
Introduction of an Assistant for Low-Code
Programming of Hydraulic Components

in Mobile Machines

Eva-Maria Neumann1(B), Fabian Haben2, Marius Krüger1, Timotheus Wieringa3,
and Birgit Vogel-Heuser1,4

1 TUM School of Engineering and Design, Institute of Automation and Information Systems,
Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
{eva-maria.neumann,marius.krueger,vogel-heuser}@tum.de

2 Stadtwerke München, Emmy-Noether-Straße 2, 80992 Munich, Germany
fabian.haben@protonmail.com

3 HAWE Hydraulik SE, Einsteinring 17, 85609 Aschheim, Germany
t.wieringa@hawe.de

4 Core Member of MDSI, Member of MIRMI, Munich, Germany

Abstract. The increasing functionality of automation software in complex
mechatronic systems such as constructionmachinery is amajor challenge for com-
panies to remain competitive.Amajor difficulty is that the software development in
construction machinery often involves employees from different disciplines who
have technological expertise about the process but little software background.
Low-code platforms allow software to be developed intuitively without extensive
programming knowledge. However, in mechatronics, the resulting programs are
often facing the so-called scaling-up problem that occurs in case highly complex
technical processes are implemented using graphical programming languages.
This paper thus presents an assistant that supports the programming of automa-
tion software on low-code platforms to reduce the complexity of the resulting
code. Static code analysis and machine learning are combined to enable predic-
tions about software blocks to be used. For the example of the low-code platform
eDesign, a graphical programming platform developed by HAWE Hydraulik SE,
it is shown how users of the platform can be assisted in creating maintainable,
reusable automation software in the construction machinery sector.

Keywords: mobile machines · construction machinery · low-code · visual
programming languages · static code analysis · data mining · assistance system

1 Motivation and Introduction

The increasing complexity of automation software in mechatronic systems and the asso-
ciated problems with code maintainability are a major challenge for companies to sur-
vive in the global market in the long term. A major difficulty is that the development
of software for mechatronic systems often involves technicians who have technological

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Fottner et al. (Eds.): CLEaR 2023, LNCE 390, pp. 115–122, 2024.
https://doi.org/10.1007/978-3-031-44021-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44021-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-44021-2_13


116 E.-M. Neumann et al.

expertise about the process but little software background [1]. To this end, low-code
platforms allow software to be developed via an intuitive graphical interface even with-
out extensive programming knowledge, usually using Visual Programming Languages
(VPL). Although such platforms have already found their way into the world of automa-
tion technology, the resulting programs are often difficult to understand and maintain
due to the high complexity of the technical processes to be controlled, leading to the so-
called scaling-up problem in graphical languages [2]. In the field of high-level language
software, there are already a large number of programming assistants to minimize the
complexity of the code already during programming. For automation software in mecha-
tronics, however, such approaches are hardly available so far [3]. This paper therefore
presents a programming assistant that supports the programming of automation software
on low-code platforms to reduce the complexity of the resulting code. To develop the
system, approaches from static code analysis and machine learning were combined to
enable predictions about software blocks to be used and optimal assistance for the user.
Using the low-code platform eDesign, a graphical programming platform developed
by HAWE Hydraulik SE, it is demonstrated how users of the platform can be assisted
in creating maintainable, reusable automation software in the construction machinery
sector. The assistance is provided on three levels:

• Calculation and display of complexity metrics: By quantitatively evaluating various
properties of the graphical programs, the user receives direct feedback on which
adjustment screws can improve comprehensibility.

• Encapsulation of recurring function block combinations: If recurring sub-functions
consisting of several function blocks are identified in a project, they can be
encapsulated in one function block, thus significantly reducing complexity.

• Suggestions for function blocks to be used: Based on machine learning algorithms,
the programming assistant learns from the structure of existing projects and can
thus generate live suggestions for function blocks to complete the program during
programming.

The presented paper enlarges previous results published in [1] by providing more
details on the implemented programming assistant and a concrete.

2 State-of-the-Art in Analyzing and Assisting Low-Code
Development

Static code analysis is an established lever to identify optimization potentials without
executing the code and quantifying specific quality characteristics [2], e.g., using soft-
waremetrics. However, in the field of VPL, static code analysis is not yet widespread and
existing approaches are often tailored to an individual language, such as MathWork’s
Model Metrics [3] for Simulink. Besides the syntactical program composition, also the
layout quality strongly influences a VPL program’s understandability, i.e., the visual
arrangement of blocks and their connections. Taylor et al. [4] propose a set of metrics to
quantify the graphical design quality. In the field of IEC 61131-3 compliant automation
software, Capitán and Vogel-Heuser [5] use metrics adapted from IEC 61131-3 by Hal-
stead [6] and McCabe [7], as well as metrics by Henry and Kafura [8] and the Module



Introduction of an Assistant for Low-Code Programming 117

Size Uniformity Index (MSUI) by Sarkar et al. [9]. Fischer et al. [10] investigate the
overall complexity of graphical and textual IEC 61131-3 software. For this purpose,
several metrics are used that evaluate different classes of software complexity. A com-
mon approach to reducing complexity is the encapsulation of recurring functionalities
in reusable units. Duplicated code or so-called code clones in the software can be a hint
for recurring functionalities that are reused via Copy, Paste & Modify, and, thus, can be
a starting point for standardization [11]. One of the first algorithms for finding clones
in graph-based modeling languages is CloneDetective [12], which can be adapted to
various textual programming languages and also to VPLs such as Simulink. However,
this requires suitable translators for each VPL. Recently, Rosiak et al. introduced an
approach capable of identifying code clones in graphical IEC 61131-3 languages based
on similarity metrics [13], which, however, does not provide live assistance during pro-
gramming. There is a variety of approaches from static code analysis to identify highly
complex or duplicated code structures in VPL and low-code, but available methods are
usually tailored to specific VPL and cannot be transferred to other languages without
adaptions. Additionally, assistance or suggestions to compensate high complexity values
is usually not included.

Data mining is the process of finding functional structures in existing data and is
thus ideally suited for extracting knowledge from code analysis data that can be used to
build programming assistants. Bruch et al. [14] use data mining to derive suggestions for
the programmer based on existing projects by analyzing the context, the frequency of
calls to existing methods, and rules derived from previous projects. Further approaches
to formulate suggestions to complete code during programming are based on natural
language processing [15] or neural networks [16, 17]. The SimVMA system for Simulink
[18] is capable of predicting complete systems in an early stage based on partially
implemented systems and generates individual next steps as suggestions. The approach
fromDeng et al. [19] is based on the analysis of subgraphs in available projects in a graph-
based representation. On this basis, a structure table is created that includes the subgraph
leading to a selected node, the possible subsequent nodes, and the confidence for each
combination. When a node is selected by the user, a similarity of the corresponding
subgraph is calculated for all subgraphs in the structure table. Potential candidates can
then be prioritized by confidence. Due to the promising results, this approach [19] is used
as a basis to derive the proposed programming assistant. Regarding commercial tools, the
generation of suggestions of elements to be used next has been established since long for
textual languages, e.g. Visual Studio’s ReSharper [20]. For VPL, however, commercial
programming assistants to support the programmer are rare. Low code platforms such as
SiemensMendix [21] allow the simple programming of applications for different fields,
but no assistance, e.g., based on data analysis of existing projects is provided.

In summary, there are different concepts to support programmers during writing the
code by providing suggestions. However, to the best of the authors’ knowledge, there
is up to now no approach for low-code platforms that combines assistance to automati-
cally quantify complexity, identify reuse potentials, and provide live recommendations
during programming. Thus, this paper enlarges the previously introduced programming
assistant by the authors [1] by providing additional details on the implementation as well
as the practical usage of the assistance in a user study.



118 E.-M. Neumann et al.

3 Concept of a Programming to Develop Low-Code

To allow the user to objectively quantify program complexity during programming, find
and replace code duplicates within a project, and generate suggestions for blocks to be
used next, a general concept for a programming assistant is proposed that can be tailored
to any VPL that is representable as nodes connected by edges. The concept involves a
two-step approach (see Fig. 1): Before the creation of a new project, i.e., pre-coding,
knowledge is extracted from previous projects to enable different types of assistance
functions for programmers during coding.

Collection of VPL projects

Calculation and analysis of complexity 
metrics

Selection of 
metrics

Graph transaction-
based

Single graph-
based

Frequent 
Subgraph 

MiningGenerate 
recommendations

Coding a new projectCalculation of 
metrics (live)

Detect and 
replace clones

(1) Pre-coding

(2) During coding (online)

Fig. 1. Overview of the two parts to of the low-code programming assistant (adopted from [1])

In the pre-coding, a data basis of available projects is required that initially need to
be transformed to a graph-based representation. This is the basis to select complexity
metrics that shall be displayed for the user when developing code. Additionally, frequent
subgraph mining is performed on the collected projects to generate a basis to derive
suggestions during programming. More precisely, a graph-transaction based approach
is followed. During Coding, the user is supported live during programming in a low-
code environment based on the data set established in the previous phase: Complexity
metrics are calculated for thewhole project and updatedwhenever the project is changed.
Additionally, duplicated code parts are identified that can be encapsulated as reusable
blocks. Finally, suggestions for blocks to use next are proposed as soon as the developer
clicks on an existing block in a given project. For details on the applied code analysis
and data mining methods, please refer to [1].

4 Prototype of the Programming Assistant

The following section illustrates the implementation of the programming assistant by
means of a prototype on the example of the low-code platform HAWE eDesign. eDesign
aims to facilitate the programming of hydraulic components by providing different
function blocks connected via ports (cf. Fig. 2).

As a basis for selecting complexity metrics and the suggestion of blocks, a data
basis of 1,269 anonymized eDesign user projects has been analyzed during the Pre-
Coding phase (cf. Fig. 1). For the pre-analysis of the projects, the metric values are
determined with a Python Jupyter Notebook [22] based on different sources. In addition
to the graphical representation of eDesign, there is a textual intermediate representation



Introduction of an Assistant for Low-Code Programming 119

of the programs in the high-level C language, which allows the application of analysis
techniques for textual languages. In this case, multimetric [23] is used to calculate com-
plexity metrics for the C code. Additionally, metrics for the graphical representation are
complemented based on the Python library Network X [24] and by own implementa-
tion of the metrics of Taylor et al. [4] and further metrics in C#. Based on a statistical
pre-analysis of the projects, it is concluded that the three Halstead metrics Vocabulary,
Length, andDifficulty as well as McCabe’s Cyclomatic Complexity and theOverall Lay-
out Quality according to Taylor reveal the most significant insights into the projects’
complexity and, thus, will be included in the programming assistant.

The programming assistant is developed in C# and allows programming new projects
in a low-code environment similar to HAWE eDesign. To evaluate the proposed con-
cept, the different sub-concepts of the programming assistant must be usable during the
programming of new projects. This requires an additional connection to the associated
web application. To calculate the metrics based on the graphical representation of the
program, projects from HAWE eDesign can be loaded into the prototype. During the
import, the previously selected metrics are automatically calculated. Thus, all calculated
metrics for a project can be bundled by the prototype and exported in a single file (cf.
Area 5 in Fig. 2).

Fig. 2. Prototypical implementation of the programming assistant for the example of the low-code
environment HAWE eDesign (areas 1–7 highlighted in yellow; adopted from [1]) (Color figure
online)

Area 1 allows loading and creating new projects. Once a new project has been loaded
or created, programming can be done inArea 2. InArea 4, various functions can be started
manually, such as the calculation of metrics or the automatic grouping. The metrics in
Area 5 are automatically updated once the program structure is changed. In Area 6,
other metrics can be displayed, such as the individual values of the overall quality of the
design. Area 3 shows all possible blocks that have been implemented in the prototype
and can therefore be used for programming. To use them, simply drag and drop them
into the programming area. Below, in Area 7, the candidates of the proposed assistant



120 E.-M. Neumann et al.

are shown. These are calculated as soon as a block is selected. In contrast to the original
VPL used in HAWE eDesign, groups encapsulating several blocks can be created as a
starting point for standardization in this implementation. The groups thus created can
continue to be used in the program in the same way as existing blocks.

5 Evaluation in User Study

The prototypically implemented programming assistant was evaluated in a user study
with ten students with a background comparable to that of the focused dedicated spe-
cialists (pronounced technical process knowledge but little programming skills). The
benefits of the programming assistant were assessed in four programming tasks and a
subsequent survey. The participants were divided into two groups – Group 1 worked on
the programming tasks with assistance, Group 2 without assistance. Figure 3 shows an
example for the sample solution of a task to reuse a certain functionality (in this case:
limitation based on logical operators) in different parts of a given project. The possibility
to encapsulate and reuse functionality with the assistance activated in Group 1 leads to
a significantly reduced complexity compared to Group 2.

With assistance 
(Group 1)

Without 
assistance 
(Group 2)

Fig. 3. User support in the programming assistant to reduce complexity by encapsulating reusable
functionality in Group 1 (blue blocks left) compared to reuse without encapsulation via Copy &
Paste in Group 2 (blue dotted areas right). Reusable functionality was automatically identified in
Group 1 via clone detection.

The user study confirmed that the use of the programming assistant led to consider-
able time savings of approx. 54% on average based on timemeasurements in both groups
for the completion of each of the given tasks. Additionally, the features of the program-
ming assistant were perceived as helpful overall. In the future, however, further analyses
are required with industrial practitioners using eDesign in their daily development work
to program hydraulic components.

The findings of the user study were confirmed in an industry workshop with three
developers fromHAWEeDesign to evaluate the concept from the perspective of low code
platform developers. The workshop confirmed that from the point of view of the inter-
viewed industry experts, the programming assistant is considered helpful and applicable
for their customers.



Introduction of an Assistant for Low-Code Programming 121

6 Conclusion and Outlook

This paper presents a concept for a programming assistant to support dedicated specialists
with sophisticated process knowledge but little programming experience in developing
software in low-code platforms by metric-based complexity assessment, encapsulation
of code duplicates, and suggestions for blocks to be used live during programming, thus
reducing the scaling-up problem in VPL. Using the example of the low code platform
HAWE eDesign, the applicability and advantages of the assistance have been success-
fully evaluated in a study with users emulating dedicated specialists and an additional
workshop with industry experts.

Current research in the context of Industry 5.0 highlights the importance of sup-
porting humans with innovative approaches from automation to cope with shortened
innovation cycles and the increasing system complexity, especially regarding the increas-
ing scope of functionality implemented via software. Since knowledge of the technical
process is becoming increasingly important in software development for mechatronic
systems, software will increasingly be written by dedicated specialists without in-depth
programming knowledge. Thus, the relevance of low code platforms is expected to
increase in the next year. Therefore, future work is required to adopt the implementa-
tion of the proposed concept of a programming assistant for further VPL and low-code
platforms by considering users with different background and degree of qualification.

Acknowledgment. This work was supported by the Bavarian Ministry of Economic Affairs,
Energy and Technology via the project AIValve (Grant No. DIK0116/01).

References

1. Neumann, E.-M., Vogel-Heuser, B., Haben, F., et al.: Introduction of an assistance system to
support domain experts in programming low-code to leverage industry 5.0. IEEE RA-L 7,
10422–10429 (2022)

2. Nachtigall, M., Nguyen Quang Do, L., Bodden, E.: Explaining static analysis - a perspective.
In: IEEE/ACM International Conference on Automated Software Engineering Workshop
(ASEW), pp. 29–32. IEEE (2019)

3. MathWorks Model Metrics. https://de.mathworks.com/help/slcheck/model-metrics.html.
Accessed 14 June 2023

4. Taylor, M., Rodgers, P.: Applying graphical design techniques to graph visualisation. In: 9th
International Conference on Information Visualisation, pp. 651–656. IEEE (2005)

5. Capitán, L., Vogel-Heuser, B.: Metrics for software quality in automated production systems
as an indicator for technical debt. In: IEEE CASE, pp. 709–716. IEEE (2017)

6. Halstead,M.H.: Elements of Software Science. Elsevier Computer ScienceLibrary.Operating
and Programming Systems Series, vol. 2. Elsevier, New York and Oxford (1977)

7. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2, 308–320 (1976)
8. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans.

Softw. Eng. SE-7, 510–518 (1981)
9. Sarkar, S., Rama, G., Kak, A.: API-based and information-theoretic metrics for measuring

the quality of software modularization. IEEE Trans. Softw. Eng. 33, 14–32 (2007)
10. Fischer, J., Vogel-Heuser, B., Schneider, H., et al.: Measuring the overall complexity of

graphical and textual IEC 61131-3 control software. IEEE RA-L 3, 5784–5791 (2021)

https://de.mathworks.com/help/slcheck/model-metrics.html


122 E.-M. Neumann et al.

11. Ain, Q.U., Butt, W.H., Anwar, M.W., et al.: A systematic review on code clone detection.
IEEE Access 7, 86121–86144 (2019)

12. Juergens, E., Deissenboeck, F., Hummel, B., et al.: Do code clones matter? In: IEEE ICSE,
pp. 485–495. IEEE (2009)

13. Rosiak, K., Schlie, A., Linsbauer, L., et al.: Custom-tailored clone detection for IEC 61131-3
programming languages. JSS 182, 1–18 (2021)

14. Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion
systems. In: Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, p. 213. ACM Press, New
York (2009)

15. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical language models. In:
O’Boyle, M., Pingali, K. (eds.) Proceedings of 35th ACM SIGPLAN PLDI, pp. 419–428.
ACM, New York (2014)

16. Svyatkovskiy, A., Zhao, Y., Fu, S., et al.: Pythia: AI-assisted code completion system. In:
Teredesai, A., Kumar, V., Li, Y., et al. (eds.) 25th ACM SIGKDD KDD, pp. 2727–2735.
ACM, New York (2019)

17. Kalyon, M.S., Akgul, Y.S.: A two phase smart code editor. In: IEEE HORA, pp. 1–4. IEEE
(2021)

18. Stephan, M.: Towards a cognizant virtual software modeling assistant using model clones.
In: IEEE/ACM 41st ICSE-NIER, pp. 21–24. IEEE (2019)

19. Deng, S., Wang, D., Li, Y., et al.: A recommendation system to facilitate business process
modeling. IEEE Trans. Cybern. 47, 1380–1394 (2017)

20. Koch, M.: Inspections and Quick-Fixes in ReSharper (2021). https://www.jetbrains.com/dot
net/guide/tutorials/resharper-essentials/inspections-quick-fixes/. Accessed 14 June 2023

21. Siemens Mendix. https://www.plm.automation.siemens.com/global/de/products/mendix/.
Accessed 14 June 2023

22. Python Jupyter Notebook. https://jupyter.org/. Accessed 14 June 2023
23. Python multimetric. https://pypi.org/project/multimetric/. Accessed 14 June 2023
24. Python NetworkX. https://networkx.org/. Accessed 14 June 2023

https://www.jetbrains.com/dotnet/guide/tutorials/resharper-essentials/inspections-quick-fixes/
https://www.plm.automation.siemens.com/global/de/products/mendix/
https://jupyter.org/
https://pypi.org/project/multimetric/
https://networkx.org/

	Introduction of an Assistant for Low-Code Programming of Hydraulic Components in Mobile Machines
	1 Motivation and Introduction
	2 State-of-the-Art in Analyzing and Assisting Low-Code Development
	3 Concept of a Programming to Develop Low-Code
	4 Prototype of the Programming Assistant
	5 Evaluation in User Study
	6 Conclusion and Outlook
	References


