
A Unified Deep-Learning-Based Framework
for Cochlear Implant Electrode Array

Localization

Yubo Fan1(B), Jianing Wang2, Yiyuan Zhao3, Rui Li4, Han Liu1, Robert F. Labadie5,
Jack H. Noble4, and Benoit M. Dawant4

1 Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
yubo.fan@vanderbilt.edu

2 Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ 08540, USA
3 Digital and Automation, Siemens Healthineers, Malvern, PA 19355, USA

4 Department of Electrical and Computer Engineering, Vanderbilt University, Nashville,
TN 37235, USA

5 Department of Otolaryngology - Head and Neck Surgery, Medical University of South
Carolina, Charleston, SC 29425, USA

Abstract. Cochlear implants (CIs) are neuroprosthetics that can provide a sense
of sound to people with severe-to-profound hearing loss. A CI contains an elec-
trode array (EA) that is threaded into the cochlea during surgery. Recent studies
have shown that hearing outcomes are correlated with EA placement. An image-
guided cochlear implant programming technique is based on this correlation and
utilizes the EA location with respect to the intracochlear anatomy to help audi-
ologists adjust the CI settings to improve hearing. Automated methods to local-
ize EA in postoperative CT images are of great interest for large-scale studies
and for translation into the clinical workflow. In this work, we propose a unified
deep-learning-based framework for automated EA localization. It consists of a
multi-task network and a series of postprocessing algorithms to localize various
types of EAs. The evaluation on a dataset with 27 cadaveric samples shows that
its localization error is slightly smaller than the state-of-the-art method. Another
evaluation on a large-scale clinical dataset containing 561 cases across two insti-
tutions demonstrates a significant improvement in robustness compared to the
state-of-the-art method. This suggests that this technique could be integrated into
the clinical workflow and provide audiologists with information that facilitates the
programming of the implant leading to improved patient care.
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1 Introduction

A cochlear implant (CI) has an electrode array (EA) that is surgically inserted into
the cochlea to stimulate the auditory nerves and treat patients with severe-to-profound
sensorineural hearing loss. Although CIs have achieved great success, hearing outcomes
among recipients vary significantly [1, 2]. Recent studies have shown that factors related
to electrode positioning impact on audiological outcomes [3, 4]. These studies require
knowing the precise electrode locations, which can be obtained by postoperative CT
imaging. Another clinical application that requires precise electrode locations is image-
guided cochlear implant programming [5]. After surgical implantation, the CI needs
to be programmed such that an optimized frequency mapping [24] can be determined
for each patient. Knowledge about the spatial relationship between the electrodes and
the intracochlear anatomy permits to generate programming solutions which have been
shown to significantly improve the hearing outcomes for both adult and pediatric CI
recipients [6, 7].

To facilitate the EA localization process, automated methods have been proposed by
several groups. In [8] EAs are categorized as closely-spaced and distantly-spaced. EAs
with an interelectrode spacing such that the intensity contrast between electrodes cannot
be distinguished are considered closely-spaced, while the opposite applies to distantly-
spaced EAs. Note that a given EA model could be categorized as closely-spaced or
distantly-spaced, depending on the image resolution. For example, some closely-spaced
EAs included in [8] could be considered distantly-spaced in some images acquired at very
high resolution (0.08mm isotropic) as in [9]. For algorithms localizing closely-spaced
EAs, extracting the centerline of anEA is often an important step [8, 10, 11]. It is achieved
by either using intensity-based features only [11] or combining both intensity-based
and EA shape-based features [8]. For localizing distantly-spaced EAs, hand-crafted
feature extractors are utilized to detect individual blobs [9, 12–14]. To link the electrode
candidates in the correct order and remove false positive candidates, graph-based path-
finding algorithms [12] or Markov random field models [14] have been proposed. While
there has been an emergence of methods based on deep learning (DL) recently [15–17],
they cannot be viewed as a complete solution to the automatic EA localization problem
because the networks are only trained and validated on one type of EA model [17] or
cannot order/link the detected electrodes to form a complete array [15, 16].

In this work, we present a novel DL-based framework that consists of a multi-task
network and a set of postprocessing algorithms to localize the cochlear implant electrode
array. Our contribution is three-fold: (1) To the best of our knowledge, it is the first unified
DL-based framework designed for localizing both distantly- and closely-spaced EAs in
CT and cone-beam CT (CBCT) images. (2) We propose four (three detection and one
segmentation) tasks for the multi-task network such that this single network can be
trained on various kinds of EAs. (3) We extensively evaluate this framework on datasets
that significantly exceed the scale of all datasets reported in the literature to date: a
heterogeneous clinical test set with CT or CBCT images of 561 implanted ears and a
test set with gold standard ground truth for 27 implanted cadaveric ears. Results show
that the proposed framework is significantly more robust (generates results that require
manual adjustments less often) than the state-of-the-art (SOTA) techniques, while also
being slightly more accurate. These findings indicate that the proposed framework could
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be reliably used to support large-scale quantitative studies and deployed in the clinical
workflow to provide clinicians with critical information at the time and point of care.

Fig. 1. An overview of the proposed framework. It consists of two major modules: a multi-task
U-Net that is generic for various EA types (B) and a set of postprocessing algorithms that utilize the
known EA geometry (C). The input to the multi-task U-Net is the two-channel image that contains
low and high intensity bands extracted from the raw image (A). The output of the framework is
the ordered electrode locations (D).

2 Method

2.1 Data

The data in this study consist of a large-scale clinical dataset from CI recipients (dataset
#1) aswell as 27 cadaveric samples (dataset #2). Dataset #1 includes 1324 implanted ears
fromCI recipients treated at two institutions (datasets #1A and #1B). 8 types of distantly-
and closely-spacedEA from3manufacturers are included in these cases.Dataset #1Ahas
958 implanted ears of which 97% are scanned with CBCT scanners, and the remaining
(3%) are scanned with conventional CT scanners. Dataset #1B includes 366 implanted
ears of which most (98%) are scanned with conventional CT scanners and the remaining
(2%) are scanned with CBCT scanners. Dataset #2 contains 4 types of distantly-spaced
EAs, and these specimens are scanned with conventional CTs.
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The training and validation sets are all from dataset #1A and constitute 60% and
20% of that dataset, respectively. The remaining 20% of dataset #1A along with dataset
#1B (561 implanted ears in total) are used to test the robustness of the proposed frame-
work. Dataset #2 is used to test its accuracy because the gold standard ground truth
can be obtained using their paired micro-CT [16, 18]. Details on the datasets and EA
specifications can be found in the supplementary material.

2.2 Multi-task U-Net

The proposed framework is designed to localize various types of EAs in both CT and
CBCT. This is challenging because the number of electrodes to be detected and the
interelectrode spacing is different among EA models, and the postoperative images can
have different intensity characteristics depending on the type of scanner, i.e., CT or
CBCT, that is used for their acquisition. To normalize the input image in a way that
enhances both the nearby anatomy, which contains contextual information, and the high
intensity (usually the electrodes) component, inspired by [16], we separate the raw
image into two channels. One is the original image clipped at the 99.9% of its intensity
histogram. The other is the original image in the [99.9%-100%] interval of its intensity
histogram. Each channel is linearly normalized to [0,1] based on its ownmin-max values.
We refer to these as the low and high intensity bands and an example can be seen in
Fig. 1A.

To avoid having to train a network for each EA type, we define four tasks that a
single multi-task network can learn simultaneously and whose output can be used to
localize and order the electrodes in all arrays. Specifically, as shown in Fig. 1B, the four
tasks include (1) detection of all the electrodes on the EA by heatmap regression, (2)
detection of themost apical endpoint (tip) of the EA by heatmap regression, (3) detection
of the most basal endpoint (the farthest electrode from the tip) of the EA by heatmap
regression, and (4) segmentation of the EA centerline that starts and ends with the two
endpoints. Although the network is a simple U-Net-like encoder-decoder architecture,
the innovation is more focused on the multi-task strategy such that the network can serve
as a robust feature extractor that leverages a large heterogeneous dataset.

We train the multi-task network using the electrode positions obtained with the
methodsdescribed in [8, 12] correctedmanuallywhena large localization error is visually
observed. For tasks (#1,2, and 3) aiming at localizing electrodes, the ground truth is a
one-channel heatmap for each task with a Gaussian kernel (variance of 2 voxels) at
each electrode location. Following [19], we use a penalty-reduced voxel-wise logistic
regression with the focal loss [20] as the training objective.

Depending on the image quality and the interelectrode spacing, EAs can appear
as a whole bright (i.e., with high Hounsfield Unit (HU) values) tubular structure or
distinguishable bright blobs representing individual electrodes. We define the centerline
of the EA as a line connecting each electrode in sequential order (from most apical to
most basal or the opposite). The motivation for segmenting the EA centerline is two-
fold. First, after we extract all the electrodes from the predicted heatmap (Task #1),
we need to order them. We will show later in our postprocessing algorithms that these
detected electrodes can be linked in the correct order using the segmented centerline
and the detected two endpoints (Algorithm 1 in Fig. 1C). The second reason is that it
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can serve as an alternative EA localization method by sampling the centerline using the
known interelectrode spacing specific to a particular EAmodel (Algorithm 2 in Fig. 1C).
It is essential when the electrodes are not discernible due to the low image resolution
and/or the small interelectrode spacing. Different from [8], we resort to a DL approach
rather than human-crafted feature extractors. To make the training of the centerline
segmentation easier, we dilate the ground truth centerline to a tubular-structured mask
with a radius of 3 voxels as the learning target. In addition to the Dice loss, we adopt a
clDice loss which has shown its superiority in improving the accuracy and preserving
the topology of the underlying one-voxel wide centerline [21].

2.3 Postprocessing Algorithms for EA Localization

As said above, although the output of the multi-task network contains essential infor-
mation to identify the EA, it does not provide the desired final output, i.e., the position
(coordinates) of the ordered electrodes in the image. To do so, we have designed a series
of postprocessing algorithms that can effectively extract the ordered electrode loca-
tions from the four output maps. As shown in Fig. 1C, there are two main algorithms
(Algorithm 1 and Algorithm 2) that are suitable for distantly- and closely-spaced EAs,
respectively.

Algorithm 1 takes the heatmap of all the electrodes (Task #1) as input and utilizes a
non-maximum suppression (NMS) algorithm, which is a common postprocessing step
for object detection [22], to obtain the desired number of electrodes. Then, the centerline
of the EA is extracted by skeletonizing its segmented mask. Its two endpoints are further
refined bymerging the detection results of themost apical and basal points. Finally, all the
detected electrodes are linkedwith the guidance of the centerline along the direction from
the most apical to the most basal. Algorithm 1 works well if there is an apparent contrast
between the electrodes in the heatmap, which is the case for most distantly-spaced EAs.

However, for closely-spaced EAs, it is nearly impossible to differentiate the indi-
vidual electrodes. Algorithm 2 is designed to localize EAs in such situations. After
the extraction and refinement of the EA centerline, the centerline is smoothed with
a cubic spline, and the final electrode positions are obtained by resampling along it
using known interelectrode spacing for the EA [8]. Note that for distantly-spaced EAs,
Algorithm 1 can occasionally lead to abnormal localization results, such as an incor-
rect number of detected electrodes or the spacing between the detected electrodes being
inconsistent with the known interelectrode spacing for the EA. This is most often caused
by poor image quality that affects the creation of the subsequent heatmap (Task #1).
We have designed simple rules to detect these anomalies. When one is detected, the
framework switches to Algorithm 2 for a more reliable sampling-based localization for
distantly-spaced EAs.

3 Experiments and Results

3.1 Implementation Details

Themulti-taskU-Net is trainedwith PyTorch 1.12 on anNVIDIARTX2080TiGPU.We
use MONAI [23] for data augmentation which contains an additive Gaussian noise and
random affine transformations. The images are preprocessed by being rigidly registered
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to the left ear (mirroring is performed if one case is a right ear) of a template volume
(atlas), resampled to a 0.1mm isotropic voxel size, and cropped into a region of interest
(ROI) with a dimension of 320 × 320 × 320. Due to GPU memory size limit, we use a
patch-based strategy (with a dimension of 256× 256× 192) for training. The batch size
is set to 1 and we use AdamW optimizer with learning rate of 5e-4. At inference we use
a sliding-window approach to merge the results. The network is trained for 250 epochs,
and we select the epoch with the lowest validation loss as our final model. Note that a
minority (3%) of the images in dataset #1 are reconstructed with a limited HU range, i.e.,
[-1024,3071]HU. In these images bone and electrodes have similar intensity values. The
remaining (97%) images have maximum intensities far larger than 3071HU. In these
images electrodes have larger intensity values than bone. To address this issue, we train
another DL model with the same training strategy and dataset, but the intensity of all the
training images is saturated at 3071HU, i.e., every pixel with an intensity above 3071HU
is assigned a value of 3071HU. All the results obtained for limited HU range images
presented herein are obtained with this dedicated model. The postprocessing algorithms
are implemented in Python 3.9 and NumPy. We use skimage for 3D skeletonization and
the csaps package for calculating the cubic spline. The inference time for the proposed
framework (from loading the image to outputting the electrode locations) ranges between
5 to 20 s.

3.2 Evaluation and Results

The techniques described in [8] (for closely-spaced EAs) and [12] (for distantly-spaced
EAs) are designed and validated with EAs and imaging protocols that are similar to those
used in this study. They are also in routine use with over 2000 ears processed at the two
institutions in dataset #1. They are considered to be the SOTA methods for comparison.

Fig. 2. Box plot of the P2PE in dataset #2 (27 implanted cadaveric ears). The median value for
each metric is shown above each box in the right figure.

Wefirst evaluate the accuracy of the proposed framework on dataset #2 (27 implanted
cadaveric ears) for which the localization ground truth is known. Since the EAs in dataset
#2 are all distantly-spaced, [12] is used as the previous SOTAmethod for comparison.We
define the point-to-point error (P2PE) as the Euclidean distance between the predicted
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Fig. 3. Acceptance rate (higher means better) of the SOTA and proposed localization results on
the large-error subset (left) and the whole clinical test set (right). R1, R2, and R3 are different
raters.

electrode location and the ground truth location, and we calculate five P2PE-based
metrics (maximum, median, mean, standard deviation (std), and the minimum P2PE)
for all the electrodes in each case. The quantitative results are shown in Fig. 2.We can see
from the left box plot that the results of the previous method [12] contain an outlier with
relatively large P2PE, which is attributed to the low quality of the image. The median
values in the right box plot show that the proposed framework has slightly smaller P2PE
across the five metrics, but the differences are not statistically significant.

As introduced in Sect. 2.1, the 561 clinical cases in dataset #1 used for testing are
highly heterogeneous. They contain CBCT and CT images from dataset #1A and #1B.
Since manual annotations are not available for these images, we ask three experts to
evaluate and compare the results obtained with the previous SOTA methods ([8] and
[12]) and those obtained with the proposed method. Specifically, as shown in Fig. 4,
we generate MIP (Maximum Intensity Projection) images and mark the locations at
which the electrodes have been localized. This permits a rapid visual assessment of
the localization quality. Next, for each case, we present the visualization of the results
generated by the previous SOTA methods and by the proposed method side-by-side but
in a random order, such that the experts are blind to the methods used to localize the
contacts. They are then asked to rate the localization results as acceptable, i.e., no need
to adjust the localization result or “Needs Adjustment (NA)”, i.e., at least one electrode
location needs to be adjusted by more than half a contact size. When both results are
acceptable, raters are also asked to decidewhich one is preferred (i.e., has amore accurate
localization result) or there is no preference.

Before performing the expert evaluation, we calculate the maximum P2PE between
the results from the previous SOTA and the proposed methods. For cases with maximum
P2PE larger than 0.3 mm (we refer to them as the large-error subset), there is a high
probability that at least one of themethods generatesNAresults. For caseswithmaximum
P2PE smaller than 0.3 mm (we refer to them as the small-error subset), we presume that
the probability of NA results is relatively small. To limit the demand on the experts’
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Fig. 4. Two representative cases from the large-error subset are shown with the display used to
visually evaluate localization quality. Yellow circles highlight the regions that contain the NA
electrode localization. Top row: a distantly-spaced EA. Bottom row: a closely-spaced EA. The
Left and right images in each row represent results obtained with one of the methods; the method
that is used for each is not disclosed to the evaluator.

time, we ask three experts (R1, R2, and R3) to rate the large error subset (164 cases) and
only one expert (R1) to rate the small error subset (397 cases).

The expert evaluation results are shown as radar plots in Fig. 3. The left figure
shows the acceptance rate for the large error cases evaluated by raters R1, R2, and R3.
Except for the cases rated by R1 that contain closely-spaced EAs in CBCT (“R1-CBCT-
Closely”), the localization results generated by the proposedmethod have a substantially
higher acceptance rate than the previous SOTAmethods ([8] for closely-spaced and [12]
for distantly-spaced). For the cases in which both methods are acceptable, the average
preference rates across the three raters are: 20.2% for “SOTA preferred”, 30.3% for
“Proposed preferred”, and 49.5% for “No preference”. As can be seen in the right
plot of Fig. 3, the overall acceptance rate on the whole clinical test set evaluated by
R1 is 80.7% for the previous SOTA methods and 89.7% for the proposed method. It is
interesting to note that although the proposedmethod is trainedmostly on CBCT images,
it still generalizes well on CT images. Figure 4 shows two representative cases from the
large-error subset.

4 Conclusions

In this work, we have proposed a novel DL-based framework for cochlear implant EA
localization. To the best of our knowledge, it is the first unified DL-based framework
designed for localizing both distantly- and closely-spaced EAs in CT and CBCT images.



384 Y. Fan et al.

Compared to the SOTA methods, the proposed framework is substantially more robust
(9% lessNA results)when evaluated on a large-scale clinical dataset and achieves slightly
more accurate localization results on a dataset containing 27 cadaveric samples with gold
standard ground truth. While it may be possible to improve our success rate further, a
low percentage of NA results is unavoidable. We are thus developing quality assessment
techniques to alert end users when images have poor quality and/or results are unreliable.
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