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Abstract. Brain tissue microarchitecture is characterized by heterogeneous
degrees of diffusivity and rates of transverse relaxation. Unlike standard diffusion
MRI with a single echo time (TE), which provides information primarily on dif-
fusivity, relaxation-diffusion MRI involves multiple TEs and multiple diffusion-
weighting strengths for probing tissue-specific coupling between relaxation and
diffusivity. Here, we introduce a relaxation-diffusion model that characterizes tis-
sue apparent relaxation coefficients for a spectrum of diffusion length scales and
at the same time factors out the effects of intra-voxel orientation heterogene-
ity. We examined the model with an in vivo dataset, acquired using a clinical
scanner, involving different health conditions. Experimental results indicate that
our model caters to heterogeneous tissue microstructure and can distinguish fiber
bundles with similar diffusivities but different relaxation rates. Code with sample
data is available at https://github.com/dryewu/RDSI.
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1 Introduction

Recent advances in diffusion MRI (dMRI) and diffusion signal modeling equip brain
researchers with an in vivo probe into microscopic tissue compositions [15,21]. Sig-
nal differences between water molecules in restricted, hindered, and free compartments

Y. Wu and X. Liu—Contributed equally to the paper.
This work was supported by the National Natural Science Foundation of China (No. 62201265,
61971214), and the Natural Science Foundation of Hubei Province of China (No. 2021CFB442).
P.-T. Yap was supported in part by the United States National Institutes of Health (NIH) through
grants MH125479 and EB008374.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Greenspan et al. (Eds.): MICCAI 2023, LNCS 14227, pp. 152–162, 2023.
https://doi.org/10.1007/978-3-031-43993-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43993-3_15&domain=pdf
https://github.com/dryewu/RDSI
https://doi.org/10.1007/978-3-031-43993-3_15


Relaxation-Diffusion Spectrum Imaging 153

can be characterized by higher-order diffusion models for estimating the relative pro-
portions of cell bodies, axonal fibers, and interstitial fluids within an imaging voxel.
This allows for the detection of tissue compositional changes driven by development,
degeneration, and disorders [13,22]. However, accurate characterization of tissue com-
position is not only affected by compartment-specific diffusivities but also transverse
relaxation rates [4,27]. Several studies have shown that explicit consideration of the
relaxation-diffusion coupling may improve the characterization of tissue microstruc-
ture [6,16,25].

Multi-compartment models are typically used to characterize signals from, for
example, intra- and extra-neurite compartments [18,29]. However, due to the multi-
tude of possible compartments and fiber configurations, solving for these models can
be challenging. The problem can be simplified by considering per-axon diffusion mod-
els [8,10,28], which typically factor out orientation information and hence involve less
parameters. However, existing models are typically constrained to data acquired with
a single TE (STE) and do not account for compartment-specific T2 relaxation. Several
studies have shown that multi-TE (MTE) data can account better for intravoxel archi-
tectures and fiber orientation distribution functions (fODFs) [1,6,16,17,19].

Here, we propose a unified strategy to estimate using MTE diffusion data (i) com-
partment specific T2 relaxation times; (ii) non-T2-weighted (non-T2w) parameters of
multi-scale microstructure; and (iii) non-T2w multi-scale fODFs. Our method, called
relaxation-diffusion spectrum imaging (RDSI), allows for the direct estimation of non-
T2w volume fractions and T2 relaxation times of tissue compartments. We evaluate
RDSI using both ex vivo monkey and in vivo human brain MTE data, acquired with
fixed diffusion times across multiple b-values. Using RDSI, we demonstrate the TE
dependence of T2w fODFs. Furthermore, we show the diagnostic potential of RDSI in
differentiating tumors and normal tissues.

2 Methods

2.1 Multi-compartment Model

The diffusion-attenuated signal S(τ, b,g) acquired with TE τ , diffusion gradient vector
g, and gradient strength b can be modeled as

S(τ, b,g) ≈ S(b,g)e− τ
T2(b) , (1)

which can be expanded to a multi-compartment model:

S(τ, b,g) ≈ Sr(b,g)e−τrr(b) + Sh(b,g)e−τrh(b) + Sf (b)e−τrf (b) (2)

to account for signals Sr(b,g), Sh(b,g), and Sf (b) and T2 values of restricted, hin-
dered, and free compartments. The apparent relaxation rates at different b-values,
r(b) = 1/T2(b), can be estimated using single-shell data acquired with two or more
TEs [14]. This model can be expressed using spherical deconvolution [9]:
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S(τ, b,g) = e−τrr(b)

∫
Dr

R(b,g, Dr)f(Dr)dDr + e−τrh(b)

∫
Dh

R(b,g, Dh)f(Dh)dDh

+ e−τrf (b)

∫
Df

R(b, Df )f(Df )dDf

s.t. rr(b), rh(b), rf (b) ≥ 0 ∀b, Af(Dr), Af(Dh), Af(Df ) ≥ 0,
(3)

where the compartment-specific response functions R(b,g,Dr), R(b,g,Dh), and
R(b,Df ) are associated with apparent diffusion coefficients Dr, Dh, and Df , yield-
ing compartment-specific multi-scale fODFs f(Dr), f(Dh), and f(Df ). Operator A
relates the spherical harmonics coefficients to fODF amplitudes.

2.2 Model Simplification via Spherical Mean

The spherical mean technique (SMT) [10] focuses on the direction-averaged signal to
factor out the effects of the fiber orientation distribution. Taking the spherical mean, (3)
can be written as

S̄(τ, b) = e−τrr(b)

∫
Dr

k(b,Dr)w(Dr)dDr + e−τrh(b)

∫
Dh

k(b,Dh)w(Dh)dDh

+ e−τrf (b)

∫
Dh

k(b,Df )w(Df )dDf

s.t. rr(b), rh(b), rf (b) ≥ 0 ∀b, w(Dr), w(Dh), w(Df ) ≥ 0
(4)

where w(Dr), w(Dh), and w(Df ) are volume fractions and k(b,Dr), k(b,Dh), and
k(b,Df ) are spherical means of response functions R(b,g,Dr), R(b,g,Dh), and
R(b,Df ), respectively. Based on [8,10], spherical means can be written as:

k(b,Dr) ≡ k(b, {λ‖, λ⊥} ∈ Λr) = e−bλ⊥

√
πerf(

√
b(λ‖ − λ⊥))

2
√

b(λ‖ − λ⊥)
,

λ‖
λ⊥

� φ2,

k(b,Dh) ≡ k(b, {λ‖, λ⊥} ∈ Λh) = e−bλ⊥

√
πerf(

√
b(λ‖ − λ⊥))

2
√

b(λ‖ − λ⊥)
, 1 ≺ λ‖

λ⊥
≺ φ2,

k(b,Df ) ≡ k(b, {λ‖, λ⊥} ∈ Λf ) = e−bλ⊥ , λ‖ = λ⊥,
(5)

where Dr, Dh, and Df are parameterized by parallel diffusivity λ‖ and perpendicular
diffusivity λ⊥ for the restricted (Λr), hindered (Λh) and free (Λf ) compartments. φ
is the geometric tortuosity [28]. The spherical mean signal can thus be seen as the
weighted combination of the spherical mean signals of spin packets. Similar to [8,28],
(4) allows us to probe the relaxation-diffusion coupling across a spectrum of diffusion
scales. Anisotropic diffusion can be further separated as restricted or hindered.
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2.3 Estimation of Relaxation and Diffusion Parameters

We first solve for the relaxation modulated spherical mean coefficients in (4). Next, we
disentangle the relaxation terms from the spherical mean coefficients and solve for the
relaxation rates. Finally, we estimate the fODFs using (3). Details are provided below:

(i) Relaxation modulated spherical mean coefficients. We rewrite (4) in matrix form as

S̄ = KE ◦ W = KX, (6)

where the mean signal S̄ is expressed as the product of the response function spherical
mean matrixK and the Kronecker product (◦) of relaxation matrix E and volume frac-
tion matrix W. We can solve for X in (6) via an augmented problem with the OSQP
solver1:

arg min
X�0

1
2

∥∥KX − S̄
∥∥2

2
. (7)

(ii) Relaxation times. With X solved, E and W can be determined by minimizing a
constrained non-linear multivariate problem:

min
E,W

1
2

∥∥E ◦ W − X̄
∥∥2

2
s.t. E ≥ 0, W ≥ 0,

∑
W = 1, (8)

which can be solved using a gradient based optimizer. Relaxation times can be deter-
mined based on E.

(iii) fODFs. With E determined, (3) can be rewritten as a strictly convex quadratic
programming (QP) problem:

f̂ = arg min
f

1
2
f�Pf+Q�f , s.t. Af(Dr), Af(Dh), Af(Df ) ≥ 0, ∀Dr,∀Dh,∀Df ,

(9)
which can be solved using the OSQP solver.

2.4 Microstructure Indices

Based on (3) and (4), various microstructure indices can be derived:

– Microscopic fractional anisotropy [20], per-axon axial and radial diffusivity [2], and
free and restricted isotropic diffusivity.

– Axonal morphology indices derived based on [17,26] to compute the mean neurite
radius (Mean NR), its internal deviation (Std. NR), and relative neurite radius (Cov.
NR):

• Mean NR = mean(ε(δ,Δ)wDr
λ‖λ⊥)1/4, {λ‖, λ⊥} ∈ Dr, where ε � 0 is a

pulse scale that only depends on the pulse width δ and diffusion time Δ of the
diffusion gradients.

• Std. NR = std((ε(δ,Δ)wDr
λ‖λ⊥)1/4).

• Cov. NR = cov((ε(δ,Δ)wDr
λ‖λ⊥)1/4) ≡ cov((wDr

λ‖λ⊥)1/4), which is
independent on ε.

1 https://osqp.org/.

https://osqp.org/
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2.5 Data Acquisition and Processing

Ex Vivo Data. We used an ex vivo monkey dMRI dataset2 collected with a 7T MRI
scanner [19]. A single-line readout PGSE sequence with pulse duration δ = 9.6ms
and separation Δ = 17.5ms, echo times TE = {35.5, 45.5}ms, TR = 3500ms,
and 0.5mm isotropic resolution was utilized for acquisition across five shells, b =
{4, 7, 23, 27, 31} × 103 s/mm2, each with a common set of 96 non-collinear gradient
directions. A b = 0 s/mm2 image was also acquired.

In Vivo Data. One healthy subject and three patients with gliomas were scanned using
a Philips Ingenia CX 3T MRI scanner with a gradient strength of 80mT/m and switch-
ing rates of 200mT/m/ms. Diffusion data with seven TEs were obtained using a spin-
echo echo-planar imaging sequence with fixed TR and diffusion time, {4, 4, 8, 8, 16}
diffusion-encoding directions at b = {0, 4, 8, 16, 32} × 102 s/mm2 respectively, TE =
{75, 85, 95, 105, 115, 125, 135}ms, TR = 4000ms, 1.5mm isotropic voxel size, image
size = 160 × 160, 96 slices, whole-brain coverage, and acceleration factor = 3. The
total imaging time was 21min. Data processing includes (i) noise level estimation and
removal; (ii) Rician unbiasing; (iii) removal of Gibbs ringing artifacts; and (iv) motion
and geometric distortion corrections. To compensate for motion, all dMRIs were first
preprocessed separately and then aligned using rigid registration based on the non-
diffusion-weighted images. The lowest TE was set to minimize the contribution of
the myelin water to the measured signal and the largest TE was chosen as a trade-off
between image contrast and noise. Following previous studies [6,16] and in-house test-
ing, we used a spectrum of TE scales from 75 to 135ms to cover tissue heterogeneity.
We used MRtrix3 to generate tissue segmentations (cortical and subcortical GM, WM,
CSF, and pathological tissue) based on the T1w data.
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Fig. 1. Ex vivo data. (a) RDSI and REDIM parameter maps for tissue microstructure; (b) RDSI
relaxation times for diffusion compartments.

2 https://resources.drcmr.dk/MAPdata/axon-relaxation/.
3 https://www.mrtrix.org/.
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Implementation. To cover the whole diffusion spectrum, we set the diffusivity from
0 s/mm2 (no diffusion) to 3×10−3 s/mm2 (free diffusion). For the anisotropic compart-
ment, λ‖ was set from 1.5 × 10−3 mm2/s to 2 × 10−3 mm2/s. Radial diffusivity λ⊥
was set to satisfy λ‖/λ⊥ ≥ 1.1 as in [8,28]. For the isotropic compartment, we set the
diffusivity λ‖ = λ⊥ from 0mm2/s to 3×10−3 mm2/s with step size 0.1×10−3 mm2/s.
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Fig. 2. In vivo data. Compartment-specific parameters for (a) healthy and (b) glioma subjects.

3 Results

3.1 Ex Vivo Data: Compartment-Specific Parameters

Figure 1(a) shows the estimated maps of T2-independent parameters given by a baseline
comparison method, called REDIM [16], and RDSI. We observe that the two methods
yield similar intracellular volume fraction (ICVF) estimates. However, REDIM overes-
timates the anisotropic volume fraction (AVF) compared to RDSI, resulting in blurred
boundaries between the gray matter and superficial white matter. RDSI yields consistent
distribution between ICVF and μFA maps.

Figure 1(b) shows the RDSI T2 relaxation maps of restricted, hindered, and free
diffusion across b-values. As the b-value increases, the relaxation time increases for
the restricted component but decreases for the hindered and free components. At lower
b-values, the relaxation time for the extra-neurite compartment is substantially higher
than that of the intra-neurite compartment.

3.2 In Vivo Data: Compartment-Specific Parameters

Figure 2 shows the RDSI T2 relaxation maps of restricted, hindered, and free diffusion
across b-values. The values are consistent between healthy and glioma subjects. The
estimated relaxation times are in general in line with previous reports [6,11]. RDSI
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shows substantial differences between tumor and normal tissues in the relaxation maps
(Fig. 2(b)).

Figure 3 shows the voxel distributions with respect to relaxation times and b-values.
It is apparent that at higher b-values, a greater fraction of voxels in the restricted com-
partment have relaxation times within 100 to 200ms, particularly for higher-grade
gliomas. This might be related to prolonged transverse relaxation time due to increased
water content within the tumor [5,7,24]. This property is useful in the visualization of
peritumoral edema, an area containing infiltrating tumor cells and increased extracellu-
lar water due to plasma fluid leakage from aberrant tumor capillaries that surrounds the
tumor core in higher-grade gliomas.
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Fig. 3. Voxel distributions with respect to relaxation times and b-values.

3.3 In Vivo Data: Neurite Morphology

Figure 4(a) shows the relaxation times of the restricted compartment in white matter
lesions, indicating that relaxation times are longer in gliomas than normal white mat-
ter tissue. The higher T2 in grade 4 glioma is associated with changes in metabolite
compositions, resulting in remarkable changes in neurite morphology in lesioned tis-
sues (Fig. 4(c–d)), consistent with previous observations [12,23]. The rate of longitu-
dinal relaxation time has been shown to be positively correlated with myelin content.
Our results indicate that MTE dMRI is more sensitive to neurite morphology than STE
dMRI (Fig. 4(b)).

Figures 4(c–d) show that the estimated Mean NR in the gray matter is approxi-
mately in the range of 10µm, which is in good agreement with the sizes of somas in
human brains, i.e., 11 ± 7µm [26]. RDSI improves the detection of small metastases,
delineation of tumor extent, and characterization of the intratumoral microenvironment
when compared to conventional microstructure models (Fig. 4(c)). Our studies suggest



Relaxation-Diffusion Spectrum Imaging 159

that RDSI provides useful information on microvascularity and necrosis helpful for
facilitating early stratification of patients with gliomas (Fig. 4(d)).
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Fig. 4. Relaxation time of the restricted compartment of (a) a glioma patient, and (b) TE-
dependent and (c–d) T2-independent neurite morphology.

3.4 Relation Between Relaxation and Diffusivity

Figure 5 shows the relaxation-diffusivity distributions of white matter (WM), cortical
gray matter (GM), and subcortical gray matter (SGM). The 2D plots show the contours
of the joint distributions of the relaxation and diffusivity values across all voxels. The
average diffusivity and relaxation in these regions indicate the existence of a single
homogeneous region in WM and SGM. For GM, however, we observe a small peak for
the relaxation rate arange 1e-3 to 1.5e-3.

3.5 fODFs

Figure 6 shows that the reconstructed fODFs are consistent with the expected WM
arrangement of the healthy human brain. We provide a visual comparison of the fODFs
estimated with and without the explicit consideration of relaxation. The two cases yield
different fODFs. As expected, fiber populations are associated with different relaxation
times, in line with [3,16]. Our studies suggest that this difference could be caused by
the spatially heterogeneous tissue microstructure, since fiber bundles with slower relax-
ation times contribute less to diffusion signals acquired with a longer TE. Explicitly
taking into account relaxation in our model results in noteworthy contrast improvement
in spatially heterogeneous superficial WM.
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Fig. 6. TE-dependent and TE-independent fODFs in three superficial white matter regions.
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4 Conclusion

RDSI provides a unified strategy for direct estimation of relaxation-independent volume
fractions and compartment-specific relaxation times. UsingMTE data, we demonstrated
that RDSI can delineate heterogeneous tissue microstructure elusive to STE data. We
also showed that RDSI provides information that is conducive to characterizing tissue
abnormalities.
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