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Abstract. In computation pathology, the pyramid structure of gigapixel
Whole Slide Images (WSIs) has recently been studied for capturing vari-
ous information from individual cell interactions to tissue microenviron-
ments. This hierarchical structure is believed to be beneficial for cancer
diagnosis and prognosis tasks. However, most previous hierarchical WSI
analysis works (1) only characterize local or global correlations within
the WSI pyramids and (2) use only unidirectional interaction between
different resolutions, leading to an incomplete picture of WSI pyramids.
To this end, this paper presents a novel Hierarchical Interaction Graph-
Transformer (i.e., HIGT) for WSI analysis. With Graph Neural Network
and Transformer as the building commons, HIGT can learn both short-
range local information and long-range global representation of the WSI
pyramids. Considering that the information from different resolutions is
complementary and can benefit each other during the learning process,
we further design a novel Bidirectional Interaction block to establish com-
munication between different levels within the WSI pyramids. Finally, we
aggregate both coarse-grained and fine-grained features learned from dif-
ferent levels together for slide-level prediction. We evaluate our methods
on two public WSI datasets from TCGA projects, i.e., kidney carcinoma
(KICA) and esophageal carcinoma (ESCA). Experimental results show
that our HIGT outperforms both hierarchical and non-hierarchical state-
of-the-art methods on both tumor subtyping and staging tasks.
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1 Introduction

Histopathology is considered the gold standard for diagnosing and treating many
cancers [19]. The tissue slices are usually scanned into Whole Slide Images
(WSIs) and serve as important references for pathologists. Unlike natural images,
WSIs typically contain billions of pixels and also have a pyramid structure, as
shown in Fig. 1. Such gigapixel resolution and expensive pixel-wise annotation
efforts pose unique challenges to constructing effective and accurate models for
WSI analysis. To overcome these challenges, Multiple Instance Learning (MIL)
has become a popular paradigm for WSI analysis. Typically, MIL-based WSI
analysis methods have three steps: (1) crop the huge WSI into numerous image
patches; (2) extract instance features from the cropped patches; and (3) aggre-
gate instance features together to obtain slide-level prediction results. Many
advanced MIL models emerged in the past few years. For instance, ABMIL [9]
and DeepAttnMIL [18] incorporated attention mechanisms into the aggrega-
tion step and achieved promising results. Recently, Graph-Transformer archi-
tecture [17] has been proposed to learn short-range local features through GNN
and long-range global features through Transformer simultaneously. Such Graph-
Transformer architecture has also been introduced into WSI analysis [15,20] to
mine the thorough global and local correlations between different image patches.
However, current Graph-Transformer-based WSI analysis models only consider
the representation learning under one specific magnification, thus ignoring the
rich multi-resolution information from the WSI pyramids.

Different resolution levels in the WSI pyramids contain different and comple-
mentary information [3]. The images at a high-resolution level contain cellular-
level information, such as the nucleus and chromatin morphology features [10].
At a low-resolution level, tissue-related information like the extent of tumor-
immune localization can be found [1], while the whole WSI describes the entire
tissue microenvironment, such as intra-tumoral heterogeneity and tumor inva-
sion [3]. Therefore, analyzing from only a single resolution would lead to an
incomplete picture of WSIs. Some very recent works proposed to characterize
and analyze WSIs in a pyramidal structure. H2-MIL [7] formulated WSI as
a hierarchical heterogeneous graph and HIPT [3] proposed an inheritable ViT
framework to model WSI at different resolutions. Whereas these methods only
characterize local or global correlations within the WSI pyramids and use only
unidirectional interaction between different resolutions, leading to insufficient
capability to model the rich multi-resolution information of the WSI pyramids.

In this paper, we present a novel Hierarchical Interaction Graph-Transformer
framework (i.e., HIGT) to simultaneously capture both local and global informa-
tion from WSI pyramids with a novel Bidirectional Interaction module. Specifi-
cally, we abstract the multi-resolution WSI pyramid as a heterogeneous hierar-
chical graph and devise a Hierarchical Interaction Graph-Transformer architec-
ture to learn both short-range and long-range correlations among different image
patches within different resolutions. Considering that the information from dif-
ferent resolutions is complementary and can benefit each other, we specially
design a Bidirectional Interaction block in our Hierarchical Interaction ViT mod-
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Fig. 1. Overview of the proposed HIGT framework. A WSI pyramid will be constructed
as a hierarchical graph. Our proposed Hierarchical Interaction GNN and Hierarchical
Interaction ViT block can capture the local and global features, and the Bidirectional
Interaction module in the latter allows the nodes from different levels to interact. And
finally, the Fusion block aggregates the coarse-grained and fine-grained features to
generate the slide-level prediction.

ule to establish communication between different resolution levels. Moreover, a
Fusion block is proposed to aggregate features learned from the different levels
for slide-level prediction. To reduce the tremendous computation and memory
cost, we further adopt the efficient pooling operation after the hierarchical GNN
part to reduce the number of tokens and introduce the Separable Self-Attention
Mechanism in Hierarchical Interaction ViT modules to reduce the computation
burden. The extensive experiments with promising results on two public WSI
datasets from TCGA projects, i.e., kidney carcinoma (KICA) and esophageal
carcinoma (ESCA), validate the effectiveness and efficiency of our framework
on both tumor subtyping and staging tasks. The codes are available at https://
github.com/HKU-MedAI/HIGT.

2 Methodology

Figure 1 depicts the pipeline of HIGT framework for better exploring the multi-
scale information in hierarchical WSI pyramids. First, we abstract each WSI
as a hierarchical graph, where the feature embeddings extracted from multi-
resolution patches serve as nodes and the edge denotes the spatial and scaling
relationships of patches within and across different resolution levels. Then, we
feed the constructed graph into several hierarchical graph convolution blocks to
learn the short-range relationship among graph nodes, following pooling opera-
tions to aggregate local context and reduce the number of nodes. We further
devise a Separable Self-Attention-based Hierarchical Interaction Transformer

https://github.com/HKU-MedAI/HIGT
https://github.com/HKU-MedAI/HIGT
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architecture equipped with a novel Bidirectional Interaction block to learn the
long-range relationship among graph nodes. Finally, we design a fusion block to
aggregate the features learned from the different levels of WSI pyramids for final
slide-level prediction.

2.1 Graph Construction

As shown in Fig. 1, a WSI is cropped into numerous non-overlapping 512 ×
512 image patches under different magnifications (i.e., ×5, ×10) by using a
sliding window strategy, where the OTSU algorithm [4] is used to filter out
the background patches. Afterwards, we employ a pre-trained KimiaNet [16] to
extract the feature embedding of each image patch. The feature embeddings of
the slide-level T (Thumbnail), region-level R (×5), and the patch-level P (×10)
can be represented as,

T = {t},

R = {r1, r2, · · · , rN},

P = {P 1,P 2, · · · ,PN},Pi = {pi,1,pi,2, · · · ,pi,M}, (1)

where t, ri,pi,j ∈ R
1×C correspond to the feature embeddings of each patch in

thumbnail, region, and patch levels, respectively. N is the total number of the
region nodes and M is the number of patch nodes belonging to a certain region
node, and C denotes the dimension of feature embedding (1,024 in our experi-
ments). Based on the extracted feature embeddings, we construct a hierarchical
graph to characterize the WSI, following previous H2-MIL work [7]. Specifically,
the cropped patches serve as the nodes of the graph and we employ the extracted
feature embedding as the node embeddings. There are two kinds of edges in the
graph: spatial edges to denote the 8-adjacent spatial relationships among dif-
ferent patches in the same levels, and scaling edges to denote the relationship
between patches across different levels at the same location.

2.2 Hierarchical Graph Neural Network

To learn the short-range relationship among different patches within the WSI
pyramid, we propose a new hierarchical graph message propagation operation,
called RAConv+. Specifically, for any source node j in the hierarchical graph,
we define the set of it all neighboring nodes at resolution k as Nk and k ∈ K.
Here K means all resolutions. And the hk is the mean embedding of the node j’s
neighboring nodes in resolution k. And hj′ is the embedding of the neighboring
nodes of node j in resolution k and hj′ ∈ Nk. The formula for calculating the
attention score of node j in resolution-level and node-level:

αk =
exp

(
a� · LeakyReLU ([Uhj‖Uhk])

)
∑

k′∈K exp (a� · LeakyReLU ([Uhj‖Uhk′ ]))
,

αj′ =
exp

(
b� · LeakyReLU ([V hj‖V hj′′])

)

∑
hj′′∈Nk

exp
(
b� · LeakyReLU ([V hj‖V hj′′])

) ,
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αj,j′ = αk + αj′, (2)

where αj,j′ is the attention score of the node j to node j′ and hj is the source node
j embedding. And U , V , a and b are four learnable layers. The main difference
from H2-MIL [6] is that we pose the non-linear LeakyReLU between a and U ,
b and V , to generate a more distinct attention score matrix which increases the
feature differences between different types of nodes [2]. Therefore, the layer-wise
graph message propagation can be represented as:

H(l+1) = σ
(
A · H(l) · W (l)

)
, (3)

where A represents the attention score matrix, and the attention score for the
j-th row and j′-th column of the matrix is given by Eq. (2). At the end of
the hierarchical GNN part, we use the IHPool [6] progressively aggregate the
hierarchical graph.

2.3 Hierarchical Interaction ViT

We further propose a Hierarchical Interaction ViT (HIViT) to learn long-range
correlation within the WSI pyramids, which includes three key components:
Patch-level (PL) blocks, Bidirectional Interaction (BI) blocks, and Region-level
(RL) blocks.

Patch-Level Block. Given the patch-level feature set P =
⋃N

i=1 P i, the PL
block learns long-term relationships within the patch level:

P̂
l+1

= PL(P l) (4)

where l = 1, 2, ..., L is the index of the HIViT block. PL(·) includes a Sepa-
rable Self Attention (SSA) [13], 1×1 Convolution, and Layer Normalization in
sequence. Note that here we introduced SSA into the PL block to reduce the
computation complexity of attention calculation from quadratic to linear while
maintaining the performance [13].

Bidirectional Interaction Block. We propose a Bidirectional Interaction
(BI) block to establish communication between different levels within the WSI
pyramids. The BI block performs bidirectional interaction, and the interaction
progress from region nodes to patch nodes is:

rl
′
i ∈ Rl′ , Rl′ = SE(Rl) · Rl ,

P l+1
i = {pl+1

i,1 ,pl+1
i,2 , · · · ,pl+1

i,k }, pl+1
i,k = p̂l+1

i,k + rl
′
i , (5)

where the SE(·) means the Sequeeze-and-Excite layer [8] and the rl
′
i means the

i-th region node in Rl′ , and p̂l+1
i,k is the k-th patch node linked to the i-th region
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node after the interaction. Besides, another direction of the interaction is,

P̄ = {P̄ l+1
1 , P̄

l+1
2 , · · · , P̄

l+1
n }, P̄

l+1
i = MEAN(P̂

l+1

i )

R̂
l+1

= SE(P̄ l+1) · P̄ l+1 + Rl, (6)

where the MEAN(·) is the operation to get the mean value of patch nodes set

P̂
l+1

i associated with the i-th region node and P̄
l+1
1 ∈ R1×C and the C is the

feature channel of nodes, and R̂
l+1

is the region nodes set after interaction.

Region-Level Block. The final part of this module is to learn the long-range
correlations of the interacted region-level nodes:

Rl+1 = RL(R̂
l+1

) (7)

where l = 1, 2, ..., L is the index of the HIViT module, R = {r1, r2, · · · , rN},
and RL(·) has a similar structure to PL(·).

2.4 Slide-Level Prediction

In the final stage of our framework, we design a Fusion block to combine the
coarse-grained and fine-grained features learned from the WSI pyramids. Specif-
ically, we use an element-wise summation operation to fuse the coarse-grained
thumbnail feature and patch-level features from the Hierarchical Interaction
GNN part, and then further fuse the fine-grained patch-level features from the
HIViT part with a concatenation operation. Finally, a 1 × 1 convolution and
mean operation followed by a linear projection are employed to produce the
slide-level prediction.

3 Experiments

Datasets and Evaluation Metrics. We assess the efficacy of the proposed
HIGT framework by testing it on two publicly available datasets (KICA and
ESCA) from The Cancer Genome Atlas (TCGA) repository. The datasets are
described below in more detail:

– KICA dataset. The KICA dataset consists of 371 cases of kidney carcinoma,
of which 279 are classified as early-stage and 92 as late-stage. For the tumor
typing task, 259 cases are diagnosed as kidney renal papillary cell carcinoma,
while 112 cases are diagnosed as kidney chromophobe.

– ESCA dataset. The ESCA dataset comprises 161 cases of esophageal car-
cinoma, with 96 cases classified as early-stage and 65 as late-stage. For the
tumor typing task, there are 67 squamous cell carcinoma cases and 94 adeno-
carcinoma cases.
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Experimental Setup. The proposed framework was implemented by
PyTorch [14] and PyTorch Geometric [5]. All experiments were conducted on a
workstation with eight NVIDIA GeForce RTX 3090 (24 GB) GPUs. The shape
of all nodes’ features extracted by KimiaNet is set to 1 × 1024. All methods are
trained with a batch size of 8 for 50 epochs. The learning rate was set as 0.0005,
with Adam optimizer. The accuracy (ACC) and area under the curve (AUC)
are used as the evaluation metric. All approaches were evaluated with five-fold
cross-validations (5-fold CVs) from five different initializations.

Table 1. Comparison with other methods on ESCA. Top results are shown in bold.

Method
Staging Typing

AUC ACC AUC ACC

ABMIL [9] 64.53 ± 4.80 64.39 ± 5.05 94.11 ± 2.69 93.07 ± 2.68

CLAM-SB [12] 67.45 ± 5.40 67.29 ± 5.18 93.79 ± 5.52 93.47 ± 5.77

DeepAttnMIL [18] 67.96 ± 5.52 67.53 ± 4.96 95.68 ± 1.94 94.43 ± 3.04

DS-MIL [11] 66.92 ± 5.28 66.83 ± 5.57 95.96 ± 3.07 94.77 ± 4.10

LA-MIL [15] 63.93 ± 6.19 63.45 ± 6.19 95.23 ± 3.75 94.69 ± 3.94

H2-MIL [7] 63.20 ± 8.36 62.72 ± 8.32 91.88 ± 4.17 91.31 ± 4.18

HIPT [3] 68.59 ± 5.62 68.45 ± 6.39 94.62 ± 2.34 93.01 ± 3.28

Ours 71.11± 6.04 70.53± 5.41 96.81± 2.49 96.16± 2.85

Table 2. Comparison with other methods on KICA. Top results are shown in bold.

Method
Staging Typing

AUC ACC AUC ACC

ABMIL [9] 77.40 ± 3.87 75.94 ± 5.06 97.76 ± 1.74 98.86 ± 0.69

CLAM-SB [12] 77.16 ± 3.64 76.61 ± 4.31 96.76 ± 3.42 97.13 ± 2.99

DeepAttnMIL [18] 76.77 ± 1.94 75.94 ± 2.41 97.44 ± 1.04 96.30 ± 2.63

DS-MIL [11] 77.33 ± 4.11 76.57 ± 5.14 98.03 ± 1.13 97.31 ± 1.85

LA-MIL [15] 69.37 ± 5.27 68.73 ± 5.09 98.34 ± 0.98 97.71 ± 1.76

H2-MIL [7] 65.59 ± 6.65 64.48 ± 6.20 98.06 ± 1.43 96.99 ± 3.01

HIPT [3] 75.93 ± 2.01 75.34 ± 2.31 98.71 ± 0.49 97.32 ± 2.24

Ours 78.80± 2.10 76.80± 2.30 98.90± 0.60 97.90± 1.40

Comparison with State-of-the-Art Methods. We first compared our pro-
posed HIGT framework with two groups of state-of-the-art WSI analysis meth-
ods: (1) non-hierarchical methods including: ABMIL [9], CLAM-SB [12], Deep-
AttnMIL [18], DS-MIL [11], LA-MIL [15], and (2) hierarchical methods includ-
ing: H2-MIL [7], HIPT [3]. For LA-MIL [15] method, it was introduced with
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a single-scale Graph-Transformer architecture. For H2-MIL [7] and HIPT [3],
they were introduced with a hierarchical Graph Neural Network and hierar-
chical Transformer architecture, respectively. The results for ESCA and KICA
datasets are summarized in Table 1 and Table 2, respectively. Overall, our model
achieves a content result both in AUC and ACC of classifying the WSI, and
especially in predicting the more complex task (i.e. Staging) compared with the
SOTA approaches. Even for the non-hierarchical Graph-Transformer baseline
LA-MIL and hierarchical transformer model HIPT, our model approaches at
least around 3% and 2% improvement on AUC and ACC in the classification of
the Staging of the KICA dataset. Therefore we believe that our model benefits
a lot from its used modules and mechanisms.

Ablation Analysis. We further conduct an ablation study to demonstrate the
effectiveness of the proposed components. The results are shown in Table 3. In
its first row, we replace the RAConv+ with the original version of this oper-
ation. And in the second row, we replace the Separable Self Attention with a
canonical transformer block. The third row changes the bidirectional interaction
mechanism into just one direction from region-level to patch-level. And the last
row, we remove the fusion block from our model. Finally, the ablation analysis
results show that all of these modules we used actually improved the prediction
effect of the model to a certain extent.

Table 3. Ablation analysis on KICA dataset.

Method Staging Typing

AUC ACC AUC ACC

H2-MIL + HIViT 77.35 ± 3.41 77.16± 3.29 98.56 ± 1.01 95.00 ± 1.75

Ours w/o SSA 73.45 ± 8.48 71.47 ± 3.21 97.94 ± 2.51 97.42 ± 2.65

Ours w/o BI 72.42 ± 2.09 71.34 ± 7.23 98.04 ± 8.30 96.54 ± 2.80

Ours w/o Fusion 77.87 ± 2.09 76.80 ± 2.95 98.46 ± 0.88 97.35 ± 1.81

Ours 78.80± 2.10 76.80 ± 2.30 98.90± 0.60 97.90± 1.40

Fig. 2. Computational analysis of our framework and some selected SOTA methods.
From left to right are scatter plots of Typing AUC v.s. GPU Memory Allocation,
Staging AUC v.s. GPU Memory Allocation, Typing AUC v.s. Model Size, Staging
AUC v.s. Model Size.
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Computation Cost Analysis. We analyze the computation cost during the
experiments to compare the efficiency between our methods and existing state-of-
the-art approaches. Besides we visualized the model size (MB) and the training
memory allocation of GPU (GB) v.s. performance in KICA’s typing and staging
task plots in Fig. 2. All results demonstrate that our model is able to maintain
the promising prediction result while reducing the computational cost and model
size effectively.

4 Conclusion

In this paper, we propose HIGT, a framework that simultaneously and effectively
captures local and global information from the hierarchical WSI. Firstly, the con-
structed hierarchical data structure of the multi-resolution WSI is able to offer
multi-scale information to the later model. Moreover, the redesigned H2-MIL
and HIViT capture the short-range and long-range correlations among varying
magnifications of WSI separately. And the bidirectional interaction mechanism
and fusion block can facilitate communication between different levels in the
Transformer part. We use IHPool and apply the Separable Self Attention to deal
with the inherently high computational cost of the Graph-Transformer model.
Extensive experimentation on two public WSI datasets demonstrates the effec-
tiveness and efficiency of our designed framework, yielding promising results. In
the future, we will evaluate on other complex tasks such as survival prediction
and investigate other techniques to improve the efficiency of our framework.
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15. Reisenbüchler, D., Wagner, S.J., Boxberg, M., Peng, T.: Local attention graph-
based transformer for multi-target genetic alteration prediction. In: Wang, L., Dou,
Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Com-
puter Assisted Intervention – MICCAI 2022: 25th International Conference, Singa-
pore, September 18–22, 2022, Proceedings, Part II, pp. 377–386. Springer Nature
Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7 37

16. Riasatian, A., et al.: Fine-tuning and training of densenet for histopathology image
representation using TCGA diagnostic slides. Med. Image Anal. 70, 102032 (2021)

17. Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J.E., Stoica, I.: Representing
long-range context for graph neural networks with global attention. Adv. Neural.
Inf. Process. Syst. 34, 13266–13279 (2021)

18. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images
based cancer survival prediction using attention guided deep multiple instance
learning networks. Med. Image Anal. 65, 101789 (2020)

19. Yao, X.H., et al.: Pathological evidence for residual SARS-CoV-2 in pulmonary
tissues of a ready-for-discharge patient. Cell Res. 30(6), 541–543 (2020)

20. Zheng, Y., et al.: A graph-transformer for whole slide image classification. IEEE
Trans. Med. Imaging 41(11), 3003–3015 (2022)

https://doi.org/10.1016/j.media.2021.102092
https://doi.org/10.1016/j.media.2021.102092
http://arxiv.org/abs/2206.02680
https://doi.org/10.1007/978-3-031-16434-7_37

	HIGT: Hierarchical Interaction Graph-Transformer for Whole Slide Image Analysis
	1 Introduction
	2 Methodology
	2.1 Graph Construction
	2.2 Hierarchical Graph Neural Network
	2.3 Hierarchical Interaction ViT
	2.4 Slide-Level Prediction

	3 Experiments
	4 Conclusion
	References




