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Benedikt Wiestler5, and Bjoern Menze1,2

1 Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
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Abstract. Multiple Sclerosis (MS) is a severe neurological disease char-
acterized by inflammatory lesions in the central nervous system. Hence,
predicting inflammatory disease activity is crucial for disease assessment
and treatment. However, MS lesions can occur throughout the brain and
vary in shape, size and total count among patients. The high variance
in lesion load and locations makes it challenging for machine learning
methods to learn a globally effective representation of whole-brain MRI
scans to assess and predict disease. Technically it is non-trivial to incor-
porate essential biomarkers such as lesion load or spatial proximity. Our
work represents the first attempt to utilize graph neural networks (GNN)
to aggregate these biomarkers for a novel global representation. We pro-
pose a two-stage MS inflammatory disease activity prediction approach.
First, a 3D segmentation network detects lesions, and a self-supervised
algorithm extracts their image features. Second, the detected lesions are
used to build a patient graph. The lesions act as nodes in the graph and
are initialized with image features extracted in the first stage. Finally,
the lesions are connected based on their spatial proximity and the inflam-
matory disease activity prediction is formulated as a graph classification
task. Furthermore, we propose a self-pruning strategy to auto-select the
most critical lesions for prediction. Our proposed method outperforms
the existing baseline by a large margin (AUCs of 0.67 vs. 0.61 and 0.66
vs. 0.60 for one-year and two-year inflammatory disease activity, respec-
tively). Finally, our proposed method enjoys inherent explainability by
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assigning an importance score to each lesion for the overall prediction.
Code is available at https://github.com/chinmay5/ms ida.git.

1 Introduction

Multiple Sclerosis (MS) is a severe central nervous system disease with a highly
nonlinear disease course where periodic relapses impair the patient’s quality of
life. Clinical studies show that relapses co-occur with the appearance of new
inflammatory MS lesions in MR images [19,25], making MR imaging a central
element for the clinical management of MS patients. Further, assessing new MS
lesions is crucial for disease assessment and therapy monitoring [5,8]. Unfortu-
nately, prevailing therapies often involve highly active immunomodulatory drugs
with potentially severe side effects. Hence, it necessitates developing machine
learning models capable of predicting the future disease activity of individual
patients to select the best therapy.

While recent approaches applied convolutional neural networks (CNN) to
directly learn features from MR image space [3,4,21,26,28], there remain chal-
lenges to obtain an effective global representation to characterize disease status.
We attribute the difficulty of MS inflammatory disease activity prediction to a set
of distinct disease characteristics that are well observable in MR images. First,
while lesions have a sufficient signal-to-noise profile in images, their variation
in shape, size, and number of occurrences amongst patients make it challenging
for existing CNN-based methods that process the whole MRI scan in one go.
Second, with advanced age, small areas appearing in the MRI of healthy indi-
viduals may resemble MS. As such, it is crucial to not only predict MS but also
to identify the lesions deemed consequential for the final prediction.

To solve this problem, we use concepts from geometric deep learning. Specif-
ically, we propose a two-stage pipeline. First, the lesions in the MRI scans are
segmented using a state-of-the-art 3D segmentation algorithm [9], and their
image features are extracted with a self-supervised method [14]. Second, the
extracted lesions are converted into a patient graph. The lesions act as nodes of
the graph, while the edge connectivity is determined using the spatial proximity
of the lesions. By this representation, we can solve the MS inflammatory disease
activity prediction task as a graph-level classification problem. We argue that
formulating the MS inflammatory disease activity prediction in our two-stage
pipeline has the following advantages: (1) Graph neural networks can easily
handle different numbers of nodes (lesions) and efficiently incorporate their spa-
tial locations. (2) Modern segmentation [9,16,23] and representation learning
methods [2,11,14] are effective tools for lesion detection and allow us to extract
pathology-specific features. (3) By operating at the lesion level, it is possible
to discover the lesions that contribute most to the eventual prediction, making
the decisions more interpretable. Thus, our proposed solution can be a viable
methodology for MS inflammatory disease activity prediction to handle the asso-
ciated challenges.

https://github.com/chinmay5/ms_ida.git
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Fig. 1. Our proposed Multiple Sclerosis (MS) inflammatory disease activity prediction
framework. We first detect lesions in the MRI scan using nn-Unet [9]. A crop centered
at the detection is extracted and used to learn self-supervised lesion features. Next, we
build a graph from these detected lesions, where each lesion becomes a node, with the
connections (edges) between lesions (nodes) defined by spatial proximity. This graph
is processed using a graph neural network to generate enriched lesion features. Next,
our self-pruning module (SPM) processes these enriched lesion features to determine
an importance score for each lesion. The least scoring lesions are pruned-off and the
highest scoring lesions are passed to the readout layer to obtain a graph-level feature
vector. This graph-level vector is used for the final prediction.

Contributions. Our contribution is threefold: (1) we are the first to formulate
the MS inflammatory disease activity prediction task as a graph classification
problem, thereby bringing a new set of methods to a significant clinical problem.
(2) We propose a two-stage pipeline that effectively captures inherent MS vari-
ations in MRI scans, thus generating an effective global representation. (3) We
develop a self-pruning module, which assigns an importance score to each lesion
and reduces the task complexity by prioritizing the critical lesions. Additionally,
the assigned per-lesion importance score improves our model’s explainability.

2 Methodology

Overview. The objective is to predict MS inflammatory disease activity, i.e.,
to classify if new or significantly enlarged inflammatory lesions appear in the
follow-up after the initial MRI scans. We denote the dataset as D(X, y), where
X is the set of lesion patches extracted from MR scans, and y ∈ {0, 1} is
the inflammatory disease activity status. For patient i, multiple lesion patches
{xi

1, x
i
2, ...x

i
n} can exist, where n is the total number of lesions. We aim to learn

a mapping function f : {xi
1, x

i
2, ...x

i
n} → {0, 1}. Please note that our formulation

differs from existing methods [21,26,28], which aim to learn a direct mapping
from the MR image to the inflammatory disease activity label. As shown in
Fig. 1, our proposed method consists of four distinct components. We describe
each component in the following sections.

Lesion Detection and Feature Extraction. We focus on the individual
lesions instead of processing whole-brain MRI scans. This is important because
MS lesions typically comprise less than 1% of voxels in the MRI scan. With
this strategy, the graph model can aggregate lesion-level features for an effective
patient-specific representation. First, we detect the lesions using a state-of-the-
art nn-Unet [9] pre-trained with MR images and their consensus annotations
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from two neuro-radiologists. Then, for each detected lesion, we extract a small
fixed-size patch centered at it. Finally, we learn self-supervised features z for the
lesion using a recent Transformer-based approach [14].

Lesion Graph Processor. In the second stage, we generate a patient-specific
graph G(V,E,Z) from the detected lesions. The lesions act as vertices V
of this graph and are initialized with the crop-derived features Z. The spa-
tial location s of the lesions is used to determine their connectivity E using
a k-Nearest Neighbor (kNN) graph method [27]. Furthermore, the connected
edges are weighted based on their spatial proximity. Specifically, given two
lesions vi and vj , with spatial locations si and sj respectively, the edge weight
w(vi, vj) = exp(−‖si−sj‖2

τ2 ). τ is a scalar that controls the contribution of distant
lesions. Hence the final graph connectivity can be represented as:

Ei,j =
{

w(vi, vj), if j ∈ N(vi) or i ∈ N(vj)
0, otherwise (1)

where N(vi) are the nodes directly connected to the node vi. Constructing a
graph from the lesions is instrumental in two aspects: (1) The framework allows
us to work with varying numbers of lesions in different patients. Alternatively,
sequential models could be employed. However, since the lesions lack a canonical
ordering, such models would not achieve an effective global representation [12].
(2) It is possible to incorporate meaningful lesion properties such as spatial
proximity and the number of lesions.

Please note that separate graphs are created for individual patients. Thus,
MS inflammatory disease activity prediction is formulated as a graph-level clas-
sification task. The graph G(V,E,Z) can be processed using message-passing
neural networks (such as GCN [10], GAT [1], EdgeConv [24], GraphSage [6],
to name a few) to learn enriched lesion features Ẑ. These enriched features are
passed through to the self-pruning module.

Self-pruning Module. The number of lesions can vary substantially among the
patients, including the possibility of false positives in the segmentation stage. As
such, it is crucial to recognize the most relevant lesions for the final prediction. In
addition, this will bring inherent explainability and make it easier for a doctor to
validate model predictions. To accomplish this, the enriched lesion features Ẑ are
passed through a self-pruning module (SPM). The SPM produces a binary mask
M for each lesion to determine whether a lesion contributes to the classification.
The SPM uses a learnable projection vector �p to compute importance scores
(Ẑ�p/||�p||) for the lesions. These scores are scaled with a sigmoid layer. We retain
the high-scoring lesions and discard the rest, which is formulated as:

M = top-r(σ(
Ẑ�p

||�p|| ), r) (2)

where σ(x) = 1/(1 + e−x) is the sigmoid function and top-r(·) is an operator
which selects a fraction r of the lesions based on high importance score. r is a
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hyper-parameter in our setup. Since the masking process is part of the forward
pass through the model during both training and inference stages and not a
post hoc modification, we refer to it as self-pruning of nodes. Features of the
remaining nodes (Ẑ ′ = Ẑ ⊗ M) are passed to the classification head.

It should be noted that the existence of multiple lesions is a typical charac-
teristic of MS. Hence, a crucial aspect of MS management is that clinicians must
identify signs of inflammatory disease activity in MR images to make treatment
decisions [19]. Therefore, along with predicting inflammatory disease activity,
interpreting the contribution of individual lesions to the prediction is essential.
By assigning an importance score to each lesion, the SPM can provide explain-
ability to clinicians at a lesion level, while existing CNN methods can not.

Classification Head. The classification head consists of a readout layer aggre-
gating all the remaining node’s features to produce a single feature vector ẑ′ for
the entire graph. This graph-level feature is passed through an MLP to obtain
the final prediction ŷ. We train our model using a binary cross-entropy loss.

Lclf = − 1
N

N∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (3)

where N is the number of patients, yi is the ground truth inflammatory disease
activity information and ŷi is the model prediction.

3 Experiments

Datasets and Image Preprocessing. Our approach is evaluated on a cohort
of 430 MS patients collected following approval from the local IRB [7]. Patients
included in this analysis were diagnosed with relapsing-remitting MS, with a
maximum disease duration of three years at the time of baseline scan. We collect
the FLAIR and T1w MR scans for each patient. The scans have a uniform
voxel size of 1 × 1× 1 mm3, were rigidly co-registered to the MNI152 atlas and
skull-stripped using HD-BET [17]. Three neuro-radiologists independently read
longitudinal subtraction imaging, where FLAIR images from two time points
were co-registered and subtracted. In this vein, new and significantly enlarged
lesions are identified as positive inflammatory disease activity.

The dataset contains MS inflammatory disease activity information for clini-
cally relevant one-year and two-year intervals [20]. At the end of the first year, we
have the inflammatory disease activity status of 430 patients, with 303 showing
activity and 127 not. Similarly, at the end of two years, we have data available
for 347 patients, with 287 showing activity and 60 not. Thus, the dataset shows
a slight imbalance in favor of inflammatory disease activity. This imbalance is a
typical property in the MS patients cohort that impairs algorithm development.
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Feature Extraction and Training Configuration. We use an nn-Unet [9] for
lesion segmentation and detection. Then a uniform crop of size 24×24×24 mm3

is extracted centered at each lesion. The cropped patches are passed through
a transformer-based masked autoencoder [14] to extract self-supervised lesion
features. The encoder produces a 768-dimensional feature vector for each patch.
We also append normalized lesion coordinates to the encoder output to get the
final lesion features.

The lesions are connected using a k-nearest neighbor algorithm with k = 5.
Further, these connections (edges) are weighted using τ = 0.01 (Eq. 1). Two
message-passing layers with hidden dimensions of 64 and 8, respectively, process
the generated graph to enrich lesion features. Next, the enriched features are
passed through the SPM. The SPM uses a learnable projection vector �p ∈ R8

and sigmoid activation to learn the importance score. Based on this importance
score, a mask is produced to select r = 0.5 (i.e., 50%) of the highest-scoring
lesions and discard the rest. Next, a sum aggregation is used as the readout
function. These aggregated features are passed through 2 feed-forward layers
with hidden dimensions of size 8. Finally, the features are passed to a sigmoid
function to obtain the final prediction.

The model is trained for 300 epochs using AdamW optimizer [13] with 0.0001
weight decay. The base learning rate is 1e-4. The batch size is set to 16. A dropout
layer with p = 0.5 is used between different feed-forward blocks. Since the dataset
is imbalanced in favor of patients experiencing inflammatory disease activity, we
use a balanced batch sampler to load approximately the same number of positive
and negative samples in each mini-batch.

Evaluation Strategy, Classifier, and Metrics. We report our results on MS
inflammatory disease activity prediction for the clinically relevant one and two-
year intervals [20]. The Area Under the Receiver Operating Characteristic Curve
(AUC) is used as the evaluation metric. We use 80% of the samples as the training
set and 10% as the validation. The validation set is used to select the best model
which is then applied to the remaining 10% cases. This procedure is iterated
until all cases have been assigned to a test set once (ten-fold cross-validation).
The same folds are used for the proposed model and baseline algorithms.

4 Results

Quantitative Comparison. Table 1 shows the classification performance for
the ten folds on one-year and two-year lesion inflammatory disease activity pre-
diction. The ± indicates the corresponding standard deviations. We compare our
method against two existing approaches for MS inflammatory disease activity
prediction baselines, a 3D Res-Net [28], and a multi-resolution CNN architec-
ture [21]. These methods learn a direct mapping from the MR image to the
inflammatory disease activity label. Our graph model outperforms the baseline
methods on one (0.67 vs. 0.61 AUC) and two-year inflammatory disease activity
prediction (0.66 vs. 0.60 AUC). In the following, we analyze and discuss each
component of our established framework.
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Table 1. Comparison of our method against the existing CNN-based solutions. We
report the AUC score for MS Inflammatory Disease Activity (IDA) prediction at the
end of one and two years. Our proposed two-stage solution outperforms the existing
baselines, achieving the best AUC score on both prediction tasks.

Methods One year IDA Two year IDA

AUC AUC

3D ResNet 0.595 ± 0.104 0.575 ± 0.099

CNN multi-res [21] 0.610 ± 0.053 0.600 ± 0.059

Ours 0.671 ± 0.062 0.664 ± 0.063

Ablation Study. In this section, we analyze the importance of different com-
ponents of our proposed method. We defer the analysis of the lesion feature
representation to the appendix owing to space constraints.

The Effectiveness of Graph Structure. Since the lesion feature extractor gener-
ates rich lesion features, one may argue that the graph structure is unwarranted.
There are two alternatives to using a graph, (i) completely discard the graph
structure, use a feed-forward layer to enrich the lesion features further, and
aggregate them to perform classification [15] (Since this formulation regards the
input as a set, we call this Set-Proc model). (ii) Aggregate all the lesion fea-
tures for a patient using a mean aggregation and process the aggregated feature
by traditional machine learning algorithms such as random forest (RF), support
vector machine (SVM) with the RBF-kernel, and logistic regression (LR). Table 2
compares our model’s performance against these alternatives. Our proposed solu-
tion obtains better AUC than the alternatives, indicating that incorporating the
graph structure is beneficial for eventual prediction.

Table 2. Effectiveness of the graph struc-
ture. We compare our method to tra-
ditional ML algorithms and a set-based
aggregation baseline, both of which dis-
card the graph structure. The incorpora-
tion of the graph structure is beneficial for
downstream prediction.

Methods One year Two year

AUC AUC

SVM 0.635 ±0.05 0.513 ±0.09

RF 0.639 ±0.04 0.650 ±0.09

LR 0.658 ±0.05 0.655 ±0.07

Set-Proc 0.654 ±0.06 0.658 ±0.08

Ours 0.671 ±0.06 0.664 ±0.06

Table 3. Importance of spatial prox-
imity. GAT (partially) and Transformer-
Conv (completely) ignore spatial prox-
imity in the graph while GCN, Edge-
Conv, and GraphSAGE incorporate it.
The incorporation of spatial proximity is
beneficial for downstream prediction.

Methods One year Two year

AUC AUC

Tra. Conv [18] 0.632 ± 0.06 0.627 ± 0.06

GAT 0.624 ±0.08 0.631 ±0.09

Edge 0.640 ±0.09 0.657 ±0.09

SAGE 0.650 ±0.05 0.634 ±0.06

GCN(Ours) 0.671 ±0.06 0.664 ±0.06
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Table 4. Comparison of the performance of differ-
ent message passing layers with and without the self-
pruning module. Incorporating the self-pruning mod-
ule is beneficial for most message passing layers.

Methods One year Two year

w/o SPM w/ SPM w/o SPM w/ SPM

GAT 0.628 ±0.07 0.624 ±0.08 0.607 ±0.06 0.631±0.09

Edge 0.629 ±0.07 0.640 ±0.09 0.651 ±0.07 0.657 ±0.09

Sage 0.647 ±0.06 0.650 ±0.05 0.630 ±0.07 0.634 ±0.06

GCN(Ours) 0.640 ±0.04 0.671 ±0.06 0.643 ± 0.07 0.664±0.06

Fig. 2. Model performance
against different retention
ratio r. Best performance
observed for r = 0.5.

The Importance of Encoding Spatial Proximity. The spatial proximity in our
model is encoded at two levels. First, lesion connectivity is determined using
a NN graph, and second, we weigh the edges based on their distance. Graph
convolution layers such as EdgeConv, GCN, and GraphSAGE take the edge
weights into account. (EdgeConv does it implicitly by taking a difference of
lesion features that already contain spatial information).

On the other hand, the GAT model learns an attention weight and ignores
the pre-defined edge weights. However, it still computes these coefficients on only
the connected nodes. We can go further, completely ignore the distances and
instead use a fully connected graph. The TransformerConv [18] on such a graph
is equivalent to applying the well-known transformer encoder [22] on the inputs.
Table 3 shows that the methods that ignore spatial proximity (TransformerConv)
or do not use distance-based weighting (GAT) struggle. On the other hand,
EdgeConv, GCN, and GraphSAGE work better. We use GCN in our model
owing to its superior performance.

The Contribution of the Self-Pruning Module (SPM). The SPM selects a subset
of lesions for the final prediction during the training and evaluation phases.
However, the proposed classification method can work without it. In this case,
none of the lesions is discarded during the readout operation. Table 4 shows
the classification results with and without the SPM. We observe that including
SPM leads to better outcomes across different message-passing networks. An
explanation could be that the SPM can better handle patient variations (in
terms of the total number of lesions) by operating on a subset of lesions (Fig. 3).

Analysis of Hyperparameters. The retention ratio r and the number of
neighbors k used for building the graph are the two critical hyperparameters in
our proposed framework. We discuss the effect of the retention ratio r here and
defer discussion about k to the appendix.

Effect of Retention Ratio r. The retention ratio r ∈ (0, 1] controls the fraction
of lesions retained after the self-pruning module. If we set its value to 1, all the
lesions are retained for the final prediction and thus, bypassing the self-pruning
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Fig. 3. Lesions selected by the SPM for two-year inflammatory disease activity pre-
diction are highlighted with a green bounding box. We also show the zoomed-in view
of the lesion. A concurrent lesion in the scan ignored by the SPM is shown with a blue
bounding box. According to their size and location, the selected lesions are most likely
to be relevant to the prediction. (Color figure online)

module. Any other value implies that we ignore at least a few lesions in the
readout layer. Since the number of lesions can vary across graphs, we retain
�(N.r)� lesions after the self-pruning layer. To find the optimal r, we test our
model with r between 0.1 and 1.0. The results are summarized in Fig. 2. We set
r to 0.5 for both tasks.

5 Conclusion

Predicting MS inflammatory disease activity is a clinically relevant, albeit chal-
lenging task. In this work, we propose a two-stage graph-based pipeline that
surpasses existing CNN-based methods by decoupling the tasks of detecting and
learning rich semantic features for lesions. We also propose a self-pruning module
that further improves model generalizability by handling variations in the num-
ber of lesions within patients. Most importantly, we frame the MS inflammatory
disease activity prediction as a graph classification problem. We hope our work
provides a new perspective and leads to cutting-edge research at the intersection
of graph processing and MS inflammatory disease activity prediction.
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