
Make-A-Volume: Leveraging Latent
Diffusion Models for Cross-Modality 3D

Brain MRI Synthesis

Lingting Zhu1, Zeyue Xue1, Zhenchao Jin1, Xian Liu2, Jingzhen He3(B),
Ziwei Liu4, and Lequan Yu1(B)

1 The University of Hong Kong, Hong Kong SAR, China
ltzhu99@connect.hku.hk, lqyu@hku.hk

2 The Chinese University of Hong Kong, Hong Kong SAR, China
3 Qilu Hospital of Shandong University, Jinan, China

hjzhhjzh@163.com
4 S-Lab, Nanyang Technological University, Singapore, Singapore

Abstract. Cross-modality medical image synthesis is a critical topic
and has the potential to facilitate numerous applications in the medical
imaging field. Despite recent successes in deep-learning-based generative
models, most current medical image synthesis methods rely on generative
adversarial networks and suffer from notorious mode collapse and unsta-
ble training. Moreover, the 2D backbone-driven approaches would easily
result in volumetric inconsistency, while 3D backbones are challenging
and impractical due to the tremendous memory cost and training diffi-
culty. In this paper, we introduce a new paradigm for volumetric medical
data synthesis by leveraging 2D backbones and present a diffusion-based
framework, Make-A-Volume, for cross-modality 3D medical image syn-
thesis. To learn the cross-modality slice-wise mapping, we employ a latent
diffusion model and learn a low-dimensional latent space, resulting in
high computational efficiency. To enable the 3D image synthesis and
mitigate volumetric inconsistency, we further insert a series of volumet-
ric layers in the 2D slice-mapping model and fine-tune them with paired
3D data. This paradigm extends the 2D image diffusion model to a vol-
umetric version with a slightly increasing number of parameters and
computation, offering a principled solution for generic cross-modality 3D
medical image synthesis. We showcase the effectiveness of our Make-A-
Volume framework on an in-house SWI-MRA brain MRI dataset and
a public T1-T2 brain MRI dataset. Experimental results demonstrate
that our framework achieves superior synthesis results with volumetric
consistency.
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1 Introduction

Medical images are essential in diagnosing and monitoring various diseases and
patient conditions. Different imaging modalities, such as computed tomography
(CT) and magnetic resonance imaging (MRI), and different parametric images,
such as T1 and T2 MRI, have been developed to provide clinicians with a com-
prehensive understanding of the patients from multiple perspectives [7]. How-
ever, in clinical practice, it is commonly difficult to obtain a complete set of
multiple modality images for diagnosis and treatment due to various reasons,
such as modality corruption, incorrect machine settings, allergies to specific con-
trast agents, and limited available time [5,10]. Therefore, cross-modality medical
image synthesis is useful by allowing clinicians to acquire different characteris-
tics across modalities and facilitating real-world applications in radiology and
radiation oncology [28,32].

With the rise of deep learning, numerous studies have emerged and are
dedicated to medical image synthesis [4,7,18]. Notably, generative adversarial
networks (GANs) [8] based approaches have garnered significant attention in
this area due to their success in image generation and image-to-image transla-
tion [11,33]. Moreover, GANs are also closely related to cross-modality medical
image synthesis [2,10,32]. However, despite their efficacy, GANs are susceptible
to mode collapse and unstable training, which can negatively impact the per-
formance of the model and decrease the reliability in practice [1,17]. Recently,
the advent of denoising diffusion probabilistic models (DDPMs) [9,24] has intro-
duced a new scheme for high-quality generation, offering desirable features such
as better distribution coverage and more stable training when compared to
GAN-based counterparts. Benefiting from the better performance [6], diffusion-
based models may be deemed much more reliable and dominant and recently
researchers have made the first attempts to employ diffusion models for medical
image synthesis [12–14,19].

Different from natural images, most medical images are volumetric. Previous
studies employ 2D networks as backbones to synthesize slices of medical volumet-
ric data due to their ease of training [18,32] and then stack 2D results for 3D syn-
thesis. However, this fashion induces volumetric inconsistency, particularly along
the z-axis when following the standard way of placing the coordinate system.
Although training 3D models may avoid this issue, it is challenging and imprac-
tical due to the massive amount of volumetric data required, and the higher
dimension of the data would result in costly memory requirements [3,16,26].
To sum up, balancing the trade-off between training and volumetric consistency
remains an open question that requires further investigation.

In this paper, we propose Make-A-Volume, a diffusion-based pipeline for
cross-modality 3D brain MRI synthesis. Inspired by recent works that factor-
ize video generation into multiple stages [23,31], we introduce a new paradigm
for volumetric medical data synthesis by leveraging 2D backbones to simulta-
neously facilitate high-fidelity cross-modality synthesis and mitigate volumetric
inconsistency for medical data. Specifically, we employ a latent diffusion model
(LDM) [20] to function as a slice-wise mapping that learns cross-modality trans-



594 L. Zhu et al.

lation in an image-to-image manner. Benefiting from the low-dimensional latent
space of LDMs, the high memory requirements for training are mitigated. To
enable the 3D image synthesis and enhance volumetric smoothness among med-
ical slices, we further insert and fine-tune a series of volumetric layers to upgrade
the slice-wise model to a volume-wise model. In summary, our contributions are
three-fold: (1) We introduce a generic paradigm for 3D image synthesis with 2D
backbones, which can mitigate volumetric inconsistency and training difficulty
related to 3D backbones. (2) We propose an efficient latent diffusion-based frame-
work for high-fidelity cross-modality 3D medical image synthesis. (3) We col-
lected a large-scale high-quality dataset of paired susceptibility weighted imaging
(SWI) and magnetic resonance angiography (MRA) brain images. Experiments
on these in-house and public T1-T2 brain MRI datasets show the volumetric
consistency and superior quantitative result of our framework.

Fig. 1. Overview of our proposed two-stage Make-A-Volume framework. A
latent diffusion model is used to predict the noises added to the image and synthesize
independent slices from Gaussian noises. We insert volumetric layers and quickly fine-
tune the model, which extends the slice-wise model to be a volume-wise model and
enables synthesizing volumetric data from Gaussian noises.

2 Method

2.1 Preliminaries of DDPMs

In the diffusion process, DDPMs produce a series of noisy inputs x0, x1, ..., xT ,
via sequentially adding Gaussian noises to the sample over a predefined number
of timesteps T . Formally, given clean data samples which follow the real dis-
tribution x0 ∼ q(x), the diffusion process can be written down with variances
β1, ..., βT as

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI). (1)
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Employing the property of DDPMs, the corrupted data xt can be sampled easily
from x0 in a closed form:

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I); xt =
√

ᾱtx0 +
√

1 − ᾱtε, (2)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, and ε ∼ N (0, 1) is the added noise.
In the reverse process, the model learns a Markov chain process to con-

vert the Gaussian distribution into the real data distribution by predicting the
parameterized Gaussian transition p(xt−1|xt) with the learned model θ:

pθ(xt−1|xt) = N (xt−1;μθ(xt, t), σ2
t I). (3)

In the model training, the model tries to predict the added noise ε with the
simple mean squared error (MSE) loss:

L(θ) = Ex0∼q(x),ε∼N (0,1),t

[∥∥ε − εθ(
√

ᾱtx0 +
√

1 − ᾱtε, t)
∥∥2

]
. (4)

2.2 Slice-Wise Latent Diffusion Model

To improve the computational efficiency of DDPMs that learn data in pixel
space, Rombach et al. [20] proposes training an autoencoder with a KL penalty
or a vector quantization layer [15,27], and introduces the diffusion model to
learn the latent distribution. Given calibrated source modality image xc and
target modality image x, we leverage a slice-wise latent diffusion model to learn
the cross-modality translation. With the pretrained encoder E , xc and x are
compressed into a spatially lower-dimensional latent space of reduced complexity,
generating zc and z. The diffusion and denoising processes are then implemented
in the latent space and a U-Net [21] is trained to predict the noise in the latent
space. The input consists of the concatenated zc and z and the network learns the
parameterized Gaussian transition pθ(zt−1|zt, zc) = N (zt−1;μθ(zt, t, zc), σ2

t I).
After learning the latent distribution, the slice-wise model can synthesize target
latent ẑ from Gaussian noise, given the source latent zc. Finally, the decoder D
restores the slice to the image space via x̂ = D(ẑ).

2.3 From Slice-Wise Model to Volume-Wise Model

Figure 1 illustrates an overview of the Make-A-Volume framework. The first stage
involves a latent diffusion model that learns the cross-modality translation in an
image-to-image manner to synthesize independent slices from Gaussian noises.
Then, to extend the slice-wise model to be a volume-wise model, we insert vol-
umetric layers and quickly fine-tune the U-Net. As a result, the volume-wise
model synthesizes volumetric data without inconsistency from Gaussian noises.

In the slice-wise model, distribution of the latent z ∈ R
bs×c×h×w is learned by

the U-Net, where bs, c, h, w are the batch size of slice, channels, height, and width
dimensions respectively, and there is where little volume-awareness is introduced
to the network. Since we target in synthesizing volumetric data and assume
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each volume consists of N slices, we can factorize the batch size of slices as
bs = bvn, where Bv represents the batch size of volumes. Now, volumetric layers
are injected and help the U-Net learn to latent feature f ∈ R

(bv×n)×c×h×w with
volumetric consistency. The volumetric layers are basic 1D convolutional layers
and the i−th volumetric layer liv takes in feature f and outputs f ′ as:

f ′ ← Rearrange(f, (bv × n) c h w → (bv × h × w) c n), (5)

f ′ ← liv(f ′), (6)
f ′ ← rearrange(f, (bv × h × w) c n → (bv × n) c h w). (7)

Here, the 1D conv layers combined with the pretrained 2D conv layers, serve
as pseudo 3D conv layers with little extra memory cost. We initialize the vol-
umetric 1D convolution layers as Identity Functions for more stable training
and we empirically find tuning is efficient. With the volume-aware network, the
model learns volume data {xi}n

i=1, predicts {zi}n
i=1, and reconstruct {x̂i}n

i=1.
For diffusion model training, in the first stage, we randomly sample timestep
t for each slice. However, when tuning the second stage, the U-Net with vol-
umetric layers learns the relationship between different slices in one volume.
As a result, fixing t for each volume data is necessary and we encourage the
small t values to be sampled more frequently for easy training. In detail, we
sample the timestep t with replacement from multinomial distribution, and the
pre-normalized weight (used for computing probabilities after normalization) for
timestep t equals 2T − t, where T is the total number of timesteps. Therefore,
we enable a seamless translation from the slice-wise model which processes slices
individually, to a volume-wise model with better volumetric consistency.

3 Experiments

Datasets. The experiments were conducted on two brain MRI datasets: SWI-
to-MRA (S2M) dataset and RIRE [30]1 T1-to-T2 dataset. To facilitate SWI-
to-MRA brain MRI synthesis applications, we collected a high-quality SWI-to-
MRA dataset. This dataset comprises paired SWI and MRA volume data of 111
patients that were acquired at Qilu Hospital of Shandong University using one
3.0T MRI scanner (i.e., Verio from Siemens). The SWI scans have a voxel spacing
of 0.3438×0.3438×0.8 mm and the MRA scans have a voxel spacing of 0.8984×
0.8984×2.0 mm. While most public brain MRI datasets lack high-quality details
along z-axis and therefore are weak to indicate volumetric inconsistency, this
volume data provides a good way to illustrate the performances for volumetric
synthesis due to the clear blood vessels. We also evaluate our method on the
public RIRE dataset [30]. The RIRE dataset includes T1 and T2-weighted MRI
volumes, and 17 volumes were used in the experiments.

Implementation Details. To summarize, for the S2M dataset, we randomly
select 91 paired volumes for training and 20 paired volumes for inference; for the
1 https://rire.insight-journal.org/index.html.

https://rire.insight-journal.org/index.html
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RIRE T1-to-T2 dataset, 14 volumes are randomly selected for training and 3
volumes are used for inference. All the volumes are resized to 256×256×100 for
S2M and 256×256×35 for RIRE, where the last dimension represents the z-axis
dimension, i.e., the number of slices in one volume for 2D image-to-image setting.
Our proposed method is built upon U-Net backbones. We use a pretrained KL
autoencoder with a downsampling factor of f = 4. We train our model on an
NVIDIA A100 80 GB GPU.

Table 1. Quantitative comparison on S2M and RIRE datasets.

Methods S2M RIRE [30]

MAE ↓ SSIM ↑ PSNR ↑ MAE ↓ SSIM ↑ PSNR ↑
Pix2pix [11] 8.175 0.739 25.663 16.812 0.538 20.106

Palette [22] 26.806 0.141 15.643 36.131 0.251 14.269

Pix2pix 3D [11] 6.234 0.765 28.395 11.369 0.650 22.854

CycleGAN 3D [33] 7.621 0.755 26.908 13.794 0.542 20.627

Ours 200 steps 5.243 0.788 29.446 10.794 0.676 24.332

Ours 1000 steps 4.801 0.801 30.143 10.619 0.684 25.458

Quantitative Results. We compare our pipeline to several baseline methods,
including 2D-based methods: (1) Pix2pix [11], a solid baseline for image-to-image
translation; (2) Palette [22], a diffusion-based method for 2D image translation;
3D-based methods: (3) a 3D version of Pix2pix, created by modifying the 2D
backbone as a 3D backbone in the naive Pix2pix approach; and (4) a 3D version
of CycleGAN [33]. Naive 3D diffusion-based models are not included due to the
lack of efficient backbones and the matter of timesteps’ sampling efficiency. We
report the results in terms of mean absolute error (MAE), Structural Similarity
Index (SSIM) [29], and peak signal-to-noise ratio (PSNR).

Table 1 presents a quantitative comparison of our method and baseline
approaches on the S2M and RIRE datasets. Our method achieves better perfor-
mance than the baselines in terms of various evaluation metrics. To accelerate
the sampling of diffusion models, we implement DDIM [25] with 200 steps and
report the results accordingly. It is worth noting that for the baseline approaches,
the 3D version method (Pix2pix 3D) outperforms the corresponding 2D version
(Pix2pix) at the cost of additional memory usage. For the Palette method, we
implemented the 2D version but were unable to produce high-quality slices sta-
bly and failure cases dramatically affected the metrics results. Nonetheless, we
included this method due to its great illustration of volumetric inconsistency.

Qualitative Results. Figure 2 presents a qualitative comparison of different
methods, showcasing two axial slices of clear vessels. Our method synthesizes
better images with more details, as shown in the qualitative results. The areas
requiring special attention are highlighted with red arrows and red rectangles. It
is worth noting that the synthesized axial slices not only depend on the source
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slice but also on the volume knowledge. For instance, for S2M case 1, the target
slice shows a clear vessel cross-section that is based on the shape of the vessels in
the volume. In Fig. 3, we provide coronal and sagittal views. For methods that
rely on 2D generation, we synthesize individual slices and concatenate them to
create volumes. It is clear to observe the volumetric inconsistency examining the
coronal and sagittal views of these volumes. For instance, Palette synthesizes 2D
slices unstably, where some good slices are synthesized but others are of poor
quality. As a result, volumetric inconsistency severely impacts the performance
of volumes. While 2D baselines inherently introduce inconsistency in the coronal
and sagittal views, 3D baselines also generate poor results than ours, particularly
in regard to blood vessels and ventricles.

Fig. 2. Qualitative comparison. We compare our methods with baselines on two
cases.

Fig. 3. Coronal view and sagittal view. To clearly indicate the volumetric consis-
tency, we show a coronal view and a sagittal view of the volumes synthesized and the
ground truth volumes.

Table 2. Ablation Quantitative Results.

Methods S2M RIRE [30]

MAE ↓ SSIM ↑ PSNR ↑ MAE ↓ SSIM ↑ PSNR ↑
w/o volumetric layers 5.128 0.792 29.894 10.925 0.667 24.623

w/ volumetric layers 4.801 0.801 30.143 10.619 0.684 25.458

Ablation Analysis. We conduct an ablation study to show the effectiveness of
volumetric fine-tuning. Table 2 presents the quantitative results, demonstrating
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that our approach is able to increase the model’s performance beyond that of the
slice-wise model, without incurring significant extra training expenses. Figure 4
illustrates that fine-tuning volumetric layers helps to mitigate volumetric arti-
facts and produce clearer vessels, which is crucial for medical image synthesis.

Fig. 4. Ablation qualitative results with coronal view and sagittal view.

4 Conclusion

In this paper, we propose Make-A-Volume, a diffusion-based framework for cross-
modality 3D medical image synthesis. Leveraging latent diffusion models, our
method achieves high performance and can serve as a strong baseline for multiple
cross-modality medical image synthesis tasks. More importantly, we introduce a
generic paradigm for volumetric data synthesis by utilizing 2D backbones and
demonstrate that fine-tuning volumetric layers helps the two-stage model cap-
ture 3D information and synthesize better images with volumetric consistency.
We collected an in-house SWI-to-MRA dataset with clear blood vessels to eval-
uate volumetric data quality. Experimental results on two brain MRI datasets
demonstrate that our model achieves superior performance over existing base-
lines. Generating coherent 3D and 4D data is at an early stage in the diffusion
models literature, we believe that by leveraging slice-wise models and extending
them to 3D/4D models, more work can help achieve better volume synthesis
with reasonable memory requirements. In the future, we will investigate more
efficient approaches for more high-resolution volumetric data synthesis.
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