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Abstract. Functional brain dynamics is supported by parallel and over-
lapping functional network modes that are associated with specific neu-
ral circuits. Decomposing these network modes from fMRI data and
finding their temporal characteristics is challenging due to their time-
varying nature and the non-linearity of the functional dynamics. Dynamic
Mode Decomposition (DMD) algorithms have been quite popular for solv-
ing this decomposition problem in recent years. In this work, we apply
GraphDMD—an extension of the DMD for network data—to extract the
dynamic network modes and their temporal characteristics from the fMRI
time series in an interpretable manner. GraphDMD, however, regards the
underlying system as a linear dynamical system that is sub-optimal for
extracting the network modes from non-linear functional data. In this
work, we develop a generalized version of the GraphDMD algorithm—
DeepGraphDMD—applicable to arbitrary non-linear graph dynamical
systems. DeepGraphDMD is an autoencoder-based deep learning model
that learns Koopman eigenfunctions for graph data and embeds the non-
linear graph dynamics into a latent linear space. We show the effectiveness
of our method in both simulated data and the HCP resting-state fMRI
data. In the HCP data, DeepGraphDMD provides novel insights into cog-
nitive brain functions by discovering two major network modes related to
fluid and crystallized intelligence.
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1 Introduction

The human brain has evolved to support a set of complementary and temporally
varying brain network organizations enabling parallel and higher-order informa-
tion processing [16,20,24]. Decoupling these networks from a non-linear mixture
of signals (such as functional MRI) and extracting their temporal characteristics
in an interpretable manner has been a long-standing challenge in the neuro-
science community.

Conventional mode/component decomposition methods such as Principal
Component Analysis (PCA) or Independent Component Analysis (ICA) assume
the modes to be static [7,15,26] and thus sub-optimal for the functional net-
works generated by time-varying modes. Dynamic Mode Decomposition (DMD)
can be treated as a dynamic extension of such component analysis methods
since it allows its modes to oscillate over time with a fixed frequency [18]. This
assumption is appropriate for the human brain as the functional brain organiza-
tions are supported by oscillatory network modes [2,8,11,23,27]. An extension
of DMD for network data called GraphDMD [4] preserves the graph structure
of the networks during the decomposition. In our work, we extend GraphDMD
to a sequence of sliding window based dynamic functional connectivity (dNFC)
networks to extract independent and oscillatory functional network modes.

Under the hood, GraphDMD regards the network sequence as a linear dynam-
ical system (LDS) where a linear operator shifts the current network state one
time-point in the future. The LDS assumption, however, is not optimal for mod-
eling functional brain networks that exhibit complex non-linearity such as rapid
synchronization and desynchronization as well as transient events [6]. Articles
[3,13] propose switching linear dynamical system (SLDS) to tackle the nonlin-
earity of spatiotemporal data by a piecewise linear approximation. While these
models offer interpretability, their shallow architecture limits their generalizabil-
ity to arbitrary nonlinear systems. On the other hand, the methods in [5,10,21]
model the non-linearity with a deep neural network. While these models have
more representation capabilities compared to SLDS, the latent states are not
interpretable. More importantly, all of these methods consider the node-level
dynamics instead of the network dynamics.

Here, we propose a novel Deep Graph Dynamic Mode Decomposition (Deep-
GraphDMD) algorithm that applies to arbitrary non-linear network dynamics
while maintaining interpretability in the latent space. Our method uses Koop-
man operator theory to lift a non-linear dynamical system into a linear space
through a set of Koopman eigenfunctions (Fig. 1a). There has been a growing
line of work that learns these measurement functions using deep autoencoder
architectures [14,22]. Training these autoencoders for network data, however,
has two unique challenges – 1. preserving the edge identity in the latent space
so that the network modes are interpretable, 2. enforcing linearity in the latent
space for the high dimensional network data. In DeepGraphDMD, we tackle the
first challenge by indirectly computing the network embeddings by a novel node
embedding scheme. For the second challenge, we introduce a sparse Koopman
operator to reduce the complexity of the learning problem. We evaluate the
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Fig. 1. (a) Illustration of the DeepGraphDMD model that embeds a nonlinear graph
dynamical system into a linear space, and, (b) interpretable dynamic modes and their
temporal characteristics after applying GraphDMD in the linear space.

effectiveness of our novel method in both simulated data and resting-state fMRI
(rs-fMRI) data from Human Connectome Project.

2 Methodology

Let’s assume X ∈ R
n×t is a matrix containing the BOLD (blood-oxygen-level-

dependent) signal of n brain regions (ROIs) in its rows at t time frames sampled
at every kΔt time points, where Δt is the temporal resolution. To compute the
dynamic connectivity matrix at time point kΔt, a snapshot Xk = X:,k:k+s is
taken in a sliding window of s time frames. A correlation matrix Gk ∈ R

n×n

is then computed from Xk by taking the pearson correlation between the rows
of Xk, i.e., Gij

k = pearson(xi
k, x

j
k) where xi

k, xj
k are the ith and jth row of Xk

respectively. This yields a sequence of graphs G = [G1, G2, · · · , Gt−s+1]. Let’s
also assume that gk ∈ Rn2

is a vectorized version of Gk, i.e. gk = vec(Gk)
and g ∈ Rn2×(t−s+1) is a matrix containing gk in its columns. The goal is to
decouple the overlapping spatiotemporal modes from the network sequence G
using – 1. Graph Dynamic Mode Decomposition algorithm, and 2. a novel Deep
Learning-based Graph Dynamic Mode Decomposition algorithm.

2.1 Graph Dynamic Mode Decomposition

GraphDMD [4] assumes that gk follows an LDS:

gk+1 = Agk (1)

where A ∈ R
n2×n2

is a linear operator that shifts the current state gk to the
state at the next time frame gk+1. To extract the low dimensional global network
dynamics, GraphDMD projects A into a lower dimensional space Â using tensor-
train decomposition, applies eigendecomposition of Â, and projects the eigen-
vectors back to the original space which we refer to as dynamic modes (DMs).
GraphDMD uses tensor-train decomposition to maintain the network structure
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of gk and thus, the DMs from GraphDMD can be reshaped into n×n adjacency
matrix forms. Let’s assume these DMs are Φ1, Φ2, · · · , Φr where Φp ∈ C

n×n and
the corresponding eigenvalues are λ1, λ2, · · · , λr where λp ∈ C (Fig. 1b). Here,
r is the total number of DMs. Φp corresponds to the coherent spatial mode and
λp defines its temporal characteristics (growth/decay rate and frequencies). We
can see this by unrolling Eq. 1 in time:

gk+1 = Akg1 =
r∑

p=1

Φpλ
k
pbp =

r∑

p=1

Φpa
k
p exp(ωpkΔt)bp (2)

where λp = ap exp(ωpΔt), Φ† is the conjugate transpose of Φ, bp = vec(Φ†
p)g1

is the projection of the initial value onto the DMD modes, ap = ||λp|| is the
growth/decay rate and ωp = Im(ln λp)/Δt is the angular frequency of Φp.

2.2 Adaptation of Graph-DMD for Nonlinear Graph Dynamics

Since the dynamics of the functional networks are often non-linear, the linear-
ity assumption of Eq. 1 is sub-optimal. In this regard, we resort to Koopman
operator theory to transform the non-linear system into an LDS using a set of
Koopman eigenfunctions ψ, i.e., ψ(gk+1) = Aψ(gk) [9]. We learn ψ using a deep
autoencoder-based architecture—DeepGraphDMD—where the encoder and the
decoder are trained to approximate ψ and ψ−1, respectively. We enforce ψ(gk)
to follow an LDS by applying Latent Koopman Invariant Loss [22] in the form:

Llkis = ||Y ′ − (Y ′Y †)Y ||2F (3)

where Y =

⎛

⎝ψ(g1) ψ(g2) · · · ψ(gt−s)

⎞

⎠, Y ′ =

⎛

⎝ψ(g2) ψ(g3) · · · ψ(gt−s+1)

⎞

⎠ are

two matrices with columns stacked with ψ(gk) and Y † is the right inverse of
Y . After training, we reshape ψ(gk) into a n × n network ψ(Gk) and generate
the latent network sequence ψ(G1), · · · , ψ(Gt−s+1). We then apply GraphDMD
(described in Sect. 2.1) on this latent and linearized network sequence to extract
the DMs Φp and their corresponding λp.

However, there are two unique challenges of learning network embeddings
using the DeepGraphDMD model: 1. the edge identity and, thus, the inter-
pretability will be lost in the latent space if we directly embed gk using ψ, and 2.
Y † doesn’t exist, and thus Llkis can’t be computed because Y is low rank with
the number of rows n(n−1)

2 >> the number of columns t − s + 1.
To solve the first problem, instead of learning ψ(gk) directly, we embed the

BOLD signal xi
k of each ROI independently using the encoder to learn the latent

embeddings zik (Fig. 1a). We then compute the pearson correlation between the
latent embeddings of the ROIs to get the Koopman eigenfunctions of gk i.e.,
ψ(gijk ) = pearson(zik, z

j
k). The weights of the encoder and decoder are shared

across the ROIs.
The second problem arises because the Koopman operator A regresses the

value of an edge at the next time-point as a linear combination of all the other
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edges at the current time-point, i.e., gijk+1 =
∑N

p,q=1 wpqg
pq
k . This results in O(n2)

covariates with t − s + 1 << O(n2) samples making the regression ill-posed. We
propose a sparse Koopman operator where each edge gijk is regressed using only
the edges that share a common end-point with it, i.e., gijk+1 =

∑n
p=1,p�=i,j wipg

ip
k +

∑n
q=1,q �=i,j wqjg

qj
k +wijg

ij
k (Supplementary Fig. 1). Since there are only O(n) such

edges, it solves the ill-posedness of the regression.
Other than Llkis, we also train the autoencoder with a reconstruction loss

Lrecon which is the mean-squared error (MSE) between xi
k and the reconstructed

output from the decoder x̂i
k. Moreover, a regularizer Lreg in the form of an MSE

loss between gk and the latent ψ(gk) is also added. The final loss is the following:

L = Lrecon + αLlkis + βLreg (4)

where α and β are hyper-parameters. We choose α, β, and other hyperparameters
using grid search on the validation set. The network architecture and the values of
the hyper-parameters of DeepGraphDMD training are shown in Supplementary
Fig. 1. The code is available in1.

2.3 Window-Based GraphDMD

We apply GraphDMD in a short window of size 64 time frames with a step size
of 4 time frames instead of the whole sequence G because, in real-world fMRI
data, both the frequency and the structure of the DMs can change over time.
We then combine the DMs across different sliding windows using the following
post-processing steps:

Post-processing of the DMs: We first group the DMs within the frequency
bins: 0–0.01 Hz, 0.01–0.04 Hz, 0.04–0.08 Hz, 0.08–0.12 Hz, and 0.12–0.16 Hz. We
then cluster the DMs within each frequency bin using a clustering algorithm
and select the cluster centroids as the representative DMs (except for the first
bin where we average the DMs). We chose the optimal clustering algorithm to
be Spherical KMeans [1] (among Gaussian Mixture Model, KMeans, Spherical
KMeans, DBSCAN, and, KMedoids) and the optimal number of clusters to be 3
for every frequency bin based on silhouette analysis [17] (Supplementary Fig. 2).
We use this frequency binning technique to allow for slight variations of ω of a
DM over the scanning session. To align these representative DMs across subjects,
we apply another round of spherical clustering on the DMs from all subjects and
align them based on their cluster memberships.

3 Experiments

3.1 Dataset

We use rs-fMRI for 840 subjects from the HCP Dense Connectome dataset2 [25].
Each fMRI image was acquired with a temporal resolution (Δt) of 0.72 s and a
1 https://github.com/mturja-vf-ic-bd/DeepGraphDMD.git.
2 https://www.humanconnectome.org/storage/app/media/documentation/s1200/

HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf.

https://github.com/mturja-vf-ic-bd/DeepGraphDMD.git
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP1200-DenseConnectome+PTN+Appendix-July2017.pdf
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2 mm isotropic spatial resolution using a 3T Siemens Skyra scanner. Individual
subjects underwent four rs-fMRI runs of 14.4 min each (1200 frames per run).
Group-ICA using FSL’s MELODIC tool [7] was applied to parcellate the brain
into 50 functional regions (ROIs). To find the correlation between cognition with
the rs-fMRI data, we select two behavioral measures related to fluid intelligence:
CogFluidComp, PMAT24 A CR and one measure related to crystallized intelligence:
ReadEng, and, the normalized scores of the fluid and crystallized cognition mea-
sures: CogTotalComp. We regress out the confounding factors: age, gender, and
head motion from these behavioral measures using ordinary least squares [12].

3.2 Baseline Methods

We compare GraphDMD and DeepGraphDMD against three decomposition
methods: Principal Component Analysis (PCA), Independent Component Anal-
ysis (ICA), and standard Dynamic Mode Decomposition (DMD) [18]. We use
the sklearn decomposition library for PCA3 and ICA4 and the pyDMD5 library
for standard DMD. We apply PCA and ICA on g, and DMD directly on the bold
signal X instead of g (for reasons described in Sect. 4.2). We choose the number
of components (n_components) to be three for these decomposition methods,
(Results for other n_components values are shown in Supplementary Table 1).
The components are aligned across subjects using spherical clustering similar to
the GraphDMD modes (Sect. 2.3). We also compare with static functional con-
nectivity (sFC), which is the pairwise pearson correlation between brain regions
across all time frames.

3.3 Simulation Study

We generate a sequence of dynamic adjacency matrices G using Eq. 2 from three
time-varying modes Φ1, Φ2, Φ3 with corresponding frequencies ω1 ∼ N (0.1, 0.05),
ω2 ∼ N (1, 0.1), ω3 ∼ N (2.5, 0.1) (Hz). Each Φp is a 32 × 32 block diagonal
matrices with block sizes 16, 8, and 4. We choose a1 = 1.01, a2 = 0.9, a3 = 1.05
and b1 = b2 = b3 = 1. We simulate the process for k = 1, · · · , 29 time-points
yielding a sequence of 30 matrices of shape 32 × 32. We repeat the process ten
times with different ω1, ω2, ω3 and generate ten matrix sequences. We apply
PCA, ICA, and GraphDMD (Sect. 2.1) on G to extract three components and
compare them against the ground truth modes using pearson correlation.

3.4 Application of GraphDMD and DeepGraphDMD in HCP Data

Comparison of DMs with sFC: The ground truth DMs are unknown for the
HCP dataset; however, we can use the sFC as a substitute for the ground truth
DM with ω = 0 (static DM). sFC offsets the DMs with ω > 0 as they have both

3 sklearn.decomposition.PCA.
4 sklearn.decomposition.FastICA.
5 https://mathlab.github.io/PyDMD/dmd.html.

https://mathlab.github.io/PyDMD/dmd.html
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positive and negative cycles, and thus only retain the static DM. For comparison,
we compute the pearson correlation between the DM within the frequency bin
0–0.01 Hz and sFC for both GraphDMD and DeepGraphDMD. For PCA and
ICA, we take the maximum value of the correlation between sFC and the (PCA
or ICA) components.

Regression Analysis of Behavioral Measures from HCP: In this experi-
ment, we regress the behavioral measures with the DMs within each frequency
bin (Sect. 2.3) using Elastic-net. As an input to the Elastic-net, we take the real
part of the upper diagonal part of the DM and flatten it into a vector. We then
train the Elastic-net in two ways—1. single-band: where we train the Elastic-net
independently with the DMs in each frequency bin, and 2. multi-band: we con-
catenate two DMs in the frequency bins: 0–0.01 Hz and 0.08–0.12 Hz and regress
using the concatenated vector. For evaluation, we compute the correlation coef-
ficient r between the predicted and the true values of the measures.

4 Results

4.1 Simulation Study

In Fig. 2a, we show the results after applying PCA, ICA, and, GraphDMD on the
simulated data described in Sect. 3.3. Since the DMs in this data are oscillating,
the data generated from this process are more likely to be overlapping compared
to when the modes are static. As a result, methods that assume static modes,
such as PCA and ICA, struggle to decouple the DMs and discover modes in
overlapping high-density regions. For example, in Mode 2 of ICA, we can see
the remnants of Mode 3 in the blue boxes and Mode 1 (negative cycle) in the
orange boxes. We observe similar scenarios in the Mode 3 of ICA and Mode
1, Mode 2, and Mode 3 of PCA (the red boxes). On the other hand, the DMs
from GraphDMD have fewer remnants from other modes and closely resemble
the ground truth. To empirically compare, the mean (± std) pearson correlation
for PCA, ICA, and, GraphDMD are 0.81(±0.04), 0.88(±0.03), and 0.98(±0.01).

4.2 Application of GraphDMD and DeepGraphDMD in HCP Data

Comparison of DMs with sFC: The average pearson correlations with sFC
across all the subjects are 0.6(±0.09), 0.6(±0.09), 0.84(±0.09), and 0.86(±0.05)
for PCA, ICA, GraphDMD, and, DeepGraphDMD (Fig. 2b) respectively. This
shows that the DMD-based methods can robustly decouple the static DM from
time-varying DMs. In comparison, the corresponding PCA and ICA component
has significantly lower correlation due to the overlap from the higher frequency
components.

Regression Analysis of Behavioral Measures from HCP: We show the
values of r across different methods in Table 1. We only show the results for
two frequency bins 0–0.01 Hz and 0.08–0.12 Hz, as the DMs in the other bins
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are not significantly correlated (r < 0.2) with the behavioral measures (Sup-
plementary Table 2). The table shows that multi-band training with the DMs
from the DMD-based methods significantly improves the regression performance
over the baseline methods. Compared to sFC, GraphDMD improves r by 22%,
6%, 0.7%, and, 3% for CogFluidComp, PMAT24 A CR, ReadEng, CogTotalComp,
respectively and DeepGraphDMD further improves the performance by 5%,
2.2%, 0.7%, and, 1.5%, respectively. Significant performance improvement for
CogFluidComp can be explained by the DM within the bin 0.08–0.12 Hz. This
DM provides additional information related to fluid intelligence (r = 0.227 for
GraphDMD) to which the sFC doesn’t have access. By considering non-linearity,
DeepGraphDMD extracts more robust and less noisy DMs (Fig. 2b–c), and
hence, it improves the regression performance by 8% compared to GraphDMD
in this frequency bin. By contrast, the standard DMD algorithm yields unstable
modes with ap << 1 when applied to the network sequence G. These modes
have no correspondence across subjects and thus can’t be used for regression.
We instead apply DMD on the BOLD signal X, but the DMD modes show little

Fig. 2. (a) Ground truth network modes from simulated data (column 1) and extracted
network modes from PCA (2nd column), ICA (3rd column), and, GraphDMD (4th
column), (b) Circle plot of the average DMs with ω ≈ 0, (c) ω ∈ [0.08 − 0.12] from
DeepGraphDMD organized based on common resting-state networks [19].

Table 1. Comparison of r for the behavioral measures across different methods.

Frequency (Hz) CogFluidComp PMAT24 A CR ReadEng CogTotalComp

sFC N/A 0.253 ± 0.003 0.294 ± 0.004 0.407 ± 0.004 0.440 ± 0.004

PCA N/A 0.109 ± 0.003 0.126 ± 0.003 0.224 ± 0.003 0.238 ± 0.003

ICA N/A 0.148 ± 0.005 0.158 ± 0.004 0.239 ± 0.005 0.266 ± 0.006

DMD 0–0.01, 0.08–0.12 0.064 ± 0.002 0.169 ± 0.002 0.132 ± 0.003 0.138 ± 0.006

Graph DMD 0–0.01 0.254 ± 0.003 0.289 ± 0.004 0.402 ± 0.004 0.438 ± 0.003

0.08–0.12 0.227 ± 0.004 0.193 ± 0.004 0.145 ± 0.004 0.248 ± 0.004

0–0.01, 0.08–0.12 0.308 ± 0.004 0.312 ± 0.004 0.410 ± 0.003 0.454 ± 0.004

Deep Graph DMD 0–0.01 0.259 ± 0.003 0.290 ± 0.002 0.404 ± 0.002 0.439 ± 0.002

0.08–0.12 0.245 ± 0.002 0.201 ± 0.004 0.144 ± 0.003 0.251 ± 0.004

0–0.01, 0.08–0.12 0.325 ± 0.003 0.319 ± 0.003 0.413 ± 0.002 0.461 ± 0.003



366 Md A. Turja et al.

correlation with the behavioral measures. PCA and ICA perform significantly
worse than the baseline sFC method for all behavioral measures.

Traditional dynamical functional connectivity analysis methods (such as slid-
ing window-based techniques) consider a sequence of network states. However,
our results show that these states can be further decomposed into more atomic
network modes. The importance of decoupling these network modes from non-
linearly mixed fMRI signals using DeepGraphDMD has been shown in regressing
behavioral measures from HCP data.

5 Conclusion

In this paper, we proposed a novel algorithm—DeepGraphDMD—to decouple
spatiotemporal network modes in dynamic functional brain networks. Unlike
other decomposition methods, DeepGraphDMD accounts for both the non-linear
and the time-varying nature of the functional modes. As a result, these functional
modes from DeepGraphDMD are more robust compared to their linear counter-
part in GraphDMD and are shown to be correlated with fluid and crystallized
intelligence measures.
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