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Abstract. Unsupervised domain adaptation (UDA) has increasingly
gained interests for its capacity to transfer the knowledge learned from a
labeled source domain to an unlabeled target domain. However, typical
UDA methods require concurrent access to both the source and target
domain data, which largely limits its application in medical scenarios
where source data is often unavailable due to privacy concern. To tackle
the source data-absent problem, we present a novel two-stage source-
free domain adaptation (SFDA) framework for medical image segmenta-
tion, where only a well-trained source segmentation model and unlabeled
target data are available during domain adaptation. Specifically, in the
prototype-anchored feature alignment stage, we first utilize the weights of
the pre-trained pixel-wise classifier as source prototypes, which preserve
the information of source features. Then, we introduce the bi-directional
transport to align the target features with class prototypes by minimiz-
ing its expected cost. On top of that, a contrastive learning stage is
further devised to utilize those pixels with unreliable predictions for a
more compact target feature distribution. Extensive experiments on a
cross-modality medical segmentation task demonstrate the superiority
of our method in large domain discrepancy settings compared with the
state-of-the-art SFDA approaches and even some UDA methods. Code
is available at: https://github.com/CSCYQJ/MICCAI23-ProtoContra-
SFDA.
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1 Introduction

The inception of deep neural networks has revolutionized the landscape of med-
ical image segmentation [14,24]. This tremendous success, however, is condi-
tioned on the assumption that the training and testing data are drawn from the
same distribution. Unfortunately, in real-world clinical scenarios, due to different
acquisition protocols or various imaging modalities, domain shift is widespread
between training (i.e., source domain) and testing (i.e., target domain) datasets
[15]. This distribution gap usually degenerates the model performance on the tar-
get domain. To achieve reliable performance across different domains, a straight-
forward way is manually labeling some target data and fine-tuning the pre-
trained model on them [13]. However, obtaining expert-level annotation data in
the medical imaging domain incurs significant time and expense [22]. Recently,
unsupervised domain adaptation (UDA) has been widely investigated to reduce
domain gap through transferring the knowledge learned from a rich-labeled
source domain to an unlabeled target domain [4,7,17,19]. Existing UDA meth-
ods typically require sharing source data during adaptation, and enforce distri-
bution alignment to diminish the domain discrepancy between source and target
domains. This requirement limits the application of UDA methods when source
domain data are not accessible. Hence, some very recent works have started to
explore a more practical setting, source-free domain adaptation (SFDA), that
adapts a pre-trained source model to unlabeled target domains without accessing
any source data [1,5,6,12,20,21].
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Fig. 1. (a→b) t-SNE visualization of target feature distributions in embedding space
before and after Prototype-anchored Feature Alignment (PFA). (c) Category-wise prob-
ability of the unreliable pixel in (b).

Among these methods, [5] and [20] focus on generating reliable pseudo labels
for target domain data by developing various denoising strategies. Unavoidably,
these self-training methods depends heavily on initial probability maps produced
by the source model, which are considerably unreliable when the domain discrep-
ancy is large (e.g., CT and MRI). To relieve the issues caused by noisy pseudo
labels, Bateson et al. [1] proposed a prior-aware entropy minimization method to
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minimize the label-free entropy loss for target predictions. Furthermore, unlike
the above self-adaption methods, Yang et al. [21] utilized the statistic informa-
tion stored in the batch normalization layer of the source model and mutual
Fourier Transform to synthesize the source-like image. However, the quality of
the generated image is still influenced by the domain discrepancy.

In this work, we propose a novel SFDA framework for cross-modality medical
image segmentation. Our framework contains two sequentially conducted stages,
i.e., Prototype-anchored Feature Alignment (PFA) stage and Contrastive Learn-
ing (CL) stage. As previous works [12] noted, the weights of the pre-trained
classifier (i.e., projection head) can be employed as the source prototypes dur-
ing domain adaptation. That means we can characterize the features of each
class with a source prototype and align the target features with them instead
of the inaccessible source features. To that end, during the PFA stage, we first
provide a target-to-prototype transport to ensure the target features get close
to the corresponding prototypes. Then, considering the trivial solution that all
target features are assigned to the dominant class prototype (e.g., background),
we add a reverse prototype-to-target transport to encourage diversity. However,
although most target features have been assigned to the correct class prototype
after PFA, some hard samples with high prediction uncertainty still exist in the
decision boundary (see Fig. 1(a→b)). Moreover, we observe that those unreliable
predictions usually get confused among only a few classes instead of all classes
[18]. Taking the unreliable pixel in Fig. 1(b, c) for example, though it achieves
similar high probabilities on the spleen and left kidney, the model is pretty sure
about this pixel not belonging to the liver and right kidney. Inspired by this,
we use confusing pixels as the negative samples for those unlikely classes, and
then introduce the CL stage to pursue a more compact target feature distribu-
tion. Finally, we conduct experiments on a cross-modality abdominal multi-organ
segmentation task. With only a source model and unlabeled target data, our
method outperforms the state-of-the-art SFDA and even achieves comparable
results with some classical UDA approaches.

2 Methods

We are first provided a segmentation model Ms trained on Ns labeled samples
{(xs

n, ys
n)}Ns

n=1 from the source domain Ds, and an unlabeled dataset with Nt

samples {xt
m}Nt

m=1 from the target domain Dt, where xs, xt ∈ R
H×W×D, ys

n ∈
R

H×W , H and W are the height and width of the samples. The goal of SFDA is
to adapt the source model Ms with only unlabeled xt to predict pixel-wise label
yt for the target domain data. In general, the segmentation model consists of two
parts: 1) a feature extractor Fθ : xi → fi ∈ R

Df , parameterized by θ, mapping
each pixel i ∈ {1, · · · ,H × W} in image x to the feature fi in the embedding
space; 2) a one-layer pixel-wise classifier φ : fi → pi ∈ R

C , that projects pixel
feature into the semantic label space with C classes.

In the SFDA task, the source classifier φs encounters a domain shift problem
when classifying the target domain feature. To tackle this challenge, we propose
a novel SFDA framework mainly including two stages, shown in Fig. 2. We will
elaborate on the details in the following.
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Fig. 2. An overview of the proposed two-stage SFDA framework. (a) is the first PFA
stage. We freeze the classifier φs and use its weights for prototype-anchored feature
alignment. (b) is the following CL stage. Given a target image, we first use Mt0 to
make a prediction, and separate the pixels into query one and negative ones for each
class based on their reliability (entropy). Then, features of query pixels come from
F t

θ (query samples), while features of negative pixels are from F t0
θ (negative samples),

when minimizing LCL.

2.1 Prototype-Anchored Feature Alignment

Since source data is not available, explicit feature alignment that directly min-
imizes the domain gap between the source and target data like many UDA
methods [4,8] is inoperative. As shown by previous methods [12], the weights
[µ1,µ2, · · · ,µC ] ∈ R

Df×C of the source domain classifier φs can be interpreted
as the source prototypes, which characterize the features of each class. Thus, we
introduce a bi-directional transport cost to align the target features with these
prototypes instead of the unaccessible source features.

Following [23], given a mini-batch {xt
m}M

m=1 with M images, we first adopt
the cosine distance d(µc,f

t
m,i) = 1 − 〈µc,f

t
m,i〉 to define a point-to-point trans-

port cost between f t
m,i and µc, where 〈·, ·〉 is the cosine similarity. Then, a

conditional distribution πθ

(
µc | f t

m,i

)
specifying the probability of transporting

from f t
m,i to µc can be constructed as,

πθ

(
µc | f t

m,i

)
=

p̂ (µc) exp
(
µT

c f
t
m,i/τ

)

∑C
c′=1 p̂ (µc′) exp

(
µT

c′f t
m,i/τ

) (1)

where τ is the temperature parameter, and p̂ (µc) is the prior distribution (i.e.,
class proportion) over the C classes for the target domain. As the true class
distribution is unavailable in the target domain, we use the EM algorithm to
infer p̂ (µc) instead of using a uniform prior distribution (see more details in
[16]). Note that in Eq. 1, a target point is more likely to be transported to the
class prototypes closer to it or those with higher class propotion.

With the conditional distribution and point-to-point transport cost, we can
derive the target-to-prototype (T2P) expected cost of moving the target features
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in this mini-batch to source prototypes,

LT2P =
1

M × H × W

M∑

m=1

H×W∑

i=1

C∑

c=1

d(µc,f
t
m,i)πθ

(
µc | f t

m,i

)
(2)

In this target-to-prototype direction, we assign each target pixel to the pro-
totypes according to their similarities and the class distribution. However, like
many entropy minimization methods [1,2], optimizing target-to-prototype cost
alone may result in degenerate trivial solutions, biasing the prediction towards
a single dominant class [16]. To avoid mapping most of the target features to
only a few prototypes, we add a prototype-to-target (P2T) transport cost in the
opposite direction, which ensures that each prototype can be assigned to some
target features. Similarly, we have:

LP2T =
C∑

c=1

p̂ (µc)
M∑

m=1

H×W∑

i=1

d(µc,f
t
m,i)

exp
(
µT

c f
t
m,i/τ

)

∑M
m′=1

∑H×W
i′=1 exp

(
µT

c f
t
m′,i′/τ

) (3)

Then, combining the conditional transport cost in these two directions, we
define the total prototype-anchored feature alignment (PFA) loss:

LPFA = LT2P + LP2T (4)

Similar to [6], we initialize the adaptation model Mt0 with the pre-trained
source model Ms and fix the weights of the classifier during adaptation.

2.2 Contrastive Learning Using Unreliable Predictions

After the PFA stage, the clusters of target features are shifted towards their
corresponding source prototypes, which brings remarkable improvements for the
initial noisy prediction (see Fig. 3(b)). To further improve the compactness of
the target feature distribution, previous self-training methods mainly focus on
strengthening the reliability of pseudo labels by developing denoising strategies
[5,20], but discard those low-confidence predictions. However, such contempt for
unreliable predictions may result in information loss. For example, in Fig. 1(c),
the probability of the unreliable pixel hovers between spleen and left kidney, yet
is confident enough to indicate the categories it does not belong to.

With this intuition, we denote pt
m,i as the softmax probabilities generated by

model Mt0 for the target data xt
m,i. Then, for each class c, we construct three

components, named query samples, positive prototypes, and negative samples,
to explore those unreliable predictions as [18].

Query Samples. During training, we employ the per-pixel entropy as uncer-
tainty metric [18], and sample the pixels with low entropy (reliable pixel) in
the current mini-batch as query candidates. We denote the set of features of all
query pixels for class c as Pc,

Pc = {f t
m,i | H(pt

m,i) ≤ γc, arg max
c′

pt
m,i = c} (5)
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where H(·) is the entropy of the input probabilities and γc is the entropy thresh-
old for class c. Here we set γc as the αc-th percentile of all the entropy values of
pixels assigned a pseudo label c.

Positive Prototypes. The positive prototype is the same for all query pixels
from the same class. Instead of using the center of query samples like [18], we set
them the same as the previous source prototype, which is denoted as z+

c = µc.

Negative Samples. For a query sample from class c, its qualified negative
samples should satisfy: 1) unreliable; 2) highly probable not belong to class c.
Therefore, we introduce the pixel-level category order Ot

m,i = argsort(pt
m,i). For

example, we have Ot
m,i(arg maxpt

m,i) = 1 and Ot
m,i(arg minpt

m,i) = C. Thus,
we can use Ot

m,i(c) to define the set of all negative samples:

Nc = {f t
m,i | H(pt

m,i) > γc, Ot
m,i(c) ≥ rl} (6)

where rl is the low rank threshold and is set to 3 in our task.
With the above definition, we have the pixel-level contrastive loss as:

LCL = − 1
C × K

C∑

c=1

K∑

k=1

log

⎡

⎣ e〈zc,k,z+
c 〉/τ

e〈zc,k,z+
c 〉/τ +

∑N
j=1 e〈zc,k,z−

c,k,j〉/τ

⎤

⎦ (7)

where K is the number of query samples, and zc,k ∈ Pc denotes the k-th query
sample from class c. Each query sample is paired with a positive prototype z+

c

and N negative samples z−
c,k,j ∈ Nc.

3 Experiments and Results

3.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate our SFDA approach on a
cross-modality abdominal multi-organ segmentation task. For the abdominal
datasets, we obtain 20 MRI volumes from the 2019 CHAOS Challenge [10] and
30 CT volumes from MICCAI 2015 [11], respectively. Both datasets are under
the Creative Commons Attribution 4.0 International license and involve seg-
mentation masks for the following abdominal organs: liver, right kidney, left
kidney and spleen. We complete adaptation experiments both in the “MRI to
CT” direction and in the “CT to MRI” direction. For the “MRI to CT” direc-
tion, we take the MRI modality to train the source model and vice verse. Both
modalities are randomly divided into 80% for domain adaptation training and
20% for evaluation. For both datasets, we discard the axial slices that do not
contain foreground and crop out the non-body region [3]. The value range in CT
volumes is first clipped to [−125, 275]. Then min-max normalization has been
performed on both datasets to normalize the intensity value to [0, 1]. After that,
all the MRI and CT volumes are uniformly resized to 256 × 256 in axial plane.
Due to the large variance in the slice thickness of CT and MRI modality, we
split the volume into slices for the model training.
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For the evaluation, two main metrics, dice similarity coefficient (Dice) and
average symmetric surface distance (ASSD) are used to quantitatively evaluate
the segmentation results [4,15].

Implementation Details. We adopt classic U-Net structure for the segmenta-
tion model as the previous work [1]. The source segmentation model is trained in
a fully-supervised manner for 10k iterations. During adaptation, we use Adam
optimizer with the learning rate 1 × 10−4 and a weight decay of 5 × 10−4. The
temperature τ and batch size is set as 0.1 and 16, respectively. In PFA stage, we
freeze the classifier and optimize F t0

θ for 200 iterations. In CL stage, we empir-
ically set hyper-parameters αc = 80, K = 64, and N = 256 for all classes. All
experiments are conducted with PyTorch on a single NVIDIA RTX 3090 GPU
of 24 GB memory. Data augmentation such as random cropping, rotation, and
brightness are adopted for source domain training and target domain adaptation.

3.2 Results of Source-Free Domain Adaptation

Comparision with Other Methods. In our experiments, “no adaptation”
lower bound denotes learning a model on the source domain and directly test on
the target domain without adaptation. And “supervised” upper bound means
training and testing in the same target domain. We compared our methods
with recent SFDA methods all designed for medical image segmentation sce-
narios, including a denoised pseudo-labeling approach (DPL) [5], a prior-aware
entropy minimization approach (AdaMI) [1], a fourier style mining approach
(FSM) [21], and a feature map statistics-guided approach [9]. We also consid-
ered top-performing UDA methods (i.e., SIFA [4], DAG-Net [19]). For a fair
comparison, we utilized the same backbone for these methods [1,4,5,21] and
reimplemented them according to their official codes. Note that we reported the
results of methods [9,19] from papers, since their official codes were not released.

The quantitative evaluation results are presented in Table 1. Compared to
the upper and lower bounds in both directions, a huge performance gap can be
observed due to the severe domain shifts between MRI and CT modalities. In
“MRI to CT” direction, our method remarkably outperforms all other SFDA
approaches on the right kidney and spleen, achieving the highest average Dice

Fig. 3. (a) Qualitative segmentation results of different methods for abdominal images.
(b) Visualized evolution of the model uncertainty and predictions in different stages.
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Table 1. Comparision with other methods on abdominal multi-organ datasets.

Method Source-free Dice (%, mean ± std) ↑ ASSD (voxel, mean ± std) ↓
Liver R. Kidney L. Kidney Spleen Avg Liver R. Kidney L. Kidney Spleen Avg

Abdominal MRI → Abdominal CT

No Adaptation – 49.2 ± 9.6 43.4 ± 24.9 65.4 ± 18.1 62.4 ± 20.9 55.1 ± 14.3 8.7 ± 2.0 10.8 ± 4.6 7.4 ± 3.1 4.5 ± 2.9 7.9 ± 2.5

Supervised – 93.5 ± 1.2 91.3 ± 1.2 92.1 ± 2.6 91.1 ± 5.6 92.0 ± 2.7 0.7 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 0.5 ± 0.2 0.6 ± 0.2

SIFA [4] ✘ 89.0 ± 3.2 83.8 ± 4.0 82.7 ± 5.8 84.6 ± 8.0 85.0 ± 5.9 1.2 ± 0.5 1.3 ± 0.6 1.5 ± 0.7 1.6 ± 0.9 1.4 ± 0.8

DAG-Net [19] ✘ 84.8 ± 4.6 85.9 ± 3.9 86.7 ± 3.6 88.1 ± 7.4 86.4 ± 4.9 1.6 ± 0.6 1.1 ± 0.5 1.2 ± 0.8 0.9 ± 0.7 1.2 ± 0.7

DPL [5] ✔ 70.1 ± 6.9 52.9 ± 14.2 65.7 ± 12.5 70.9 ± 13.2 64.9 ± 8.8 4.6 ± 2.0 7.9 ± 3.1 7.5 ± 2.8 3.2 ± 2.6 5.8 ± 2.0

FSM [21] ✔ 83.2 ± 3.8 74.5 ± 4.5 75.1 ± 4.6 76.2 ± 9.8 77.3 ± 7.0 2.8 ± 0.8 4.2 ± 1.6 5.0 ± 1.9 2.6 ± 1.4 3.7 ± 1.3

AdaMI [1] ✔ 90.2±1.0 81.4 ± 3.3 82.6 ± 4.7 80.2 ± 7.1 83.6 ± 6.6 1.0±0.5 1.8 ± 0.9 1.6 ± 1.0 2.4 ± 1.2 1.7 ± 0.9

Hong et al [9] ✔ 88.1 80.8 88.1 79.2 84.1 – – – – –

Ours ✔ 89.9 ± 2.7 84.5±6.8 84.9 ± 4.0 85.2±7.8 86.1±6.3 1.3 ± 0.5 1.4±0.4 1.3±0.6 1.2±0.8 1.4±0.7

Abdominal CT → Abdominal MRI

No Adaptation – 66.5 ± 6.8 81.6 ± 14.6 78.8 ± 19.5 70.1 ± 11.6 74.3 ± 11.0 3.5 ± 1.6 1.9 ± 1.0 3.0 ± 1.6 5.1 ± 2.3 3.4 ± 2.1

Supervised – 93.6 ± 3.5 94.2 ± 1.8 90.4 ± 3.7 92.2 ± 2.6 92.6 ± 2.1 0.5 ± 0.2 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.2 0.4 ± 0.2

SIFA [4] ✘ 87.1 ± 4.6 89.1 ± 2.8 84.2 ± 3.9 88.3 ± 2.4 87.2 ± 3.8 1.6 ± 0.6 0.8 ± 0.2 1.5 ± 0.8 1.7 ± 0.9 1.5 ± 0.8

DAG-Net [19] ✘ 86.3 ± 3.3 89.0 ± 2.0 89.9 ± 2.0 90.6 ± 2.9 89.0 ± 2.6 1.8 ± 0.6 0.9 ± 0.2 0.9 ± 0.4 1.3 ± 1.0 1.2 ± 0.6

DPL [5] ✔ 77.2 ± 2.0 83.5 ± 12.5 80.3 ± 13.6 83.3 ± 7.2 81.1 ± 8.3 3.0 ± 0.6 2.3 ± 1.6 2.5 ± 1.4 3.1 ± 1.7 2.7 ± 1.4

FSM [21] ✔ 84.3 ± 3.1 83.5 ± 6.6 82.1 ± 9.0 84.2 ± 5.6 83.5 ± 4.3 2.1 ± 0.5 1.5 ± 0.6 1.6 ± 0.7 2.2 ± 0.6 1.9 ± 0.6

AdaMI [1] ✔ 85.5 ± 2.4 86.4 ± 5.1 82.1 ± 7.6 89.9 ± 3.2 86.0 ± 3.1 1.9±0.4 1.2 ± 0.5 2.2 ± 0.6 1.3±0.7 1.7 ± 0.5

Hong et al [9] ✔ 88.4 89.1 86.4 91.1 88.8 – – – – –

Ours ✔ 86.1 ± 0.5 91.7±5.1 88.6±8.0 90.4 ± 2.2 89.2±3.3 2.0 ± 0.3 0.7±0.2 1.0±0.4 1.5 ± 0.5 1.3±0.5

Fig. 4. (a) Ablation analysis of proposed two SFDA stages. “w/o CL” denotes only
the PFA is performed; “w/o PFA” denotes directly optimizing the contrastive loss
according to the source model prediction. (b) Effect of different uncertainty percentile
αc on the adaptation performance.

of 86.1% and the lowest average ASSD of 1.4. Moreover, compared with recent
UDA methods, our method obtains competitive results on average Dice and
ASSD, which may be due to the use of unreliable predictions. As for “CT to
MRI” direction, our method similarly shows great superiority on most organs as
well, achieving the best performance in terms of both the average Dice (89.2%)
and ASSD (1.3) among all SFDA methods. Figure 3(a) shows the segmentation
results obtained by existing and our methods in both modalities. As observed,
DPL is prone to amplify the initial noisy regions since it directly discards the
unreliable pixels in self-training. For comparison, our method substantially rec-
tificate the uncertain regions from the initial prediction, and details are shown
in Fig. 3(b).

Ablation Study. In Fig. 4(a), we verify the effectiveness of the proposed two
SFDA stages by removing each stage while keeping the other. The consecutive
two stage adaptation leads to the best performance, while the drop in Dice
is more significant if we remove the PFA stage. This result is not surprising
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because, without PFA, the source model prediction is too noisy to sample the
qualified query and negative pixels for contrastative learning. We also study the
impact of different uncertainty percentile αc in Fig. 4(b). This parameter has a
certain impact on performance, and we find αc = 80% achieves the best perfor-
mance for most organs. Large αc may introduce low-confidence query samples
for supervision, and small αc will drop some informative negative samples.

4 Conclusion

In this paper, we propose a novel two-stage framework to address the source-free
domain adaptation problem in medical image segmentation. We first introduce a
bi-directional transport cost to encourage the alignment between target features
and source class prototypes in the prototype-anchored feature alignment stage.
Also, a contrastive learning stage using unreliable predictions is further devised
to learn a more compact target feature distribution. Sufficient experiments on
the cross-modality abdominal multi-organ segmentation task validate the effec-
tiveness and superiority of our method against other strong SFDA baselines,
even some classical UDA approaches.
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