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Abstract. Weakly supervised classification of whole slide images (WSIs) in dig-
ital pathology typically involves making slide-level predictions by aggregating
predictions from embeddings extracted from multiple individual tiles. However,
these embeddings can fail to capture valuable information contained within the
individual cells in each tile. Here we describe an embedding extraction method
that combines tile-level embeddings with a cell-level embedding summary. We
validated the method using four hematoxylin and eosin stained WSI classifica-
tion tasks: human epidermal growth factor receptor 2 status and estrogen receptor
status in primary breast cancer, breast cancer metastasis in lymph node tissue,
and cell of origin classification in diffuse large B-cell lymphoma. For all tasks,
the new method outperformed embedding extraction methods that did not include
cell-level representations. Using the publicly available HEROHE Challenge data
set, the method achieved a state-of-the-art performance of 90% area under the
receiver operating characteristic curve. Additionally, we present a novel model
explainability method that could identify cells associated with different classifica-
tion groups, thus providing supplementary validation of the classification model.
This deep learning approach has the potential to provide morphological insights
that may improve understanding of complex underlying tumor pathologies.
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1 Introduction

Accurate diagnosis plays an important role in achieving the best treatment outcomes
for people with cancer [1]. Identification of cancer biomarkers permits more granular
classification of tumors, leading to better diagnosis, prognosis, and treatment decisions
[2, 3]. For many cancers, clinically reliable genomic, molecular, or imaging biomarkers
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havenot been identified andbiomarker identification techniques (e.g., fluorescence in situ
hybridization) have limitations that can restrict their clinical use. On the other hand,
histological analysis of hematoxylin and eosin (H&E)-stained pathology slides is widely
used in cancer diagnosis and prognosis. However, visual examination of H&E-stained
slides is insufficient for classification of some tumors because identifyingmorphological
differences betweenmolecularly defined subtypes is beyond the limit of humandetection.

The introduction of digital pathology (DP) has enabled application of machine learn-
ing approaches to extract otherwise inaccessible diagnostic and prognostic information
from H&E-stained whole slide images (WSIs) [4, 5]. Current deep learning approaches
toWSI analysis typically operate at three different histopathological scales: whole slide-
level, region-level, and cell-level [4]. Although cell-level analysis has the potential to
produce more detailed and explainable data, it can be limited by the unavailability
of sufficiently annotated training data. To overcome this problem, weakly supervised
and multiple instance learning (MIL) based approaches have been applied to numer-
ous WSI classification tasks [6–10]. However, many of these models use embeddings
derived from tiles extracted using pretrained networks, and these often fail to capture
useful information from individual cells. Here we describe a new embedding extraction
method that combines tile-level embeddings with a cell-level embedding summary. Our
new method achieved better performance on WSI classification tasks and had a greater
level of explainability than models that used only tile-level embeddings.

2 Embedding Extraction Scheme

Transfer learning using backbones pretrained on natural images is a common method
that addresses the challenge of using data sets that largely lack annotation. However,
using backbones pretrained on natural images is not optimal for classification of clinical
images [11]. Therefore, to enable the use of large unlabeled clinical imaging data sets,
as the backbone of our neural network we used a ResNet50 model [12]. The backbone
was trained with the bootstrap your own latent (BYOL) method [13] using four publicly
available data sets from The Cancer Genome Atlas (TCGA) and three data sets from
private vendors that included healthy and malignant tissue from a range of organs [14].

2.1 Tile-Level Embeddings

Following standard practice, we extracted tiles with dimensions of 256 × 256 pixels
fromWSIs (digitized at 40×magnification) on a spatial grid without overlap. Extracted
tiles that contained artifacts were discarded (e.g., tiles that had an overlap of >10%
with background artifacts such blurred areas or pen markers). We normalized the tiles
for stain color using a U-Net model for stain normalization [15] that was trained on a
subset of data from one of the medical centers in the CAMELYON17 data set to ensure
homogeneity of staining [16].

To create the tile-level embeddings, we used the method proposed by [17] to sum-
marize the convolutional neural network (CNN) features with nonnegative matrix fac-
torization (NMF) for K = 2 factors. We observed that the feature activations within
the last layer of the network were not aligned with the cellular content. Although these
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features may still have been predictive, they were less interpretable, and it was more
difficult to know what kind of information they captured. Conversely, we observed that
the self-supervised network captured cellular content and highlighted cells within the
tiles (Fig. 1). Therefore, the tile-level embeddings were extracted after dropping the last
layer (i.e., dropping three bottleneck blocks in ResNet50) from the pretrained model.

Fig. 1. A visualization of the output features of the backbone for a typical input tile (left), from
the last layer (middle), and from the second to last layer (right) of the pretrained CNN summarized
using NMF with K = 2 factors. Resolution: 0.25 µm/pixel.

2.2 Cell-Level Embeddings

Tiles extracted from WSIs may contain different types of cells, as well as noncellular
tissue such as stroma and blood vessels and nonbiological features (e.g., glass). Cell-
level embeddings may be able to extract useful information, based on the morphological
appearance of individual cells, that is valuable for downstream classification tasks but
would otherwise be masked by more dominant features within tile-level embeddings.

We extracted deep cell-level embeddings by first detecting individual cellular bound-
aries using StarDist [18] and extracting 32× 32-pixel image crops centered around each
segmented nucleus to create cell-patch images. We then used the pre-trained ResNet50
model to extract cell-level embeddings in a similar manner to the extraction of the tile-
level embeddings. Since ResNet50 has a spatial reduction factor of 32 in the output of the
CNN, the 32 × 32-pixel image had a 1:1 spatial resolution in the output. To ensure the
cell-level embeddings contained features relevant to the cells, prior to the mean pooling
in ResNet50 we increased the spatial image resolution to 16 × 16 pixels in the output
from the CNN by enlarging the 32 × 32-pixel cell-patch images to 128 × 128 pixels
and skipping the last 4-layers in the network.

Because of heterogeneity in the size of cells detected, each 32 × 32-pixel cell-
patch image contained different proportions of cellular and noncellular features. Higher
proportions of noncellular features in an image may cause the resultant embeddings to
be dominated by noncellular tissue features or other background features. Therefore, to
limit the information used to create the cell-level embeddings to only cellular features,we
removed portions of the cell-patch images that were outside of the segmented nuclei by
setting their pixel values to black (RGB 0, 0, 0). Finally, to prevent the size of individual
nuclei or amount of background in each cell-patch image from dominating over the cell-
level features, we modified the ResNet50 Global Average Pooling layer to only average
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the features inside the boundary of the segmented nuclei, rather than averaging across
the whole output tensor from the CNN.

2.3 Combined Embeddings

To create a combined representation of the tile-level and cell-level embeddings, we
first applied a nuclei segmentation network to each tile. Only tiles with ≥ 10 cells per
tile, excluding any cells which overlapped the tile border, were included for embedding
extraction. For the included tiles, we extracted the tile-level embeddings as described in
Sect. 2.1 and for each detected cell we extracted the cell-level embeddings as described
in Sect. 2.2. We then calculated the mean and standard deviation of the vectors of the
cell-level embeddings for each tile and concatenated those to each tile-level embedding.
This resulted in a combined embedding representation with a total size of 1536 pixels
(1024 + 256 + 256).

In addition to the WSI classification results presented in the next sections, we also
performed experiments to compare the ability of combined embeddings and tile-level
embeddings to predict nuclei-related features that were manually extracted from the
images and to identify tileswhere nuclei had been ablated. The details and results of these
experiments are available in supplementary materials and provide further evidence of
the improved ability to capture cell-level information when using combined embeddings
compared with tile-level embeddings alone.

3 WSI Classification Tasks

For each classification task we compared different combinations of tile-level and cell-
level embeddings using a MIL framework. We also compared two different MIL
architectures to aggregate the embeddings for WSI-level prediction.

The first architecture used an attention-MIL (A-MIL) network [19] (the code was
adapted from a publicly available implementation [20]). We trained the network with
a 0.001 learning rate and tuned the batch size (48 or 96) and bag sample size (512,
1024, or 2048) for each classification task separately. When comparing the combined
embedding extractionmethodwith the tile-level only embeddings, parameterswere fixed
to demonstrate differences in performance without additional parameter tuning.

Transformer (Xformer) was used as the secondMIL architecture [21]. We used three
Xformer layers, each with eight attention heads, 512 parameters per token, and 256
parameters in the multi-layer perceptron layers. The space complexity of the Xformer
was quadratic with the number of tokens. While some WSIs had up to 100,000 tiles, we
found, in practice, that we could not fit more than 6000 tokens in the memory. Conse-
quently, we used the Nyströformer Xformer variant [22] since it consumes less memory
(the code was adapted from a publicly available implementation [23]). This Xformer has
two outputs, was trained with the Adam optimizer [24] with default parameters, and the
loss was weighted with median frequency balancing [25] to assign a higher weight to
the less frequent class. Like A-MIL, the batch and bag sample sizes were fixed for each
classification task. During testing a maximum of 30,000 tiles per slide were used. The
complete flow for WSI classification is shown in Fig. 2. The models were selected using
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a validation set, that was a random sample of 20% of the training data. All training was
done using PyTorch version 1.12.1 (pytorch.org) on 8 NVIDIA Tesla V100 GPUs with
Cuda version 10.2.

Fig. 2. Schematic visualization of the classification pipeline based on combined embeddings.
Tile-level and cell-level embeddings are extracted in parallel and then concatenated embedding
vectors are passed through the MIL model for the downstream task. aMi equals the number of
cells in tile i.

3.1 Data

We tested our feature representation method in several classification tasks involving
WSIs of H&E-stained histopathology slides. The number of slides per class for each
classification task are shown in Fig. 3.

Fig. 3. Class distributions in the data used for WSI classification tasks. Numbers in the bars
represent the number of WSIs by classification for each task.

For breast cancer human epidermal growth factor receptor 2 (HER2) prediction,
we used data from the HEROHE Challenge data set [26]. To enable comparison with
previous results we used the same test data set that was used in the challenge [27]. For
prediction of estrogen receptor (ER) status, we used images from the TCGA-Breast
Invasive Carcinoma (TCGA-BRCA) data set [28] for which the ER status was known.
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For these two tasks we used artifact-free tiles from tumor regions detected with an
in-house tumor detection model.

For breast cancer metastasis detection in lymph node tissue, we used WSIs of H&E-
stained healthy lymph node tissue and lymph node tissue with breast cancer metastases
from the publicly available CAMELYON16 challenge data set [16, 29]. All artifact-free
tissue tiles were used.

For cell of origin (COO) prediction of activated B-cell like (ABC) or germinal center
B-cell like (GCB) tumors in diffuse large B-cell lymphoma (DLBCL), we used data from
the phase 3 GOYA (NCT01287741) and phase 2 CAVALLI (NCT02055820) clinical
trials, hereafter referred to as CT1 and CT2, respectively. All slides were H&E-stained
and scanned using Ventana DP200 scanners at 40× magnification. CT1 was used for
training and testing the classifier and CT2 was used only as an independent holdout
data set. For these data sets we used artifact-free tiles from regions annotated by expert
pathologists to contain tumor tissue.

4 Model Classification Performance

For the HER2 prediction, ER prediction, and metastasis detection classification tasks,
combined embeddings outperformed tile-level only embeddings irrespective of the
downstream classifier architecture used (Fig. 4).

Fig. 4. Model performance using the Xformer and A-MIL architectures for the breast cancer
HER2 status, breast cancer ER status, and breast cancer metastasis detection in lymph node tissue
classification tasks. Error bars represent 95% confidence intervals computed by a 5000-sample
bias-corrected and accelerated bootstrap.

In fact, for the HER2 classification task, combined embeddings obtained using the
Xformer architecture achieved, to our knowledge, the best performance yet reported on
the HEROHE Challenge data set (area under the receiver operating characteristic curve
[AUC], 90%; F1 score, 82%).

For COO classification in DLBCL, not only did the combined embeddings achieve
better performance than the tile-level only embeddings with both the Xformer and A-
MIL architectures (Fig. 5) on the CT1 test set and CT2 holdout data set, but they also
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had a significant advantage versus tile-only level embeddings in respect of the additional
insights they provided through cell-level model explainability (Sect. 4.1).

Fig. 5. Model performance using the Xformer and A-MIL architectures for the COO in DLBCL
classification task. Error bars represent 95% confidence intervals computed by a 5000-sample
bias-corrected and accelerated bootstrap.

4.1 Model Explainability

Tile-based approaches inDPoften use explainabilitymethods such asGradient-weighted
ClassActivationMapping [30] to highlight parts of the image that correspondwith certain
category outputs.While the backbone of ourmodel was able to highlight individual cells,
there was no guaranteed correspondence between the model activations and the cells. To
gain insights into cell-level patterns that were very difficult or impossible to obtain from
tile-level only embeddings, we applied an explainability method that assigned attention
weights to the cellular average part of the embedding.

Cellular Explainability Method. The cellular average embedding is 1
N

N−1∑

i=0
eij

where eij ∈ R256 is the cellular embedding extracted from every detected cell in the tile
j
(
i ∈ {

1, 2, . . . ,Nj
})

where Nj is the number of cells in the tile j. This can be rewritten

as a weighted average of the cellular embeddings
N−1∑

i=0
eijSigmoid(wi)/

N−1∑

i=0
Sigmoid(wi)

where wi ∈ R256 are the per cell attention weights that if initialized to 0 result in the
original cellular average embedding. The re-formulation does not change the result of
the forward pass since wi are not all equal. Note that the weights are not learned through
training but calculated per cell at inference time to get the per cell contribution. We com-
puted the gradient of the output category (of the classification method applied on top of
the computed embedding) with respect to the attention weightswi: gradi = ∂Scorei/∂wi

and visualized cells that received positive and negative gradients using different colors.
Visual Example Results. Examples of our cellular explainability method applied to

weakly supervised tumor detection onWSIs from the CAMELYON16 data set using A-
MIL are shown in Fig. 6. Cellswith positive attention gradients shifted the output towards
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a classification of tumor and are labeled green. Cells with negative attention gradients
are labeled red. When reviewed by a trained pathologist, cells with positive gradients
had characteristics previously associated with breast cancer tumors (e.g., larger nuclei,
more visible nucleoli, differences in size and shape). Conversely, negative cells had
denser chromatin and resembled other cell types (e.g., lymphocytes). These repeatable
findings demonstrate the benefit of using cell-level embeddings and our explainability
method to gain a cell-level understanding of both correct and incorrect slide-level model
predictions (Fig. 6). We also applied our explainability method to COO prediction in
DLBCL.

In this case, cells with positive attention gradients that shifted the output towards a
classification of GCB were labeled green and cells with negative attention gradients that
shifted the classification towards ABC were labeled red. Cells with positive attention
gradientsweremostly smaller lymphoid cellswith lowgrademorphology orwere normal
lymphocytes,whereas cellswith negative attention gradientsweremore frequently larger
lymphoid cells with high grade morphology (Fig. 6).

Fig. 6. Cellular explainability method applied to breast cancer metastasis detection in lymph
nodes and COO prediction in DLBCL. Cells in the boundary margin were discarded.

5 Conclusions

We describe a method to capture both cellular and texture feature representations from
WSIs that can be plugged into any MIL architecture (e.g., CNN or Xformer-based),
as well as into fully supervised models (e.g., tile classification models). Our method is
more flexible than other methods (e.g., Hierarchical Image Pyramid Transformer) that
usually capture the hierarchical structure in WSIs by aggregating features at multiple
levels in a complex set of steps to perform the final classification task. In addition,
we describe a method to explain the output of the classification model that evaluates
the contributions of histologically identifiable cells to the slide-level classification. Tile-
level embeddings result in good performance for detection of tumor metastases in lymph
nodes. However, introducing more cell-level information, using combined embeddings,
resulted in improved classification performance. In HER2 and ER prediction tasks for
breast cancer we demonstrate that addition of a cell-level embedding summary to tile-
level embeddings can boostmodel performance by up to 8%. Finally, for COOprediction
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in DLBCL and breast cancer metastasis detection in lymph nodes, we demonstrated
the potential of our explainability method to gain insights into previously unknown
associations between cellular morphology and disease biology.
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