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Abstract. Systolic and diastolic registration of coronary arteries is a
critical yet challenging step in coronary artery disease analysis. Most
existing methods ignore the important relationship between vascular geo-
metric shape and image contextual information in the two phases, leading
to limited performance. In this paper, we propose a novel structural point
registration network, which comprehensively captures both point-level
geometric features and image-level semantic features as enriched feature
representations to assist coronary registration. Specifically, given the sys-
tolic and diastolic CCTA images, our method improves coronary artery
registration from three aspects. First, the point cloud encoder learns
the spatial geometric features of the points in the 3D coronary mask
to effectively capture the vascular shape representation. Second, a vision
transformer (ViT) is employed to extract the image semantic information
as a complementary condition of the geometric features to identify the
bi-phasic correspondence of different vascular branches. Third, we design
a transformer module to fuse the features across points and images to
obtain the corresponding structural points in the two phases and then
use structural points to guide the coronary artery registration via the
thin-plate spline (TPS) method. We evaluated our method on a real-
clinical dataset. Extensive experiments show that our proposed method
significantly outperforms the state-of-the-art methods in coronary artery
registration.

Keywords: Coronary artery registration · Intrinsic structural points
learning · transformer · 3D Point cloud

1 Introduction

Coronary artery disease (CAD) is one of the most prevalent critical cardiovas-
cular diseases with up to 32% mortality rate [18]. The CAD diagnosis necessi-
tates reconstructing a 3D coronary artery tree, e.g., from CCTA images, so that
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the diagnosis decision could be finalized according to the vascular anatomical
information, e.g., annotations of vascular branches and vascular morphological
properties [7]. However, conventional reconstruction methods merely exploit the
images obtained from the diastolic phase that only reveals partial coronary arter-
ies [1,15,22], which potentially makes vessel lesions invisible, i.e., misdiagnosis.

In fact, a cardiac cycle has two phases, i.e., diastole and systole. The recon-
structed arteries in the two-phased CCTA images are incomplete coronary trees,
but they complement each other. By accurately aligning the arteries in both
phases, the complete coronary tree can be reconstructed. Nevertheless, there
are three challenges for successful coronary reconstruction. 1) Since the heart
beats vigorously, its surrounding arteries can be squeezed by heart chambers
and become invisible in one of the phases, easily causing the misalignment of
a significant number of arteries in the two-phased images (short for component
variation), as pointed by yellow (visible in diastole only) and cyan (visible in
systole only) arrows in Fig. 1(a). 2) Arteries deform along with heartbeats, their
shape, size, and location may vary significantly across the two phases, causing
difficulties in alignment, as demonstrated in Fig. 1(b). 3) Arteries are tiny tubu-
lar tissues, which only occupy a very small part (≤ 0.5%) of the whole CCTA
image (Fig. 1(c)), causing imbalance issues for image-based registration methods.

(b) Variable vessel shape (c) Small voxel ratio

Vascular voxel 
ratio ≤ 0.05%

(a) Cardiac cycle
Diastole Systole

Fig. 1. Three challenges of coronary artery registration.

For vessel registration, there are mainly three main branches of methods,
i.e., image-based, point-cloud-based, and hybrid-based registration. Image-based
methods utilize image features to register the entire volume, and the obtained
deformation field is then used to align vessels to the target space. Those meth-
ods have been extensively applied to the registration of coronary arteries [14,16],
pulmonary vessels [13,17], cerebral vessel [10], heart chamber [11], etc. Although
those methods demonstrate promising performance on the whole image scale, the
vessels are not necessarily well-aligned and cannot be employed to reconstruct
the complete coronary tree. By contrast, point-cloud-based registration directly
aligns the vessels, which are firstly labeled or segmented from CCTA images
and then modeled as point clouds for registration. For example, point-cloud net-
works [20,21] or graph convolutional networks [24] commonly exploit geometric
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features of the vascular point-cloud, which are more flexible and accurate than
those image-based methods. The limitation of those point-cloud-based methods
mainly involves the disability in geometric feature representation to distinguish
the arteries, because different arteries or artery branches can share very similar
morphology [12]. Similarly, the hybrid-based methods [4,8] also extract the vessel
masks in the images for registration, but the lack of effective image information
limits its performance. Integrating the advantages of both domains (image and
point cloud) may produce improved outcomes, but has not yet been explored.

In this paper, we propose a structural point registration network (SPR-Net)
to align coronary arteries from the systolic and diastolic phases. The SPR-Net is
designed to exploit both image-based and point-cloud-based features, in which
the image and point cloud are encoded as intrinsic features. Additionally, we
propose a transformer-based feature fusion module to fully exploit the obtained
intrinsic features in extracting structural points, i.e., key points that delineate
the anatomical morphology of arteries across the two phases and are solely used
to compute the deformation field. For those obtained structural points, a simple
thin-plate spline [5] method is employed to align coronary arteries of systole
and diastole. Extensive experiment results demonstrate the superiority of our
method over eight methods (Fig. 2).

Fig. 2. Overview of the proposed framework consisting of four components: 1) Geo-
metric feature learning module for point cloud; 2) Image semantic feature extraction
by ViT modules; 3) Geometric and image semantic feature encoding by transformers;
4) TPS-based dense deformation field interpolation.

2 Method

We propose the SPR-Net method, which simultaneously utilizes geometric fea-
tures extracted from point clouds and image features extracted from CCTA
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images with the goal of generating structural points to align arteries across sys-
tole and diastole, with shape, location, and component variations. In this section,
we first introduce the extraction of geometric features (Sect. 2.1), then the extrac-
tion of image features (Sect. 2.2), next the extraction of structural points and
their usage in registration procedures (Sect. 2.3), and finally the loss function
(Sect. 2.4).

2.1 Geometric Feature Learning

The coronary arteries share a tubular structural shape. The point cloud network
has the advantages of effectively learning the spatial geometric shape of arteries
and providing accurate relative positional relationships of points [24], so that the
obtained point features are more discriminative. Inspired by [6], we employ the
point cloud encoder, with the same structure as [6] that composes three layers
(i.e., sampling layer, multi-scale grouping layer, and PointNet layer), to extract
the geometric features of each point.

Given the input diastolic and systolic point clouds P and Q, we first use a
sampling layer in the point cloud encoder to obtain the down-sampled points
P̄ = {p̄1, p̄2, · · · , p̄m} with p̄i ∈ R3 and Q̄ = {q̄1, q̄2, · · · , q̄m} with q̄i ∈ R3,
respectively. P̄ and Q̄ are then filled into the multi-scale grouping layer to aggre-
gate its neighboring points within different radii r. After that, the multi-scale
aggregated points are fed into the PointNet layer to extract geometric features.

2.2 Geometric and Image Feature Encoding

Point clouds can provide good geometric shapes and spatial location information,
but they lack sufficient semantic features of coronary arteries. Meanwhile, the
images contain rich contextual information that can complement the geometric
features. Therefore, we design a transformer-based module to integrate both
advantages. Specifically, 1) we employ a shallow 3D vision transformer (ViT) [9]
to extract image features of the artery; and 2) we employ general transformers
[19] to fuse image features and geometric features extracted by the point-cloud
encoder.
1) Image Feature Extraction. For efficiency, we only crop image blocks of
size h × w × d, with each point as the centroid, and the ViT block is employed
to extract local features. Since these blocks are extracted along the tubular
structures, the extracted local features reveal intrinsic relationships. To exploit
their correlations, we employ a self-attention mechanism-based transformer. The
coordinates of each point serve as the position encoding, which is added to its
local image feature as the input to the following transformer blocks.

f img
i (a, b, c) = Ei(a, b, c) + Ii(a, b, c) (1)

where Ei and Ii respectively indicate the position encoding and image features
for the i-th rectangular volume. (a, b, c) ∈ R3 is the point coordinates. f img

i ∈ Rl

is the self-attention input of transformer layer, and l is the feature dimension.
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2) Geometry and Image Co-embedding. Given concatenated features of
pointwise and image features, four transformer layers are employed to further
explore comprehensive contextual features between the two phases. The trans-
former layer incorporates an encoder and decoder block, which are based on a
multi-head attention mechanism. We use the concatenated features of the dias-
tolic phase as input to the transformer encoder and decoder respectively, and
the opposite for the systolic phase, to learn the feature dependencies between
the two phases.

2.3 Registration via Structural Point Correspondences

1) Integration of Structural Points. The input of MLP is the contextual
features extracted by the transformer, and the output is the probability of each
point. Specifically, given the sampled points P̄ with the fused features FP from
diastole, we input the features into the shared MLP to generate the probability
maps Vp = {v1, v2, · · · , vk} with vi ∈ Rm. Thus, the diastolic structural points
Sp can be calculated as follows:

spi =
m∑

j=1

p̄jv
j
i with

m∑

j=1

vji = 1 for each i (2)

Note that, the systolic structural points Sq are calculated in the same way as
the diastolic structural points.
2) Structural Points based Registration using TPS. Based on the cor-
respondence established between the structural points Sp and Sq in the two
phases, we apply a simple but effective idea of the TPS method to interpolate
the dense deformation field. For the two sets of structural points, Sp and Sq,
the nearest projection from structural points Sq to the Sp is calculated, and the
Sq is warped to the Sp in the diastolic phase. Eventually, each systolic point is
re-meshed by the closest point to the structural point and further warped to the
original points Q using the estimated dense deformation field.

2.4 Loss Function

We design a structure-constrained registration loss for SPR-Net,

Ltotal = Lrec(Sp, P ) + Lrec(Sq, Q) + Lrec(Sp, Sq) (3)

where,

Lrec(X,Y ) =
1

|X|
∑

xi∈X

min
yj∈Y

‖xi − yj‖22 +
1

|Y |
∑

yj∈Y

min
xi∈X

‖yj − xi‖22, (4)

Here Lrec is chamfer distance, and X and Y denote two point clouds respec-
tively. The first part Lrec(Sp, P ), and the second part Lrec(Sq, Q) assure the
predicted structural points in two different phases are close to their correspond-
ing original point clouds. The third part Lrec(Sp, Sq) encourages an accurate
alignment of structural points between the two phases, ensuring that structural
points with the same semantics align on the same vessel branch.
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3 Experiments and Results

3.1 Dataset and Evaluation Metrics

Data Processing. In our experiments, we collected 58 pairs of CCTA images
with both diastolic and systolic phases. All coronary artery masks are first
extracted using [25] and refined by three experts. Then, the annotated arter-
ies were down-sampled and modeled as 3D point clouds; meanwhile, their coor-
dinates were normalized to the range of [0,1]. We choose the five-fold cross-
validation evaluation strategy, with 40 training subjects and 18 testing subjects.
Evaluation Metrics. Since the artery branches of systole and diastole only
partially overlap, i.e., some coronary branches only appear in one phase, we
define a common Dice coefficient (CoDice) to accurately evaluate the results.

CoDice(Po, Qo) =
2|Po ∩ Qo|
|Po| + |Qo| (5)

where Po and Qo denote the set of coronary branches common to diastolic and
systolic phases, respectively. Moreover, the Dice coefficient (Dice), Chamfer dis-
tance (CD), and Hausdorff distance (HD) are also employed for evaluation.

3.2 Implementation Details

The initial inputs of the SPR-Net contain 4096 point clouds for each phase,
and a volume size of 16 × 16× 8 is cropped around each point. The point cloud
encoder consists of two set abstraction blocks with 1024 and 256 grouping centers
respectively. In each set abstraction block, we utilize the grouping layer with two
scales r to combine the multi-scale features, containing scales (0.1, 0.2, 0.4) and
(0.2, 0.4, 0.8) respectively. The transformer blocks we used are composed of
vanilla transformer layers. The outputs of the point cloud encoder and ViT have
512-D and 128-D features, respectively, which are concatenated together to form
640-D contextual features. The configuration of the MLP block in the structural
point integration depends on the number of structural points. All experiments
were implemented using Pytorch on 1 NVIDIA Tesla A100 GPU. We trained
the networks using Adam optimizer with an initial learning rate of 10−4, epoch
of 600, and batch size of 8.

3.3 Comparison with State-of-the-Art Methods

Our SPR-Net was quantitatively and qualitatively evaluated, compared with
eight SOTA registration methods, which belong to three categories:1) image-
based registration, including SyN [2], VoxelMorph [3], and DiffuseMorph [11]; 2)
hybrid-based registration, TMM [8]; 3) point-cloud based registration, including
Go-ICP [23], DCP [20], STORM [21], and ISRP [6].
Quantitative Results. The quantitative results are listed in Table 1. We can
find the superiority of point cloud-based methods if compared to image-based
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methods, which supports the previous conclusion about the limitation of image-
based methods. We can also find that our proposed method significantly out-
performs other methods since SPR-Net fully encodes and fuses features of the
images and point clouds. Notably, SPR-Net achieves significantly better perfor-
mance than ISRP, the closest competing method, with an improvement of 10%
(i.e., increasing Dice from 58.31% to 68.58%).

Table 1. Results of comparison experiments.

Method Dice (%)↑ CoDice (%)↑ CD↓ HD↓
Benchmark 25.60 27.59 20.56 19.78
SyN [2] 30.60 ± 3.59 33.59 ± 2.84 14.26 ± 3.17 15.05 ± 2.42

VoxelMorph [3] 32.78 ± 3.71 35.65 ± 2.44 11.70 ± 2.82 12.15 ± 2.15

DiffuseMorph [11] 37.55 ± 2.89 42.57 ± 2.06 9.28 ± 2.31 9.57 ± 2.26

Go-ICP [23] 37.89 ± 2.85 41.60 ± 2.39 11.29 ± 2.44 12.14 ± 2.15

DCP [20] 48.23 ± 2.30 54.58 ± 2.28 5.76 ± 2.21 6.08 ± 1.87

TMM [8] 54.76 ± 1.98 60.21 ± 2.14 4.11 ± 1.87 3.35 ± 1.41

STORM [21] 56.04 ± 2.24 61.21 ± 2.08 3.76 ± 1.82 3.42 ± 1.55

ISRP [6] 58.31 ± 1.46 63.45 ± 1.75 2.21 ± 1.29 2.55 ± 1.34

Ours 68.58± 1.14 72.24± 0.93 1.46± 0.75 1.73± 0.62

Table 2. Quantitative results of ablation analysis of different components.

Method CoF GIF Number-SP Dice (%)↑ CoDice (%)↑
# 1 768 58.31 ± 1.46 63.45 ± 1.75

# 2 � 768 60.82 ± 1.62 66.27 ± 1.51

# 3 � 768 63.02 ± 1.54 68.96 ± 1.69

# 4 � � 256 60.73 ± 1.49 65.27 ± 1.51

# 5 � � 384 62.87 ± 1.62 68.38 ± 1.55

# 6 � � 512 66.95 ± 1.33 70.19 ± 1.32

# 7 � � 768 68.58± 1.14 72.24± 0.93

# 8 � � 1024 66.45 ± 1.22 69.70 ± 1.28

Qualitative Visualization. Since the correspondence of structural points is
vital for registration, we show the structural points (colored) in systole (green)
and diastole (red) in Fig. 3 for demonstrating their correspondence. Those struc-
tural points with correspondence to the same vascular branch are marked by the
same color denoted by the dashed boxes in the 2nd column of Fig. 3. Notably, we
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can find that the structural points are distributed at positions such as the end-
points or bifurcation points, as shown in the 1st and 2nd columns, which prop-
erly delineate the morphology of the point clouds when the number of structural
points is small. With increased number, structural points do not only locate
at endpoints or bifurcation points but also diffuse along the vessel branches,
forming the vessel skeleton, as shown in the 3rd and 4th columns of Fig. 3. In
the 5th column of Fig. 3, a complete coronary tree is obtained by exploiting the
registration (K = 768).

Structural Points
= 16

Structural Points
= 32

Structural Points
= 64

Structural Points
= 128

Unaligned /
Aligned Vessels

(a)

(b)

Fig. 3. Structural points and registration results of two subjects (a and b), and point
clouds in green and red denote systole and diastole phase, respectively. From the 1st
to 4th columns, the number of structural points generated increases, and the colors of
structural points denote the correspondence across the two phases. The last column
shows the results before and after registration according to the correspondence of the
structural points. (Color figure online)

3.4 Ablation Study

We also conduct the ablation studies with the same backbone point cloud encoder
by following three groups of configurations: 1) Whether using the four trans-
former layers, denoted as CoF, to encode and fuse the systolic and diastolic
geometry. 2) Whether fusing the geometry features of point cloud with image-
level semantic features, denoted GIF. 3) Testing the network on different num-
bers of structural points (Number-SP). Table 2 summarizes the ablation study
results.
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If without employing CoF and GIF, only the backbone encoder is used to gen-
erate structural points. 1) With the same 768 structural points, we can find the
individual modules of CoF and GIF can both improve the Dice performance.
Meanwhile, combining the two modules lead to the best performance, which
may suggest the importance of fusing the two different aspects of features. 2)
By equipping both CoF and GIF, we can find that SPR-Net’s performance has
been improved when the structural points number increases from 256 to 768.
However, the performance decreases when it is further increased to 1024, indi-
cating that dense structural points negatively affect the results, which is prob-
ably caused by the increasing number of outlier points. It can also be found
that SPR-Net demonstrates inferior performance than both backbone+CoF and
backbone+GIF when using 256 structural points, which is probably caused by
the sparsity of structural points that are largely located at the endpoints and
bifurcation positions, which cannot well delineate the morphology of vessel tree.
Therefore, the number of structural points is a key parameter that affects regis-
tration performance. Through extensive experiments, we determine the optimal
number of structural points to ensure one-to-one correspondences between dias-
tole and systole (Table 2).

4 Conclusion

In this paper, we have proposed an intrinsic structural point learning-based
framework for systolic and diastolic coronary artery registration. The framework
identifies structural points in the arteries across the two different phases using
both the spatial geometric features extracted by the point cloud network and the
complementary image semantic information extracted by ViT. By strategically
fusing the image and point geometric features through a transformer, structural
points with strong correlations in two different phases are extracted and used to
guide the registration process. Compared with the existing image-based registra-
tion methods and point cloud-based methods, our integrated method achieves
superior performance and outperforms the state-of-the-art methods by a large
margin, which suggests the potential applicability of our framework in real-world
clinical scenarios for CAD diagnosis.
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