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Abstract. Analysis of large and dense networks based on topology is
very difficult due to the computational challenges of extracting meaning-
ful topological features from networks. In this paper, we present a com-
putationally tractable approach to topological data analysis of large and
dense networks. The approach utilizes principled theory from persistent
homology and optimal transport to define a novel vector space represen-
tation for topological features. The feature vectors are based on persis-
tence diagrams of connected components and cycles and are computed
very efficiently. The associated vector space preserves the Wasserstein
distance between persistence diagrams and fully leverages the Wasser-
stein stability properties. This vector space representation enables the
application of a rich collection of vector-based models from statistics
and machine learning to topological analyses. The effectiveness of the
proposed representation is demonstrated using support vector machines
to classify measured functional brain networks. Code for the topological
vector space is available at https://github.com/topolearn.

Keywords: Persistent homology · Wasserstein distance · Graph
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1 Introduction

Networks are ubiquitous representations for describing complex, highly intercon-
nected systems that capture intricate patterns of relationships between nodes.
[3]. Finding meaningful, computationally tractable characterizations of network
structure is very difficult, especially for large and dense networks with node
degrees ranging over multiple orders of magnitude [5].

Persistent homology [10] is an emerging tool for understanding, characteriz-
ing and quantifying the topology of complex networks [19,21]. Connected com-
ponents and cycles are the most dominant and fundamental topological features
of real networks. For example, many networks naturally organize into modules
or connected components [5]. Similarly, cycle structure is ubiquitous and is often
interpreted in terms of information propagation, redundancy and feedback loops
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[14]. Topological features are represented in persistent homology using descrip-
tors called persistence diagrams [10]. Effective use of such topological descriptors
in machine learning requires a notion of proximity. Wasserstein distance is often
used to quantify the distance between persistence diagrams, motivated by its cen-
tral stability properties [18]. However, the integration of persistence diagrams
and Wasserstein distance with standard learning methods from statistics and
machine learning has been a challenging open problem due to the differences
between Wasserstein distance and standard Euclidean-based metrics [8].

Approaches that embed persistence diagrams into vector spaces [1] or Hilbert
spaces [7,13] have recently been proposed to address this challenge. None of
the embedding methods proposed thus far preserve Wasserstein distance in the
original space of persistence diagrams [6]. Thus, these approaches do not inherit
the stability properties of Wasserstein distance.

Recently, it was shown that persistence diagrams are inherently 1-
dimensional if the topological features of networks are limited to connected
components and cycles, and that the Wasserstein distance between these dia-
grams has a closed form expression [19]. Consequently, the work in [20] provides
a computationally tractable, topological clustering approach for complex net-
works. However, significant limitations of the result in [19,20] are that it is
unclear how this approach can be incorporated with standard Euclidean-based
learning methods from statistics and machine learning, and that the approach
is limited to evaluating networks with the identical number of nodes. There are
many opportunities for applications of topological analysis of networks of differ-
ent size, such as studies of the human brain when different subjects are sampled
at different resolutions.

In this work, we present a novel topological vector space (TopVS) that
embeds 1-dimensional persistence diagrams representing connected components
and cycles for networks of different sizes. Thus, TopVS enables topological
machine learning with networks of different sizes and greatly expands the appli-
cability of previous work. Importantly, TopVS preserves the Wasserstein distance
in the original space of persistence diagrams. Preservation of the Wasserstein dis-
tance ensures the theoretical stability properties of persistence diagrams carry
over to the proposed embedding. In addition to the robustness benefits, TopVS
also enables the application of a wide variety of Euclidean metric-based learning
methods to topological data analysis. Particularly, the utility of TopVS is demon-
strated in topology-based classification problems using support vector machines.
TopVS is illustrated by classifying measured functional brain networks based on
data obtained from subjects with different numbers of electrodes. The results
show that TopVS performs very well compared to other competing approaches.

2 Wasserstein Distance-Preserving Vector Space

2.1 One-Dimensional Persistence Diagrams

Define a network as an undirected weighted graph G = (V,w) with a set of nodes
V and a weighted adjacency matrix w = (wij). Define a binary graph Gε with the
identical node set V by thresholding the edge weights so that an edge between
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nodes i and j exists if wij > ε. The binary graph is viewed as a 1-skeleton [15].
As ε increases, more and more edges are removed from the network G. Thus, we
have a graph filtration: Gε0 ⊇ Gε1 ⊇ · · · ⊇ Gεk , where ε0 ≤ ε1 ≤ · · · ≤ εk are
called filtration values. Persistent homology keeps track of the birth and death of
topological features over filtration values ε. A topological feature that is born at
a filtration bi and persists up to a filtration di, is represented by a point (bi, di)
in a 2D plane. A set of all the points {(bi, di)} is called persistence diagram [10].
In the 1-skeleton, the only non-trivial topological features are connected com-
ponents and cycles [22]. As ε increases, the number of connected components
β0(Gε) and cycles β1(Gε) are monotonically increasing and decreasing, respec-
tively [19]. Thus, the representation of the connected components and cycles
can be simplified to a collection of sorted birth values B(G) = {bi}|V |−1

i=1 and
a collection of sorted death values D(G) = {di}1+|V |(|V |−3)/2

i=1 , respectively [19].
B(G) comprises edge weights in the maximum spanning tree (MST) of G. Once
B(G) is identified, D(G) is given as the remaining edge weights that are not
in the MST. Thus B(G) and D(G) are computed very efficiently in O(n log n)
operations with n number of edges in networks.

2.2 Closed-Form Wasserstein Distance for Different-Size Networks

The Wasserstein distance between the 1-dimensional persistence diagrams can
be obtained using a closed-form solution. Let G1 and G2 be two given net-
works possibly with different node sizes, i.e., their birth and death sets may
differ in size. Their underlying empirical distributions on the persistence dia-
grams for connected components are defined in the form of Dirac masses [23]:
fG1,B(x) := 1

|B(G1)|
∑

b∈B(G1)
δ(x−b) and fG2,B(x) := 1

|B(G2)|
∑

b∈B(G2)
δ(x−b),

where δ(x − b) is a Dirac delta centered at the point b. Then the empirical
distribution functions are the integration of fG1,B and fG2,B as FG1,B(x) =

1
|B(G1)|

∑
b∈B(G1)

1b≤x and FG2,B(x) = 1
|B(G2)|

∑
b∈B(G2)

1b≤x, where 1b≤x is an
indicator function taking the value 1 if b ≤ x, and 0 otherwise. A pseudoinverse
of FG1,B is defined as F−1

G1,B(z) = inf{b ∈ R |FG1,B(b) ≥ z}, i.e., F−1
G1,B(z) is

the smallest b for which FG1,B(b) ≥ z. Similarly, we define a pseudoinverse of
FG2,B as F−1

G2,B(z) = inf{b ∈ R |FG2,B(b) ≥ z}. Then the empirical Wasserstein
distance for connected components has a closed-form solution in terms of these
pseudoinverses as

Wp,B(G1, G2) =
(∫ 1

0

|F−1
G1,B(z) − F−1

G2,B(z)|p dz
)1/p

. (1)

Similarly, the Wasserstein distance for cycles Wp,D(G1, G2) is defined in terms
of empirical distributions for death sets D(G1) and D(G2).

The empirical Wasserstein distances Wp,B and Wp,D are approximated
by computing the Lebesgue integration in (1) numerically as follows.
Let B̂(G1) = {F−1

G1,B(1/m), F−1
G1,B(2/m), ..., F−1

G1,B(m/m)} and D̂(G1) =
{F−1

G1,D(1/n), ..., F−1
G1,D(n/n)} be pseudoinverses for network G1 sampled with

partitions of equal intervals. Let B̂(G2) and D̂(G2) be sampled pseudoinverses
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for network G2 with the same partitions of m and n, respectively. Then the
approximated Wasserstein distances are given by

Ŵp,B(G1, G2) =
( 1

mp

m∑

k=1

∣
∣F−1

G1,B(k/m) − F−1
G2,B(k/m)

∣
∣p

)1/p

, (2)

Ŵp,D(G1, G2) =
( 1

np

n∑

k=1

∣
∣F−1

G1,D(k/n) − F−1
G2,D(k/n)

∣
∣p

)1/p

. (3)

For a special case when networks G1 and G2 have the same number of nodes,
i.e., |B(G1)| = |B(G2)| and |D(G1)| = |D(G2)|, then exact computation of the
Wasserstein distance is achieved using those birth and death sets, and setting m
to the cardinality of the birth sets and n to that of the death sets.

2.3 Vector Representation of Persistence Diagrams

A collection of 1-dimensional persistence diagrams together with the Wasserstein
distance is a metric space. 1-dimensional persistence diagrams can be embed-
ded into a vector space that preserves the Wasserstein metric on the original
space of persistence diagrams as follows. Let G1, G2, ..., GN be N observed net-
works possibly with different node sizes. Let F−1

Gi,B
be a pseudoinverse of net-

work Gi. The vector representation of a persistence diagram for connected com-
ponents in network Gi is defined as a vector of the pseudoinverse sampled at
1/m, 2/m, ...,m/m, i.e., vB,i :=

(
F−1

Gi,B
(1/m), F−1

Gi,B
(2/m), ..., F−1

Gi,B
(m/m)

)�
.

A collection of these vectors MB = {vB,i}N
i=1 with the p-norm || · ||p induces

the p-norm metric dp,B given by dp,B(vB,i,vB,j) = ||vB,i − vB,j ||p = mŴp,B .
Thus, for p = 1 the proposed vector space describes Manhattan distance, p = 2
Euclidean distance, and p → ∞ the maximum metric, which in turn corre-
spond to the earth mover’s distance (W1), 2-Wasserstein distance (W2), and
the bottleneck distance (W∞), respectively, in the original space of persistence
diagrams. Similarly, we can define a vector space of persistence diagrams for
cycles MD = {vD,i}N

i=1 with the p-norm metric dp,D. The normed vector space
(MB , dp,B) describes topological space of connected components in networks,
while (MD, dp,D) describes topological space of cycles in networks.

The topology of a network viewed as a 1-skeleton is completely charac-
terized by connected components and cycles. Thus, we can fully describe the
network topology using both MB and MD as follows. Let MB × MD =
{(vB,i,vD,i) |vB,i ∈ MB,vD,i ∈ MD} be the Cartesian product between MB

and MD so the vectors in MB ×MD are the concatenations of vB,i and vD,i. For
this product space to represent meaningful topology of network Gi, the vectors
vB,i and vD,i must be a network decomposition, as discussed in Sect. 2.1. Thus
vB,i and vD,i are constructed by sampling their psudoinverses with m = V − 1
and n = 1 + V(V−3)

2 , respectively, where V is a free parameter indicating a ref-
erence network size. The metrics dp,B and dp,D can be put together to form a
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p-product metric dp,× on MB × MD as [9]

dp,×
(
(vB,i,vD,i), (vB,j ,vD,j)

)
=

(
[dp,B(vB,i,vB,j)]p + [dp,D(vD,i,vD,j)]p

)1/p

=
(
[mŴp,B ]p + [nŴp,D]p

)1/p
, (4)

where (vB,i,vD,i), (vB,j ,vD,j) ∈ MB × MD, m = V − 1 and n = 1 + V(V−3)
2 .

Thus, dp,× is a weighted combination of p-Wasserstein distances, and is simply
the p-norm metric between vectors constructed by concatenating vB,i and vD,i.
The normed vector space (MB × MD, dp,×) is termed topological vector space
(TopVS). Note the form of dp,× given in (4) results in an unnormalized mass
after multiplying m and n by their reciprocals given in (2) and (3). This unnor-
malized variant of Wasserstein distance is widely used in both theory [8,18] and
application [7,19,21] of persistent homology. A direct consequence of the equal-
ity given in (4) is that the mean of persistence diagrams under the approximated
Wasserstein distance is equivalent to the sample mean vector in TopVS. In addi-
tion, the proposed vector representation is highly interpretable because persis-
tence diagrams can be easily reconstructed from vectors by separating sorted
births and deaths.

For a special case in which networks G1, G2, ..., GN have the same number
of nodes, the vectors vB,i and vD,i are simply the original birth set B(Gi) and
death set D(Gi), respectively, and the p-norm metric dp,× is expressed in terms
of exact Wasserstein distances as dp,× = ([mWp,B ]p + [nWp,D]p)1/p.

3 Application to Functional Brain Networks

Dataset. We evaluate our method using functional brain networks from the anes-
thesia study reported by [2]. The brain networks are based on alpha band (8–
12 Hz) weighted phase lag index applied to 10-second segments of resting state
intracranial electroencephalography recordings. These recordings were made from
eleven neurosurgical patients during administration of increasing doses of the gen-
eral anesthetic propofol just prior to surgery. Each segment is labeled as one of
the three arousal states: pre-drug wake (W), sedated but responsive to command
(S), or unresponsive (U). The number of brain networks belonging to each subject
varies from 71 to 119, resulting in the total of 977 networks from all the subjects.
The network size varies from 89 to 199 nodes across subjects.

Classification Performance Evaluation. We are interested in whether candidate
methods 1) can differentiate arousal states within individual subjects, and 2)
generalize their learned knowledge to unknown subjects afterwards. As a result,
we consider two different nested cross validation (CV) tasks as follows.

1. For the first task, we classify a collection of brain networks belonging to each
subject separately. Specifically, we apply a nested CV comprising an outer
loop of stratified 2-fold CV and an inner loop of stratified 3-fold CV. Since
we may get a different split of data folds each time, we perform the nested CV
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for 100 trials and report an average accuracy score and standard deviation for
each subject. We also average these individual accuracy scores across subjects
(11 × 100 scores) to obtain an overall accuracy.

2. For the second task, we use a different nested CV comprising both outer
and inner loops with a leave-one-subject-out scheme. That is, a classifier is
trained using all but one test subject. The inner loop is used to determine
optimal hyperparameters, while the outer loop is used to assess generalization
capacity of the candidate methods to unknown subjects in the population.

Method Comparison. Brain networks are used to compare the classification per-
formance of the proposed TopVS relative to that of five state-of-the-art kernel
methods and two well-established graph neural network methods. Three of these
kernel methods are based on conventional 2-dimensional persistence diagrams for
connected components and cycles: the persistence image (PI) vectorization [1],
the sliced Wasserstein kernel (SWK) [7] and the persistence weighted Gaussian
kernel (PWGK) [13]. The other two kernel methods are based on graph ker-
nels: the propagation kernel (Prop) [16] and the GraphHopper kernel (GHK)
[11]. The PI method embeds persistence diagrams into a vector space in which
classification is performed using linear support vector machines (SVMs). The
non-linear SWK, PWGK, Prop and GHK methods are combined with SVMs
to perform classification. While nearly any classifier may be used with TopVS,
here we illustrate results using the SVM with the linear kernel, which maxi-
mizes Wasserstein distance-based margin. When the TopVS method is applied
to different-size networks, we upsample birth and death sets of smaller networks
to match that of the largest network in size. Hyperparameters are tuned using
grid search. SVMs have a regularization parameter C = {0.01, 1, 100}. Thus,
a grid search trains TopVS and PI methods with each C ∈ C. The SWK and
WGK methods have a bandwidth parameter Σ = {0.1, 1, 10}, and thus grid
search trains both methods with each pair (C, σ) ∈ C × Σ. The Prop method
has a maximum number of propagation iterations Tmax = {1, 5, 10}, and thus is
trained with each pair (C, tmax) ∈ C × Tmax. GHK method uses the RBF kernel
with a parameter Γ = {0.1, 1, 10} between node attributes, and thus is trained
with each pair (C, γ) ∈ C × Γ .

In addition, we also evaluate two well-established graph neural network meth-
ods including graph convolutional networks (GCN) [12] and graph isomorphism
network (GIN) [25]. GCN and GIN are based on configurations and choices of
hyperparameter values used in [25] as follows. Five graph neural network layers
are applied, and the Adam optimizer with initial learning rate and weight decay
of 0.01 are employed. We tune the following hyperparameters: the number of
hidden units in {16, 32}, the batch size in {32, 128} and the dropout ratio in
{0, 0.5}. The number of epochs is set to 100 to train both methods.

Results. Results for the first task are summarized in Fig. 1, in which classifica-
tion accuracy for individual subjects is shown. There is variability in individual
subject performance because a different subject’s network has a different num-
ber of electrodes, different electrode locations and different effective signal to
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Fig. 1. Accuracy classifying brain networks within individual subjects. The last column
displays the average accuracy obtained across all subjects. The center markers and bars
depict the means and standard deviations obtained over 100 different trials.

noise ratio. So we expect these subjects to exhibit a diverse set of topological
features across spatial resolutions. In most subjects all methods perform rela-
tively well. The consistently poorer performance of PI, Prop and GIN is evident
in the lower overall performance. On the other hand, our TopVS method is con-
sistently among the best performing classifiers, resulting in the higher overall
performance. For classification accuracy across subjects from the second task,
we have 0.65±0.21 for TopVS, 0.58±0.22 for PI, 0.57±0.20 for SWK, 0.60±0.21
for WGK, 0.36 ± 0.12 for Prop, 0.43 ± 0.14 for GHK, 0.53 ± 0.20 for GCN and
0.48±0.19 for GIN. TopVS is also among the best methods for classifying across
subjects, while the performance of all the graph neural networks and graph ker-
nels is significantly weaker. These results suggest that the use of computationally
demanding and complex classification methods, such as GCN and GIN, does not
result in significant increase in generalizability when classifying brain networks.

In addition, we compute confusion matrices to gain insights into the across-
subject predictions for the second task, as displayed in Fig. 2. The persistent
homology based methods, including TopVS, PI, SWK and WGK, are gener-
ally effective for separating unresponsive (U) from the other two states, and the
majority of classification errors are associated with the differentiation between
wake (W) and sedated (S) states. Prior work [2] demonstrated that wake and
sedated brains are expected to have a great deal of similarity in comparison to the
less similar unresponsive brains. However, the work in [2] performed the analysis
on each individual subject separately while the results presented here are based
on the analysis across subjects. Thus, not only the results here are consistent with
the previous work [2] but also suggest that such biological expectation carries
over to brains across subjects and that topology based methods can potentially
derive biomarkers of changes in arousal states in the population, which underlie
transitions into and out of consciousness, informing our understanding of the
neural correlates of consciousness in clinical settings. TopVS shows clear advan-
tages over all other topological baseline methods for differentiating wake and
sedated states, suggesting that the proposed vector representation is an effective
choice for representing subtle topological structure in brain networks.
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Fig. 2. Confusion matrices illustrating method performance for classifying across sub-
jects. The numbers represent the fraction of brain networks in the test subjects being
predicted as one of the three states: wake (W), sedated (S), and unresponsive (U). The
confusion matrices are normalized with the entries in each row summing to 1.

Runtime Experiment. The kernel candidate methods are evaluated for a runtime
experiment based on Intel Core i7 CPU with 16 GB of RAM. Figure 3 displays
the runtime vs input size plot. The result clearly shows that all three persistent
homology based kernels (PI, SWK and WGK) are limited to dense networks
with a few hundred nodes, representing the current scaling limit of persistent
homology embedding methods. On the other hand, TopVS is able to compute a
kernel between 2000-node networks each with approx. two million edges in about
one second. The computational practicality of TopVS extends its applicability
to the large-scale analyses of brain networks that cannot be analyzed using prior
methods based on conventional 2-dimensional persistence diagrams. Note that
the time complexity of Prop is linear while TopVS has the slightly higher com-
plexity as linearithmic. While Prop is the most efficient among all the methods,
it has the lowest average accuracy when classifying the brain network data.

Potential Impact and Limitation. An open problem in neuroscience is identify-
ing an algorithm that reliably extracts a patient’s level of consciousness from
passively recorded brain signals (i.e., biomarkers) and is robust to inter-patient
variability, including where the signals are recorded in the brain. Conveniently,
the anesthesia dataset is labeled according to consciousness state, and elec-
trode placement (node location) was dictated solely by clinical considerations
and thus varied across patients. Importantly, the relatively robust performance
across patients suggests there are reliable topological signatures of conscious-
ness captured by TopVS. The distinction between Wake and Sedated states
involves relatively nuanced differences in connectivity, yet TopVS exploits the
subtle differences in topology that differentiate these states better than the com-
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Fig. 3. Runtime experiment. We measured the runtime as the average amount of time
each algorithm takes to compute its kernel between two complete graphs starting from
edge weights as a given input. The runtime is plotted with respect to network size in
terms of both the number of nodes and edges.

peting methods. Our results suggest that the neural correlates of consciousness
can be captured in measurements of brain network topology, a longstanding
problem of great significance. Additionally, TopVS is a principled framework
that connects persistent homology theory with practical applications. Our ver-
satile vector representation can be used with various vector-based statistical and
machine learning models, expanding the potential for analyzing extensive and
intricate networks beyond the scope of this paper. While TopVS is limited to
representing connected components and cycles, assessment of higher-order topo-
logical features beyond cycles is of limited value due to their relative rarity and
interpretive challenges, and consequent minimal discriminitive power [4,17,24].
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