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Abstract. Deep neural networks have been extensively studied for
denoising low-dose computed tomography (LDCT) images, but some
challenges related to robustness and generalization still need to be
addressed. It is known that CNN-based denoising methods perform opti-
mally when all the training and testing images have the same noise vari-
ance, but this assumption does not hold in the case of LDCT denoising.
As the variance of the CT noise varies depending on the tissue density
of the scanned organ, CNNs fails to perform at their full capacity. To
overcome this limitation, we propose a novel noise-conditioned feature
modulation layer that scales the weight matrix values of a particular
convolutional layer based on the noise level present in the input sig-
nal. This technique creates a neural network that is conditioned on the
input image and can adapt to varying noise levels. Our experiments on
two public benchmark datasets show that the proposed dynamic con-
volutional layer significantly improves the denoising performance of the
baseline network, as well as its robustness and generalization to previ-
ously unseen noise levels.

Keywords: LDCT denoising · Dynamic Convolution · CT noise
variance

1 Introduction

Convolutional neural networks (CNN) have emerged as one of the most pop-
ular methods for noise removal and restoration of LDCT images [1,2,5,6,14].
While CNNs can produce better image quality than manually designed func-
tions, there are still some challenges that hinder their widespread adoption in
clinical settings. Convolutional denoisers are known to perform best when the
training and testing images have similar or identical noise variance [15,16]. On
the other hand, different anatomical sites of the human body have different tis-
sue densities and compositions, which affects the amount of radiation that is
absorbed and scattered during CT scanning; as a result, noise variance in LDCT
images also varies significantly among different sites of the human body [13].
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Furthermore, the noise variance is also influenced by the differences in patient
size and shape, imaging protocol, etc. [11]. Because of this, CNN-based denoising
networks fail to perform optimally in LDCT denoising. In this study, we have
introduced a novel dynamic convolution layer to combat the issue of noise level
variability in LDCT images. Dynamic convolution layer is a type of convolutional
layer in which the convolutional kernel is generated dynamically at each layer
based on the input data [3,4,8]. Unlike the conventional dynamic convolution
layer, here we have proposed to use a modulating signal to scale the value of the
weight vector(learned via conventional backpropagation) of a convolutional layer.
The modulating signal is generated dynamically from the input image using an
encoder network. The proposed method is very simple, and learning the network
weight is a straightforward one-step process, making it manageable to deploy
and train. We evaluated the proposed method on the recently released large-
scale LDCT database of TCIA Low Dose CT Image and Projection Data [10]
and the 2016 NIH-AAPM-Mayo Clinic low dose CT grand challenge database
[9]. These databases contain low-dose CT data from three anatomical sites, i.e.,
head, chest, and abdomen. Extensive experiments on these databases validate
the proposed method improves the baseline network’s performance significantly.
Furthermore, we have shown the generalization ability to the out-of-distribution
data, and the robustness of the baseline network is also increased significantly
via using the proposed weight-modulated dynamic convolutional layer.

2 Method

Motivation: Each convolutional layer in a neural network performs the sum of
the product operation between the weight vector and input features. However, as
tissue density changes in LDCT images, the noise intensity also changes, leading
to a difference in the magnitude of intermediate feature values. If the variation
in input noise intensity is significant, the magnitude of the output feature of the
convolutional layer can also change substantially. This large variation in input
feature values can make the CNN layer’s response unstable, negatively impacting
the denoising performance. To address this issue, we propose to modulate the
weight vector values of the CNN layer based on the noise level of the input image.
This approach ensures that the CNN layer’s response remains consistent, even
when the input noise variance changes drastically.

Weight Modulation: Figure 1 depicts our weight modulation technique, which
involves the use of an additional anatomy encoder network, Ea, along with
the backbone denoising network, CNND. The output of the anatomy encoder,
denoted as ex, is a D-dimensional embedding, i.e., ex = Ea(∇2(x)). Here, x is the
input noisy image, and ∇2(.) is a second-order Laplacian filter. This embedding
ex serves as a modulating signal for weight modulation in the main denoising
network (CNND). Specifically, the lth weight-modulated convolutional layer, Fl,
of the backbone network, CNND, takes the embedding ex as input. Then the
embedding ex is passed to a 2 Layer MLP, denoted as φl, which learns a non-
linear mapping between the layer-specific code, denoted as sl ∈ R

Nl , and the
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Fig. 1. Overview of the proposed noise conditioned weight modulation framework.

embedding ex, i.e., sl = φl(ex). Here, Nl represents the number of feature maps
in the layer Fl. The embedding ex can be considered as the high dimensional
code containing the semantics information and noise characteristic of the input
image. The non-linear mapping φl maps the embedding ex to a layer-specific
code sl, so that different layers can be modulated differently depending on the
depth and characteristic of the features. Let wl ∈ R

Nl×Nl−1×k×k be the weight
vector of Fl learned via standard back-propagation learning. Here (k × k) is the
size of the kernel, Nl−1 is the number of feature map in the previous layer. Then
the wl is modulated using sl as following,

ŵl = wl � sl (1)

Here, ŵl is the modulated weight value, and � represents component wise mul-
tiplication. Next, the scaled weight vector is normalized by its L2 norm across
channels as follows:

w̃l = ŵl

/√ ∑
Nl−1,k,k

ŵ2
l + ε (2)

Normalizing the modulated weights takes care of any possible instability arise
due to high or too low weight value and also ensures that the modulated weight
has consistent scaling across channels, which is important for preserving the
spatial coherence of the denoised image [7]. The normalized weight vectors, w̃l

are then used for convolution, i.e., fl = Fl

(
w̃l ∗ fl−1

)
. Here, fl, and fl−1 are the

output feature map of lth, l − 1th layer, and ∗ is the convolution operation.
Relationship with Recent Methods: The proposed weight modulation tech-
nique leveraged the recent concept of style-based image synthesis proposed in
StyleGAN2 [7]. However, StyleGAN2 controlled the structure and style of the
generated image by modulating weight vectors using random noise and latent
code. Whereas, we have used weight modulation for dynamic filter generation
conditioned on input noisy image to generate a consistent output image.
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Implementation Details: The proposed dynamic convolutional layer is very
generic and can be integrated into various backbone networks. For our denoising
task, we opted for the encoder-decoder-based UNet [12] architecture and replaced
some of its generic convolutional layers with our weight-modulated dynamic
convolution layer. To construct the anatomy encoder network, we employed ten
convolutional blocks and downscaled the input feature map’s spatial resolution
by a factor of nine through two max-pooling operations inside the network.
We fed the output of the last convolutional layer into a global average pooling
layer to generate a 512-dimensional feature vector. This vector was then passed
through a 2-layer MLP to produce the final embedding, ex ∈ R

512.

3 Experimental Setting

We used two publicly available data sets, namely, 1. TCIA Low Dose CT Image
and Projection Data, 2. 2016 NIH-AAPM-Mayo Clinic low dose CT grand chal-
lenge database to validate the proposed method. The first dataset contains
LDCT data of different patients of three anatomical sites, i.e., head, chest, and
abdomen, and the second dataset contains LDCT images of the abdomen with
two different slice thicknesses (3 mm, 1 mm). We choose 80% data from each
anatomical site for training and the remaining 20% for testing. We used the
Adam optimizer with a batch size of 16. The learning rate was initially set to
1e−4 and was assigned to decrease by a factor of 2 after every 6000 iterations.

Table 1. Objective and computational cost comparison between different methods.
Objective metrics are reported by averaging the values for all the images present in
the test set.

Model Abdomen Head Chest FLOPs

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

M1 33.84 0.912 8.46 39.45 0.957 2.42 29.39 0.622 103.27 75.53G

M2 34.15 0.921 7.41 40.04 0.968 2.02 29.66 .689 89.23 98.47G

4 Result and Discussion

Comparison with Baseline: This section discusses the efficacy of the proposed
weight modulation technique, comparing it with a baseline UNet network (M1)
and the proposed weight-modulated convolutional network (M2). The networks
were trained using LDCT images from a single anatomical region and tested on
images from the same region. Table 1 provides an objective comparison between
the two methods in terms of PSNR, SSIM, and RMSE for different anatomical
regions. The results show that the proposed dynamic weight modulation tech-
nique significantly improved the denoising performance of the baseline UNet for
all settings. For example, the PSNR for head images was improved by 0.59 dB,
and similar improvements were observed for other anatomical regions. Addition-
ally, Table 1 shows the floating point computational requirements of the different
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(a) LDCT (b) M1 (c) M2 (d) NDCT

Fig. 2. Result of Denoising for comparison. The display window for the abdomen image
(top row) is set to [−140, 260], and [−1200, 600] for the chest image.

methods. It can be seen that the number of FLOPs of the dynamic weight mod-
ulation technique is not considerably higher than the baseline network M1, yet
the improvement in performance is much appreciable.

In Fig. 2, we provide a visual comparison of the denoised output produced by
different networks. Two sample images from datasets D1 and D2, corresponding
to the abdomen and chest regions, respectively, are shown. The comparison shows
that the proposed network M2 outperforms the baseline model M1 in terms of
noise reduction and details preservation. For instance, in the denoised image of
the abdomen region, the surface of the liver in M1 appears rough and splotchy
due to noise, while in M2, the image is crisp, and noise suppression is adequate.
Similarly, in the chest LDCT images, noticeable streaking artifacts near the
breast region are present in the M1 output, and the boundaries of different
organs like the heart and shoulder blade are not well-defined. In contrast, M2
produces crisp and definite boundaries, and streaking artifacts are significantly
reduced. Moreover, M1 erases finer details like tiny blood vessels in the lung
region, leading to compromised visibility, while M2 preserves small details much
better than M1, resulting in output that is comparable with the original NDCT
image.
Robustness Analysis: In this section, we evaluate the performance of exist-
ing denoising networks in a challenging scenario where the networks are trained
to remove noise from a mixture of LDCT images taken from different anatom-
ical regions with varying noise variances and patterns. We compared two net-
works in this analysis: M3, which is a baseline UNet model trained using a
mixture of LDCT images, and M4, which is the proposed weight-modulated net-
work, trained using same training data. Table 2 provides an objective comparison
between these two methods. We found that joint training has a negative impact
on the performance of the baseline network, M3, by a significant margin. Specif-
ically, M3 yielded 0.88 dB lower PSNR than model M1 for head images, which
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Table 2. Objective comparison among different methods. Objective metrics are
reported by averaging the values for all the images present in the test set.

Model Abdomen Head Chest

M3 33.64 0.895 8.54 38.67 0.937 3.45 29.28 0.612 105.2

M4 34.17 0.921 7.45 39.70 0.964 2.12 29.69 0.689 89.21

(a) LDCT (b) M3 (c) M4 (d) NDCT

Fig. 3. Result of Denoising for comparison. The display window for the abdomen image
is set to [−140, 260], [−175, 240] for the chest image, and [−80, 100] for the head.

were trained using only head images. Similar observations were also noted for
other anatomical regions like the abdomen and chest. The differences in noise
characteristics among the different LDCT images make it difficult for a single
model to denoise images efficiently from a mixture of anatomical regions. Fur-
thermore, the class imbalance between small anatomical sites (e.g., head, knee,
and prostate) and large anatomical locations (e.g., lung, abdomen) in a training
set introduces a bias towards large anatomical sites, resulting in unacceptably
lower performance for small anatomical sites. On the other hand, M4 showed
robustness to these issues. Its performance was similar to M2 for all settings,
and it achieved 0.69 dB higher PSNR than M3. Noise-conditioned weight mod-
ulation enables the network to adjust its weight based on the input images,
allowing it to denoise every image with the same efficiency.

Figure 3 provides a visual comparison of the denoising performance of two
methods on LDCT images from three anatomical regions. The adverse effects
of joint training on images from different regions are apparent. Head LDCT
images, which had the lowest noise, experienced a loss of structural and textu-
ral information in the denoising process by baseline M3. For example, the head
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lobes appeared distorted in the reconstructed image. Conversely, chest LDCT
images, which were the noisiest, produced artefacts in the denoised image by
M3, significantly altering the image’s visual appearance. In contrast, M4 pre-
served all structural information and provided comparable noise reduction across
all anatomical structures. CNN-based denoising networks act like a subtractive
method, where the network learns to subtract the noise from the input signal by
using a series of convolutional layers. A fixed set of subtracters is inefficient for
removing noise from images with various noise levels. As a result, images with low
noise are over smoothed and structural information is lost, whereas images with
high noise generate residual noise and artefacts. In case of images containing a
narrow range of noise levels, such as images from a single anatomical region, the
above-mentioned limitation of naive CNN-based denoisers remains acceptable,
but when a mixture of images with diverge noise levels is used in training and
testing, it becomes problematic. The proposed noise conditioned weight mod-
ulation addresses this major limitation of CNN based denoising network, by
designing an adjustable subtractor which is adjusted based on the input signal.

Figure 4 presents a two-dimensional projection of the learned embedding for
all the test images using the TSNE transformation. The embedding has created
three distinct clusters in the 2D feature space, each corresponding to images from
one of three different anatomical regions. This observation validates our claim
that the embedding learned by the anatomy encoder represents a meaningful
representation of the input image. Notably, the noise level of low dose chest CT
images differs significantly from those of the other two regions, resulting in a

Fig. 4. 2 dimensional projection of learned embedding. The projection are learned
using TSNE transformation.

Table 3. Objective comparison among different networks. Objective metrics are
reported by averaging the values for all the images present in the test set of abdominal
images taken with 1mm slice thickness.

Model M5 M6 M7 M8

PSNR 22.23 22.55 22.80 22.96

SSIM 0.759 0.762 0.777 0.788

RMSE 32.13 30.13 29.37 29.14
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separate cluster that is located at a slightly greater distance from the other two
clusters.

(a) LDCT (b) M5 (c) M6 (d) M7 (e) M8 (f) NDCT

Fig. 5. Result of Denoising for comparison. The display window for the abdomen image
is set to [−140, 260]

Generalization Analysis: In this section, we evaluate the generalization abil-
ity of different networks on out-of-distribution test data using LDCT abdomen
images taken with a 1mm slice thickness from dataset D1. We consider four
networks for this analysis: 1) M5, the baseline UNet trained on LDCT abdomen
images with a 3mm slice thickness from dataset D1, 2) M6, the baseline UNet
trained on a mixture of LDCT images from all anatomical regions except the
abdomen with a 1mm slice thickness, 3) M7, the proposed weight-modulated
network trained on the same training set as M6, and 4) M8, the baseline UNet
trained on LDCT abdomen images with a 1mm slice thickness. Objective com-
parisons among these networks are presented in Table 3. The results show that
the performance of M5 and M6 is poor on this dataset, indicating their poor
ability to generalize to unseen data. In contrast, M7 performs similarly to the
supervised model M8. Next, we compared the denoising performance of different
methods visually in Fig. 5. It can be seen that M5 completely failed to remove
noise from these images despite the fact the M5 was trained using the abdominal
image. Now the output of M6 is better than the M5 in terms of noise removal,
but a lot of over-smoothness and loss of structural information can be seen, for
example, the over-smooth texture of the liver and removal of blood vessels. M6
benefits from being trained on diverse LDCT images, which allows it to learn
robust features applicable to a range of inputs and generalize well to new images.
However, the CNN networks’ limited ability to handle diverse noise levels results
in M6 failing to preserve all the structural information in some cases. In contrast,
M7 uses a large training set and dynamic convolution to preserve all structural
information and remove noise effectively, comparable to the baseline model M8.

5 Conclusion

This study proposes a novel noise-conditioned feature modulation layer to
address the limitations of convolutional denoising networks in handling vari-
ability in noise levels in low-dose computed tomography (LDCT) images. The
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proposed technique modulates the weight matrix of a convolutional layer accord-
ing to the noise present in the input signal, creating a slightly modified neural
network. Experimental results on two public benchmark datasets demonstrate
that this dynamic convolutional layer significantly improves denoising perfor-
mance, as well as robustness and generalization to unseen noise levels. The pro-
posed method has the potential to enhance the accuracy and reliability of LDCT
image analysis in various clinical applications.
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