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Abstract. The diagnosis of prostate cancer is driven by the histopatho-
logical appearance of epithelial cells and epithelial tissue architecture.
Despite the fact that the appearance of the tumor-associated stroma
contributes to diagnostic impressions, its assessment has not been stan-
dardized. Given the crucial role of the tumor microenvironment in tumor
progression, it is hypothesized that the morphological analysis of stroma
could have diagnostic and prognostic value. However, stromal alter-
ations are often subtle and challenging to characterize through light
microscopy alone. Emerging evidence suggests that computerized algo-
rithms can be used to identify and characterize these changes. This
paper presents a deep-learning approach to identify and characterize
tumor-associated stroma in multi-modal prostate histopathology slides.
The model achieved an average testing AUROC of 86.53% on a large
curated dataset with over 1.1 million stroma patches. Our experimental
results indicate that stromal alterations are detectable in the presence of
prostate cancer and highlight the potential for tumor-associated stroma
to serve as a diagnostic biomarker in prostate cancer. Furthermore, our
research offers a promising computational framework for in-depth explo-
ration of the field effect and tumor progression in prostate cancer.
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1 Introduction

Prostate cancer (PCa) diagnosis and grading rely on histopathology analysis of
biopsy slides [1]. However, prostate biopsies are known to have sampling error
as PCa is heterogenous and commonly multifocal, meaning cancer legions can
be missed during the biopsy procedure [2]. If significant PCa is detected on
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biopsies and the patient has organ-confined cancer with no contraindications,
radical prostatectomy (RP) is the standard of care [3,4]. Following RP, the
prostate is processed and slices are mounted onto slides for analysis. Radical
prostatectomy histopathology samples are essential for validating the biopsy-
determined grade group [5,6]. Analysis of whole-mount slides, meaning slides
that include slices of the entire prostate, provide more precise tumor boundary
detection, identification of various tumor foci, and increased tissue for identifying
morphological patterns not visible on biopsy due to a larger field of view.

Field effect refers to the spread of genetic and epigenetic alterations from
a primary tumor site to surrounding normal tissues, leading to the formation
of secondary tumors. Understanding field effect is essential for cancer research
as it provides insights into the mechanisms underlying tumor development and
progression. Tumor-associated stroma, which consists of various cell types, such
as fibroblasts, smooth muscle cells, and nerve cells, is an integral component
of the tumor microenvironment that plays a critical role in tumor development
and progression. Reactive stroma, a distinct phenotype of stromal cells, arises
in response to signaling pathways from cancerous cells and is characterized by
altered stromal cells and increased extracellular matrix components [7,8]. Reac-
tive stroma is often associated with tumor-associated stroma and is thought
to be a result of field effects in prostate cancer. Altered stroma can create a
pro-tumorigenic environment by producing a multitude of chemokines, growth
factors, and releasing reactive oxygen species [9,10], which can lead to tumor
development and aggressiveness [11]. Therefore, investigating the histological
characterization of tumor-associated stroma is crucial in gaining insights into
the field effect and tumor progression of prostate cancer.

Manual review for tumor-associated stroma is time-consuming and lacks
quantitative metrics [12,13]. Several automated methods have been applied to
analyze the tumor-stroma relationship; however, most of them focus on identi-
fying a tumor-stroma ratio rather than finding reactive stroma tissue or require
pathologist input. Machine learning algorithms have been used to quantify
the percentage of tumor to stroma in bladder cancer patients, but required
dichotomizing patients based on a threshold [14]. Software has been used to seg-
ment tumor and stroma tissue in breast cancer patient samples, but the method
required constant supervision by a pathologist [15]. Similarly, Akoya Biosciences
Inform software was used to quantify reactive stroma in PCa, but this method
required substantial pathologist input to train the software [16]. Fully automated
deep-learning methods have been developed to identify tumor-associated stroma
in breast cancer biopsies, achieving an AUC of 0.962 in predicting invasive ductal
cancer [13]. However, identifying tumor-associated stroma in prostate biopsies
and whole-mount histopathology slides remains challenging.

Analyzing tumor-associated stroma in prostate cancer requires combining
whole-mount and biopsy histopathology slides. Biopsy slides provide information
on the presence of PCa, while whole-mount slides provide information on the
extent and distribution of PCa, including more information on tumor-associated
stroma. Combining the information from both modalities can provide a more
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accurate understanding of the tumor microenvironment. In this work, we explore
the field effect in prostate cancer by analyzing tumor-associated stroma in multi-
modal histopathological images. Our main contributions can be summarized as
follows:

– To the best of our knowledge, we present the first deep-learning approach
to characterize prostate tumor-associated stroma by integrating histological
image analysis from both whole-mount and biopsy slides. Our research offers
a promising computational framework for in-depth exploration of the field
effect and cancer progression in prostate cancer.

– We proposed a novel approach for stroma classification with spatial graphs
modeling, which enable more accurate and efficient analysis of tumor microen-
vironment in prostate cancer pathology. Given the spatial nature of cancer
field effect and tumor microenvironment, our graph-based method offers valu-
able insights into stroma region analysis.

– We developed a comprehensive pipeline for constructing tumor-associated
stroma datasets across multiple data sources, and employed adversarial train-
ing and neighborhood consistency regularization techniques to learn robust
multimodal-invariant image representations.

2 Method

2.1 Stroma Tissue Segmentation

Accurately analyzing tumor-associated stroma requires a critical pre-processing
step of segmenting stromal tissue from the background, including epithelial tis-
sue. This segmentation task is challenging due to the complex and heterogeneous
appearance of the stroma. To address this, we propose utilizing the PointRend
model [17], which can handle complex shapes and appearances and produce
smooth and accurate segmentations through iterative object boundary refine-
ment. Moreover, the model’s efficiency and ability to process large images quickly
make it suitable for analyzing whole-mount slides. By leveraging the PointRend
model, we can generate stromal segmentation masks for more precise down-
stream analysis.

2.2 Stroma Classification with Spatial Patch Graphs

To capture the spatial nature of field effect and analyze tumor-associated stroma,
modeling spatial relationships between stroma patches is essential. The spatial
relationship can reveal valuable information about the tumor microenvironment,
and neighboring stroma cells can undergo similar phenotypic changes in response
to cancer. Therefore, we propose using a spatial patch graph to capture the high-
order relationship among stroma tissue regions. We construct the stroma patch
graph using a K-nearest neighbor (KNN) graph and neighbor sampling. The
KNN graph connects each stroma patch to its K nearest neighboring patches.
Given a central stroma patch, we iteratively add neighboring patches to construct
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Fig. 1. Process of stroma patch graph construction: The left prostate model illustrates
the locations of biopsy and whole-mount tissues in 3D space. Biopsy slides provide
a targeted view while whole-mount slides offer a broader perspective of the tumor
and surrounding tissue. The stroma segmentation module generates a stroma mask to
isolate the stromal tissue, which is then used to construct spatial patch graphs for the
proposed deep-learning model.

Fig. 2. Overview of the proposed model for identifying tumor-associated stroma in
multi-modal prostate histopathology slides: The input patches are represented as spa-
tial graphs and passed through a feature extractor. The patch embeddings are fed
into a graph attention network (GAT) module to capture inter-patch relationships
and refine the features with neighborhood consistency regularization (NCR) for han-
dling noisy labels. The source discriminator serves as adversarial multi-modal learning
(AML) module to predict data source (biopsy/whole-mount). The stroma classifier and
source discriminator are trained simultaneously with the goal of successfully classifying
tumor-associated stroma using multimodal-invariant features.
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the patch graph until we reach a specified layer number L to control the subgraph
size. This process results in a tree-like subgraph with each layer representing a
different level of spatial proximity to the central patch. The use of neighbor
sampling enables efficient processing of large images and allows for stochastic
training of the model.

To predict tumor-associated binary labels of stroma patches, we employ a
message-passing approach that propagates patch features in the spatial graph. To
achieve this, we use Graph Convolutional Networks with attention, also known as
Graph Attention Networks (GATs) [18]. The GAT uses an attention mechanism
on node features to construct a weighting kernel that determines the impor-
tance of nodes in the message-passing process. In our case, the patch graph G
is constructed using the stroma patches as vertices, and we connect the nodes
with edges based on their spatial proximity. Each vertex vi is associated with a
feature vector �hvi ∈ R

N , which is first extracted by Resnet-50 model [19]. The
GAT layer is defined as

gE (vi) =
∑

vj∈NE
vi

∪{vi}
αvi,vj

W�hvj
(1)

where W ∈ R
M×N is a learnable matrix transforming N -dimensional features to

M -dimensional features. N E
vi

is the neighborhood of the node vi connected by E
in G. GAT uses attention mechanism to construct the weighting coefficients as:

αvi,vj
=

exp
(
ρ

(
�aT

[
W�hvi

‖W�hvj

]))

∑
vk∈NE

vi

exp
(
ρ

(
�aT

[
W�hvi

‖W�hvk

])) (2)

where T represents transposition, ‖ is the concatenation operation, and ρ is
LeakyReLU function. The final output of GAT module is the tumor-associated
probability of the input patch. And the module was optimized using the cross-
entropy loss LGAT in an end-to-end fashion.

2.3 Neighbor Consistency Regularization for Noisy Labels

The labeling of tumor-associated stroma can be affected by various factors, which
can result in noisy labels. One of the reasons for noisy labels is the irregular dis-
tribution of the field effect, which makes it challenging to define a clear boundary
between the tumor-associated and normal stroma regions. Additionally, the pres-
ence of tumor heterogeneity and the varied distribution of tumor foci can further
complicate the labeling process.

To address this issue, we propose applying Neighbor Consistency Regulariza-
tion (NCR) [20] to prevent the model from overfitting to incorrect labels. The
assumption is that overfitting happens to a lesser degree before the final classifier,
and this is supported by MOIT [21], which suggests that feature representations
are capable of distinguishing between noisy and clean examples during model
training. Based on this assumption, NCR introduces a neighbor consistency loss
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to encourage similar predictions of stroma patches that are similar in feature
space. This loss penalizes the divergence of a patch prediction from a weighted
combination of its neighbors’ predictions in feature space, where the weights are
determined by their feature similarity. Specifically, the loss function is designed
as follows:

LNCR =
1
m

m∑

i=1

DKL

⎛

⎝σ (zi/T ) ‖
∑

j∈NNk(vi)

si,j∑
k si,k

· σ (zj/T )

⎞

⎠ (3)

where DKL is the KL-divergence loss to quantify the discrepancy between two
probability distributions, T represents the temperature and NNk (vi) is the set
of k nearest neighbors of vi in the feature space.

2.4 Adversarial Multi-modal Learning

Biopsy and whole-mount slides provide complementary multi-modal informa-
tion on the tumor microenvironment, and combining them can provide a more
comprehensive understanding of tumor-associated stroma. However, using data
from multiple modalities can introduce systematic shifts, which can impact the
performance of a deep learning model. Specifically, whole-mount slides typically
contain larger tissue sections and are processed using different protocols than
biopsy slides, which can result in differences in image quality, brightness, and
contrast. These technical differences can affect the pixel intensity distributions
of the images, leading to systematic shifts in the features that the deep learning
model learns to associate with tumor-associated stroma. For instance, a model
trained on whole-mount slides only may not generalize well to biopsy slides due
to systematic shifts, hindering model performance in the clinical application
scenario.

To address the above issues, we propose an Adversarial Multi-modal Learning
(AML) module to force the feature extractor to produce multimodal-invariant
representations on multiple source images. Specifically, we incorporate a source
discriminator adversarial neural network as auxiliary classifier. The module takes
the stroma embedding as an input and predicts the source of the image (biopsy
or whole-mount) using Multilayer Perceptron (MLP) with cross-entropy loss
function LAML. The overall loss function of the entire model is computed as:

LTotal = LGAT + α · LNCR − β · LAML (4)

where hyper-parameters α and β control the impact of each loss term. All mod-
ules were concurrently optimized in an end-to-end manner. The stroma classi-
fier and source discriminator are trained simultaneously, aiming to effectively
classify tumor-associated stroma while impeding accurate source prediction by
the discriminator. The optimization process aims to achieve a balance between
these two goals, resulting in an embedding space that encodes as much informa-
tion as possible about tumor-associated stroma identification while not encod-
ing any information on the data source. By adopting the adversarial learning
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strategy, our model can maintain the correlated information and shared charac-
teristics between two modalities, which will enhance the model’s generalization
and robustness.

3 Experiment

3.1 Dataset

In our study, we utilized three datasets for tumor-associated stroma analysis.
(1) Dataset A comprises 513 tiles extracted from the whole mount slides of 40
patients, sourced from the archives of the Pathology Department at Cedars-
Sinai Medical Center (IRB# Pro00029960). It combines two sets of tiles: 224
images from 20 patients featuring stroma, normal glands, low-grade and high-
grade cancer [22], along with 289 images from 20 patients with dense high-grade
cancer (Gleason grades 4 and 5) and cribriform/non-cribriform glands [23]. Each
tile measures 1200×1200 pixels and is extracted from whole slide images cap-
tured at 20x magnification (0.5 microns per pixel). The tiles were annotated
at the pixel-level by expert pathologists to generate stroma tissue segmentation
masks and were cross-evaluated and normalized to account for stain variabil-
ity. (2) Dataset B included 97 whole mount slides with an average size of over
174,000×142,000 pixels at 40x magnification. The prostate tissue within these
slides had an average tumor area proportion of 9%, with an average tumor area of
77 square mm. An expert pathologist annotated the tumor region boundaries at
the region-level, providing exhaustive annotations for all tumor foci. (3) Dataset
C comprised 6134 negative biopsy slides obtained from 262 patients’ biopsy pro-
cedures, where all samples were diagnosed as negative. These slides are presumed
to contain predominantly normal stroma tissues without phenotypic alterations
in response to cancer.

Dataset A was utilized for training the stroma segmentation model. Extensive
data augmentation techniques, such as image scaling and staining perturbation,
were employed during the training process. The model achieved an average test
Dice score of 95.57 ± 0.29 through 5-fold cross-validation. This model was then
applied to generate stroma masks for all slides in Datasets B and C. To precisely
isolate stroma tissues and avoid data bleeding from epithelial tissues, we only
extracted patches where over 99.5% of the regions were identified as stroma at
40X magnification to construct the stroma classification dataset.

For positive tumor-associated stroma patches, we sampled patches near
tumor glands within annotated tumor region boundaries, as we presumed that
tumor regions represent zones in which the greatest amount of damage has pro-
gressed. For negative stroma patches, we calculated the tumor distance for each
patch by measuring the Euclidean distance from the patch center to the nearest
edge of the labeled tumor regions. Negative stroma patches were then sampled
from whole mount slides with a Gleason Group smaller than 3 and a tumor dis-
tance larger than 5 mm. This approach aims to minimize the risk of mislabeling
tumor-associated stroma as normal tissue. Setting a 5mm threshold accounts
for the typically minimal inflammatory responses induced by prostate cancers,
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particularly in lower-grade cases. To incorporate multi-modal information, we
randomly sampled negative stroma patches from all biopsy slides in Dataset C.
Overall, we selected over 1.1 million stroma patches of size 256×256 pixels at 40x
magnification for experiments. During model training and testing, we performed
stain normalization and standard image augmentation methods.

3.2 Model Training and Evaluation

For constructing KNN-based patch graphs, we limited the graph size by setting
K = 4 and layer number L = 3. We controlled the strength of the NCR and
AML terms by setting α = 0.25 and β = 0.5, respectively. The Adam optimizer
with a learning rate of 0.0005 was used for model training. All models were
implemented using PyTorch on a single Tesla V100 GPU. To evaluate the model
performance, we perform 5-fold cross-validation, where all slides are stratified by
source origin and divided into 5 subsets. In each cross-validation trial, one subset
was taken as the test set while the remaining subsets constituted the training
set. We measure the prediction performance using the area under the receiver
operating characteristic (AUROC), F1 score, precision, and recall.

4 Results and Discussions

Table 1. Performance comparison with model variants. Results are averaged over 5
folds and shown in terms of mean value ± standard deviation.

Methods AUROC F1 Precision Recall

Base 76.49 ± 2.19 68.29 ± 1.04 69.73 ± 1.27 66.93 ± 1.39

Base+GAT 80.02 ± 1.96 72.56 ± 0.72 73.69 ± 0.63 71.47 ± 1.21

Base+GAT+AML 85.74 ± 1.18 76.73 ± 1.10 76.47 ± 1.55 77.02 ± 1.54

Base+GAT+AML+NCR 86.53 ± 0.38 79.26 ± 0.36 78.45 ± 0.49 80.10 ± 0.32

To evaluate the effectiveness of our proposed method, we conducted an abla-
tion study by comparing the performance of different model variants presented
in Table 1. Specifically, the base model is the ResNet-50 feature extractor for
tumor-associated stroma classification. Each model variant included a different
combination of modules presented in method sections. We systematically add
one or more modules to the base model to evaluate their performance contri-
bution. The results show that the full model outperforms the base model by a
large margin with 10.04% in AUROC and 10.97% in F1 score, and each module
contributes to the overall performance. Compared to the base model, the addi-
tion of the GAT module resulted in a significant improvement in all metrics,
suggesting spatial information captured by the patch graph was valuable for
stroma classification. The most notable performance improvement was achieved
by the AML module, with a 5.72% increase in AUROC and 5.55% increase in
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Recall. This improvement indicates that AML helps the model better capture the
multimodal-invariant features that are associated with tumor-associated stroma
while reducing the false negative prediction by eliminating the influence of sys-
tematic shift cross modalities. Finally, the addition of the NCR module further
increased the average model performance and improved the model robustness
across 5 folds. This suggests that NCR was effective in handling noisy labels and
improving model’s generalization ability.

In conclusion, our study introduced a deep learning approach to accurately
characterize the tumor-associated stroma in multi-modal prostate histopathol-
ogy slides. Our experimental results demonstrate the feasibility of using deep
learning algorithms to identify and quantify subtle stromal alterations, offer-
ing a promising tool for discovering new diagnostic and prognostic biomarkers
of prostate cancer. Through exploring field effect in prostate cancer, our work
provides a computational system for further analysis of tumor development and
progression. Future research can focus on validating our approach on larger and
more diverse datasets and expanding the method to a patient-level prediction
system, ultimately improving prostate cancer diagnosis and treatment.
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