pairs, our analysis focused solely on pairs with high functional similarity based
on Extreme-Activation, specifically those within the top 1% of the smallest dis-
tances, and in total 1000 with the highest contrast scores were analyzed. We
report several significant categories of correlations observed between the logit
class representations of the DenseNet-161 model, found by the FSCA method.

Shared Visual Features. Since semantic distance offers a metric for evaluat-
ing the conceptual differences between entities, it is natural for some concepts,
despite being semantically distinct, to share visual features with one another.
Such relationships between representations could be considered natural to the
image classification model.
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Fig. 5. Illustration of several representation pairs sharing natural visual features. The
figure shows four different pairs of representations, with each subfigure depicting the
geometry of pairwise RAVs and two n-AMS per representation. The observed functional
similarities are attributed to the natural visual similarity between classes and are not
considered spurious, as the representations detect features characteristic of each other.

Some of the most intriguing relationships we observed include the func-
tional similarity between representations corresponding to the classes “geyser”,
“steam locomotive”, “volcano”, and “cannon”, owing to the shared visual feature
of smoke fumes. Representations for the classes “menu”, “website”, “envelope”,
“book jacket”, and “packet” exhibit a high degree of functional relationship due
to the shared textual feature, which could be considered a natural character-
istic for such classes. Furthermore, representations for crossword “puzzle” and
“snow leopard” share similar behavior in detecting black and white grid patterns
(illustrated in Fig. 2), “waffle iron” and “manhole cover” representations display a
high degree of similarity due to their ability to detect specific grid patterns, and
“mailbox” and “birdhouse” logits demonstrate a strong degree of co-activation of
each other’s n-AMS, resulting from the visual similarity of the objects. Several
of the described relationships are illustrated in Fig. 5, by the pair-wise RAVs
between their representations together with their n-AMS.

Co-occurring and Mislabeled Objects. This category refers to objects that
frequently co-occur, allowing the network to learn associations between two
objects, due to the constraints of the classification problem to assign one class
per image. Examples of such relationships can be found in the representations
of “cup”, “espresso maker”, “coffeepot”, and “teapot”, all reported to frequently
co-occur in each other’s image backgrounds as secondary objects. Intriguing
examples include the high similarity of “plate” and “dungeness crab” representa-
tions, as the n-AMS for the crab representation illustrates an already prepared
crab on a plate, “cardoon” (flower) and “bee” representations, and “hay” and
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“harvester”. Additionally, we detected that functional similarity can be caused
by misattribution of labels, such as between “tiger” and “tiger cat”, where we
were able to determine that the latter class also contains images of tigers, even
though the class description states that it is a specific breed of cats exhibiting
textural patterns of black stripes, similar to tigers.

Object Backgrounds. FSCA analysis of the functionally most similar repre-
sentations yielded several groups of representations, that exhibit functional sim-
ilarity due to the shared background only. Such a conclusion could be derived
from the fact that representations are significantly co-activated with each other’s
n-AMS, while the only shared feature among them is the background.

– Snow We can consider the snow background among the most interesting
examples of such spurious correlations. This feature is shared between repre-
sentations such as “snowmobile”, “ski”, and “shovel”.

– Mountain The commonality of the mountain background is observed across
representations including “alp”, “marmot”, “mountain bike”, and “mountain
tent”, with the latter two possessing descriptive references to the background
within their respective names.

– Underwater The underwater background is shared between representations
such as “snorkel”, “coral reef”, “scuba diver”, and “stingray”, which collectively
share a bluish shade and describe natural marine environments.

– Savannah The shared background of the savannah, characterized by golden
or green grasslands, is observed across representations of animal species such
as “zebra”, “impala”, “gazelle”, “prairie chicken”, and “bustard”.

– Water The water background encompasses the view of the water surface, as
well as the presence of animals or objects above the water, including “pier”,
“speedboat”, “seashore”, and “killer whale”.

Artifacts. Among the reported pairs of representations yielded by FSCA, we
were able to detect representations “safe”, “scale”, “apron”, “backpack”, “carton”,
and “swab” that exhibited high functional similarities caused by the presence of
Chinese watermarks in their n-AMS. This result is consistent with previous works
that reported these classes as having a strong ability to differentiate between
watermarked and non-watermarked images [20].

By employing FSCA we were able to identify the new unknown spurious
correlation, manifesting in the dependence of several classes on the presence of
young children in the image. A high functional similarity was reported between
the “diaper” class, naturally containing a lot of young children in the images,
and several other representations, including the “rocking chair” representation.
Inspection of the training dataset revealed a significant amount of images of
children (without diapers) sitting in a “rocking chair”. Since the ImageNet dataset
does not have a specific class dedicated to children, this represents a latent factor
that corresponds to the functional similarity of such classes.
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Fig. 6. Discovery of previously unknown spurious correlation between “diaper” and
“rocking chair”. The high FSCA contrast score (0.35), indicates a high discrepancy
between function and semantic distances. Investigation of the training dataset revealed
that such behavior could be explained by the dependency of both representations on
the presence of a child in the image.

Fig. 7. Differences in the
model’s predictions before and
after adding an image of a
child to the image.

Figure 6 illustrates the Extreme-Activation
distance, alongside with the n-AMS for the repre-
sentations “diaper” and “rocking chair”, and sev-
eral examples from the ImageNet-2012 training
dataset from the class “rocking chair”. This spuri-
ous correlation was unexpected and could be con-
sidered artifactual for this class. The fact that
“rocking chair” employs the presence of children as
additional evidence for prediction is demonstrated
in Fig. 7, where the model’s prediction shifts
towards the “rocking chair” class after adding an
image of a child on top of the image of the chair.
Furthermore, FSCA reported the following repre-
sentations to have high functional similarity with
the “diaper” representation: “crib”, “bassinet”2,
“cradle”, “hamper”, “band-aid”, “bib”3, and “bath
towel”.

Another intriguing and previously unknown spurious correlation that we
identified involves the dependence of several classes on images of fishermen.
This correlation was observed between the “reel” class and several fish classes,
namely “coho” and “barracouta”. Figure 8 furnishes evidence that the relation-
ship between the “reel” and “coho” representations is primarily based on the
presence of fishermen, often paired with a specific water background. This is
further underscored by the model’s prediction given an image of a fisherman -
the model confidently assigns a fish label to the image, despite the absence of any
fish in the picture. Although this correlation bears similarity to the previously

2 A basket (usually hooded) used as a baby’s bed.
3 Top part of an apron; covering the chest.
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reported correlation between the “tench” and the presence of human fingers [12],
our findings show that representations like “coho” and “barracouta” display a
broader dependency on the existence of a fisherman within the image. This is
evidenced even in instances where human fingers are not visible in the image, as
exemplified by the right-hand image in Fig. 8.

Fig. 8. Illustration of the spurious correlation between “reel” and “coho” representa-
tions, which appears to emerge due to the common latent feature of the presence of
fishermen in the images. Our investigation revealed that a significant portion of the
training dataset consists of images featuring fishermen. This relationship consequently
leads to the possibility of the network misclassifying images of fishermen as the “fish”
category.

Fig. 9. Chart represents the distri-
bution of identified causes for the
correlations among the top 1000
pairs of representations, having the
highest reported function-semantic
contrast (FSC) scores.

Summary. Our examination of the top
1000 pairs of representations, as ranked by
function-semantic contrast scores, suggests
that around half of the detected correlations
might be explained as “unintended” corre-
lations. These correlations can be linked to
the frequent co-occurrence of objects (32%),
dependencies on shared backgrounds (12.3%),
or a shared unnatural factor (2.6%), as visu-
alized in Fig. 9. Nevertheless, we recognize
that such categorization might oversimplify
the actual interconnections between represen-
tations. It is uncommon for a single specific
factor to account for the functional similari-
ties observed between neural representations.

4.3 Better Models Tend to Have
Fewer Associations

The analysis of the DenseNet-161 models surfaced a variety of correlations,
including those that might be deemed natural as well as those potentially
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regarded as undesired or even harmful. Subsequently, we were motivated to
examine whether higher-performing models exhibited fewer correlations among
their output representations. For this investigation, we gathered 78 different
ImageNet classification models from the Torchvision library [47], with the
weight parameters set to “IMAGENET1K_V1”. For each model, we computed the
pairwise Extreme-Activation distance between output representations using the
ImageNet-2012 validation dataset, leveraging parameters analogous to those
in our preceding experiment. This process yielded 78 distance matrices Fi ∈
R

1000×1000, i ∈ [1, 78]. To quantify the degree of correlation between output rep-
resentations within models, we calculated the Frobenius norm of the difference
between the Extreme-Activation distance matrix Fi and a matrix Q for each of
the 78 models:

Q =
1√
2
(1 − I) , (12)

where 1 is a k×k matrix with all elements equal to 1, I is the identity matrix, and
k = 1000. Matrix Q is the distance matrix between representations in the ideal
scenario of total disentanglement. Hence, the norm of the difference between Fi

and Q serves as an indicator of the interconnectivity of the representations.
Figure 10 illustrates the correlation between the extent to which the mod-

els’ representations are correlated (top graph, y-axis) and their Top-5 perfor-
mance on ImageNet (top graph, x-axis). Our observations indicate that models
delivering superior performance achieve a lower norm, suggesting that enhanced
performance aligns with better disentanglement and reduced correlation among
output layer representations. The bottom graph in the same figure provides a
visual representation of this, displaying distance matrices calculated across var-
ious networks.

5 Discussion and Conclusion

In the present work, we introduce a new technique, Function-Semantic Contrast
Analysis (FSCA), designed to uncover spurious correlations between represen-
tations, when target concepts are known. FSCA reduces human supervision by
systematically scoring and ranking representation pairs based on the function-
semantic contrast. We have demonstrated the feasibility of our approach by
uncovering several potentially unrecognized class correlations as well as redis-
covering known correlations.

The primary limitation of our method relates to its reliance on a semantic
metric that, despite broadly reflecting visual similarity between objects, isn’t
entirely accurate in assessing visual similarity between two concepts. We aim to
research alternative semantic metrics, including expert-defined ones, that take
visual similarity into account in our future work. Another challenge is the unde-
fined nature of spurious correlations, necessitating human oversight to discern
whether a correlation is harmful. Nevertheless, our study found that analyzing
1000 representation pairs from the DenseNet-161 model only required around 3
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Fig. 10. Better performing models achieve higher disentanglement of representations.
The top figure illustrates the relationship between ImageNet top-5 validation accuracy
(x-axis) across the 78 models from the Torchvision library, along with the Frobenius
norm of the difference between the EA distance measure and Q (y-axis).

human hours, uncovering previously undetected artifacts, and hence, the demand
for human supervision is significantly reduced by FSCA.

While we have demonstrated the applicability of FSCA on ImageNet-trained
networks, this approach is scalable in terms of its application to other image
classification problems. Since WordNet encompasses a broad range of synsets, it
is often quite simple to connect classes and concepts, as shown in the example
of CIFAR-100 [17,41]. Moreover, semantic distance can be measured using other
knowledge-based datasets or by relying on expert assessments.

As Deep Learning approaches are becoming more popular in various disci-
plines, it becomes increasingly imperative to audit these models for potential
biases, ensuring the cultivation of fair and responsible machine learning frame-
works. Our presented FSCA method offers a scalable solution for practition-
ers seeking to explain the often opaque and enigmatic behavior of these learn-
ing machines. By doing so, we contribute to a more transparent and ethically-
grounded understanding of complex deep learning systems, promoting responsi-
ble and trustworthy AI applications across various domains.

Acknowledgements. This work was partly funded by the German Ministry for Edu-
cation and Research through the project Explaining 4.0 (ref. 01IS200551).
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Abstract. People use web search engines to find information before
forming opinions, which can lead to practical decisions with different
levels of impact. The cognitive effort of search can leave opinionated
users vulnerable to cognitive biases, e.g., the confirmation bias. In this
paper, we investigate whether stance labels and their explanations can
help users consume more diverse search results. We automatically clas-
sify and label search results on three topics (i.e., intellectual property
rights, school uniforms, and atheism) as against, neutral, and in favor,
and generate explanations for these labels. In a user study (N=203), we
then investigate whether search result stance bias (balanced vs biased)
and the level of explanation (plain text, label only, label and explana-
tion) influence the diversity of search results clicked. We find that stance
labels and explanations lead to a more diverse search result consump-
tion. However, we do not find evidence for systematic opinion change
among users in this context. We believe these results can help designers
of search engines to make more informed design decisions.

Keywords: Explainable Search · Confirmation Bias · User Study

1 Introduction

Web search that can lead to consequential decision-making frequently con-
cerns debated topics, topics that different people and groups disagree on, such
as whether to vaccinate a child or whether nuclear energy should be used as
a power source. Prior research has shown that the interplay between search
engine biases and users’ cognitive biases can lead to noteworthy behavioral pat-
terns. For instance, when search result stance biases interact with cognitive user
biases, information seekers may experience the search engine manipulation effect
(SEME): the tendency to adopt the stance expressed by the majority of (highly-
ranked) search results [3,9,15,33]. However, these results have only been studied
and found for users who are undecided, not for users who already have strong
opinions, who we refer to as opinionated users.
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High cognitive demand during complex web searches can increase the risk
of cognitive biases [6]. One such bias is the confirmation bias, which involves
a preference for information that aligns with preexisting beliefs while disre-
garding contradictory information during the search process [6,31]. Interven-
tions to mitigate confirmation bias during web search have aimed at decreasing
engagement with attitude-confirming and increasing engagement with attitude-
opposing information [38], i.e., reducing interaction with search results that con-
firm a user’s attitude and increasing interaction with search results that challenge
a user’s attitude. Interventions to reduce interaction with particular items have
also been investigated in the context of misinformation. One effective method
for reducing interaction with misleading content involves labels to flag certain
items [10,23,29].

The core issue with confirmation bias during web search, similar to the related
issues of misinformation and SEME, is that users consume biased content. This
motivated us to investigate interventions to increase the diversity of consumption
and specifically whether labels indicating stance, and their explanations, are
likewise successful for confirmation bias mitigation during search on debated
topics. Therefore the goal of these interventions is to promote unbiased web
search and mitigate the effects of users’ confirmation bias and underlying (stance)
biases in a search engine result page (SERP). Consequently, this paper aims to
address the following question: Do automatically generated stance labels
and explanations of the labels for search results increase the diversity
of viewpoints users engage with, even if search results are biased?

To address this question, we test three hypotheses. Previous work has found
that undecided users are likely to change their opinion when exposed to biased
search results, since they select more search results reflecting a certain opin-
ion [3,14,15,33]. However, in this study we restrict participants to opinion-
ated users, having strong existing opinions on a topic, and investigate whether
H1a): Users who are exposed to viewpoint-biased search results interact with
less diverse results than users who are exposed to balanced search results.

Second, informative labels have been shown to mitigate confirmation bias
in search results [38]. Therefore, in this study, we investigate whether simple
stance labels (against, neutral, and in favor), and stance labels with explanations
(importance of keywords) are effective for mitigating confirmation bias. This
leads to H1b): Users who are exposed to search results with (1) stance labels
or (2) stance labels with explanations for each search result interact with more
diverse content than users who are exposed to regular search results.

Third, if the labels are effective in reducing confirmation bias, we would
expect an interaction effect between the bias in search results and explanation
level (plain, label, label plus explanation): H1c) Users who are exposed to search
results with (1) stance labels or (2) stance labels with explanations are less sus-
ceptible to the effect of viewpoint biases in search results on clicking diversity.

We investigate these hypotheses in a pre-registered between-subjects user
study (N=203) simulating an open search task.1 Our results show that both

1 The pre-registration is openly available at https://osf.io/3nxak.

https://osf.io/3nxak
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stance labels and explanations, led to a more diverse search result consumption
compared to plain (unlabeled) search result pages. However, we did not find evi-
dence that the explanations influenced opinion change. We believe these results
can help designers of search engines to make more informed design decisions.

2 Related Work

Explainable Artificial Intelligence (XAI) aims to help people understand the
decisions and predictions AI systems make. In this paper, we investigate specif-
ically how XAI can support users in searching for disputed topics. Search for
debated topics is highly subjective: when users search the web to seek advice
or form opinions on these kinds of topics, not just search result relevance but
also the stance of content is influential [3,14,15,33,38]. To mitigate undesired
effects such as biased opinion change, earlier work has measured and increased
the fairness [18,50,53] and viewpoint diversity in search results [13,34,47].

On the user interface side, it could be fruitful to label and explain the stance
represented on a search engine results page (or SERP). These labels are related
to the task known as stance detection, which is predominantly applied in a target-
specific fashion. That is, detecting not just a sentiment, but how it is referred to
in relation to a specific topic or claim (often referred to as the target, e.g., “people
should wear school uniforms”) [2]. Stance detection is a multi-class classification
task (i.e., typically classifying documents into against, neutral, and in favor,
so predictive performances are most commonly reported in terms of macro F1
scores [24]. Furthermore, web search interventions targeting the mitigation of
undesired effects, such as SEME, require cross-target stance detection models
to quickly respond to the large variety of debated topics users may search for.
Here, stance detection models are applied to data sets where each document
may be relevant to one of many potential topics [2,24]. Constructing models
that classify documents into stances related to any topic in such a way may
lead to weaker predictive accuracy compared to target-specific methods, but
makes stance detection more generalizable and scalable. Cross-target ternary
stance detection by previous work (e.g., on news articles or tweets) have ranged
roughly from macro F1 scores of .450 to .750 [1,4,5,21,36,49].

Also comparable are the cross-topic stance detection models evaluated using
the Emergent data set (and its follow-up version, the 2017 Fake News Challenge
data set) which have achieved macro F1 scores of up to .756 [20,39,41]. While the
main contribution of this paper is not to improve on the state of the art for stance
detection, the stance detection method (DistilBERT) used here is comparable to
this state of the art (macro F1 of 0.72). DistilBERT is much smaller than other
pre-trained models, and handles small datasets well [42,44,46].

What XAI methods are suitable for explaining stance detection to users?
Stance detection can be seen as a text classification task. For text classification,
explanations containing input features have been found to be highly adaptable
and often meaningful to humans [12,28].
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The way in which explanations can be visualized depends on the data type,
purpose, and audience. Many current methods indicate input features as fea-
ture importance using a saliency map [37,45]. When the features are readable
texts, saliency information is shown by highlighting the most significant input at
word or token level [22]. There have been some instances where researchers used
text-based saliency maps to demonstrate their findings [19]. To the best of our
knowledge, no previous work has explored whether highlighting salient words
in search results would mitigate people’s clicking bias. One of the most closely
related works found that feature-based explanations could help users simulate
model predictions for search results [12]. Another similar study involves a ver-
bal saliency map using a model-agnostic explainer and a human evaluation of
explanation representations of news topic classifier and sentiment analysis [17].
Their finding is that the saliency map makes explanations more understandable
and less cognitively challenging for humans than heatmap visualization. How-
ever, our work differs from theirs in several ways: we study explanations in the
context of search engines, and we have conducted a full-fledged user study while
they only performed a pilot study.

Contribution to Knowledge for XAI. Previous XAI literature has con-
tributed to explaining information retrieval systems, focusing on the inter-
pretability of document-retrieval mechanisms [25,26,52]. For example, the
authors of [52] propose a listwise explanation generator, which provides an expla-
nation that covers all the documents contained in the page (e.g., by describing
which query aspects were covered by each document). These explanations were
not evaluated by people. Another paper studied how well explanations of indi-
vidual search results helped people anticipate model predictions [12], but did not
consider cognitive or stance bias. In contrast to previous work, this paper exam-
ines how explanations affect users, considering the potential mitigation of their
cognitive biases on search engine manipulation effects (SEME). In doing so, we
see a need to address both potential (stance) bias within a search result page,
and the bias of users consuming these results. To the best of our knowledge,
this is also the first work to conduct empirical experiments on users’ behavior in
response to explanations in the context of information retrieval.

3 Methodology

This section describes the materials we used for organizing the user study (e.g.,
data set, stance detection model, explanation generation, and search interface).

3.1 Data Preparation

To train, test, and explain the stance detection model, we considered a public
data set containing search results related to three debated topics (i.e., atheism,
intellectual property rights, and school uniforms) [13].2 [13] motivate the selection

2 The data set is available at https://osf.io/yghr2.

https://osf.io/yghr2
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Table 1. Topic and stance distribution in the used data.

Stance Distribution

Topic N Against – Neutral – In Favor

Intellectual property rights 378 10.5% – 17.7% – 71.7%

School uniforms 395 21.5% – 36.7% – 41.8%

Atheism 352 19.8% – 46.3% – 33.8%

Total 1125 17.3% – 33.3% – 49.3%

of these three topics because they offer valid arguments for both supporting and
opposing viewpoints. Additionally, they argue that opinions on these topics have
diverse impacts, ranging from concerning mainly the user (atheism) to businesses
(intellectual property rights) and society (school uniforms). These data include
URLs, titles, snippets, and stance labels for a total of 1475 search results, which
had been retrieved via API or web crawling from two popular web search engines.

Stance labels had been assigned (by experts) on seven-point Likert scales (i.e.,
including three degrees of opposing or supporting a topic), which we mapped
into the three categories against, neutral, and in favor (i.e., which is what most
current stance detection methods handle). Using the provided URLs, we crawled
the full web page text bodies (stripped of any HTML tags) for all search results.
We here dropped 347 search results from the data as their text bodies could not
be retrieved (e.g., because of 404 errors), leaving 1125 search results accompanied
by their respective text bodies. Finally, we processed the retrieved contents by
truncating each document’s middle section, retaining only its head and tail, then
concatenating each search result’s title, snippet, and the head section and tail
section, while ensuring that the result is exactly 510 tokens long. We removed
all other information from the data aside from the documents’ stance labels.
Table 1 shows the stance distribution per topic in our final data set.

3.2 Stance Detection Model

After pre-processing (tokenization), we developed the model for classifying search
results into against, neutral, and in favor. The dataset was split into training
(75%) and validation/test (25%) sets. We fine-tuned the model for different
hyperparameters. After every epoch the validation set were evaluated to monitor
its learning progress. Once the model’s evaluation loss stops to decrease for 5
epochs the training is terminated and is evaluated based on the unseen test
set, and the result is considered the general performance that we report. The
best-performing model and learned parameters were used as the predictor for
identifying labels and generating explanations.

Tokenization. Before training the stance classification model, we needed fur-
ther preprocessing of the raw search results. Specifically, we had to tokenize
each word before feeding the search results into the model. The tokenization
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Fig. 1. Distributions of Attributes Across the Training, Validation and Test Set

process performs tasks such as handling subwords, adding special tokens to pad
a sequence of words to a max length, or indicating the beginning or end of a
sequence. In our work, we instantiated the DistilBERT tokenizer using the Auto-
Tokenizer class provided by the transformers [48]. We set the length of the
tokenizer to a size of 512.

Training Details. Similar to previous work performing search result stance
classification [12], we built one cross-topic model using our entire data set. First,
we split the dataset in a stratified manner, which preserves the percentage of the
topic and labels in each subset. Figure 1 shows the final split across the training,
validation, and test sets on both topics and labels. Then, we classified search
results into stance categories (i.e., in favor, against, or neutral), using a pre-
trained version of the uncased DistilBERT base model [40] from HuggingFace.
Specifically, we fine-tuned DistilBERT using 75% (843) of the documents in
our data and split the remaining 25% (282) equally for validation and testing.
Due to the relatively small size of our dataset, we tried to avoid over-fitting
by using neural network dropout and stopping training when evaluation loss
stops improving for 5 epochs [43,51]. We trained using the same dataset split
and experimented with learning rates ranging from 5e–6 to 1e–4. Regarding the
remain hyper-parameters, the models were optimized using the Adam optimizer
with a learning rate of 1e−5, the batch size was set to 8 and we set the dropout
rate of both attention layers and fully connected layers to 0.4.

Metric. In our stance detection task, we have three labels to be classified, and
their distribution is uneven. To take performance on all stances into account, we
considered the macro F1 score, defined as the average of the F1 scores for each
of the three stances:

macroF1 = (F1(stance = favor) + F1(stance = neutral) + F1(stance = against))/3 (1)
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Model Performance. We obtained a stance detection model by fine-tuning
the DistilBERT model for our downstream classification task. The fine-tuning
process was completed through HuggingFace’s Trainer interface. The progress
of each run was tracked using Weights & Biases.3 We observed that the learning
rate of 1e–5 gave the best performance with a macro F1 score of 0.72.4

3.3 Creating Explanations

Instance Selection. For the user study, we selected search results correctly
predicted by the model, picking them mainly from the test set and some from
the validation set. As mentioned before, the train, validation, and test sets were
split in a stratified way, which preserves the frequencies of our target classes. To
assemble search results for our study, we randomly drew 21 correctly predicted
search results per topic from our test and validation data (i.e., seven against,
seven neutral toward, and seven in favor of the topic). The SERPs later displayed
10 results per page.

LIME Parameter Tuning. After we fine-tuned and evaluated the model on
the search result corpus, we used LIME (Local Interpretable Model-Agnostic
Explanations) to explain the model’s predictions [37].5 For text data, LIME
outputs a list of features (tokens) from the input sentence, ranked by their
importance w.r.t. a model’s specific prediction. We generated the explanations
by setting the neighborhood size to learn the linear model to 5000, kernel width
to 50,6 and showing the top 20 important tokens (or less based on the text
length) belonging to the model’s predicted class.

3.4 Search Engine

Architecture. We implemented our web-based search interface using the
SearchX platform as a basis [35]. The web application has both a front-end
and a back-end. The front-end is built on NodeJS using React and Flux frame-
works and manages users’ data by sending logs to the back-end, which mainly
handles the retrieval of search results from the database and stores the logs from
the front-end.

3 https://wandb.ai.
4 Due to a minor error in evaluation, a slightly higher macro F1 score was reported

in the pre-registration. However, this erroneous score did not influence the training
process or affect our user study.

5 https://github.com/marcotcr/lime.
6 We tried multiple kernel sizes (10, 25, 50, and 75) and chose a value of 50 since we

got a slight increase in the R2 scores for each LIME local prediction on the test set
of about 3–4% on average compared to the other sizes.

https://wandb.ai
https://github.com/marcotcr/lime
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Fig. 2. Different conditions for the SERP display. a) Text-only Search Result Page. b)
Predicted stance labels. c) Predicted stance labels and Explanations.

Interface. We designed the search interface as follows. As soon as users open the
homepage of the study, saw a search bar positioned at the top of the page, where
they may enter their queries. The search engine showed results only when the
input query included one or more keywords referring to the user’s assigned topic
(among atheism, intellectual property rights, and school uniforms). Otherwise,
showed a message informing users that no results were found for their query. We
provided users with the topic and the specific keyword to include in the query
with a sentence below the search bar. For the Atheism topic, the keywords are
“atheist” or “atheism”, for the intellectual property right topic, the keywords are
“property right”, “intellectual right” or “intellectual property right”, while for
the school uniform topic, keywords are “uniform” or “school uniform”.
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After the users inserted a query including the above mentioned keywords,
the interface displayed a list of matched results. This set of search results had
a different arrangement based on the random condition a user was assigned to.
We set up three SERP display conditions (see Sect. 4.2): 1) text-only SERP, 2)
SERP with labels; and 3) SERP with labels and explanations. The text-only
SERP showed ten search results without any extra information. Each search
result had two parts: a clickable title redirecting the user to the corresponding
webpage and a snippet showing some of its content. Figure 2 a) shows the layout
of this type of interface. The SERP with labels introduces two new features: the
labels indicating the original content’s stance and an overview of all the search
results labels on the right side of the webpage. As shown in Fig. 2 b), we assigned
a different color representing each viewpoint. We also added extra information
to each label, indicating whether the document is against, neutral, or in favor
of the topic. The third type of SERP interface makes use of a mono-chromatic
saliency map (see Fig. 2 c), highlighting the top 20 words that best contribute
to the prediction in the search result snippet. Due to the space limitation of
the interface, not all the feature would appear in the snippet. The color of the
saliency map aligns with the color of the label. We use the same color for all
20 feature words regardless of their significance to make it less complicated for
users to understand.

Table 2. Templates for the first SERP (i.e., the top 10-ranked search results) in each
SERP ranking bias condition.

Rank Biased Opp.
(T1)

Biased
Supp. (T2)

Balanced
(T3)

1 Against Favor Neutral

2 Against Favor Neutral

3 Against Favor Neutral

4 Against Favor Neutral

5 Favor Against Against

6 Neutral Neutral Neutral

7 Against Favor Favor

8 Favor Against Against

9 Neutral Neutral Neutral

10 Against Favor Favor

Biased Versus Balanced Results. We ranked search results depending on the
ranking bias condition randomly assigned to each user. Specifically, we created
biased and balanced top 10 search result ranking templates, according to which
we would later display search results to users. Biased search results were biased
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either in the against or in favor direction and thus contain only results of one of
these two stance classes in the top four ranking spots (the remaining six results
were balanced across stance classes). Users who were assigned to the biased
condition would see search results biased in the opposite direction compared
to their pre-search opinion (e.g., if they were in favor of school uniforms, they
would see results biased against school uniforms). Users who were assigned to
the balanced condition would see a similar search result page, but with neutral
search results in the top four spots. Neutral results either do not contain any
arguments on the debated topic or equally many arguments in both directions.7

Table 2 shows an overview of the ranking templates.

4 User Study Setup

4.1 Research Ethics and Pre-registration

We deployed the web application on servers owned by the Faculty of Maas-
tricht University (UM server) and secured the connection through HTTPS pro-
tocol with SSL certificates. The study was reviewed and accepted by our review
board. The data collected from users, ranging from demographical information
to user’s clicking behaviours, are all stored anonymously in the server. Prior to
the launch of the user study, the research question, hypotheses, methodology,
measurements, etc. were pre-registered on the Open Science Framework. Only
minor changes were made, including balancing the number of participants in
the different conditions, change the way we measure users’ attitude change, and
correcting a computation error in the macro F1 score.

4.2 Variables

In our study, each subject could look at search results (i.e., 10 search results per
page) accompanied by different features. We analyzed the participants’ attitudes
and interaction behavior (with a focus on the proportion of clicks on attitude-
confirming search results).

Independent variables.

– Topic (between-subjects, categorical). Participants were assigned to one topic
(i.e., atheism, intellectual property rights, or school uniforms) for which they
have a strong pre-search attitude (i.e., strongly opposing or strongly support-
ing). If a participant had no strong attitude on any topic, they ended the
study. If a participant had multiple strong attitudes, they were assigned to
the topic that has the fewest participants at that point in the study (i.e., to
move toward a balanced topic distribution).

7 We chose this setup to make the conditions as comparable as possible, e.g., rather
than displaying results in alternating fashion in the balanced condition.
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– SERP ranking bias (between-subjects, categorical). There were two types of
ranking conditions: biased and balanced. For each of these two conditions, we
preset a ranking template (see Table 2). Participants would see a search result
page with ten items which were ranked in accordance with the template. If
a user was assigned to the biased condition, they would see opposing-biased
search results if their pre-search attitude was in favor (i.e., 3) and supporting-
biased search results if their pre-search attitude was against (i.e., −3).

– SERP display (between-subjects, categorical). Each participant saw search
results accompanied by one of these features: (1) plain text results without
stance labels, (2) results with predicted stance labels (Fig. 2 b), or (3) results
with predicted stance labels and highlighted explanations (Fig. 2 c).

Dependent Variable.

– Shannon Index (numerical). The Shannon Index was applied to measure
the diversity of users’ clicks. Let N be the total number of clicks made in
one session, n0, n1, n2 be the number of clicks of “against”, “neutral” and
“favor” items respectively. The formula for computing clicking diversity is:
−∑2

i=0
ni

N ln(ni

N ) . The convention for no occurrence of a class is to ignore
it as ln(0) is undefined [27]. For instance, the Shannon Index for (0, 1, 3) is
0 + 0.34 + 0.21 = 0.55. The minimum value of the Shannon Index is 0, which
indicates that there is no diversity and only one viewpoint was clicked on.
When each class is equal the Shannon entropy has the highest value (for three
classes, this would be 3 ∗ (− 1

3 ) ln(13 ) = 1.1).

Descriptive and Exploratory Measurements. We used these variables to
describe our sample and for exploratory analyses, but we did not conduct any
conclusive hypothesis tests on them.

– Demographics (categorical). We asked participants to state their gender, age
group, and level of education from multiple choices. Each of these items
includes a ”prefer not to say” option.

– Clicks on Neutral Items (numerical). In a balanced SERP, the majority of
items were neutral. We were specifically interested in whether participants’
engagement with search results with a neutral stance is affected by the SERP
display condition.

– Clicking Diversity (numerical). We logged the clicking behavior of partic-
ipants during the survey and computed the ratio of pre-search attitude-
confirming vs. attitude-opposing search results among the results a user has
clicked on. Clicks on neutral search results were not regarded for this variable.

– Attitude Change (numerical). In line with previous research [14,15,38], we
asked participants to select their attitudes on debated topics before and
after the experiments using a seven-point Likert scale ranging from “strongly
opposing” to “strongly supporting”. The difference between their two answers
is then assessed in the analysis.

– Textual feedback (free text). We asked participants to provide feedback on
the explanations and the task.
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Procedure. Participants completed the study in three steps as described below.
The survey was conducted on Qualtrics8, while the interaction with search results
occurred on our own server.

Step 1. After agreeing to an informed consent, participants were asked to report
their gender, age group, and level of education. Participants were first asked to
imagine the following scenario:

You and your friend were having a dinner together. Your friend is very
passionate about a debated topic and couldn’t help sharing his views and
ideas with you. After the dinner, you decide to further inform yourself on
the topic by conducting a web search.

Furthermore, participants were asked to state their attitudes concerning each
debated topic (see Sect. 3.1; including one attention check for which we specifi-
cally instruct participants on what option to select from a Likert scale).

Step 2. We introduced participants to the task and subsequently assigned them
to one of the three debated topics (i.e., atheism, intellectual property rights,
and school uniforms) depending on their pre-search attitudes and randomly
assigned them to one SERP ranking bias condition and one SERP display con-
dition (see Sect. 4.2). Participants were then asked to click on a link leading them
to our search platform (i.e., SEPP; see Sect. 3.4). Here, participants could enter
as many queries as they want, as long as those queries include their assigned
topic term (e.g., school uniforms pros and cons for the topic school uni-
forms). Regardless of what or how many queries participants enter, they always
received search results from the same pool of 21 available search results relevant
to their assigned topic (i.e., seven against, seven neutral, and seven in favor; see
Sect. 3.1). With every query that participants entered, they received those search
results ranked according to the ranking template associated to their assigned
SERP ranking bias condition (see Sect. 3.4) for the first SERP and randomly
drawn search results (following the template) for consequent searches.9 Depend-
ing on the SERP display condition participants were assigned to, they could see
either plain search results, search results accompanied by stance labels, or search
results accompanied by stance labels with additional explanations. Participants
were made aware that the search results they were seeing might be biased and
that there were limited results. After entering a query, participants were free to
explore search results as long as they wish and click on links that lead to the
presented web pages, or enter new queries. Users were instructed to return to
the Qualtrics survey when they were done searching.

Step 3. Finally, in the questionnaire, we asked participants to report their post-
search attitude (towards their assigned topic). Further, we asked them to provide
textual feedback on the explanations and the task. We also included another
8 https://www.qualtrics.com/.
9 Whenever a user enters a new query, the first SERP (i.e., displaying the top 10

results) will always show search results according to the template, whereas pages 2
and 3 will show the 21 search results relevant to the topic in random order.

https://www.qualtrics.com/


Explaining Search Result Stances to Opinionated People 585

attention check to filter out low-quality data in this post-interaction question-
naire. The attention checks consisted of one straightforward question with sug-
gested response options. We excluded the data of participants who failed one or
more of the attention checks from data analysis.

Recruitment Methods. In this study, we used Prolific10 and Qualtrics11 to
manage the participants and design survey workflow, respectively. The workflow
of our study, including the informed consent, screening questions, and link to the
survey, were all completed on Qualtrics. In the recruitment platform Prolific, we
only selected participants with a minimum age of 18 (in compliance with research
ethics), and fluent in English, as our dataset only contains English results.

Sample Details. We anticipated to observe medium effects for SERP display
and SERP ranking bias on clicking diversity (Cohen’s f = 0.25). Thus, we
determined in an a priori power analysis for a between-subjects ANOVA (see
Sect. 4.2) a required sample size of 205 participants, assuming a significance
threshold of α = 0.05

3 = 0.017 (testing three hypotheses), a desired power of (1- β)
= 0.8 and considering that we tested, depending on the hypothesis, six groups
(i.e., three SERP display conditions: without stance labels, with stance labels,
with stance labels and explanation; and 2 SERP ranking bias conditions: biased
towards the attitude-opposing viewpoint, balanced) using the software G*Power
[16]. We aimed for a balanced distribution across topics and conditions.

Participants were required to be older than 18 and with a high proficiency of
English (i.e., as reported by Prolific). Participants could only participate in our
study once. As mentioned above, we excluded participants from data analysis if
they did not pass one or more attention checks. We also excluded participants
from data analysis if they did not access our search platform at all or if they did
not click on any links during their search.

Statistical Analyses. To test our three hypotheses, we conducted Analysis
of Variance (ANOVA), looking at the main and interaction effects of the three
independent variables (1) the topic, (2) SERP display (without stance labels,
with stance labels, with stance labels and explanation) and (3) SERP ranking
bias (biased towards the attitude-opposing viewpoint, balanced) on the shannon
index (H1a, H1b, H1c). Aiming at a type 1 error probability of α = 0.05 and
applying Bonferroni correction to correct for multiple testing, we set the signif-
icance threshold to 0.05

3 = 0.017. We added topic as an additional independent
variable to this analysis to control for its potential role as a confounding factor.

In addition to the analyses described above, we conducted posthoc tests (i.e.,
to analyze pairwise differences) to determine the exact differences and effect size,
Bayesian hypothesis tests (i.e., to quantify evidence in favor of null hypotheses),
and exploratory analyses (i.e., to note any unforeseen trends in the data) to
better understand our results.
10 https://prolific.co.
11 https://www.qualtrics.com/.

https://prolific.co
https://www.qualtrics.com/
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5 Results

The overarching objective of this research is to investigate the effect of extra
visual elements such as stance labels and text explanations on users’ interaction
behaviours, especially in terms of clicking diversity. In this section, we present
the final results of the study with 203 participants and address our research
question and hypotheses.

Descriptive Statistics. Prior to analyzing the primary statistics, it is neces-
sary to first examine the demographic data. In general, young people made up
most of our participants (see Fig. 3). The educational level data reveal that the
majority of participants have completed at least some level of higher education,
with a smaller percentage have completed advanced degrees.

Fig. 3. Demographic information of participants: Bar chart showing the distribution
of users’ age, gender, and education level.

Participants were roughly equally distributed across the three topics: 70 athe-
ism, 66 intellectual property rights, and 67 school uniforms. Regarding factors
such as bias and interface types that were randomized by Qualtrics workflow,
their distributions are also balanced, with 102 participants accessed the biased
SERPs and 101 accessed balanced SERPs, and 72 users view text-only SERP
display, 64 viewed labelled interface and 67 viewed interface with saliency maps.
In the pre-survey attitude test, 130 people were granted the access to our survey
by expressing rather negative (against) viewpoints towards a specific topic, while
only 73 people expressed a positive stance.

Figure 4 shows the diversity of users’ clicks as measured by the Shannon index
across conditions. For balanced SERPs, the mean Shannon diversity index starts
from 0.63 when there are explanation, then it slightly reduces to 0.55 in labelled
interface, and drastically drop to 0.24 for the text SERP. For unbalanced SERPs,
the trend is similar, from 0.64 to roughly 0.52, but the reduction is less drastic. In
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Fig. 4. Shannon Index across SERP Display conditions, split by ranking bias condi-
tions. Error bars represent confidence intervals.

Fig. 5. Number of clicks on items of each stance made by users under different condi-
tions. Left: different bias type, Right: different interface

short, those who interacted with balanced pages overall scored somewhat lower
in Shannon diversity.

Figure 5 shows the stacked histogram representing users’ click history under
different conditions. In the left subplot, we see that neutral items attracted more
clicks than favor and against combined in the balanced setting. In the biased
setting, however, the number neutral clicks starts to shrink and user start to
visit polarized contents more. It is notable that users clicked more neutral items
in the text-only SERP display. The other two types of interface seem to generate
very similar amounts of clicks for each stance.
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5.1 Hypothesis Tests

We ran an ANOVA test to examine the relationship between the variable Shan-
non index and other predictor variables, including explanation condition, bias
type and assigned topic. Table 3 contains the results of the ANOVA test, includ-
ing the F-statistic, p-value, and degrees of freedom for each variable and inter-
action. We also included the assigned topic in the test to control for topic as a
potential confounding factor.

Table 3. ANOVA results for the Shannon index and independent variables including
the explanation level, bias type, the interaction between explanation and bias type,
and the topic the user holds strong opinion towards. Under our reduced significance
threshold, only the Explanation effect is significant.

Variable Df Sum Sq Mean Sq F p

SERP Ranking Bias 1 0.81 0.8146 4.911 .027

SERP Display 2 2.54 1.2712 7.664 <.001

Topic 2 0.03 0.0158 0.095 .909

SERP RB:SERP Display 2 0.65 0.3256 1.963 .143

Residuals 195 32.34 0.1659

H1a: Users who are exposed to viewpoint-biased search results inter-
act with less diverse results than users who are exposed to balanced
search results. To test this hypothesis, we examine the Shannon diversity of
clicks made by users who viewed viewpoint-biased search engine result pages
(SERPs) to those who did not. Figure 4 suggests that users who were exposed
to more balanced search results clicked on somewhat less diverse content. How-
ever, in the ANOVA summary (Table 3), we see that the influence of bias type
(F = 4.911, df = 1, p = .027, Cohen’s f = 0.16) is not statistically significant,
given the significance threshold of .017. We thus do not find any conclusive evi-
dence for a difference in the diversity of clicked results between bias conditions.

H1b: Users who are exposed to search results with (1) stance labels or
(2) stance labels with explanations for each search result interact with
more diverse content than users who are exposed to regular search
results. Regarding H1b, compare users’ clicks in different SERP displays. The
results of the ANOVA shows a significant effect of explanation condition on
clicking diversity (F = 7.664, df = 2, p < .001, Cohen’s f = 0.28). This suggests
that there is a difference in the diversity of content interacted between users who
were exposed to (1) plain search results, (2) search results with stance labels, or
(3) search results with stance labels and also explanations. We conducted a pair-
wise Tukey test to determine whether there are significant differences between
SERP display levels (text, label, explanation). We found significant differences
between text-label and text-explanation (with adjusted p-values of .0008
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and .012, respectively), suggesting that both stance labels and stance labels with
explanations led to more diverse clicks compared to the regular SERPs. The p-
value of labelled-explanation group is .723, indicating that there may be no
difference in Shannon diversity between the labelled and explanation group.

H1c: Users who are exposed to search results with (1) stance labels or
(2) stance labels with explanations are less susceptible to the effect of
viewpoint biases in search results on clicking diversity. This hypothesis
concerns the interaction effect between SERP display and bias types on the
Shannon index. Our ANOVA (Table 3) did not reveal any evidence for such
an interaction effect (F = 1.963, df = 2, p = .143, Cohen’s f = 0.02). In other
words, when users are looking at different types of SERP displays but are exposed
to the same level of viewpoint bias, our results do not contain evidence that users
will click more diverse items because explanations and labels are visible.

5.2 Exploratory Analysis

To further understand our results, we also conducted exploratory analysis. Note
that these analyses were not preregistered.

Clicks on Neutral Items. To better understand why the search results were
more diverse in the labeled and explanation conditions, we looked closer at the
distribution across the three viewpoints. In Fig. 5, we can already see a larger
number of neutral results for the text-only condition. Furthermore, in every
SERP display, users who were exposed to a balanced page clicked on more neutral
items on average. This may be due to their tendency to click on highly-ranked
neutral items while being unaware of the stance.

We conducted an exploratory ANOVA to investigate the effects of biases and
interfaces on the number of clicks on neutral items. Table 4 lists the test results.

Table 4. Results of the ANOVA analysis on for number of neutral clicks.

Variable Df Sum Sq Mean Sq F p

SERP Ranking Bias 1 84.3 84.30 44.308 <.001

SERP Display 2 23.1 11.54 6.067 .003

SERP RB:SERP Display 2 15.6 7.79 4.096 .018

Residuals 197 374.8 1.90

We can observe that both explanation condition and bias condition had main
effects on click diversity. Also their interaction is significant. This means that
users may click on more neutral results in the balanced condition, and especially
so when SERPs do not contain any stance labels or explanations.
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Fig. 6. Histogram visualizing the difference between pre- and post-survey attitudes.
Each group of bins indicates the number of people in a bias type setting who changed
their viewpoints towards their assigned topic by a certain number of points. The X-
axis indicates the normalized difference of attitude between the pre- and post-survey
answers measured by a 7-point Likert Scale.

Table 5. Absolute values of attitude change per condition.

Bias Type SERP display Attitude Change (Mean) Attitude Change (Median) Skewness

Balanced Text-only 1.14 1.00 1.31

Labelled 1.30 1.00 0.15

Explanation 1.15 1.00 1.10

Biased Text-only 1.25 1.00 0.20

Labelled 1.19 1.00 0.35

Explanation 1.09 1.00 0.25

Attitude Change. Previous research showed that mildly opinionated users’
attitude change can differ across levels of ranking bias [3,8,14,15,33]. However,
this effect has, to the best of our knowledge, not yet been shown for strongly
opinionated users such as in our study. We intended to measure the attitude
change by subtracting the post-search viewpoint t1 from the pre-search viewpoint
t0, and thus the difference would range from −6 to 6. We summarize users’
attitude change in Fig. 6 and Table 5.

From Fig. 6, we observe that only a few participants developed large attitude
changes (absolute value > 3) after the survey. In Table 5, the mean absolute
attitude change ranges from 1.0 to 1.3. The median statistics appear to be very
stable; under all conditions, 1 is always the central value. We performed an
exploratory ANOVA on the absolute attitude change variable (Table 6) but do
not find any convincing evidence for an effect of any independent variables on
attitude change in our scenario, i.e., apart from a potential role of the topic
(F = 4.132, df = 2, p = .017) that would need to be further investigated.
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Table 6. ANOVA Results: absolute value of users’ attitude change

Variable Df Sum Sq Mean Sq F p

SERP Ranking Bias 1 0.01 0.013 0.014 .907

SERP Display 2 0.56 0.282 0.296 .744

Topic 2 7.88 3.938 4.132 .017

SERP RB:SERP Display 2 0.55 0.277 0.290 .748

Residuals 195 185.88 0.953

5.3 Qualitative Feedback

After excluding feedback with fewer than four characters like “no”, “nope” etc.,
there are 59 substantial comments. Positive feedback indicated that participants
perceived the search results to be diverse: “I thought the search engine was quite
varied as it provided different types of sources”. Other participants perceived
the viewpoint labels to be accurate: “The search engine was very useful, and
the classification of the information was accurate.” At least some participants
were able to perceive the bias in the search result pages: “the results against
atheism were promoted to the top results of the search, it was not an impartial
search result”. While we aimed to mimic a real search engine, some participants
may have realized that the results were reshuffled: “It appears the results of the
search were similar or the same in each new search. I’m not sure the words used
to determine the stance of the page were appropriate.”

6 Discussion and Limitations

We found a significant effect of SERP display on clicking diversity. That is,
participants who were exposed to viewpoint labels or viewpoints labels with
explanations consumed more diverse results than plain text search. While both
non-text SERP displays affect users’ click diversity over text-only SERP displays,
we cannot observe any additional effect from the SERP display with labels and
explanations over the label-only SERP display. Our results suggest that this
difference can be explained by a predominance of clicks on the neutral stance
in the text-only condition. This, alongside the qualitative comments, suggests
that participants trusted and used the labels and explanations to inform them-
selves diversely. Contrary to our expectations, we did not find evidence for a
difference between biased and balanced search results, in terms of click diver-
sity. Furthermore, exploratory analyses revealed that users exposed to balanced
SERPs clicked on more neutral items.

We further found no exploratory evidence that intervention types (bias of
search results; explanation level) affect participants’ viewpoints. This later result
is not necessarily surprising, given that the participants in this study held strong
opinions on the topic. We also would not expect a change because the task given
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to participants was formulated as low-stakes and open-ended (inform yourself
about the topic after speaking to an opinionated friend).

Limitations and Future work. Our study has at least two important limita-
tions. First, each search result in the data set we considered only had one over-
all viewpoint label, and this was limited to against, neutral, and in favor. This
allowed for scalability but does not reflect the full nuances of online search results.
For example, an essay or blog post could express highly diverse perspectives but
still receive a positive stance label if that is its overall conclusion. Secondly, our
study carefully aimed to balance a controlled environment with maintaining eco-
logical validity. Despite this, it is possible that participants recognized that this
was not a true search engine when issuing new queries. Similarly, the selection of
templates allowed for some structured reshuffling of results. However, this also
meant that strong opinions (contrary to the active user) were always at the top
of biased search results. For the balanced condition there were also more neutral
results. This likely contributed to the higher diversity of search results selected
in the biased condition. In addition, ranking fairness metrics could have been
used for the ranked lists, which could have led to slightly different results. Fur-
ther work is required to disentangle the relationship between position bias and
confirmation bias, and to replicate the study with different templates.

7 Conclusion

In this paper, we studied the impact of stance labels and explanations of these
labels for search on disputed topics. We found that stance labels and expla-
nations led to a more diverse search result consumption. However, we cannot
conclude that explanations have an extra effect in addition to labels on user’s
click diversity. Whether consuming diverse or more neutral results is preferable is
in itself a debated topic. Backfire effects, where users become even more invested
in their pre-existing beliefs, are possible when users consume strongly opposing
views [32]. Greater diversity can further induce wrong perceptions of present
evidence: for example, portraying climate change deniers and believers equally
can give the impression that climate change is an open issue and thus may be
worse than indeed weighing the evidence on both sides [11]. How much stance
diversity is ideal can thus depend on individual user traits [30] and may lie some-
where between the extremes [7]. While these are domains and a context where
confirmation biases are expected to be large, similar cognitive biases are likely to
occur in other decision-making tasks where XAI is used. Further work is needed
to catalogue different scenarios of opinion formation in different domains where
confirmation bias may be present.
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Abstract. Recent legislation proposals have significantly increased the
demand for eXplainable Artificial Intelligence (XAI) in many businesses,
especially in so-called ‘high-risk’ domains, such as recruitment. Within
recruitment, AI has become commonplace, mainly in the form of job rec-
ommender systems (JRSs), which try to match candidates to vacancies,
and vice versa. However, common XAI techniques often fall short in this
domain due to the different levels and types of expertise of the individuals
involved, making explanations difficult to generalize. To determine the
explanation preferences of the different stakeholder types - candidates,
recruiters, and companies - we created and validated a semi-structured
interview guide. Using grounded theory, we structurally analyzed the
results of these interviews and found that different stakeholder types
indeed have strongly differing explanation preferences. Candidates indi-
cated a preference for brief, textual explanations that allow them to
quickly judge potential matches. On the other hand, hiring managers
preferred visual graph-based explanations that provide a more technical
and comprehensive overview at a glance. Recruiters found more exhaus-
tive textual explanations preferable, as those provided them with more
talking points to convince both parties of the match. Based on these find-
ings, we describe guidelines on how to design an explanation interface
that fulfills the requirements of all three stakeholder types. Furthermore,
we provide the validated interview guide, which can assist future research
in determining the explanation preferences of different stakeholder types.

Keywords: Explainable AI · Job Recommender Systems · User
Studies · Grounded Theory

1 Introduction

Within the emerging field of explainable artificial intelligence (XAI), a substan-
tial amount of research has attempted to make the inner workings of AI mod-
els more transparent [11,18]. While such information can assist developers in
understanding their model (e.g., by allowing the detection of bugs and biases,
understanding feature importance), it is often complicated and requires consid-
erable a priori knowledge of AI to interpret. However, the use of AI has become
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commonplace in user-controlled environments, such as the recommender sys-
tems used by different commercial platforms (e.g., YouTube, TikTok, Amazon).
In such environments, explanations cannot assume AI knowledge, as the major-
ity of explainees are lay users. Moreover, different types of users interact with
such systems - the stakeholders. These stakeholders consist of every individual
or group who affects, or is affected by, the delivery of recommendations to users
[1]. Stakeholders can be strongly diverse, coming from different backgrounds and
having distinct expertise. As such, the way in which an explanation is conveyed
to each stakeholder individually should be fine-tuned to their specific needs.

One field where such fine-tuned explanations are especially crucial is recruit-
ment. Recruitment is inherently a multi-stakeholder domain, as users (candi-
dates) need to be linked to vacancies (provided by companies) by recruiters.
These three main stakeholders all rely on the same recommendations but can
require widely different explanations. For example, telling a candidate that a
vacancy is relevant for them as it comes with a high salary can be an acceptable
explanation. However, the same explanation will be useless for the company, as
that salary will be provided to every other potential candidate. Furthermore,
a candidate and a recruiter might only look at a handful of recommendations
per session, while a company could receive hundreds of applicants for a single
vacancy. Therefore, the explanation requirements of each stakeholder are unique
and require a tailored design.

This paper attempts to determine the explanation preferences of the stake-
holders of a job recommender system: job seekers, companies, and recruiters.
This is done through the execution of a co-design study, which allows stake-
holder representatives to manually indicate how they prefer an explanation to
be presented to them. Therefore, this research aims to answer the following
research question:

–RQ: What are the explanation preferences of recruiters, candidates, and com-
pany representatives for job recommender systems?

Our results show interesting differences in the preferences of the different
stakeholders. Regarding the preferred types of explanations, candidates preferred
brief written explanations, as their main interest is to be able to quickly judge the
potential matches proposed by the system. On the contrary, company’s hiring
managers preferred visual, graph-based explanations, as these allow a compre-
hensive overview at a glance. Finally, recruiters preferred more exhaustive tex-
tual explanations, as those provided them with more talking points to convince
both parties of the match. These results allow us to provide design guidelines for
an interface that fulfills the requirements of all three stakeholder types. Further-
more, the co-design study allowed us to validate and improve the used interview
guide.
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2 Related Work

Within the field of explainable AI, there is no single agreed-upon method to
provide explanations [2]. Different use cases require different approaches, each
with their own strengths and weaknesses.

One of the most common methods of providing explanations is through text
[5,24]. Textual explanations consist of brief sections of text that explain the
rationale of the XAI model. Such texts often contain information on the impact
different features had on the prediction and how those features interacted with
each other. There are multiple ways to generate such texts, e.g., through the use
of large language models (LLMs) [19] or predefined templates [36].

Another popular approach is the use of feature attribution maps: visualiza-
tions that show the importance of different features to the prediction [23]. Such
maps can take different forms, depending on the specific task and data involved.
When using tabular data, bar charts are often used to show the contribution
of each different feature type to the prediction. When using multi-dimensional
data, such as images or time series, are used, heatmaps can provide an overview
of the importance of the different dimensions interacting with each other [9].

A further explanation type that has been gaining popularity recently, is the
knowledge graph-based explanation [31]. These explanations depend on the con-
nections within a knowledge graph to explain the rationale behind a prediction.
This is usually done by highlighting important nodes and edges within the graph,
which provide ‘paths’ from the subject to the recommended item, accompanied
by their importance to the model’s prediction [35].

2.1 Challenges in Multi-stakeholder Explainability

In multi-stakeholder environments, explanations need to meet additional require-
ments [1]. An explanation that is sufficient for a developer, is not necessarily
understandable for a user or provider, and vice versa [30]. There are multiple
strategies to deal with this discrepancy, each with its own strengths and weak-
nesses. The most obvious solution is to create individual explanations for the
different stakeholders [37]. Although this leads to the most fine-tuned explana-
tions, it introduces an additional layer of complexity to the system as a whole.
Another approach would be to simply use a single explanation, but to present
it differently based on the stakeholders’ level of expertise [1]. Unfortunately, it
can be difficult to incorporate the different stakeholder perspectives simultane-
ously - some facts could be confidential or sensitive for a specific stakeholder,
making it challenging to incorporate them in the explanation, even when they
are relevant. Similarly, a highly specific overview of how the model came to the
prediction might be useful for a developer, but will be too confusing for a lay
user or provider.

2.2 Explainability in Job Recommender Systems

Explaining reciprocal recommendations, such as job recommendations, tends to
be more difficult than standard recommendations, as the preferences of both
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parties need to be considered. Kleinerman et al. [13] looked at explainability for
recommender systems in online dating and found that explanations that consider
both parties outperform one-sided explanations in high-cost scenarios (such as
recruitment). In particular, explanations based on specific feature values are
useful, although only a few features should be included to prevent information
overload. In high-cost scenarios, explanations should not stay limited to personal
preferences (e.g. ‘you should apply for this job because you want a company that
has X attributes’), but should also incorporate an explanation of why the other
party is likely to agree (e.g. ‘they are likely to accept you, because they are
looking for a candidate with Y skills’).

In job recommender systems (JRSs) specifically, explainability has largely
gone unexplored. While some previous work has incorporated some degree of
explainability within their JRSs, the explanations are often limited and seem
to have been included as an afterthought [14,32,37]. Even when explainability
has been included, authors usually fail to consider all stakeholders, tailoring
the explanations to developers only. Furthermore, explanations are often solely
evaluated anecdotally, leaving their quality up for debate [21]. One could argue
that reciprocal, easy-to-understand explainability should be at the core of the
models’ design in a high-risk, high-impact domain such as recruitment. Where
previous research mainly falls short, is in the understandability of their explana-
tions: while their models can technically explain some part of their predictions,
the explanations tend to be unintuitive and/or limited, either staying too vague
[14,32] or being hard to understand [37]. In previous work, we found that, when
dealing with users with limited AI knowledge, such as recruiters, job seekers,
and most company representatives, having clear, straightforward explanations
is crucial [28,30]. To accomplish this, structured requirements engineering needs
to be conducted in order to determine the preferences of all stakeholders, after
which explainable JRSs will need to be designed with those requirements as a
starting point.

2.3 Determining Stakeholder Preferences

In order to determine the explanation preferences of different stakeholders, their
requirements, struggles, and level of expertise need to be documented. To accom-
plish this, multiple approaches exist; for example, whenever the preferences of a
stakeholder are already largely known (e.g., through previous research) question-
naires can be used in combination with different alterations of some explanation
type [30]. The results of these questionnaires could then be used to ‘fine-tune’
the already-known explanation type to better fit the exact stakeholders. How-
ever, within job recommendation, stakeholder preferences (beyond candidates)
are mostly unknown [27]. Therefore, it is better to determine the stakeholder
preferences from the ground up, allowing them to assist in shaping the explana-
tions themselves. Thus, (semi-structured) interviews are highly useful, as they
give stakeholders the freedom to indicate their exact preferences and require-
ments regarding explanations [16].
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2.4 Contributions

Explainability within multi-stakeholder environments has largely gone unex-
plored. Research that has touched upon this topic, has often stuck to offline
methods of evaluation, which fall short in high-impact domains, such as recruit-
ment and healthcare. Therefore, this paper aims to lay the foundation for future
research on explainable multi-stakeholder recommendation. We do so firstly by
providing a validated interview guide that can be used to extract the expla-
nation preferences of different stakeholder types. Furthermore, we extend the
current literature on explainable job recommender systems by not just focusing
on a single stakeholder, but providing guidelines on how explanations should be
designed for all stakeholders involved.

3 Methodology

In order to discover the preferences of different stakeholders, semi-structured
interviews were conducted using example explanations [10]. During these semi-
structured interviews, the participants were asked to answer substantive ques-
tions based on the provided explanations, as well as questions to indicate what
aspects of different explanations they prefer. These substantive questions were
used to gauge their understanding of the explanations. This is important, as
previous research found that preference and understanding do not necessarily
go hand in hand [30]. In our study, we are interested in particular in highlight-
ing the specific explanation preferences of the specific stakeholders. Hence, we
decompose our main research question into the following three sub-questions:

SQ1: What type of explanation is most suited for the different stakeholders?
SQ2: What aspects of explanations make them more suited for each stakeholder?
SQ3: In what way can different explanation types be combined to make them

useful for each stakeholder?

3.1 Hypotheses

In this study, we consider three different explanation types (see Sect. 3.4): (i)
graph-based explanations; (ii) Textual explanations; and (iii) Feature attribu-
tion explanations. While the graph-based explanations will most likely be best
suited for individuals with a fair amount of prior AI knowledge, the general lay
users will probably gravitate towards the textual explanations, as those are both
expressive and fairly easy to process [26]. Considering the graph-based explana-
tions contain the most information, but are expected to be the hardest to read,
and the opposite holds for the feature attributions, the textual explanations are
likely to strike a good balance between the two. These considerations lead us to
formulate two hypotheses related to the SQ1:

• H1a: The graph-based explanation will be best suited for individuals with prior
AI knowledge.
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• H1b: The textual explanations will be best suited for individuals without prior
AI knowledge.

Furthermore, we considered that feature attribution maps are usually the
easiest and fastest way to get an overview of the model’s rationale, but at the
same time, they have a fairly limited extent [30]. The textual explanation will
be more complex and take more time to process, but will provide a more com-
prehensive explanation in return. Lastly, the graph-based explanations will take
the longest to process and might be difficult to interpret by themselves, but will
contain the most complete explanation as a result. We then expect differences
among the stakeholders, and formulate the following hypothesis related to the
SQ2:

• H2: The different stakeholders (candidates, companies, and recruiters) will
have different preferences related to the explanation types.

Finally, we considered that explanations consisting of a single type may be
either too limited in their content, or too difficult to interpret. This problem
can be addressed by incorporating aspects from different types into a single
explanation type [30]. For example, textual explanations can help in assisting
the stakeholders in how to read the graph-based explanation. Furthermore, the
feature attribution map can be useful when the stakeholder prefers to get a
good (albeit limited) overview at a glance [28]. We further hypothesize then
that also regarding the preferences in terms of combining basic explanations into
hybrid strategies, the stakeholders will have differences. Hence, we formulated
the following hypothesis related to the SQ3:

• H3: The different stakeholders (candidates, companies, and recruiters) will
have different preferences on how to combine explanation types to obtain a
hybrid explanation.

3.2 Semi-structured Interview Guide

A comprehensive guide was created to conduct the semi-structured interviews
(Appendix B). However, this guide is susceptible to possible biases, ambiguities,
incorrect assumptions about prior knowledge, etc. Thus, during the interviews,
we dedicated time specifically to determining the quality of the questions in order
to update, and eventually validate them. The questions in the interview guide
were based upon previous works [6,7,13,25], but required validation for a multi-
stakeholder scenario. In addition to validating the interview guide, the interviews
also allowed the stakeholders to co-design the explanation representations to fit
their needs. The interviews were conducted with a small sample of the different
stakeholders (n = 2 for each stakeholder type) to verify the adequacy of the
explanations and the guide for each group individually. Considering the fact
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that each participant was interviewed three times (once for each explanation
type), we collected a large amount of data per participant. Due to the richness
of this data, the relatively small sample size still allowed us to perform an in-
depth analysis for each stakeholder type. Previous works also indicates that a
small sample can be sufficient in qualitative analysis, as long as the data itself
is of high enough quality [8,20]. Note that the user study was approved by the
ethical committee of our institution.1

3.3 Data and Model

The explanations used for the interviews were generated using a job recommen-
dation dataset provided by Zhaopin.2 This dataset contains information on 4.78
million vacancies, 4.5 thousand candidates, and 700 thousand recorded interac-
tions between the two. For candidates, the dataset stores information such as
their degree(s), location, current and desired industry, skill set, and experience.
For vacancies, features such as the job description, job title, salary, (sub-)type,
required education, location, and starting date were recorded. The interactions
between candidates and vacancies consist of four stages: no interaction, browsed,
delivered, and satisfied. Considering the data in the dataset was exclusively in
Mandarin Chinese, all unstructured data was automatically translated to English
using deep-translator.3

These three different tables were combined together into a single knowledge
graph, wherein candidates, vacancies, and categorical features formed the set of
nodes. The edges consisted of relations between these nodes, such as candidates
interacting with vacancies or vacancies being of a specific (sub-)type. This single,
large knowledge graph was then converted to individual sub-graphs between
candidates and vacancies that had interacted (positives), and between those who
had not interacted (negatives) using the k random walks algorithm [17]. Each
of these sub-graphs therefore could be given a score from 0 (no interaction), to
3 (satisfied), which allowed us to treat the task as a ranking problem based on
sub-graph prediction.

The explainable model was based on the graph attention network (GAT)
[33], implemented using PyTorch geometric.4 Considering performance was not
the goal of this research, we opted for a straightforward architecture consisting
of a single GATv2Conv-layer, followed by two separate GATv2Conv-layers - one
for the company-side prediction and explanation, and one for the candidate-
side prediction and explanation. Both these layers were followed by their own
respective fully-connected layer, which provided the company- and candidate-
side prediction score. The harmonic mean of these two scores was then considered
the final ‘matching score’. Optimization was done using the Adam optimizer [12]
(learning rate = 1∗10−3) with LambdaRank loss based on normalized Discounted

1 Ethical Review Committee Inner City faculties (Maastricht University).
2 https://tianchi.aliyun.com/dataset/31623/.
3 https://pypi.org/project/deep-translator/.
4 https://www.pyg.org/.

https://tianchi.aliyun.com/dataset/31623/
https://pypi.org/project/deep-translator/
https://www.pyg.org/
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Cumulative Gain @ 10 (nDCG@10) [4]. Hyperparameter tuning was done using
grid search going over different configurations of hyperparameters [15]. Since
our aim was not to get state-of-the-art performance, the number of different
configurations tested was fairly limited. Even so, the optimal configuration led
to an nDCG@10 of 0.2638 (Appendix A).

Considering the goal of our research was not to evaluate the explanation
quality of the specific model, but rather to investigate stakeholder preferences in
general, the examples used during the interviews were manually selected based
on the following criteria: graph size, perceived sensibility, and accessibility of the
industry for evaluation. By sticking to seemingly sensible explanations that did
not require knowledge of the specific industry at hand, we aimed to make the
stakeholders’ evaluation dependent solely on the representation of the explana-
tion, rather than the quality of the model’s explanations in general.

3.4 Explanation Types

The explanation types that were examined in this study were the following:

Graph: a visualization of paths in a knowledge graph. In our case, this consists
of (a sub-set of) the paths within the candidate-vacancy sub-graph, weighted
by the importance ascribed to them by the model (Fig. 1);

Textual: a short text that explains which features contributed to the recom-
mendation in what way. The textual explanations are generated using a large
language model (LLM) (in this case, ChatGPT February 13 version [22]),
which is given the full graph explanation as input, and tasked to summarize
it in an easy-to-read way (Fig. 2);

Feature attribution: a visualization (such as a bar chart) that shows which
features were most important to the model when creating the explanation
(Fig. 3). This bar chart is also based on the paths within the knowledge graph
- the sizes of the bars are calculated using the sum of incoming edge weights,
similar to PageRank [3].

(a) Candidate-side graph (b) Company-side graph

Fig. 1. An example of knowledge graph paths being used as an explanation for a
recommendation.
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The XAI model has analyzed various connections between jobs and users
to determine if a particular user (user 4119) would be a good fit for a
specific job (job 147542). The model looked at the relationships between
different jobs and users, as well as the importance of these relationships,
to make its prediction.

In this case, the model found that user 4119 has a strong connection to
the role of Administrative Commissioner, and this connection is consid-
ered to be very important for explaining why user 4119 would be a good
match for job 147542. Additionally, the model found that job 147542 has
a connection to the role of secretary, which is also considered important.
The model also found that the Administrative Commissioner role has a
connection to the assistant role, which in turn has a connection to the
secretary role and job 147542.

In summary, the XAI model determined that user 4119 would be a good
fit for job 147542 based on the strong connection between user 4119
and the Administrative Commissioner role, as well as the connections
between the Administrative Commissioner role, the assistant role, the
secretary role, and job 147542.

Fig. 2. An example of a textual explanation used as an explanation for a recommen-
dation

Fig. 3. An example of a feature attribution map used as an explanation for a recom-
mendation.

3.5 Analysis

The answers provided by the participants were analyzed using grounded theory
(GT) [34] using Atlas.ti5. This process was done separately for each stakeholder
type, in order to create distinct results for each type. We started by assign-
ing manually-generated codes to individual statements made by the participants
5 https://atlasti.com/.

https://atlasti.com/
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(open coding). These codes were then grouped together into distinct categories
using axial coding to provide a higher-level overview of the complaints and pref-
erences of each stakeholder type. Lastly, selective coding was conducted to com-
bine each stakeholder type’s categories into a single theory. The higher-level
categories, as well as the theories, were then used to improve the prototypical
explanation.

3.6 Participant Demographics

The participants were recruited through personal connections in collabora-
tion with Randstad Groep Nederland6, the largest recruitment agency in the
Netherlands. The sample consisted of 4 women and 2 men, of various ages
(µ = 39.2, SD = 11.3, l = 23, h = 53), with various backgrounds (tech, finance,
healthcare, marketing, etc.). The participants had largely different levels of
expertise w.r.t. AI, ranging from no knowledge whatsoever to a Bachelor’s degree
in a related field. Each interview took approximately one hour, and candidates
were paid e11,50 for their time.

4 Results

Based on the answers given by the different stakeholder representatives, the inter-
view guide has been updated, and the preliminary preferences of each stakeholder
type have been determined. The full transcripts of each interview are available
on GitHub.

4.1 Interview Guide

The interview guide (Table 2) has been validated based on responses from the
participants. While the interview guide was largely proven to be adequate for
determining the explanation preferences of different stakeholders, some changes
have been made based on the feedback we received.

Firstly, we added an additional question to the section on usefulness: ‘how
could you see yourself using the explanation in your daily work/task? ’ Even when
some of the participants could see that an explanation was sensible, or could
be helpful in making a decision, they mentioned that they would personally
stick to using another approach (e.g., a different type of explanation, or doing
things manually). Although this is likely to come up using the current interview
guide already, we decided to also explicitly ask the question - after all, the
goal of creating an explainable model is that users end up actually using the
explanations to assist them in their decision-making.

We additionally added a new question to the correct interpretation section
of the guide: “how would you put the model’s explanation into your own words?”

6 https://www.randstad.nl/.

https://github.com/Roan-Schellingerhout/JRS_explanations
https://www.randstad.nl/
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While the participants often managed to quickly identify the most/least impor-
tant features and components of the explanation, that did not necessarily indi-
cate they properly understood the entire rationale. For example, some partici-
pants correctly identified the importance of the different job types to the expla-
nation, but they could not properly connect all the dots, causing them to be
unable to view the explanation as a single whole. By explicitly asking them
to define the explanation in their own words, it becomes clear whether they
adequately understand the entire explanation, or are still grasping at straws.

Lastly, we changed one of the questions in the section on transparency:
“can you think of anything that would further improve your understanding?”
has been changed to “what information is missing that could allow you to get a
better understanding of the model’s recommendation?”. The previous phrasing
of the question was too general, making it difficult for participants to answer it
on the spot. By directly asking them for information that is missing, it should
be easier for them to come up with an answer, albeit a more indirect one.

The updated, validated interview guide can be seen in Table 1.

4.2 Stakeholder Preferences

Each of the transcripts has been analyzed, and the analyses have been grouped
based on stakeholder type. An overview of the generated codes, categories, the-
ories, and relevant quotes can be found in Appendix C.

4.2.1 Candidates. In line with our hypothesis, the textual explanation was
well-received by the candidates. Although the candidates did receive the expla-
nations favorably, they indicated some issues that should be addressed. For one,
the specific language used in the explanation made it more difficult for the can-
didates to parse it correctly. Candidates also sometimes wound up losing track of
the essence of the explanation, specifically when multiple trains of thought were
addressed in a single paragraph, or whenever points were reiterated multiple
times (“it’s a bit more clear, but I don’t know... I still can’t follow it completely.
I find it very hard to read”, P2, Q1.1). However, the candidates still managed to
correctly identify the main arguments on which the recommendation was based.
They did indicate that they would prefer to be able to evaluate the text at a
glance, i.e., by putting crucial information clearly at the top of the text (‘‘Infor-
mation like the city, and what the salary is, or things of the sorts, are currently
not included”, P1, Q4.2). They did not fully trust the model, but found it to
be a nice ‘brain-storming partner’, which could support them in their decision
(“if I had any doubts, the explanation would take those away”, P2, Q3.2), and
provide them with some interesting vacancies to explore on their own. Further-
more, the explanation contained the full ID of candidates and vacancies relevant
to the recommendation. Considering the candidates have no access to the actual
database, these IDs turned out to be of little value, and actually overwhelmed the
candidates. Additionally, while multiple different vacancies were mentioned in
the explanation, these were not directly accessible to the candidates - something
they considered to be unintuitive.
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Table 1. The validated, updated interview guide.

Evaluation

Objective

Objective

Description

Questions Probing questions

1. Correct

interpreta-

tion

To assess whether

or not the

stakeholder can

correctly interpret

the explanation

1.1 What

information/features do you

think were most important

for this prediction? 1.2

What was the least

important? 1.3 How would

you put the model’s

explanation into your own

words?

1.1.1 What did you look at to

come to that conclusion?

2. Trans-

parency

To determine the

explanation’s effect

on understanding

the model’s inner

workings

2.1 Does the explanation

help you comprehend why

the system gave the

recommendation?

2.1.1 What components help you

specifically? 2.1.2 What

information is missing that could

allow you to get a better

understanding of the model’s

recommendation

3.

Usefulness

To evaluate how

useful the

explanations are

considered to be

3.1 Does the explanation

make sense to you? 3.2 Does

the explanation help you

make a decision? 3.3 How

could you see yourself using

the explanation in your

daily work/task?

3.1.1 What do you consider

sensible (e.g., focus on specific

features)? 3.1.2 What do you

consider insensible? 3.2.1 Would

you prefer a model with

explanations over one without?

4. Trust To gauge the

explanation’s

impact on the

model’s

trustworthiness

4.1 Do you think the

prediction made by the

model is reliable? 4.2 If this

recommendation was made

for you, would you trust the

model to have made the

right decision?

4.2.1 Anything specific that makes

you say that (e.g., something

makes no sense, or is very similar

to how you look at things)?

5.

Preference

To figure out the

personal preference

of the stakeholder

5.1 What would you like to

see added to the current

explanation? 5.2 What

would you consider to be

redundant within this

explanation?

5.1.1 Any specific information

that is missing? 5.1.2 Any

functionality that could be

useful? 5.2.1 Anything that

should be removed? 5.2.2 Or be

made less prevalent?

The graph-based explanation turned out to be difficult to use for the candi-
dates without receiving some additional help on how to interpret it. Especially
the full, unsimplified version of the graph, in which all of the different paths
were visible, turned out to be too overwhelming and complex to be useful (after
being corrected on their interpretation: “Now I get that the thin lines were kind
of like side tracks that weren’t successful”, P2, Q2.1). However, with some addi-
tional guidance on how it was structured, and by considering the simplified view
of the graph, the candidates eventually correctly understood its content. Still,
the amount of information contained within the graph was more confusing than
helpful - for example, the types and values of the edges were constantly visible,
meaning there was a lot of text present at all times. Considering the candidates
did not necessarily understand the meaning of the edge types and values, they
did not get any benefit from them. While the graph was indicated to give them a
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better understanding of the model’s actual rationale, it also made them question
the adequacy of the recommendation to an extent. Because vacancies different
from the one being recommended were included in the graph as well, sometimes
at locations seemingly ‘closer’ to the candidate, they were unsure why those
vacancies were not recommended to them (“It feels quite strange, that the path
passes through different relevant vacancies, but we just ignore those”, P1, Q1.1).
Therefore, providing candidates with information on why alternative vacancies
were not recommended could be helpful.

The current implementation of the feature attribution chart turned out to be
close to useless for providing an explanation to the candidates. Since it ascribed
importance to different vacancies and candidates (i.e., similar vacancies and
candidates, which were included to allow for collaborative filtering [29]), which
they were not familiar with, it did not contribute to their understanding of the
model’s prediction. However, they did indicate how feature attribution could be
made useful: for the bar chart to relate to their individual skills, so the candidates
could understand which of their own skills were considered most important for
the recommendation at a glance (“That it shows what is important for the match,
for example, that your experience with Excel matters, but that your ability to be
a truck driver wasn’t important”, P1, Q1.1). This would allow them to quickly
verify and scrutinize recommendations. For example, if they saw a specific skill
they possess was attributed a lot of importance by the model, even though they
would not enjoy performing it as their job. Thus, the feature attribution chart
should stick only to the personal, actionable features of the candidates. To still
include previous vacancies fulfilled by the candidate, they could alternatively be
grouped by job type, so that they could be represented as a single bar relating
to their experience in that field (“the function types make sense to me, but the
individual vacancies and candidates do not”, P1, Q3.1).

4.2.2 Recruiters. As was hypothesized, the recruiters found the textual
explanations to be informative and useful. Although they found the texts to
indicate some redundancy, as well as some tricky language, they considered them
to be rather useful regardless. They immediately understood the main message
of the text, but found that some information was reiterated too often (“It keeps
beating around the bush with the same words”, P3, Q2.1). The recruiters explic-
itly stated that they would not blindly trust the model, even when accompanied
by a sensible explanation - they would always want to be able to manually verify
its recommendation by reading the CV and vacancy text (“Very little is told
about the candidate, and the vacancy, but I just have to trust that ... it would be
nice to check if it’s actually right”, P3, Q2.1). However, as long as they consid-
ered that the explanation made sense, they would “move that CV and vacancy
to the top of their list”. Furthermore, being able to quickly rule out specific
candidates or vacancies was something they considered highly important. As
a result, they strongly preferred to have the most crucial information, such as
commuting time, and whether some minimum requirements were met, to be at
the top of the explanation. The recruiters internally disagreed on how long the
text should be (“it doesn’t need to be brief. It’s nice to have things to talk about”,
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P3, Q5.2; “Three paragraphs of three sentences would be fine” P4, Q5.1). One
argument for having a longer text, was that it would provide the recruiter with
more subject matter to discuss when trying to convince a candidate or company
of the match’s aptitude. On the other hand, having a shorter text that only
focuses on the main arguments provided by the model would make it quicker for
recruiters to compare different recommendations, after which they could come
up with further arguments for the best one themselves.

Although the recruiters managed to correctly interpret the graph, they found
it to add little value for the most part (“I understand it, but it means little to
me”, P4, Q1.1). While they indicated that it could be useful in some specific
scenarios, such as texts with a high level of complexity, or when having to support
their final decision to a supervisor, they generally did not consider it to add
any benefit compared to the textual explanation. Despite the fact that they
developed a better understanding of the models’ actual rationale, they doubted
that they would use it much in their day-to-day tasks (“If I would have to use this
for every vacancy, or every candidate, it would become a problem”, P4, Q1.1).
In the scenarios where they would consider it to be beneficial, they gravitated
strongly toward the simplified version of the graph, considering the connections
deemed unimportant by the model to be counterproductive in understanding the
explanation. Only when a candidate or company would ask specifically about
whether a specific skill, or past job, was taken into account, would they make
use of the full version of the graph.

Similarly to the candidates, the feature attribution chart in its current form
did not assist the recruiters in correctly understanding the explanation. Again,
though, did they indicate that a different type of bar chart could be useful in
some scenarios. One use case for a bar chart the recruiters considered useful,
was for it to be a central ‘hub’ of sorts, where all possible vacancies for a can-
didate (and vice versa) were displayed, sorted by their matching score (“No, I
would personally go for something like a top 10, for example”, P3, Q2.1). This
would allow the recruiters to quickly determine which potential matches are fea-
sible enough to explore further. However, as an actual method of explaining the
prediction, they indicated that the text, sometimes combined with the graph,
would already be sufficient, causing the feature attribution chart to be largely
irrelevant.

4.2.3 Company Representatives. As opposed to the candidates and
recruiters, the company representatives were less positive about the textual
explanation. Considering the company-side explanation contained a higher level
of abstraction, it took the company representatives multiple iterations before
they properly understood the explanation (“Now that I read it again, I see that
it goes from person A, to B, to C.”, P5, Q3.2). They also found it difficult to take
the explanation at face value, being wary of terms such as ‘relevant experience’ -
rather opting to manually verify whether the mentioned experience was actually
relevant for the vacancy (“But judging how relevant the experience is for this
vacancy, isn’t possible based on this explanation”, P5, Q1.2). Although a more
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detailed explanation could alleviate some of this hesitance, it would also lead
to an even more complex explanation, possibly worsening the understandability
further.

On the other hand, the company representatives were considerably more pos-
itive about the graph explanation. Specifically, the simplified view of the graph
allowed them to grasp the prediction at a glance. Where the textual explanation
required some puzzling before the relations between different candidates, vacan-
cies, and job types became clear, the company representatives quickly managed
to detect the relevant relations in the graph (“This adds everything I need ... For
me it’s simply a matter of checking why the model made its decision - that being
the line at the bottom, and that would be all”, P6, Q2.1). As a result, the graph
explanation also improved their trust in the model; one recruiter even mentioned
that, given a high-enough performance of the model, they would simply use the
simplified graph as a sanity check, fully trusting the model if the explanation
seemed somewhat reasonable (“If the model does what it says it does, I would
simply trust it”, P6, Q3.2).

The feature attribution map was again received poorly. The company repre-
sentatives indicated that it did not help them get a better understanding of the
model’s reasoning compared to the graph (“It’s usable, but it doesn’t clarify why
we ended up with the recommended candidate”, P5, Q2.1). However, the com-
pany representatives did consider the feature attribution chart to be useful in
a different scenario - to verify the model paid no attention to irrelevant details.
With some tweaks, such as changing vacancy IDs into actual titles, the bar chart
would allow company representatives to make sure the model did not pay atten-
tion to something that the company determined to be irrelevant to the position.
Furthermore, an aggregated version of the feature attribution chart, which dis-
plays which types of features were considered most by the model, could help
the company representatives parse the textual explanation more easily, allowing
them to direct most of their attention to the more important information (“This
is what I was looking for while reading the text. I tried to determine these values
in my head, but I kept getting distracted”, P5, Q2.1).

5 Discussion

We discuss our results in relation to the three sub-research questions, for each
type of stakeholder: which type of explanation is most suited, what makes these
explanations most suitable, and can different explanation types be meaningfully
combined. We discuss each research question in turn.

5.1 SQ1: What Type of Explanation is Most Suited for the Different
Stakeholders?

When analyzing the results regarding preferences for the different stakeholders,
we notice that candidates prefer short, clearly structured, straightforward texts,
which allow them to quickly browse and judge the vacancies. These texts should
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include what they consider the most important information: features like travel
distance, salary, and minimum requirements. This information should be cen-
tral and easy to identify, preferably in bullets. Recruiters also prefer texts, but
disagree on the amount of text that is required. Thus, a short text, that cen-
trally mentions potential ‘deal-breakers’ and gives the main few arguments to
motivate why a match was made should be the default. However, recruiters also
prefer to have access to a more exhaustive text, which can provide them with
more material that could be used to convince both parties (candidate and com-
pany) to agree with the match. On the contrary, company representatives prefer
graph-based explanations, as those assist them in quickly getting an overview of
even more complex explanations at a glance. Such a representation also allows
them to quickly scan different information, while reading would require more
time and effort. These results are somewhat in line with our hypotheses H1a
and H1b, but not entirely. While one of the candidates did have a lot of knowl-
edge of AI, she still preferred the textual explanation. On the other hand, both
company representatives did not have a strong background in AI, but preferred
the graph-based explanations. We argue that it is not the AI knowledge per se
that makes the graph preferable, but the amount of experience with, and affinity
towards, reading graphs and charts.

5.2 SQ2: What Aspects of Explanations Make Them More Suited
for Each Stakeholder?

We also looked more specifically at the motivation for why certain stakehold-
ers prefer certain explanations. For candidates, the textual explanations were
largely preferred due to their simplicity, and because they felt more ‘personal’.
In particular, they preferred texts using simple language, that is clearly struc-
tured and not longer than a few short paragraphs. Recruiters also preferred the
textual explanations, due to their simplicity compared to the graph- and feature-
based explanations. In particular, they struggled to interpret the visualizations
and felt quite overwhelmed due to their ‘math-heavy’ nature. Furthermore, the
text directly assists them in their day-to-day tasks, as they can almost use some
of the paragraphs verbatim to try and convince companies and candidates of
the adequacy of a match. Finally, for company representatives, the graph-based
explanations were preferred, largely due to their ability to make more complex,
high-level connections, within the data visible at a glance. Within the textual
explanations, it became difficult for them to figure out the full line of reasoning
of the model, due to there being a lot of ‘steps’ from the vacancy to the can-
didate, which made it hard to process. The bar chart also made the text more
accessible, but the graph-based explanation was considered a better option.

5.3 SQ3: In What Way Can Different Explanation Types Be
Combined to Make Them Useful for Each Stakeholder?

Finally, we evaluated the stakeholders’ preferences in terms of hybrid explana-
tions, indicating how to combine different explanations together. Our results
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highlight how the feature-based explanation was poorly received by all stake-
holders; however, they also indicated it to have potential, in case it is used
to support one of the other explanation types. The unanimous aversion to the
feature-based explanation was likely due to their failure to find a niche, either
being too general to be useful in the simplified version, or too specific (and thus
overwhelming) in the full version. For both candidates and recruiters, the textual
explanations should be the center of the explanation, by default in its simplified
form. The user should then have the possibility to access additional informa-
tion, using a toggle to get a more descriptive version of the text. Considering
the difficulty of conveying relative importance levels within a text, the feature
attribution map can be linked (i.e., through matching color coding) to clarify
the text. The graph-based explanation can then be used as an optional addition,
in case the text itself is not clear enough, or if the user wants even more evidence
for a specific suggestion.

On the contrary, company representatives prefer the simplified graph to be
central, supported by a textual explanation. Within the graph, most details (e.g.,
exact values) should be made optional, so that it is not overwhelming: they
mainly want to be able to quickly parse the most critical paths in the graph,
and only look at details when necessary. Additionally, a bar chart indicating how
important different feature types were, could be used to complement the text,
in order to help them focus their attention on the paragraphs touching on those
feature types.

5.4 Limitations and Future Work

A key limitation to acknowledge is the relatively small sample size we used.
Considering we only interviewed two individuals from each stakeholder type, it
is possible that some of our results are based on their personal biases, which
may not be representative of the entire population. We attempted to minimize
these biases through careful selection of participants, making sure to include
individuals from different backgrounds, both in terms of their expertise and per-
sonal characteristics. This limited sample did allow us to focus on the quality of
the data we collected; due to the limited number of participants, it was feasible
to interview them for longer periods of time. Considering the large amount of
data gathered through the interviews, we believe that this limitation does not
deteriorate the quality of the findings. Furthermore, the aim of this paper was
to lay the groundwork for future research on explainable job recommender sys-
tems through the creation of a reusable interview guide, as well as determining
general stakeholder preferences and differences. I.e., our aim was not to conclu-
sively determine the exact, ultimate preferences of the stakeholders, but rather
to allow for future research to have a solid foundation for more specific research.
Regardless, future research should aim to make use of the validated interview
guide with a larger sample. By making use of the guidelines we provided on
how to represent automatically-generated explanations, it should be possible to
design a single, hybrid explanation, that can be evaluated more quickly. As a
result, interviews will take less time, making it more practical to use a larger
sample size.
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Furthermore, we acknowledge room to improve the model we used to gen-
erate explanations, and that it may therefore not have generated the most sen-
sible explanations. To counteract this behavior, we manually selected explana-
tions that seemed suitable for the interviews. Future work could therefore use
the provided interview guide to evaluate and compare explanations generated
using a number of different techniques (e.g., attention mechanisms, saliency, post
hoc methods). Different model architectures could also be compared in order to
determine which architectures generate better explanations (either for a specific
evaluation objective, or as a whole).

Lastly, another venue for future research could be to evaluate the textual
explanations generated through different means. Although the explanations gen-
erated by ChatGPT were sufficient for our study, comparing them to differently-
generated explanations (e.g., by different LLMs, people with varying levels of
expertise) could lead to interesting insights.

5.5 Conclusion

In this paper, we aimed to develop and validate an interview guide for deter-
mining the explanation preferences of different stakeholder types. Additionally,
we aimed to establish guidelines for creating XAI-generated explanations for dif-
ferent stakeholders within the field of job recommendation. The interview guide
was largely proven to be adequate for determining the preferences of different
stakeholders; a few minor changes were made to it in order to attain more con-
crete responses from the participants. Through the use of the interview guide, we
found that candidates prefer explanations to take the shape of a short, clearly-
structured text, that centrally contains the most crucial information. Recruiters,
on the other hand, also preferred textual explanations, but were less strict on it
having to be brief - indicating that longer texts could be useful in some scenarios.
Company representatives indicated a preference towards graph-based explana-
tions, as those allowed them to get a comprehensive overview of even more
complex explanations.

Appendix

A Hyperparameter Tuning

The optimal hyperparameter configuration we found, is the following:

• hidden dimensions = 10
• output dimensions = 100
• number of layers = 2
• attention heads = 5
• dp rate = 0.01
• learning rate = 0.001
• epochs = 1

An overview of all configurations we tested, can be found on GitHub

https://github.com/Roan-Schellingerhout/JRS_explanations
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B Preliminary Interview Guide

Table 2. The preliminary interview guide.

Evaluation

Objective

Objective

Description

Questions Probing questions

1. Correct

interpreta-

tion

To assess

whether or

not the

stakeholder

can correctly

interpret the

explanation

1.1 What

information/features do you

think were most important

for this prediction? 1.2

What was the least

important?

1.1.1 What did you look at to

come to that conclusion?

2. Trans-

parency

To determine

the

explanation’s

effect on

understanding

the model’s

inner

workings

2.1 Does the explanation

help you comprehend why

the system gave the

recommendation?

2.1.1 What components help

you specifically? 2.1.2 Can you

think of anything that would

further improve your

understanding?

3.

Usefulness

To evaluate

how useful

the

explanations

are considered

to be

3.1 Does the explanation

make sense to you? 3.2 Does

the explanation help you

make a decision?

3.1.1 What do you consider

sensible (e.g., focus on specific

features)? 3.1.2 What do you

consider insensible? 3.2.1

Would you prefer a model with

explanations over one without?

4. Trust To gauge the

explanation’s

impact on the

model’s trust-

worthiness

4.1 Do you think the

prediction made by the

model is reliable? 4.2 If this

recommendation was made

for you, would you trust the

model to have made the

right decision?

4.2.1 Anything specific that

makes you say that (e.g.,

something makes no sense, or

is very similar to how you look

at things)?

5.

Preference

To figure out

the personal

preference of

the

stakeholder

5.1 What would you like to

see added to the current

explanation? 5.2 What

would you consider to be

redundant within this

explanation?

5.1.1 Any specific information

that is missing? 5.1.2 Any

functionality that could be

useful? 5.2.1 Anything that

should be removed? 5.2.2 Or

be made less prevalent?
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C Grounded Theory Results

C.1 Candidates

Table 3. The quotes, open codes, and categories discovered by using grounded theory
for the candidates’ responses.

Quotes Open codes Category

“You should separate the

recommended and supporting

vacancies”

Different instances of the

same group should be easily

distinguishable

Don’t mix different types of

information

“I find it very difficult that the

vacancies, candidates, and

vacancy types or on the same axis

... I don’t understand it anymore”

Having different feature

types in the same bar chart

is confusing

“if this was important for me as a

candidate, I would want to know”

The bar chart should refer

only to personal information

“It could be that the system is

missing some information about

you ... like that you want to work

from home ... which would allow

you to cross it off the list

immediately”

Make ‘deal-breakers’

extremely clear

An explanation should very

quickly allow for verification

and scrutiny

“A candidate would not want to

spend all of their time dissecting

a graph”

Having to extract

information carefully is a

bother

“I would definitely want to look

at the vacancy”

Manual follow-up should be

easy

“And that those small lines, for

us, as people looking for a

vacancy, are not very useful”

Only include supporting

arguments

Make all non-crucial

information optional

“Yes, because this is some pretty

difficult use of language ... and

those values are not clear to me

at all to be honest”

Specific values lead to

overwhelm

“Now it’s saying the same thing

for the third time in a row

already”

Only repeat information

when summarizing

Theory (Based on Table 3): Candidates want to be able to determine whether
or not a vacancy is relevant at a glance. To do so, the explanation needs to
be brief and straight to the point. Once the candidate has found a potentially
interesting vacancy, they should be able to explore the explanation in more detail.
Considering their difficulty in parsing both the graph and feature attribution
explanation, the textual explanation should always be central, with the other
two merely functioning as further support.
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C.2 Recruiters

Table 4. The quotes, open codes, and categories discovered by using grounded theory
for the recruiters’ responses.

Quotes Open codes Category

“It’s nice when there’s more text to talk

about on the phone, as long as it’s not

the same thing over and over again”

A lot of text can help in

having enough subject matter

while talking to clients

The explanation should be

useable as evidence while

justifying a match to a client

“if you want to back up your decision

during a meeting, where they expect

reports and whatnot, it would be very

nice”

The graph can provide a more

‘objective’ explanation

“if the first paragraph is about their

skills, the second about their

experience, and the third about their

interests, a longer text would still be

nice”

Each paragraph of the text

should address a different

aspect

“I don’t think this is required to

actually start calling; it’s more of a

convenience when you want to

understand the reasoning”

Knowing the general rationale

is enough to take action

already

The exact details of the

prediction are irrelevant most

of the time

“There’s a few things that are crucial

when making a match ... and if those

are not in order, I don’t even need to

see the prediction”

Possible points of contention

should already have been

considered

“I don’t want to know anything I don’t

need to know ... there’s no use in that”

The simple version of

explanations is usually

sufficient

“you simply get told that this is the

correct match ... and if you can look at

the vacancy, you can check if it’s

correct”

Recruiters should be able to

easily verify the model’s claims

Recruiters should always feel

like they have the final say

“I would never blindly set up a meeting;

I would always want to speak to the

candidate beforehand of course”

Recruiters first want to discuss

the match with both sides

before accepting it

Theory (Based on Table 4): Recruiters prefer the model to act mainly as
a supportive tool. This means that the strongest arguments the model puts
forward should be front and center. This allows them to use the explanations
when defending their decision, be it to their supervisor or a client. They will
always want to manually verify the claims made by the model, but due to the
explanation, they are likely to consider predicted matches before all else. The
exact details of how the model came to its prediction will oftentimes be irrelevant,
but are nice to have accessible in case additional evidence should be provided.
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C.3 Company Representatives

Table 5. The quotes, open codes, and categories discovered by using grounded theory
for the company representatives’ responses.

Quotes Open codes Category

“this is what I had, after reading the

text four times, this path is generally

what I had understood”

The textual explanation can

require multiple iterations

to become clear

Complex relations should

still be easy to grasp

“at one point you understand how it

works ... and then you won’t even

look at the text anymore, the graph

will be all you need”

The graph is quick and easy

to use once it’s understood

“the complex graph should be

banned”

The general idea of the

explanation should be clear

at a glance

“that’s why I would rather pick that

one, over the recommended one,

because that one seems closer to the

vacancy.”

Alternative candidates

should also receive

explanations

Exploring alternatives

should be integrated in the

system

“it could be a close call, you know?

So then you can make your own

assessment, and verify if the model

got it right”

Having an overview of all

possible candidates is useful

to verify and scrutinize

“if we want someone for 0.8 FTE,

but their motivation letter says 0.6

FTE, it already becomes a no-go”

Human factors, such as

candidates’ motivation

letters, are hard to integrate

into a prediction

“if the model has been designed in

such a manner that I know it has

checked everything, there’s no need

for me to manually check everything

as well”

Given high enough

performance, the

explanation merely becomes

a sanity check

Explanations are mainly

useful for surprising results

“you already have an expectation of

what the outcome will be. You’re

only going to start interrogating the

model once the prediction doesn’t

match your expectation”

Detail only matters when

the recommendation is

unintuitive

Theory (Based on Table 5): Company representatives want the explanations
to assist them as quickly as possible. Due to their generally higher level of expe-
rience in reading charts and graphs, the graph explanations actually help the
most with this. However, even though the graph can give them an explanation
at a glance, they still want to be able to explore further, in case the graph comes
across as surprising or unintuitive. In such a scenario, they either want to study
the explanation in more detail, e.g., through additionally reading the textual
explanation, or they want to manually look into alternative candidates. The fea-
ture attribution map could easily be converted into a ‘hub’ for them, where they
can get an overview of alternative candidates for a vacancy.
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33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

34. Walker, D., Myrick, F.: Grounded theory: an exploration of process and procedure.
Qual. Health Res. 16(4), 547–559 (2006)

35. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention
network for recommendation. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

36. Wrede, C., Winands, M.H., Wilbik, A.: Linguistic summaries as explanation mech-
anism for classification problems. In: The 34rd Benelux Conference on Artificial
Intelligence and the 31th Belgian Dutch Conference on Machine Learning (2022)

37. Yıldırım, E., Azad, P., Öğüdücü, ŞG.: biDeepFM: a multi-objective deep factor-
ization machine for reciprocal recommendation. Eng. Sci. Technol. Int. J. 24(6),
1467–1477 (2021)

http://arxiv.org/abs/2201.08164
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
http://arxiv.org/abs/2111.13576
https://doi.org/10.1109/SMC52423.2021.9658757
http://arxiv.org/abs/1710.10903


Explaining Socio-Demographic
and Behavioral Patterns of Vaccination
Against the Swine Flu (H1N1) Pandemic

Clara Punzi1,2,3(B) , Aleksandra Maslennikova2,3 , Gizem Gezici1,2 ,
Roberto Pellungrini1,2, and Fosca Giannotti1,2

1 Scuola Normale Superiore, Pisa, Italy
clara.punzi@sns.it

2 KDD Lab, ISTI-CNR, Pisa, Italy
3 Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. Pandemic vaccination campaigns must account for vaccine
skepticism as an obstacle to overcome. Using machine learning to iden-
tify behavioral and psychological patterns in public survey datasets
can provide valuable insights and inform vaccination campaigns based
on empirical evidence. However, we argue that the adoption of local
and global explanation methodologies can provide additional support to
health practitioners by suggesting personalized communication strate-
gies and revealing potential demographic, social, or structural barriers
to vaccination requiring systemic changes. In this paper, we first imple-
ment a chain classification model for the adoption of the vaccine during
the H1N1 influenza outbreak taking seasonal vaccination information
into account, and then compare it with a binary classifier for vaccination
to better understand the overall patterns in the data. Following that,
we derive and compare global explanations using post-hoc methodolo-
gies and interpretable-by-design models. Our findings indicate that socio-
demographic factors play a distinct role in the H1N1 vaccination as com-
pared to the general vaccination. Nevertheless, medical recommendation
and health insurance remain significant factors for both vaccinations.
Then, we concentrated on the subpopulation of individuals who did not
receive an H1N1 vaccination despite being at risk of developing severe
symptoms. In an effort to assist practitioners in providing effective rec-
ommendations to patients, we present rules and counterfactuals for the
selected instances based on local explanations. Finally, we raise concerns
regarding gender and racial disparities in healthcare access by analysing
the interaction effects of sensitive attributes on the model’s output.
Keywords: Explainable AI · Chain classification · Vaccine hesitancy ·
Vaccination Patterns · Protected Groups

1 Introduction

In recent years, the Covid-19 outbreak has considerably raised global aware-
ness about pandemics. While the long-term effects of the strategies employed
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to defeat Covid-19 have yet to be determined, studies about other pandemics,
such as the 2009 pandemic caused by the A(H1N1)pdm091 virus (abbreviated as
H1N1 or “swine flu” which is responsible for between 150.000 and 575.000 deaths
globally in 20092), revealed that vaccination is a crucial tool whose effectiveness
extends beyond single-person immunisation by protecting entire communities
through a phenomenon known as “herd immunity” [13,29]. Therefore, national
governments must allocate the necessary resources and prepare the population,
beginning with informational and awareness-raising campaigns, so that the high-
est possible vaccination rates can always be achieved. Notably, understanding
local contexts and health-related behaviors is essential to the success of a vac-
cination campaign [18,41]. Vaccine-related concerns in particular pose a major
threat to adequate coverage [26]. Indeed, vaccine hesitancy, which the World
Health Organization (WHO) defines as “the delay in acceptance or refusal of
vaccination despite the availability of vaccination services” [28], is listed as one
of the top 10 threats to global health3.

Within the broader context of vaccine hesitancy, we simulate a real case
scenario of H1N1 flu vaccine prediction and further examine the factors that
examine vaccine hesitancy with Explainable AI (XAI) techniques. We foresee
that explanations corresponding to the outcomes of the predictions will lead
to insightful observations. Health officers and practitioners could elicit pivotal
communication strategies to adopt based on the objectives of the vaccination
campaign (e.g., by refuting or supporting specific opinions or behaviors). More-
over, explanations can reveal demographic or social barriers to immunisation
that health officers primarily responsible for planning should address in order to
implement the required systemic changes (such as the elimination of administra-
tion fees). Additionally, within the EU, i.e., if the proposed model is implemented
in the EU, or its decisions affect EU citizens, explicability is required by law for
high-risk AI applications such as the ones pertaining to health4. In the scope of
this work, distinct explainable methods enable us to investigate the most influ-
ential features in the overall decision-making process of the presented AI-based
models as well as case-specific justifications, i.e., local explanations. We also pro-
vide counterfactual explanations for what-if inquiries, as research shows that,
in everyday life, individuals often rely on counterfactuals, i.e., what the model
would predict if the input were marginally tweaked [8]. Specifically, we devote a
substantial component of our analysis to the subsample of individuals that are
not-vaccinated (H1N1) despite being at risk for developing severe symptoms.
We also conduct an in-depth analysis of the correlation and impact of sensitive
attributes, such as ethnicity and gender, on vaccine hesitancy.

1 https://web.archive.org/web/20120505042135/http://www.who.int/influenza/
gisrs laboratory/terminology ah1n1pdm09/en/.

2 https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/.
3 https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.
4 https://gdpr.eu/tag/gdpr/.

https://web.archive.org/web/20120505042135/http://www.who.int/influenza/gisrs_laboratory/terminology_ah1n1pdm09/en/
https://web.archive.org/web/20120505042135/http://www.who.int/influenza/gisrs_laboratory/terminology_ah1n1pdm09/en/
https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/
https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
https://gdpr.eu/tag/gdpr/
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To the best of our knowledge, this is the first work that presents an Explain-
able AI-based Clinical Decision Support System (CDSS)5 that uses a compre-
hensive, carefully curated national survey benchmark dataset regarding the 2009
H1N1 flu pandemic, jointly prepared by the United States (US) National Cen-
ter for Health Statistics (NCHS) and Centers for Disease Control and Preven-
tion (CDC). Our proposed Explainable CDSS predicts whether a certain indi-
vidual will receive the H1N1 vaccine based on the given behavioral and socio-
demographic features, including one related to the uptake of the seasonal vaccine.
Additionally, we implement a baseline model consisting of a binary classifier that
only predicts whether a particular individual will get vaccinated or not regardless
of the type of vaccine (i.e., seasonal or H1N1) to disclose general vaccination pat-
terns in the US. The most similar work to ours is a recent preprint that presents
an AI-based CDSS for COVID-19 vaccine hesitancy [2]. Yet, in [2], researchers
do not use a comprehensive benchmark dataset that has been prepared by an
official agency, but rather they employ a small survey dataset that they collected
using Qualtrics (a web-based survey tool), which includes only 2000 instances
in total. In addition to this, the authors present a more coarse-grained study
in which the XAI methods are only utilised to find the most significant factors
that impact a person’s decision in the overall dataset and among different ethnic
groups without using local explanations or counterfactuals.

Our main contributions can be summarised as follows:

1. We propose an AI-based CDSS to predict vaccine hesitancy in the US using
a comprehensive benchmark dataset collected during the 2009 H1N1 flu pan-
demic by the US National Center for Health Statistics.

2. We leverage various XAI techniques to identify the most critical behav-
ioral, socio-demographic, and external factors that have the greatest influ-
ence on vaccine hesitancy, primarily in the critical situation of the H1N1 flu
outbreak, with the aim of providing evidence-based recommendations that
could aid health officials and practitioners in developing effective vaccination
campaigns.

3. Our findings demonstrate that doctor recommendations are essential for alle-
viating vaccine hesitancy, hence, we incorporate both local and global expla-
nations to assist healthcare providers by providing sample tailored recom-
mendations, particularly for the patients deemed at high risk of the H1N1 flu.
These explanations can be used to select the optimal communication strat-
egy based on a given patient, and if this patient is a non-vaccinated high-risk
individual, then we further generate counterfactuals that can be exploited to
persuade the patient.

4. As anticipated, our results from a real-world scenario also reveal social injus-
tice issues in accessing healthcare services and report that the lack of health
insurance is one of the most significant factors in vaccine hesitancy, which is
typically associated with sensitive attributes such as belonging to particular
gender and ethnic groups.

5 CDSS: An application that analyzes data to help healthcare providers make decisions
and improve patient care.
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The remainder of the paper is structured as follows. In Sect. 2 we first provide
some related work, then in Sect. 3 we describe the technical details of our vaccine
hesitancy prediction framework, which is composed of the classification models
and the XAI methods we used. In Sect. 4 we detail the experimental setup,
present the results and further discuss them. Finally, in Sect. 5 we mention the
limitations with several potential future work directions and conclude the paper.

2 Background and Related Work

In recent times, XAI has drawn significant attention [1,19–21,27,35–37,39,40]
primarily due to the growing concern surrounding the lack of transparency in AI
applications. Humans seem to be programmed to investigate the causes behind
the action; hence, they are reluctant to adopt techniques that are not explicitly
interpretable, tractable, and trustworthy [24], particularly in light of the growing
demand for ethical AI [5]. Studies demonstrate that providing explanations can
increase understanding, which can help improve trust in automated systems [1].
Thus, XAI methods provide justifications that enable users to comprehend the
reason behind a system output in a specific context. These methods can be
divided into post-hoc, i.e. explanations obtained by external methods, such as
SHAP (SHapley Additive exPlanations) [27], LIME (Local Interpretable Model-
Agnostic Explanations) [35]), and LORE (LOcal Rule-based Explanations) [19],
and explainable-by-design (transparent) methods, i.e. built to be explainable,
such as linear models, k-nearest neighbours, and decision trees. The post-hoc
XAI methods can be classified as model-specific or model-agnostic based on the
underlying model to be explained and if an explainer does not consider the black
box internals and learning process, it is a model-agnostic approach. In addition
to the aforementioned post-hoc methods, ANCHOR [36] which is a successor of
LIME and outputs easy-to-understand if-then rules is a model-agnostic explainer,
as well. Moreover, the state-of-the-art XAI methods can also be differentiated
as global, or local. The global approaches explain the whole decision logic of a
black box model, whereas the local approaches focus on a specific instance. Based
on this categorisation, SHAP is a global explainer, whereas LIME, LORE, and
ANCHOR are local explainers. INTGRAD [40], DEEPLIFT [39], and GRAD-
CAM [37] are saliency mapping-based methods for neural networks that are
model-specific, and local explainers.

XAI in Healthcare. AI-based CDSSs are computer systems developed to assist
in the delivery of healthcare and can be helpful as a second set of eyes for clin-
icians [3]. The trust issue is particularly obvious in CDSS where health profes-
sionals have to interpret the output of AI systems to decide on a specific patient’s
case. Therefore, it is vital that XAI applications to AI-based CDSS increase trust
by allowing healthcare officials to investigate the reasons behind its suggestions.
Cai et al. reveal that clinicians expressed a desire for preliminary information
regarding fundamental, universal characteristics of a model, such as its inherent
strengths and limitations, subjective perspective, and overarching design objec-
tive, rather than solely comprehending the localized, context-dependent rationale
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behind each model decision. There have been many attempts to leverage XAI in
healthcare [9–11,17,33,38]. In [9], scholars investigate the expectation of pathol-
ogists from the AI-based CDSS assistant. This qualitative lab study reveal that
the medical experts have a desire for preliminary information regarding funda-
mental, universal characteristics of a model, such as its inherent strengths and
limitations, subjective perspective, and overarching design objective, rather than
solely comprehending the localized, context-dependent rationale behind each
model decision. In [17], researchers analyse an AI-based imaging CDSS designed
to assist health practitioners in detecting COVID cases in the scope of examin-
ing the explanation needs of different stakeholders. In [10], scholars propose an
AI-based CDSS that predicts COVID-19 diagnosis using clinical, demographic,
and blood variables and employs XAI to extract the most essential markers.
In [33], authors present the results of a user study on the impact of advices
from a CDSS on healthcare practitioners’ judgment. For detailed surveys, please
refer to [11]. Finally, in [38], the authors propose instead a classification model
on a social media dataset that first distinguish misleading from non-misleading
tweets pertaining to COVID-19 vaccination, then extract the principal topics
of discussion in terms of vaccine hesitancy and finally apply SHAP to identify
important features in model prediction.

Classification Models in Tabular Data. The state-of-the-art approaches for
prediction tasks on tabular data suggest the employment of ensemble tree-based
models. In general, boosting methods build models sequentially using the entire
dataset, with each model reducing the error of the previous one. Differently from
other gradient-boosting ensemble algorithms, such as XGBoost [14] and Light-
GBM [25], CatBoost (proposed by Yandex) [15] employs balanced trees that not
only allow for quicker computations and evaluation but also prevent overfitting.
For such a reason, together with the peculiar structure of our dataset, we decided
to firstly rely on this model. Notably, Catboost includes a built-in function for
feature selection that removes features recursively based on the weights of a
trained model. Feature scores provide an estimate of how much the average pre-
diction changes when a feature’s value is altered6. Consequently, despite being
classified as a black box, CatBoost retains some global interpretability. As a sec-
ond classification model, we use TabNet (proposed by Google) [4], a deep neural
network devised specifically for tabular data and classified as an explainable-
by-design model. TabNet’s architecture combines two important advantages of
state-of-the-art classification approaches: the explainability of tree-based algo-
rithms and the high performance of neural networks. In addition to global inter-
pretability, Tabnet implements local interpretability for instance-wise feature
selection, unlike CatBoost.

6 https://catboost.ai/en/docs/concepts/fstr.

https://catboost.ai/en/docs/concepts/fstr
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3 The Explainable AI-Based CDSS of Vaccine Hesitancy

3.1 Dataset

We used the dataset from the National 2009 H1N1 Flu Survey (NHFS), a ques-
tionnaire conducted in the US during the 2009 H1N1 flu outbreak7 to moni-
tor vaccination coverage and produce timely estimates of vaccination coverage
rates8. The survey contains questions about influenza-related behaviours, opin-
ions regarding vaccine safety and effectiveness as well as disease history etc.
(the full NHFS questionnaire can be found on the CDC website9). The dataset
contains 26.707 instances, 36 categorical features (the first being the ID of each
anonymized individual), all of which are binary, ordinal, or nominal, and two
additional binary variables that can be used as targets, namely, the seasonal
and H1N1 flu vaccination status. As anticipated, the features include demo-
graphic data (e.g. sex, race, geographic location), health-related behaviors (e.g.,
washing hands, wearing a face mask), and opinions about flu and vaccine risks.
Note that a competition has been launched on this benchmark dataset10 hence,
for a complete description of the dataset, please refer to the competition website.

Preprocessing. All features in the dataset are conceptually categorical, but
most of them are reported as numerical rankings or binary variables, so we only
applied transformation on the remaining 12 categorical features (4 ordinal, 3
binary, and 5 multinominal). We used manual ordinal encoding for the ordinal
and binary, and one-hot encoding for the multinominal ones. Also, since the
dataset contains missing values in most columns, we applied iterative imputation:
a strategy that models each feature with NaNs as a function of other features
in a round-robin fashion. We initialized it as the most frequent value of the
given variable and we set the Random Forest Classifier as the base model for the
iteration step. To avoid the imputation of missing values from other synthetic
data, we substituted the imputed values only at the end of the process. Lastly, in
the baseline model that does not consider vaccination type, to better interpret
the explanations, we merged vaccine-specific features by computing the average
of corresponding H1N1 and seasonal vaccine feature scores (for instance, instead
of having two separate features representing opinions about seasonal and H1N1
vaccine effectiveness, we used their average as a proxy for overall opinion about
vaccine effectiveness).

3.2 Classification Models

We implemented two binary classification models for predicting the uptake of
the H1N1 vaccine and the vaccine in general (regardless of the vaccine type,

7 https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html.
8 https://www.drivendata.org/competitions/66/flu-shot-learning/page/213/.
9 https://ftp.cdc.gov/pub/Health Statistics/NCHS/Dataset Documentation/NIS/

nhfs/nhfspuf DUG.PDF.
10 https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/;.

https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NIS/nhfs/nhfspuf_DUG.PDF
https://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NIS/nhfs/nhfspuf_DUG.PDF
https://www.drivendata.org/competitions/66/flu-shot-learning/page/210/
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seasonal or H1N1), with the latter serving as a baseline model. In both cases, we
used two state-of-the-art machine learning algorithms for classification on cate-
gorical tabular data, namely, CatBoost [34] and TabNet [4]. For the main task
of predicting the uptake of the H1N1 vaccine, we decided to rely on a multi-label
classifier chain since we discovered, during the data exploration phase, a posi-
tive correlation between the two target variables of seasonal and H1N1 vaccina-
tion (moderate Pearson coefficient: ρ = 0.38). We performed an exhaustive grid
search with cross-validation on the training dataset to determine the best hyper-
parameters, which were then used to train the classifiers. Furthermore, given the
significant imbalance in the distribution of the dataset with respect to the joint
combination of the seasonal and H1N1 vaccines, we compared the performance
of the selected models on augmented training datasets derived through various
upsampling strategies. These techniques included a naive random over-sampling
approach, where new instances of the underrepresented class were generated by
picking samples at random with replacement, as well as the Synthetic Minority
Oversampling Technique (SMOTE, [12]) and the Adaptive Synthetic sampling
method (ADASYN, [22]). Nevertheless, none of these methods led to a signifi-
cant improvement in the F1 score (see Table 1), hence we opted to maintain the
initial dataset for subsequent analyses. It should be noted that, in contrast to
the H1N1 model, the baseline classification model did not exhibit an imbalanced
class distribution. The best performance for both the baseline and H1N1 model
was achieved by CatBoost classifier.

Table 1. Model performances.

Model Upsampling AUC
(weighted)

F1-score
(weighted)

AUC
(macro)

F1-score
(macro)

CatBoost
Classifier Chain

- 0.75 0.87 0.77 0.77

Random
oversampling

0.79 0.83 0.79 0.75

SMOTE 0.77 0.84 0.77 0.76

ADASYN 0.77 0.84 0.77 0.76

TabNet Classifier
Chain

- 0.73 0.82 0.73 0.73

Random
oversampling

0.75 0.80 0.75 0.72

SMOTE 0.71 0.81 0.71 0.72

ADASYN 0.76 0.80 0.76 0.73

CatBoost
Baseline

- 0.77 0.77 0.77 0.77

TabNet Baseline - 0.75 0.75 0.75 0.75
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3.3 XAI Methods

We initially obtained the global feature importance scores from TabNet [4] and
CatBoost’s [15] built-in functions, and compared them to SHAP-based feature
rankings. This choice is based on the fact that SHAP [27] offers a wide range
of analysis tools and its feature rankings have demonstrated greater stability
compared to the built-in functions of tree-based ensemble models [42]. Then,
we inspected the interaction effects between features; in particular, we exam-
ined the impact of sensitive attributes, such as ethnicity and gender, on the
model prediction. After that, we locally explained specific test set instances: we
computed local feature importance scores with SHAP [27] and LIME [35] and
extracted counterfactuals from LORE [19]11 The instances were chosen from the
subpopulations of high-risk individuals declared by the US H1N1 recommenda-
tions12, for further discussion please see Sect. 4.2.

The goodness, usefulness, and satisfaction of an explanation should be consid-
ered when assessing the validity and convenience of an explanation technique [6].
In the scope of this study, we conducted both quantitative and qualitative assess-
ments. On the one hand, we ensured that our explainers had a high degree of
fidelity, i.e., that they could accurately approximate the prediction of the black
box model [30]. On the other hand, we discussed the actual usefulness of the
explanations from the perspective of the end-user, i.e., a health official or prac-
titioner.

4 Results and Discussion

4.1 H1N1 Vaccine Hesitancy Model vs Baseline

In this part, we compare the global explanations of the baseline and H1N1 vac-
cine hesitancy models. First of all, we retrieved feature importance rankings
using CatBoost, which is a black-box model that enables a certain degree of
global interpretability, and TabNet, which is an explainable-by-design method.
Figure 1a displays the feature importance rankings of the baseline model. Both
models significantly rely on whether a doctor recommended a vaccination, per-
sonal opinion regarding vaccine efficacy, and age. Notably, the CatBoost model
prioritises personal judgment about the risks of getting sick without vaccination
and the availability of health insurance, while TabNet disregards these features
entirely. In the H1N1 model (See Fig. 1b), the feature importance ranking of
CatBoost differed considerably from TabNet. Both models significantly rely on
the doctor’s recommendation and opinion on vaccine efficacy, but age was not
a determining factor. The features of opinions about the risk of getting sick
and health insurance were only considered by CatBoost in the baseline model,

11 We did not use the recent version of LORE [20] which is more stable and generates
actionable features as claimed by the authors since we could not execute the code
in their github repo.

12 https://www.cdc.gov/h1n1flu/vaccination/acip.htm.

https://www.cdc.gov/h1n1flu/vaccination/acip.htm
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(a) Baseline model (b) H1N1 model

Fig. 1. Comparison of different feature importance rankings, sorted according to SHAP
rankings.

while both models deem them significant for the H1N1 prediction. Interestingly,
TabNet ignores the most crucial feature of CatBoost which is the seasonal vac-
cination status.

In addition, we computed post-hoc explanations by applying SHAP [27] to
the model with the best classification performance, namely CatBoost [15]. It is
noteworthy that SHAP achieved a significantly high fidelity score of 0.92, which
is indicative of its capacity to accurately mimic the underlying black-box model.
Using Tree SHAP as the algorithm to compute Shapley values, we discovered,
as expected, that SHAP feature rankings were comparable to those provided by
CatBoost for both the baseline and H1N1 models. In the following sections, we
will refer primarily to SHAP when discussing about global explanations.

4.2 Vaccine Hesitancy in High-Risk Individuals

Due to the H1N1 vaccine’s limited availability during the campaign’s initial
phase, health officials advised people at the highest risk for viral effects or those
caring for them to receive the vaccine first. These target subpopulations were (1)
adults who live with or care for children under 6 months, (2) healthcare workers,
(3) adults aged 25 to 64 with certain chronic health conditions, (4) people aged
6 months to 24 years, and (5) pregnant women. In our work, however, we note
that the target group (5) could not be analyzed since the dataset did not contain
the related information, and condition (4) was slightly modified to (4’) 18-to-34-
year-old, as this is the lowest age group reported in the dataset.

We used XAI techniques to understand why some high-risk individuals do
not vaccinate in order to lay the basis for effective doctor recommendations.
Indeed, the findings discussed in Sect. 4.1 indicate that doctor recommendations
are crucial for promoting vaccination not only among the general population
but also, and most importantly, among individuals at high risk of being severely
affected by a pandemic influenza outbreak. In the following, we show how local
explanations generated by SHAP [27], LIME [35], and LORE [19] can be lever-
aged by physicians to design effective, patient-specific communication strategies
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for recommending vaccination. As a first example, consider the subject with the
identifier id = 24210, a white woman who satisfies criteria (3) and (4’). In this
instance, our model accurately predicted that she had declined the H1N1 vacci-
nation against the doctor’s recommendation. As depicted in Figs. 2a and 2b, the
feature importance scores computed by SHAP and LIME concur that her belief
that the vaccine was not very effective and her refusal to receive the seasonal
vaccine had a substantial negative impact on the vaccination outcome. Based on
LORE’s counterfactual (fidelity = 0.99), we found that the doctor’s recommen-
dation was ineffective because she or he failed to raise the subject’s opinion about
the vaccine’s efficacy and the swine flu’s threat. Furthermore, LORE identified
having health insurance and living in a particular geographical region as condi-
tions for a positive vaccination outcome. Unfortunately, the actionability of these
features is debatable, revealing the existence of social disparities in vaccination.

As a second example, we consider the subject with id = 23241, a black
woman who meets criteria (1), (3), and (4’). Similar to the previous subject,
the model accurately predicted that she had declined the H1N1 vaccination,
but this time we know she did not receive a doctor’s recommendation. SHAP
and LIME (fidelity = 1) evaluate this fact to be extremely negative in terms of
feature importance, along with other factors such as not having received the
seasonal vaccine, having a very low opinion of the risk of becoming sick with
H1N1 flu without vaccination, and not having health insurance. In addition,
LIME scored unfavorably for its lack of employment in specific industries and
professions. LORE (fidelity = 0.99) provided a coherent decision rule and a few
counterfactual explanations that, first and foremost, required a doctor’s rec-
ommendation and that, additionally, indicate that an effective recommendation
would be one capable of increasing the subject’s opinion regarding the effective-
ness of the H1N1 vaccine, allowing her to obtain health insurance, and convincing
her to also receive the seasonal vaccine. Interestingly, some counterfactuals also
included conditions indicating non-belonging to the “black” or “other or mul-
tiple” ethnic group, as well as geographically-based criteria, which however are
subject to the same limitations as those previously noted regarding the action-
ability of certain counterfactual.

4.3 Social Injustice in Healthcare

The US healthcare system has been widely acknowledged and recorded to exhibit
structural inequalities that are often linked to particular ethnic and gender cat-
egories [16,23]. The same holds true specifically in the campaigns for H1N1 [7],
COVID-19 [31], and seasonal vaccine [32]. Therefore, socio-demographic factors
like gender and ethnicity, as well as social injustice in healthcare access, should
be taken into account when interpreting studies about vaccine hesitancy, as the
refusal to be vaccinated may be due to structural barriers, such as a lack of
health insurance in a country where public health is not guaranteed. Indeed,
our results confirm that health insurance coverage is one of the most important
predictive factors, especially in the H1N1 model, as shown in Sect. 4.1, and the
counterfactual explanations in Sect. 4.2 consistently identified health insurance
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(a) SHAP (b) LIME

(c) SHAP (d) LIME

Fig. 2. Local explanations for id = 24210 (top row, true class = 0, predicted class = 0),
and id = 23241 (bottom row, true class = 0, predicted class = 0).

as a key driver in promoting vaccination in the subpopulation at high-risk with
respect to H1N1.

The impact of health insurance, ethnicity, and sex on the model’s predictions
is illustrated in the dependence scatter plots in Fig. 3. In these three plots, points
are displayed based on their coordinates (x, y) as feature value (x) and Shap-
ley value (y), where each point refers to an observation. For instance, Fig. 2a
displays that the perceived threat posed by H1N1 has the greatest interactive
effect with health insurance in predicting vaccine uptake, while in Fig. 2b and
Fig. 2c, for the sensitive attributes: ethnicity and gender, health insurance is the
most interactive feature. In Fig. 2b, ethnicity does not significantly impact the
model’s decision among the white subpopulation, since the corresponding data
points are not dispersed, whereas other three subpopulations exhibit a greater
degree of variation which might point to racial disparities in access to vaccina-
tion campaigns. In terms of gender, the plot in Fig. 2c reveals that men are more
likely to be vaccinated irrespective of their health insurance, as most Shapley
values are positive. This observed bias of the H1N1 classifier towards men con-
veys that there may have been real-world factors that favored men’s access to
the vaccine. Interestingly, women with health insurance are less likely to be vac-
cinated, whereas men are more likely. The aforementioned trend in the decision
rules of SHAP [27], LIME [35], and LORE [19] is corroborated by the plot in
Fig. 2a, as only a minimal fraction of points without health insurance (or with
no information provided) are associated with positive Shapley values. For repro-



632 C. Punzi et al.

(a) Health insurance (b) Ethnicity (c) Sex

Fig. 3. Dependence scatter plots for the H1N1 model – the x-axis denotes the feature
values, the y-axis refers to Shapley values, coloring is based on the values of the feature
in the secondary y-axis (most interactive feature chosen by SHAP).

ducibility purposes, our code is publicly available at https://github.com/gizem-
gg/H1N1-VaccineHesitancy-CDSS.

5 Conclusion and Future Work

In this work, we proposed an AI-based Explainable CDSS for predicting and
assessing hesitancy towards the swine flu vaccination uptake. XAI methodolo-
gies assist us in identifying doctor recommendation, health insurance, seasonal
vaccine adoption, and personal opinion regarding vaccine efficacy as the most
influential factors in H1N1 vaccination. On the basis of counterfactual explana-
tions, we provided physicians with suggestions for effectively conveying to their
patients the need to receive the H1N1 vaccine, with a focus on those at high risk
for severe symptoms. In particular, we discovered that communication strategies
that can improve the subject’s opinion of the effectiveness of the H1N1 vaccine
and the threat posed by the swine flu are more likely to function as catalysts for
change. Moreover, our analysis highlights the crucial role of health insurance,
which reflects actual disparities in healthcare access in the US, and illustrates
how vaccination campaigns can be hampered not only by vaccine reluctance but
also by economic constraints. Likewise, it has been found that membership in
marginalized groups based on gender, ethnicity, or geography can result in indi-
viduals with a higher risk profile opting out of vaccination. A major limitation
of our analysis is the large number of missing values regarding health insur-
ance, which is one of the most important features for our model. Second, our
algorithm of choice for counterfactual explanation is based on a genetic algo-
rithm for neighborhood generation. It could be interesting to compare different
algorithms for neighborhood generation. Moreover, the choice of the attribute
to consider in counterfactual generation should be guided by the principle of
actionability, to focus on feature that healthcare professional can act upon. As
future work, we plan to address these limitations and evaluate the efficacy of the
proposed Explainable AI-based CDSS framework by conducting a comprehensive
user case study with health officials and physicians.

https://github.com/gizem-gg/H1N1-VaccineHesitancy-CDSS
https://github.com/gizem-gg/H1N1-VaccineHesitancy-CDSS
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1 Introduction

With the performance increase of machine learning (ML) models (especially deep
learning), their application in real-world settings is growing. Algorithms learn
from large amounts of data to discover patterns, often with the ultimate goal of
supporting decision-making. However, the resulting models are often considered
black boxes due to their vast number of parameters. Providing explanations
for these black boxes has become crucial for applications with significant social
impact (e.g., pre-trial bail [8], credit risk assessment [18], health care [17,25]). As
a result, there is increasing social and legal pressure on letting individuals that
are significantly affected by models, understand why an ML model obtained a
certain prediction (e.g., ‘right to explanation’ in the EU General Data Protection
Regulation (GDPR) [9,41]).

For example, consider an ML model supporting decisions on personal loan
applications. If the application is rejected, an affected person might want to know
why their loan application was not approved. A counterfactual explanation can
be used to provide such an explanation as a “what-if”- scenario: e.g., “if the
income had been 5.000 higher, the loan would have been accepted”. Counterfac-
tual explanations describe the closest change to the original input features that
would change the outcome [42]. This type of explanation is valuable because the
explanations are contrastive [26] and provide guidance on recovering from unfa-
vorable predictions. Algorithmic recourse is a closely related term that is often
used to refer to the required actions to change the outcome, with an intention
to ‘act’ rather than ‘understand’ [15]. In line with Verma et al. [40], we use the
term counterfactual explanations and algorithmic recourse interchangeably.

Various algorithms have been proposed to generate counterfactual explana-
tions. In the simplest form, counterfactuals can be generated for a classifier g by
minimizing a distance d between an original data point x and a possible coun-
terfactual instance xcf resulting in a class change from y to ycf . The following
optimization problem can be derived: min

x
d(x, xcf ) subject to g(x) �= g(xcf )

[42]. However, this optimization problem often leads to unrealistic and infeasible
counterfactuals. Therefore, later work has extended the formulation to satisfy
additional desiderata (e.g., sparsity, data manifold adherence, causality) [40].

One of the biggest challenges that remain is generating meaningful counter-
factuals that are coherent with real-world relations. First, counterfactual expla-
nations should satisfy causal relations (e.g., additional years of education are
accompanied by an increase in age). Second, counterfactual explanations should
lead to changes in the real world when acted upon (i.e. changes translate to a
causal effect). Causal models are a way of describing real-world relations. Despite
Wachter et al. [42] already advocating for the usefulness of counterfactuals gen-
erated from causal models, only a few works (e.g., [13,15,24]) are based on
causal assumptions. One of the reasons is that structural causal models (SCM) -
including the causal graph and structural equations - are hard to obtain. While
it is often possible to draw a causal graph based on expert knowledge, assump-
tions about the form of structural equations are generally not testable and may
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not hold in practice [31]. Therefore, most counterfactual explanation approaches
bypass SCM and direct their effort to provide realistic counterfactuals with sur-
rogate models (e.g., [3,7,22,29,39]), constraints (e.g., [32,38]) or using the inher-
ently learned information in the classifier (e.g., [23,37,45]). Quantifying to what
extent causal relations and effects are satisfied is especially hard for those non-
causal approaches due to a lack of ground truth. Hence, causal capabilities are
often approximated by evaluating user constraints or data distributions (e.g.,
[19,29]). However, this type of evaluation only states if a counterfactual is fol-
lowing a certain distribution or meets some predefined constraint. No evidence
is given whether the changes follow a causal chain.

Various works from social sciences (e.g. [4,26]) emphasized the importance
of causality for good explanations. To evaluate whether the explanations from
different counterfactual approaches indeed fulfill known causal relationships, we
introduce the notion of semantic meaningfulness for counterfactual generation
approaches. The semantic meaningfulness of a counterfactual generation algo-
rithm describes the fraction of generated counterfactuals that are coherent with
real-world relations. We propose two measures: the fraction of counterfactual
explanations that lead to the same outcome in the real world (‘Semantic Mean-
ingful Output ’) and the fraction of known causal relationships fulfilled by the
counterfactual explanation (‘Semantic Meaningful Relations’). We evade the
issue of missing SCMs by providing different datasets with causal graphs that
can be used to benchmark new and existing approaches. The main contributions
of this paper are as follows:

1. We define semantic meaningfulness for counterfactual generation approaches
and propose two metrics to evaluate different levels of semantic meaningful-
ness.

2. We provide six datasets with known SCMs that can be leveraged to
benchmark the semantic meaningfulness of new and existing counterfactual
approaches.

3. We evaluate the semantic meaningfulness of nine well-established counterfac-
tual explanation approaches for three ML models.

2 Related Work

Following the literature on counterfactuals, the proposed explanations should
be sparse (i.e., entails limited features [12,40]), realistic (i.e. is near the train-
ing data [40] - also called data manifold adherence), actionable (i.e., contains
mutable features [40]), feasible (i.e., adhering to real-world relations [24]) and
plausible (i.e., perceived as sensible by human users [36]) to be useful in prac-
tice. Depending on the author, feasibility is described as counterfactuals that
are proximate and connected to regions of high data density (e.g., [29,32]) or
as satisfying causal relations between features (e.g., [24]). We follow the defini-
tion of Mahajan et al. [24], who view feasibility as a causal concept that cannot
be addressed with statistical constraints alone. Closely related to the notion of
feasibility is plausibility. Depending on the operationalization of the concept,
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some consider explanations plausible that are close to the test instances, using
the “right” features, or faithful to the distribution or training data [12]. We
define plausibility following Keane et al. [16] emphasizing the importance of the
psychological aspect of explanations by describing plausibility as the degree to
which explanations make sense to human users. The main difference with other
desiderata is the emphasis on the relevance of the explanations to human users.
To ensure relevance for the end-user we consider an explanation as plausible if
the explanations lead to the same outcome in the real world.

The body of work addressing counterfactual generation largely falls into four
categories: adding specific distances or user constraints to the original data [1,
11,27,35,38,42], learning the underlying data structure [6,22,32], using feature
extraction effects of a specific ML model [23,37,45], and using (fully or partially
defined) SCMs [14,24]. For an overview of counterfactual explanation methods,
we refer the reader to Verma et al. [40] and Karimi et al. [12]. Most approaches
that aim to generate feasible counterfactuals, rely on learning the underlying
data structure. However, feasibility is a causal concept and cannot be achieved
by statistical constraints alone [24].

While some benchmarking frameworks for evaluating Explainable Artifi-
cial Intelligence methods [2,10] and especially counterfactual explanations [28]
have been proposed, the evaluation of the causality of explanations is still an
open issue. Evaluating counterfactual approaches is mostly done by quantifying
the desirable properties of a counterfactual explanation (e.g., [28]). For exam-
ple, validity measures whether a counterfactual explanation was able to flip
the classifier’s decision [7,13,23,24,28]. Proximity is the user-specified distance
(e.g., mean absolute error) between the original instance and the counterfac-
tual [13,23,24,28]. Sparsity quantifies the number of changes made to the input
[13,28] and diversity is a measure for the similarity of the different counter-
factual explanations when multiple explanations are generated [40]. Sometimes
constraint feasibility is also measured by checking user-given constraints [24,28].
However, evaluating feasibility - especially for non-causal models - is neglected
[24]. Laugel et al. [19] suggest two measures that are applicable to most counter-
factual approaches to quantify feasibility proximity (i.e. whether a counterfactual
is a local outlier) and concreteness (i.e. whether a counterfactual is connected to
other correctly classified observations from the same class). However, their mea-
sures are data-driven and therefore not able to test coherence with real-world
relations. Other feasibility metrics are only applicable to specific counterfactual
generation approaches (e.g., confidence lower bound for probabilistic recourse
[13], interpretability score [24,39], causal-edge score in case the true SCM is
known [24]). There exists no agnostic metric that is applicable to all counter-
factual generation approaches to evaluate the fulfillment of real-world relations.
Hence, a thorough evaluation investigating whether explanations from differ-
ent counterfactual approaches (especially non-causal approaches) fulfill known
causal relationships, is still missing.
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3 Semantic Meaningfulness

Consider a classifier g that predicts some instances X = {x0, . . . , xn} as class
Y = {y0, . . . , yn}. A counterfactual approach h generates, based on the observ-
able input instances X and classifier g, explanations via counter-examples
Xcf = {xcf

0 , . . . , xcf
n } for each x ∈ X. Each counterfactual explanation xcf con-

sists of features xcf = {vcf
1 , . . . , vcfm } and shows why a classifier g predicted class

y for a data point x instead of counterfactual class ycf . Depending on the used
approach h, the generated counterfactuals may or may not be coherent with real-
world relations. To benchmark a counterfactual approach h for its capabilities to
depict real-world relations, we introduce the notion of semantic meaningfulness.
Semantic meaningfulness is calculated as the fraction of counterfactual changes
Δx = x − xcf that 1) lead to the same outcome in the real world (plausibility)
and that 2) fulfill the known causal relationships (feasibility).

We assume that one can capture real-world relations in the form of SCMs.
We rely on the work of Pearl [30] and define a causal model as a triple (U, V, F )
of sets where U is a set of latent background variables, V is a set of observed
variables V = {v1, . . . , vn}, and F is a set of functions {f1, ..., fn} showing the
relations between V . We assume observable relations fi = fi(PAi, Ui) with a
deterministic function fi depending on vi ⊆ V parents in the graph (denoted
by PAi) and a stochastic unexplainable (exogenous) variable Ui ⊆ U for i =
{1, . . . , n}. To intervene on variable Vi in the SCM, one substitutes the equation
Vi = fi(PAi, Ui) with some constant Vi = v for some v.

Given a counterfactual approach h, a number of generated explanations
Xcf = {xcf

1 , ..., xcf
n } and a (fully or partially defined) SCM (U, V, F ), we postu-

late the following metrics:

Theorem 1 (Semantic Meaningful Output). The counterfactual expla-
nation approach has Semantic Meaningful Output, if intervening on the SCM
(U, V, F ) with Xcf = {xcf

1 , ..., xcf
n } yields the results Y cf = {ycf

1 , ..., ycf
n }

obtained by the classifier g.

Quantifying Semantic Meaningful Output (SMO) presented in Theorem 1 leads
to the fraction of plausible counterfactual explanations, i.e. that lead to the same
outcome in the real world (captured in the SCM).

SMO
def=

1
|Xcf |

∑

e∈Xcf

1g(e)=SCM(e) (1)

Theorem 1 only indicates if the counterfactual approach generates plausible out-
comes in the real world. Therefore, we propose a second metric to measure the
fulfillment of known causal relationships. Although the output of an approach
might be semantically meaningful, the changes Δx made to obtain the counter-
factual do not necessarily fulfill real-world relations. Therefore, we also introduce
Semantic Meaningful Relations (SMR) in Theorem 2, quantifying the fraction
of causal relationships fulfilled.
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Theorem 2 (Semantic Meaningful Relations). A counterfactual explana-
tion approach has Semantic Meaningful Relations, if intervening on the SCM
(U, V, F ) with Xcf = {xcf

1 , ..., xcf
n } yields for the features vcf of all counterfac-

tual explanations vi �= vcf
i to fulfill fi(PAi, Ui) after intervention on the parents

of a feature with PAi = vcf
PAi

for each counterfactual explanation ∀n.

Quantifying Theorem 2, leads to the fraction of fulfilled causal relations for an
explanation xcf .

SMR
def=

1
|Xcf |

∑

e∈Xcf

(
1
|e|

∑

i∈e

1ei=fi(ePAi
,Ui)) (2)

While Eq. (1) can only be calculated with fully defined SCMs, Eq. (2) allows
making statements about relationship coherence for partially defined SCMs and
thereby estimation of semantic meaningfulness.

3.1 Illustration of Metrics

Building on the personal loan application example in Sect. 1, we give a set of
examples to illustrate the proposed semantic meaningfulness metrics, using a
simplified version of the German Credit dataset inspired by Karimi et al. [15].
Consider an individual (input instance x) with {Age: 40, Education: Bachelor,
Income: 30.000, Savings: 2.000} for which the black-box model g recommends the
loan not to be approved {Risk: High}. The objective of counterfactual generation
algorithms h is to provide an instance xcf for which the credit is approved
according to ML model g (validity). The proposed counterfactual explanation
might look similar, e.g., xcf = { Age: 45, Education: Bachelor, Income: 35.000,
Savings: 5.000 }. Assuming this explanation is valid (y �= ycf ), it might or might
not satisfy semantic meaningful output (plausibility) and relations (feasibility).
Figure 1 shows the possible scenarios of (dis)alignment with real-world relations
(represented by the SCM).

First, the proposed counterfactual xcf may satisfy both semantic meaning-
ful output and relations (Fig. 1a). For instance, we expect income to increase
with age and education to saturate after a certain age. Since the counterfac-
tual instance fulfills these expectations (i.e. age is increased as well as savings
and income, but education is unchanged), we consider it feasible. Furthermore,
suppose the counterfactual xcf (that flipped the outcome of the classifier), also
leads to a change in the outcome in the SCM (i.e. risk changes to low when
the explanation is acted upon), then we consider it plausible. Second, the causal
relations may be satisfied, but may not lead to the expected change in outcome
according to the SCM. Figure 1b visualizes this case; income increases with age
and savings with income (both as expected). However, as opposed to before, the
proposed counterfactual does not lead to a change in outcome in the SCM.

Consider now another counterfactual explanation, e.g., xcf ′
= { Income:

40.000 }. This counterfactual explanation xcf ′
might not cohere with causal

relations, even though it might be valid. Income is the only changing input,
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which does not align with the expectation that savings will increase due to this
change when income has passed a certain minimum threshold. Furthermore, we
expect an increase in income to be related to other factors, such as a change in
age and/or education. If this is not reflected in the proposed counterfactual (as
in Fig. 1c), the semantic meaningful relations are not satisfied. However, it can
still happen that the counterfactual explanation xcf ′

does lead to a change in
the outcome in the SCM and therefore has semantic meaningful output due to
an erroneous classification by g. Finally, it can be that both semantic meaningful
output and relations are violated (Fig. 1d).

Fig. 1. Example of Semantic Meaningful Output (SMO) and Relation (SMR) metrics
based on simplified Credit data. Blue: the values changed in the proposed counterfac-
tual explanation. Green: denotes SMO = 1, which means that the SCM and ML model
predict the same outcome. Red: indicates SMO = 0, which means the predictions of the
SCM and ML model are different. (Color figure online)
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3.2 Relation to Prior Work

In this section, we reflect on other related concepts, notations, and metrics pro-
posed in the literature and clarify the relation to our work.

– Karimi et al. [13] propose a probabilistic approach to counterfactual gen-
eration based on fully or partially defined SCMs that takes uncertainty into
account. In their evaluation, they introduce the notion of validity, which is,
in their case, defined as the percentage of individuals for which the recom-
mended action results in a favorable prediction under the true (oracle) SCM.
This notion is closely related to our notion of SMO. In contrast to Karimi et
al. [13], SMO expects a full counterfactual explanation as input (i.e. interven-
tion on all endogenous variables) instead of a minimal action. Further, they
do not consider the fraction of fulfilled relations (like SMR). We argue that
checking if parent-child relationships are still fulfilled for generating meaning-
ful counterfactuals is essential. A counterfactual output might be meaningful
under a given SCM without fulfilling any given causal relationships.

– Mahjan et al. [24] propose the causal-edge score, which is the ratio of the
log-likelihood of a counterfactual with respect to the likelihood of the original
data given a causal-edge distribution. This is related to our metric SMR, but
their proposed constraint feasibility measure only calculates the faction of
counterfactuals that satisfy a given user-level constraint and not how well an
approach is able to capture semantic meaningful relations.

– Afrabandpey et al. [1] propose the notion of global (domain expert con-
straints) and local feasibility (end-user constraints) closely related to the con-
straint feasibility proposed by Mahjan et al. [24]. Both notions are highly
dependent on human input and can, therefore, not capture semantic mean-
ingful relations fully. However, their assumption that a domain expert can
give feedback on the causal relationship between at least some features can
be exploited to calculate SMR at least partly.

– Karimi et al. [11] formulate plausibility constraints with logic formulas to
account for semantics such as immutable features. In contrast to our notion of
plausibility (adhering to a realistic counterfactual), their notion of plausibility
is restricted to consistency with training data (e.g., same data type and range)
and the detainment of immutable features. As argued in Sect. 2, the reliance
on training data is often insufficient.

– Finally, the validity metric is closely related to the SMO metric proposed in
this work. In fact, where validity quantifies whether a counterfactual explana-
tion can flip the classifier’s decision, SMO quantifies whether a counterfactual
explanation can flip the outcome of the SCM (which we assume represents
the user’s mental model of the world).

4 Benchmark Datasets

To show the operationalizability of the metrics, we selected six datasets with
known SCMs that we can use to measure semantic meaningfulness. The datasets
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have different complexities; the synthetic datasets contain only 3 variables (with
varying relations), whereas the semi-synthetic datasets have a larger number of
endogenous variables (8, 7 and 11) with a wider range of values. We use the
following datasets for benchmarking (for causal graphs, see Appendix A):

Synthetic Datasets. As a first example, we base ourselves on the synthetic
toy dataset consisting of 3 variables used by Karimi et al. [13]. We consider all
three variants proposed to test the semantic capabilities of the counterfactual
approaches on different types of relationships.

a) Linear SCM

X1 := U1 U1 ∼ MoG(0.5N (−2, 1.5) + 0.5N (1, 1)
X2 := −X1 + U2 U2 ∼ N (0, 1)
X3 := 0.05X1 + 0.025X1 + U3 U3 ∼ N (0, 1)

Y := Bernoulli((1 + e−2.5(X1+X2+X3))−1)

b) Non-linear SCM

X1 := U1 U1 ∼ MoG(0.5N (−2, 1.5) + 0.5N (1, 1))
X2 := −1 + 3

1+e−2X1
+ U2 U2 ∼ N (0, 1)

X3 := 0.05X1 + 0.025X1 + U3 U3 ∼ N (0, 1)

Y := Bernoulli((1 + e−2.5(X1+X2+X3))−1)

c) Non-additive SCM

X1 := U1 U1 ∼ MoG(0.5N (−2, 1.5) + 0.5N (1, 1))
X2 := 0.25 sgn(U2)X

2
1 + (1 + U2

2 ) U2 ∼ N (0, 0.25)
X3 := −1 + 0.1 sgn(U3)(X

2
1 + X2

2 ) + U3 U3 ∼ N (0, 1)

Y := Bernoulli((1 + e−2.5(X1+X2+X3))−1)

Nutrition Dataset. For the next example, the aim is to predict survival based
on demographic and laboratory measurements from the National Health and
Nutrition Examination Survey [5]. We created an SCM for this first semi-
synthetic dataset with the help of ShapleyFlow [43] and approximated the dis-
tribution with the help of the original dataset.

Age X1 := U1 U1 ∼ N (25, 1)
Sex X2 := U2 U2 ∼ N (0, 1)
Blood Pressure X3 := 0.02X1 + U3 U3 ∼ N (0, 1)
SBP. X4 := 0.12X3 + U4 U4 ∼ N (80, 1)
Pulse Pressure X5 := 0.02X4 + U5 U5 ∼ N (10, 1)
Inflamation X6 := U6 U6 ∼ N (0, 1))
Poverty Index X7 := U7 U7 ∼ N (0, 1)
Sedimation RAE X8 := 0.03X7 + U8 U8 ∼ N (0, 1)
Risk y := (−0.21X2 − 0.59X1 + 0.03X8 − 0.04X7 + 0.02X5 + 0.1X4) > −6
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Credit Dataset. The second semi-synthetic dataset is a modification of the
German Credit data and also extracted from the work of Karimi et al. [13]. The
dataset contains information on personal loan applications, e.g., demograph-
ics and financial attributes, with the goal to distinguish people with good (i.e.
approve loan) or bad (i.e. decline loan) credit risks.

Gender X1 := U1 U1 ∼ Bernoulli(0.5)
Age X2 := −35 + U2 U2 ∼ Gamma(10, 3.5)

Education X3 := −0.5 + (1 + e−(−1+0.5X1+(1+e−0.1X2 )+U3)−1 U4 ∼ N (0, 0.25)
Loan Amount X4 := 1 + 0.01(X2 − 5)(5 − X2) + X1 + U4 U4 ∼ N (0, 4)
Loan Duration X5 := −1 + 0.01X2 + 2X1 + X4 U5 ∼ N (0, 9)
Income X6 := −4 + 0.1(X2 + 35) + 2X1 + X1X3 + U6 U6 ∼ N (0, 4))
Savings X7 := −4 + 1.5 · 1X6>0X6 + U7 U7 ∼ N (0, 25)

Output Y := Bernoulli((1 + e−0.3(−X4−X5+X6+X7+X6X7 )−1)

Economic Dataset. As last example, we consider a dataset with information on
economic growth [44]. Xu et al. [44] modeled the relationship between economic
growth and (factors related to) electricity consumption for China using data from
the National Bureau of Statistics of China1. We adopted the SCM from Xu et al.
[44] and approximate the distribution from the data. We further transformed the
original regression problem into a classification problem by dividing the outcome
(i.e. economic growth) into two classes, by setting a threshold equal to the mean.

Energy Source Struct. X1 := U1 U1 ∼ N (0, 1)
Informatization Level X2 := 0.836X4 + 0.464X3 + U2 U2 ∼ N (0, 11)
Ecological Awareness X3 := 0.889X4 + U4 U4 ∼ N (17, 90)
Electricity Cons. X4 := U4 U4 ∼ N (0, 100000)
Electricity Investment X5 := 0.898X4 + U5 U5 ∼ N (0, 99999)
Investment Other X6 := 0.783X5 + U6 U6 ∼ N (0, 15))
Employment X7 := 0.789X4 + U7 U7 ∼ N (0, 70)
Secondary Industry X8 := 0.566X4 + 0.561X2 + U8 U8 ∼ N (0, 2000)
Teritary Industry X9 := 0.537X4 + 0.712X2 + U9 U9 ∼ N (0, 2000)
Prop. non-agriculture X10 := 0.731X8 + 0.612X9 + 0.662X6 + 0.605X2 + U10 U10 ∼ N (0, 100)
Labor Productivity X11 := 0.918X4 + U11 U11 ∼ N (0, 500000)
Output Y := (0.538X6 + 0.426X7 + 0.826X11 + 0.293X2+

0.527X10 + 0.169X4 + 0.411X1) > 500.000

5 Empirical Evaluation

With the help of the proposed metrics, we evaluate the capabilities of nine well-
established counterfactual explanation approaches for three ML models trained
on three synthetic and three semi-synthetic datasets. We used the CARLA
Recourse library [28] for the implementation of the counterfactual approaches
and classifiers. The implementation of our metrics follows the CARLA imple-
mentation structure and can, therefore, easily be used in combination with the
CARLA Benchmarking Tool. The code for our experiments can be found on
GitHub2.

1 http://www.stats.gov.cn/english/Statisticaldata/AnnualData/.
2 https://github.com/JHoelli/Semantic-Meaningfulness.

http://www.stats.gov.cn/english/Statisticaldata/AnnualData/
https://github.com/JHoelli/Semantic-Meaningfulness


646 J. Höllig et al.

Figure 2 shows a visualization of our experimental flow. First, we generate
data based on the SCM to ensure data compliance. This is important to avoid
any noise influencing the generation of counterfactuals. Next, we draw 10.000
samples and divide those samples into a 75/25 train/test split. We train our
classifier with the training data as described in Sect. 5.1. Throughout the exper-
iments, the (generated) datasets and trained classifiers remain the same. For
each combination of dataset, classifier, and counterfactual approach described
in Sect. 5.2, we try to generate 250 counterfactual explanations. We evaluate the
semantic meaningfulness of the resulting explanations with our proposed metrics
and analyze the results in Sect. 5.3.

Fig. 2. Flow of data in experiments.

5.1 Machine Learning Models

For each dataset, we train a Linear Model, a Random Forest (RF) with 5 esti-
mators and a max depth of 5, and a Multilayer Perceptron (MLP) with three
hidden layers of size 18, 9 and 3. The MLP is trained for ten epochs with a batch
size of 16 and a learning rate of 0.001. The performance of the classifiers are mea-
sured with the Area under the Curve (AUC) and can be found in Table 1. Note,
that the classifiers achieve high or almost perfect (Linear, MLP) discrimination
between classes for the three simple, synthetic datasets (i.e. Linear, Non-linear,
and Non-additive SCM).

Table 1. Classifier performance as measured by AUC on each dataset.

Nutrition Credit Economic Linear SCM Non-linear SCM Non-additive SCM

Linear 0.88 0.76 0.83 1.0 1.0 1.0

Random Forest 0.85 0.82 0.81 0.81 0.97 0.73

MLP 0.9 0.69 0.82 1.0 1.0 0.99
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5.2 Counterfactual Approaches

We compare 9 counterfactual generation approaches that we categorized in
causal-based (1x), constraint-based (4x), surrogate-based (2x) and model-
specific (2x) approaches, based on the taxonomy presented by Verma et al. [40].
In this section, we give a short description of each method. All methods were
applied to the Linear and MLP models except for the model-specific approaches,
which were (only) applied to the RF models.

Causal-Based:

– Causal Recourse (CR) [15] aims to find the minimal cost set of actions that
results in a counterfactual instance favorable to the classifier g. A∗ specifies
the actions to be performed for a minimal causal recourse. Thereby, xSCF

is not a structural counterfactual obtained by intervening the SCM, but the
minimal action needed to obtain xSCF . As this method incorporates causal
relations, we use this as a sanity check for our proposed metrics.

Constraint-Based:

– Wachter et al. (W-CF) [42] find a counterfactual explanation with the small-
est change (distance/cost) relative to the original datapoint that is classified
differently. This method assumes independent features. As hyperparameters,
the default parameters proposed by [28] are used.

– Growing Spheres (GS) [20] is a method that generates samples around the
original datapoint by growing hyperspheres until the desired class label is
found.

Surrogate-Based:

– Counterfactual Latent Uncertainty Explanations (CLUE) [3] uses a generative
model (variational autoencoder with arbitrary conditioning) that takes the
classifiers uncertainty into account and generates counterfactual explanations
that are likely to occur under a data distribution. As hyperparameters, the
default parameters proposed by [3] are used.

– Counterfactual Conditional Heterogeneous Autoencoder (CCHVAE) [29] gen-
erates faithful counterfactuals by ensuring that the produced counterfactuals
are proximate (i.e., not local outliers) and connected to regions with substan-
tial data density (i.e., close to correctly classified observation. The counter-
factual search is thereby included into a data density approximator, in this
case a Variational Autoencoder (VAE). Counterfactuals are sampled from the
latent space of the VAE.

– Counterfactual Recourse Using Distangled Subspaces (CRUDS) [7] creates
counterfactuals by using a conditional subspace VAE with the goal to sat-
isfy underlying structure of the data. Default parameter from the CARLA
Recourse library are used.
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– Actionable Recourse (AR) [38] is based on integer programming and only
applicable to linear models (e.g., logistic regression models, linear support
vector machines). For non-linear models, coefficients are approximated with
LIME [34]. As we do not only apply AR for linear models, but also need
to approximate coefficients with LIME for MLP, we categorize AR as a
surrogate-based approach.

Model-Specific:

– Flexible Optimizable Counterfactual Explanations for Tree Ensembles
(FOCUS) [23] is an approach for finding counterfactuals for non-differentiable
models, e.g., tree ensembles. The method uses a probabilistic approximation
of the original tree ensemble.

– Feature Tweaking (FT) [37] exploits the internals of a tree-based ensem-
ble classifier by tweaking the feature-based representation of a true negative
instance such that the modified instances result in a positive classification
when re-inputted to the classifier.

5.3 Results

We present results evaluating nine counterfactual explanation approaches using
the proposed SMO and SMR metrics across six datasets. In particular, we
investigate the semantic meaningfulness of different counterfactual approaches
(Sect. 5.3), the influence of the classifier (performance) on the semantic meaning-
fulness of the counterfactual approaches (Sect. 5.3), and the relationship between
the two semantic meaningfulness metrics (Sect. 5.3).

Existing (Non-causal) Counterfactual Approaches Vary in Semantic
Meaningfulness. Figure 3 shows the results evaluating the semantic meaning-
fulness of different counterfactual approaches. As a sanity check, we first applied
a causal-based approach. Due to the large increase in computation time for an
increasing number of endogenous variables and relations, only results for the syn-
thetic datasets could be obtained (see Fig. 3a–c). Using CR on these datasets,
SMO has a median of 1 and a mean slightly below 1, indicating that our proposed
metric aligns with the SCM and works as intended. Erroneous classifications of
the ML classifier can explain why the mean is slightly less than 1 for SMO. SMR
is equal to 1 for both the Linear and Non-linear SCM, showing causal relations
are satisfied. For the Non-additive SCM, on average, only 2 out of 3 possible
relationships could be fulfilled. This is because the counterfactuals returned by
CR are not supposed to fulfill all constraints of the graph, but rather include a
minimal change that would conclude in the desired result by iterating through
the graph (i.e., CR returns a minimal action set). Overall, the nearly perfect val-
ues for SMO and SMR found for the causal method, indicate that our proposed
method works as intended.

We further find that the constraint-based approach W-CF scores very low on
SMR, indicating that this method (assuming independence between features) is
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Fig. 3. Semantic Meaningful Output (SMO) and Relation (SMR) metrics averaged
over ML models. The bars show the median and the interquartile distance. The dotted
lines show the mean and the standard deviation. When only one horizontal line is
shown for a given counterfactual approach, it means the mean, standard deviation,
and median are the same for SMO and/or SMR.

non-compliant with known causal relations. Combined with the slightly higher
SMO, the method generates counterfactuals that are likely to have a realistic
output but with a combination of features that is unlikely to be observed in the
real world. GS offers a higher SMR compared to W-CF. The better performance
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compared to W-CF might result from the optimization function that includes
a sparsity constraint (a penalization on feature changes) and their optimization
heuristic.

Next, we observe that the surrogate-based approaches CCHVAE, CLUE, and
CRUDS score relatively high on SMO. However, the performance on SMR varies;
whereas CLUE and CRUDS score very low across all datasets, CCHVAE scores
reasonably well. This occurs despite all VAE-based approaches being trained
with the same parameter settings. A reason for the worse performance of CRUDS
and CLUE might be the optimization function based on the decoded latent
(similar to the W-CF function with additional restrictions), which can result
in counterfactuals changing the outcome but not fulfilling the causal relations.
Meanwhile, the nearest neighbor style search in the latent space provided by
CCHVAE, leads to possibly further distance counterfactuals by sampling in the
latent space for distance to a higher likelihood of obtaining learned constraints.
For AR the linear coefficients were approximated by applying LIME [34]. The
quality of these linear models can largely differ, leading to higher variability and
worse average values for SMO and SMR compared to deep learning based VAEs.
Note, that for the Economic dataset CLUE and AR are missing; CLUE was not
able to find valid counterfactuals and the integer programming problem size of
AR is too large to be calculated with the open source version of CPLEX.

Finally, for the model-specific approaches (FT and FOCUS) we observe a
high SMR, but a lower SMO. These approaches could only be applied to Forest
Classifiers, but the high SMR shows it could capture the causal relations from
the underlying forest well.

From the model-agnostic and non-causal counterfactual approaches, we con-
clude surrogate-based approaches perform slightly better than constraint-based
approaches. This is expected as these approaches consider the data manifold.
From the constraint-based approaches, only CCHVAE and CRUDS were appli-
cable to all datasets. CCHVAE performed consistently best on SMR across all
datasets, while it still had a similar SMO compared to other approaches (e.g.,
CRUDS). Surprisingly, model-specific approaches also captured causal relations
well and even outperformed CCHVAE on the Non-additive SCM and Economic
datasets. The weak performance of all approaches on SMR for the Economic
dataset can be explained by the small number of exogenous variables (#2) in
combination with a high number of endogenous variables (#9)3. Overall, the
results show the performance of the counterfactual approaches differs between
datasets and diverges for the most complex dataset (Fig. 3f) compared to the
simpler datasets (Fig. 3a–e).

3 While 1 of 3 relations are always fulfilled for the synthetic dataset, this is only the
case for 2 out of 11 are in the Economic dataset. This leads to a significantly lower
minimum performance (and can explain the worse results).
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Fig. 4. Semantic Meaningful Output (SMO) and Relation (SMR) metrics performance
averaged over counterfactual approaches. The red line denotes the classifier perfor-
mance in terms of AUC. (Color figure online)

The Importance of a Good Classifier for Meaningful Counterfac-
tual Explanations. Next, we investigate between-classifier differences. Figure 4
shows the results for different datasets and ML models, averaged over counter-
factual approaches. The classifier performance is visualized with the red line.

In Fig. 4a, we see that the performance of SMO is not directly related to
the quality of the classifiers. For instance, MLP has the highest SMO on the
Credit dataset, even though it achieves the lowest AUC. However, SMO is at
least indirectly related to performance via data complexity. The SMO and clas-
sifier performance are both highest for the simple synthetic datasets. In Fig. 4b,
we observe better classifier performance roughly corresponds to better SMR -
except for Non-additive SCM. For this dataset, both the Linear and MLP model
show a promising classifier performance, even though the counterfactual app-
roach based SMR results in a worse score than for Random Forest. It can be
concluded that Linear and MLP based counterfactual approaches have issues cre-
ating semantic meaningful counterfactuals for non-additive relations. The model-
specific approaches evade this issue, using the features extracted by the classifier
models.

Although the results indicate that the counterfactual explanations generated
on classifiers with higher AUC were more coherent with causal relations (inde-
pendent of the counterfactual generation approach), we conclude good classifier
performance is necessary but not sufficient.

Semantic Meaningful Output and Relations Measures Are both
Needed. Finally, we evaluate the connection between SMO and SMR. Figure 5
shows the connection between SMO, SMR, and the notion of validity (i.e. a coun-
terfactual that changes the class predicted by the ML model from y to ycf ). We
found that, out of the total 23,750 counterfactuals we tried to generate, 71% were
valid. From those valid counterfactuals, 71% achieved a semantic meaningful out-
put (SMO = 1), and only 42% of those also fulfilled complete semantic meaning-
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ful relations (SMR = 1). This means that 58% of the counterfactual explanations
had semantic meaningful output, without satisfying semantic meaningful rela-
tions (SMR<1). As semantic meaningful output can be caused by an erroneous
classification of the desired class by the ML model or achieved with unrealis-
tic feature combinations, evaluating feature combinations for causal relations is
important. This underscores the need for the combined use of the two metrics.
On the other hand, 7% of the counterfactuals with perfect semantic relationships
(SMR = 1) did not satisfy semantic meaningful output, which could be caused
by imperfect classifications of the ML classifier.

Fig. 5. Venn Diagram visualizing overlap between Semantic Meaningful Output
(SMO), Semantic Meaningful Relations (SMR), and Validity metrics for counterfac-
tuals. Note that this plot only includes perfect semantic relationships (SMR = 1).

6 Practical Implications

In this section, we highlight how the proposed metrics and benchmark datasets
are useful for different target audiences:

– Developers of counterfactual approaches can use the metrics to quantify
the causal capabilities of their methods on the provided set of benchmark
datasets, enabling direct comparisons of existing and new approaches in a
transparent, replicable, and unified way. The datasets (and SCMs) with vary-
ing levels of complexity allow developers to understand limitations and iden-
tify directions for improvement.

– Practitioners and users of counterfactual explanations can use the metrics
with the benchmark datasets to get insight into the causal capabilities of dif-
ferent approaches. When used in combination with other potentially impor-
tant metrics (e.g., sparsity [12] and actionability [40]), this can be used to
guide the choice between different explanation approaches by examining sev-
eral metrics (and potential arising trade-offs) for datasets (and SCMs) with
varying levels of complexity. For example, for classification model debugging,
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explanations via edge cases might be interesting (acceptance of poorer causal
capabilities for lower sparsity and proximity) to understand the classifier’s
inner workings. However, if counterfactual explanations are intended for the
use in consequential decision making (i.e., to provide an explanation to indi-
viduals affected by models), counterfactual approaches replicating the real
world are preferred (acceptance of higher sparsity and proximity for better
causal capabilities).

7 Conclusion

In this work, we proposed two metrics in combination with (semi-)synthetic
datasets to measure the ability of counterfactual generation approaches to depict
real-world relations. This allows for benchmarking new and existing counter-
factual approaches based on Semantic Meaningful Output (i.e., the fraction of
explanations that lead to the same outcome in the real world) and Relations (i.e.,
the fraction of fulfilled causal relationships). A priori benchmarking of meth-
ods is important as SCMs are often (fully or partially) missing for problems
of interest, making it impossible to apply causal-based counterfactual explana-
tion approaches (e.g., [15]) and/or evaluate explanations for a given problem.
This work overcomes the - typically existing - lack of ground truth when mea-
suring to what extent causal relations and effects are satisfied for (non-causal)
counterfactual generation approaches.

Based on the six (semi-)synthetic datasets evaluated in this work, we con-
clude that nine well-established counterfactual approaches differ in semantic
meaningfulness, with drastically decreasing overall performance for more com-
plex datasets. We found surrogate approaches work well for simple datasets,
but could perform better on datasets with a larger number of variables (e.g.,
Economic dataset). Further, we show that the ML model must sufficiently cap-
ture causal relations for the counterfactuals to align with the SCM. Although
this might seem straightforward, there is little work considering classifier per-
formance when evaluating counterfactual desiderata (e.g., realisticness or feasi-
bility). Finally, the proposed metrics can only capture the notion of semantic
meaningfulness when used in combination; observing semantic meaningful out-
put (i.e., plausible explanations) for a counterfactual generation approach does
not necessarily imply semantic meaningful relations (i.e., feasible explanations),
and vice versa.

Note that our notion of semantic meaningfulness only evaluates if a counter-
factual is causally consistent. Whether a counterfactual is actionable (i.e., a user
can change the output of the model by doing an action), is not part of this work.
Usually, actionability is considered when generating counterfactual explanations
by setting features as mutable or immutable (e.g., [40]). Furthermore, evaluating
semantic meaningfulness on any real-world dataset is still an open issue due to
the complexity of obtaining a fully specified SCM.
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We only evaluated the counterfactual approaches on a small set of models
(Linear, Random Forest, Multilayer Perceptron) that were trained on relatively
simple (semi-)synthetic datasets. Even though the proposed metrics and bench-
marks work independently of the model and the counterfactual approach chosen,
not all counterfactual approaches could be applied to all models and datasets.
First, we could not apply the causal-based approaches to the three semi-synthetic
datasets (due to the large computation power needed), which could have given
a better insight into the relative performance of these methods in relation to
non-causal approaches. Second, only the model-specific approaches were usable
for Random Forest, as the remaining counterfactual approaches (currently) only
work for gradient-based models in the CARLA Recourse library.

In future work, it would be interesting to analyze more classifiers (e.g., Convo-
lutional Neural Networks) with varying performance, more complex SCMs (e.g.,
containing more than 10 endogenous variables and more complex relations),
and extend the notion of semantic meaningfulness to different data types (e.g.,
images [33], time series [21]) to expand the applicability of our approach. Our
study showed that capturing causal relations while generating counterfactuals is
still an open problem. For one, counterfactual generation approaches based on
causal relations lack real-world applicability. Moreover, none of the non-causal
approaches were able to create semantic meaningful counterfactuals consistently,
resulting in unreliable explanations not necessarily coherent with known causal
relationships. Although there might not be a direct relationship between the
performance of SMO/SMR on the benchmark datasets and the dataset of inter-
est, the metrics can be used to develop an understanding of the limitations
of explanation generating methods, which is crucial for adequate application
and interpretation of counterfactual explanation methods. Quantifying semantic
capabilities is just the first step to developing counterfactual approaches with
better causal capabilities.

Acknowledgements. We would like to thank the organizers of the eXplainable AI
Summer School (XAISS) 2022 in Delft and Martin Pawelczyk, who inspired us to do
this research.
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Fig. 6. Synthetic datasets.

Fig. 7. Nutrition dataset.

Fig. 8. Credit dataset.
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Fig. 9. Economic dataset.
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