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Abstract. Magnetic Resonance Imaging (MRI) is a critical imaging tool
in clinical diagnosis, but obtaining high-resolution MRI images can be
challenging due to hardware and scan time limitations. Recent stud-
ies have shown that using reference images from multi-contrast MRI
data could improve super-resolution quality. However, the commonly
employed strategies, e.g., channel concatenation or hard-attention based
texture transfer, may not be optimal given the visual differences between
multi-contrast MRI images. To address these limitations, we propose a
new Dual Cross-Attention Multi-contrast Super Resolution (DCAMSR)
framework. This approach introduces a dual cross-attention transformer
architecture, where the features of the reference image and the up-
sampled input image are extracted and promoted with both spatial and
channel attention in multiple resolutions. Unlike existing hard-attention
based methods where only the most correlated features are sought via
the highly down-sampled reference images, the proposed architecture is
more powerful to capture and fuse the shareable information between the
multi-contrast images. Extensive experiments are conducted on fastMRI
knee data at high field and more challenging brain data at low field,
demonstrating that DCAMSR can substantially outperform the state-
of-the-art single-image and multi-contrast MRI super-resolution meth-
ods, and even remains robust in a self-referenced manner. The code for
DCAMSR is avaliable at https://github.com/Solor-pikachu/DCAMSR.
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1 Introduction

Magnetic Resonance Imaging (MRI) has revolutionized medical diagnosis by pro-
viding a non-invasive imaging tool with multiple contrast options [1,2]. However,
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generating high-resolution MRI images can pose difficulties due to hardware limi-
tations and lengthy scanning times [3,4]. To tackle this challenge, super-resolution
techniques have been developed to improve the spatial resolution of MRI images
[5]. However, while several neural network-based super-resolution methods (e.g.,
EDSR [6], SwinIR [7], and ELAN [8]) have emerged from the computer vision field,
they primarily utilize single-contrast data, ignoring the valuable complementary
multi-contrast information that is easily accessible in MRI.

Recent studies have shown that multi-contrast data routinely acquired in
MRI examinations can be used to develop more powerful super-resolution meth-
ods tailored for MRI by using fully sampled images of one contrast as a ref-
erence (Ref) to guide the recovery of high-resolution (HR) images of another
contrast from low-resolution (LR) inputs [9]. In this direction, MINet [10] and
SANet [11] have been proposed and demonstrated superior performance over
previous single-image super-resolution approaches. However, these methods rely
on relatively simple techniques, such as channel concatenation or spatial addi-
tion between LR and Ref images, or using channel concatenation followed by
self-attention to identify similar textures between LR and Ref images. These
approaches may overlook the complex relationship between LR and Ref images
and lead to inaccurate super-resolution.

Recent advances in super-resolution techniques have led to the development
of hard-attention-based texture transfer methods (such as TTSR [12], MASA
[13], and McMRSR [14]) using the texture transformer architecture [12]. How-
ever, these methods may still underuse the rich information in multi-contrast
MRI data. As illustrated in Fig. 1(a), these methods focus on spatial attention
and only seek the most relevant patch for each query. They also repetitively use
low-resolution attention maps from down-sampled Ref images (Ref↓↑), which
may not be sufficient to capture the complex relationship between LR and Ref
images, potentially resulting in suboptimal feature transfer. These limitations
can be especially problematic for noisy low-field MRI data, where down-sampling
the Ref images (as the key in the transformer) can cause additional image blur-
ring and information loss.

As shown in Fig. 1(b), our proposed approach is inspired by the transformer-
based cross-attention approach [15], which provides a spatial cross-attention
mechanism using full-powered transformer architecture without Ref image down-
sampling, as well as the UNETR++ architecture [16], which incorporates channel
attention particularly suitable for multi-contrast MRI images that are anatom-
ically aligned. Building upon these developments, the proposed Dual Cross-
Attention Multi-contrast Super Resolution (DCAMSR) method can flexibly
search the reference images for shareable information with multi-scale atten-
tion maps and well capture the information both locally and globally via spa-
tial and channel attention. Our contributions are summarized as follows: 1) We
present a novel MRI super-resolution framework different from existing hard-
attention-based methods, leading to efficient learning of shareable multi-contrast
information for more accurate MRI super-resolution. 2) We introduce a dual
cross-attention transformer to jointly explore spatial and channel information,
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substantially improving the feature extraction and fusion processes. 3) Our pro-
posed method robustly outperforms the current state-of-the-art single-image as
well as multi-contrast MRI super-resolution methods, as demonstrated by exten-
sive experiments on the high-field fastMRI [17] and more challenging low-field
M4Raw [18] MRI datasets.

Fig. 1. (a) Illustration of Texture Transformer. (b) Illustration of the proposed Dual
Cross-Attention Transformer.

2 Methodology

Overall Architecture. Our goal is to develop a neural network that can restore
an HR image from an LR image and a Ref image. Our approach consists of several
modules, including an encoder, a dual cross-attention transformer (DCAT) and a
decoder, as shown in Fig. 2. Firstly, the LR is interpolated to match the resolution
of HR. Secondly, we use the encoder to extract multi-scale features from both
the up-sampled LR and Ref, resulting in features FLR and FRef . Thirdly, the
DCAT, which contains of dual cross-attention (DCA), Layer Normalization (LN)
and feed-forward network (FFN), is used to search for texture features from
FLR and FRef . Fourthly, the texture features are aggregated with FLR through
the Fusion module at each scale. Finally, a simple convolution is employed to
generate SR from the fused feature.

Encoder. To extract features from the up-sampled LR, we employ an encoder
consisting of four stages. The first stage uses the combination of a depth-wise
convolution and a residual block. In stages 2–4, we utilize a down-sampling
layer and a residual block to extract multi-scale features. In this way, the multi-
scale features for the LR↑ are extracted as FH×W
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Fig. 2. (a) Network architecture of the proposed Dual Cross-attention Multi-contrast
Super Resolution (DCAMSR). (b) Details of Dual Cross-Attention Transformer
(DCAT). (c) Details of Fusion block. (d) Details of Spatial Adaptation Module (SAM).

respectively. Similarly, the multi-scale features for Ref are extracted via the same
encoder in stages 1–3 and denoted as FH×W
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Dual Cross-Attention Transformer (DCAT). The DCAT consists of a
DCA module, 2 LNs, and a FFN comprising several 1×1 convolutions.

The core of DCAT is dual cross-attention mechanism, which is diagrammed
in Fig. 3. Firstly, we project FLR and FRef to q, k and v. For the two cross-
attention branches, the linear layer weights for q and k are shared, while those
for v are different:

qshare = W q
share(FLR), kshare = W k

share(FRef ), (1)

vspatial = W v
spatial(FRef ), vchannel = W v

channel(FRef ), (2)

where qshare,kshare,vspatial and vchannel are the parameter weights for shared
queries, shared keys, spatial value layer, and channel value layer, respectively.
In spatial cross-attention, we further project kshare and vspatial to kproject and
vproject through linear layers, to reduce the computational complexity. The spa-
tial and channel attentions are calculated as:

Xspatial = softmax(
qshare · kTshare√

d
) · vproject, (3)

Xchannel = softmax(
qTshare · kshare√

d
) · vTchannel. (4)
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Fig. 3. Details of Dual Cross-Attention (DCA).

Finally, Xspatial and Xchannel are reduced to half channel via 1×1 convolutions,
and then concatenate to obtain the final feature:

X = Concat(Conv(Xspatial), Conv(Xchannel)). (5)

For the whole DCAT, the normalized features LN(FLR) and LN(FRef ) are fed
to the DCA and added back to FLR. The obtained feature is then processed by
the FFN in a residual manner to generate the texture feature. Specifically, the
DCAT is summarized as:

X = FLR + DCA(LN(FLR), LN(FRef )), (6)

Texture = X + FFN(LN(X)). (7)

Feeding the multi-scale features of LR↑ and Ref to DCAT, we can generate the
texture features in multi-scales, denoted as TextureH×W , Texture
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Decoder. In the decoder, we start from the feature F
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a convolution and a residual block. Then it is up-sampled and concatenated
with F
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LR , and then feed to a convolution to further incorporate the both

information. Next, the incorporated feature is fed to the Fusion module along
with Texture
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4 scale, denoted as
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and feed to Fusion along with TextureH×W , generating FusedH×W . Finally,
FusedH×W is processed with a 1 × 1 convolution to generate SR.

In the Fusion module, following [13], the texture feature Texture and input
feature FLR are first fed to Spatial Adaptation Module (SAM), a learnable struc-
ture ensuring the distributions of Texture consistent with FLR, as shown in
Fig. 2(d). The corrected texture feature is then concatenated with the input fea-
ture FLR and further incorporated via a convolution and a residual block, as
shown in Fig. 2(c).

Loss Function. For simplicity and without loss of generality, L1 loss between
the restored SR and ground-truth is employed as the overall reconstruction loss.

3 Experiments

Datasets and Baselines. We evaluated our approach on two datasets: 1)
fastMRI, one of the largest open-access MRI datasets. Following the settings
of SANet [10,11], 227 and 24 pairs of PD and FS-PDWI volumes are selected
for training and validation, respectively. 2) M4Raw, a publicly available dataset
including multi-channel k-space and single-repetition images from 183 partic-
ipants, where each individual haves multiple volumes for T1-weighted, T2-
weighted and FLAIR contrasts [18]. 128 individuals/6912 slices are selected for
training and 30 individuals/1620 slices are reserved for validation. Specifically,
T1-weighted images are used as reference images to guide T2-weighted images.
To generate the LR images, we first converted the original image to k-space and
cropped the central low-frequency region. For down-sampling factors of 2× and
4×, we kept the central 25% and 6.25% values in k-space, respectively, and then
transformed them back into the image domain using an inverse Fourier trans-
form. The proposed method is compared with SwinIR [7], ELAN [8], SANet (the
journal version of MINet) [11], TTSR [12], and MASA [13].

Implementation Details. All the experiments were conducted using Adam
optimizer for 50 epochs with a batch size of 4 on 8 Nvidia P40 GPUs. The initial
learning rate for SANet was set to 4 × 10−5 according to [11], and 2 × 10−4 for
the other methods. The learning rate was decayed by a factor of 0.1 for the last
10 epochs. The performance was evaluated for enlargement factors of 2× and
4× in terms of PNSR and SSIM.

Quantitative Results. The quantitative results are summarized in Table 1.
The proposed method achieves the best performance across all datasets for
both single image super-resolution (SISR) and multi-contrast super-resultion
(MCSR). Specifically, our LR-guided DCAMSR version surpasses state-of-the-
art methods such as ELAN and SwinIR in SISR, and even outperforms SANet (a
MCSR method). Among the MCSR methods, neither SANet, TTSR or MASA
achieves better results than the proposed method. In particular, the PSNR for



Dual Cross-Attention MRI Super-Resolution 319

Table 1. Quantitative results on two datasets with different enlargement scales, in
terms of PSNR and SSIM. SISR means single image super resolution, MCSR means
multi-contrast super resolution. The best results are marked in for multi-contrast super
resolution, and in blue for single image super resolution. Note that TTSR and MASA
are not applicable to 2× enlargement based on their official implementation.

Dataset fastMRI M4Raw

Scale 2× 4× 2× 4×
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SISR ELAN 32.00 0.715 30.45 0.619 31.71 0.770 28.70 0.680

SwinIR 32.04 0.717 30.58 0.624 32.08 0.775 29.42 0.701

DCAMSR 32.07 0.717 30.71 0.627 32.19 0.777 29.74 0.709

MCSR SANet 32.00 0.716 30.40 0.622 32.06 0.775 29.48 0.704

TTSR NA NA 30.67 0.628 NA NA 29.84 0.712

MASA NA NA 30.78 0.628 NA NA 29.52 0.704

DCAMSR 32.20 0.721 30.97 0.637 32.31 0.779 30.48 0.728

MASA is even 0.18 dB lower than our SISR version of DCAMSR at 4× enlarge-
ment on M4Raw dataset. We attribute this performance margin to the difficulty
of texture transformers in extracting similar texture features between Ref and
Ref↓↑. Despite the increased difficulty of super-resolution at 4× enlargement,
our model still outperforms other methods, demonstrating the powerful texture
transfer ability of the proposed DCA mechanism.

Qualitative Evaluation. Visual comparison is shown in Fig. 4, where the up-
sampled LR, the ground-truth HR, the restored SR and the error map for
each method are visualized for 4× enlargement on both datasets. The error
map depicts the degree of restoration error, where the more prominent texture
indicating the poorer restoration quality. As can be seen, the proposed method
produces the least errors compared with other methods.

Ablation Study. We conducted ablation experiments on the M4Raw dataset
and the results are shown in Table 2. Three variations are tested: w/o reference,

Table 2. Ablation study on the M4Raw dataset with 4× enlargement.

Variant Modules Metrics

reference multi-scale attention channel attention PSNR↑ SSIM↑ NMSE↓
w/o reference � � � 29.74 0.709 0.035

w/o multi-scale attention � � � 30.40 0.725 0.031

w/o channel attention � � � 29.79 0.712 0.035

DCAMSR � � � 30.48 0.728 0.029
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Fig. 4. Visual comparison of reconstruction results and error maps for 4× enlargement
on both datasets. The upper two rows are fastMRI and the lower two rows are M4Raw.

where LR↑ is used as the reference instead of Ref ; w/o multi-scale attention,
where only the lowest-scale attention is employed and interpolated to other
scales; and w/o channel attention, where only spatial attention is calculated.
The improvement from w/o reference to DCAMSR demonstrates the effective-
ness of MCSR compared with SISR. The performance degradation of w/o multi-
scale attention demonstrates that the lowest-scale attention is not robust. The
improvement from w/o channel attention to DCAMSR shows the effectiveness
of the channel attention. Moreover, our encoder and decoder have comparable
parameter size to MASA but we achieved higher scores, as shown in Table 1,
demonstrating that the spatial search ability of DCAMSR is superior to the
original texture transformer.

Discussion. Our reported results on M4Raw contain instances of slight inter-
scan motion [18], demonstrating certain resilience of our approach to image mis-
alignment, but more robust solutions deserve further studies. Future work may
also extend our approach to 3D data.

4 Conclusion

In this study, we propose a Dual Cross-Attention Multi-contrast Super Resolu-
tion (DCAMSR) framework for improving the spatial resolution of MRI images.
As demonstrated by extensive experiments, the proposed method outperforms
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existing state-of-the-art techniques under various conditions, proving a powerful
and flexible solution that can benefit a wide range of medical applications.
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