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Abstract. Ultrasound imaging can vary in style/appearance due to dif-
ferences in scanning equipment and other factors, resulting in degraded
segmentation and classification performance of deep learning models for
ultrasound image analysis. Previous studies have attempted to solve this
problem by using style transfer and augmentation techniques, but these
methods usually require a large amount of data from multiple sources and
source-specific discriminators, which are not feasible for medical datasets
with limited samples. Moreover, finding suitable augmentation meth-
ods for ultrasound data can be difficult. To address these challenges,
we propose a novel style transfer-based augmentation framework that
consists of three components: mixed style augmentation (MixStyleAug),
feature augmentation (FeatAug), and mask-based style augmentation
(MaskAug). MixStyleAug uses a style transfer network to transform the
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style of a training image into various reference styles, which enriches the
information from different sources for the network. FeatAug augments
the styles at the feature level to compensate for possible style variations,
especially for small-size datasets with limited styles. MaskAug leverages
segmentation masks to highlight the key regions in the images, which
enhances the model’s generalizability. We evaluate our framework on
five ultrasound datasets collected from different scanners and centers.
Our framework outperforms previous methods on both segmentation and
classification tasks, especially on small-size datasets. Our results sug-
gest that our framework can effectively improve the performance of deep
learning models across different ultrasound sources with limited data.

Keywords: Ultrasound · Segmentation · Classification · Style
transfer · Data augmentation

1 Introduction

Classification and segmentation are two common tasks that use deep learning
techniques to solve clinical problems [1,2]. However, training deep learning mod-
els reliably usually requires a large amount of data samples. Models trained with
limited data are susceptible to overfitting and possible variations due to small

Fig. 1. Limitations of previous studies and our improvements for multi-source ultra-
sound data.
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sample size, which can lead to poor performance across different sources. Dif-
ferent sources refer to the same modality collected from different scanners. In
medical imaging, one of the main reasons for poor performance is the variation
in the imaging process, such as the type of scanner, the settings, the protocol,
etc. [3]. This can cause changes in the intensity distributions of the images [4,5].
While training deep learning models with a large number of high-quality data
could potentially address this problem, this approach is often challenging due
to limited resources and difficulties in collecting medical images, as well as the
manual annotation required by experienced radiologists or experts with profes-
sional domain knowledge. Thus, limited labeled data is commonly used to model
the classification and segmentation network.

To prevent overfitting and improve generalization, data augmentation [3,6–
10] has been proposed to generate more similar but different samples for the
training dataset. Very often, this can be done by applying various transforma-
tions to the training images to create new images that reflect natural variations
within each class. However, the model’s performance across different sources
heavily depends on the augmentation strategies. Another popular technique is
style transfer [11], which adapts the style of test images to match the selected
reference images (standard distributions) [4,5,12,13]. However, these methods
have a limitation that their performance depends on the quality of the reference
images. Moreover, these methods tend to transfer the style of the whole images,
which may introduce irrelevant distribution information for medical imaging
applications, as shown in Fig. 1. This problem is more severe in ultrasound images
due to the presence of acoustic shadow.

To address the above challenges, we propose a novel framework that combines
the advantages of data augmentation and style transfer to enhance the model’s
segmentation and classification performance on ultrasound images from different
sources. Our contributions (Fig. 1) are: 1) a mixed style augmentation strategy
that integrates the information from different sources to improve the model’s
generalizability. 2) A feature-based augmentation that shifts the style at the
feature level rather than the image level to better account for the potential
variations. 3) a mask-based style augmentation strategy that avoids the influence
of the irrelevant style information on ultrasound images during the style transfer.

2 Methods

Our proposed framework for ultrasonic image style augmentation consists of
three stages, as illustrated in Fig. 2. Stage A. Mixed style augmentation
(MixStyleAug) integrates the style information from different sources simul-
taneously. Stage B. Feature augmentation transfers the style at the feature
level during the training of the multi-task network. Stage C. Mask-based style
augmentation uses the style information of the region of interest (ROI) in the
ultrasound image based on the segmentation results.
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Fig. 2. Overview of our proposed style transfer-based augmentation framework. The
whole framework consists of mixed style augmentation, feature augmentation, and
mask-based style augmentation.

2.1 Mixed Style Augmentation (MixStyleAug)

To improve the performance of the multi-task network, we design MixStyleAug,
combining traditional transformations and style transfer to incorporate image
information from target sources during training (Fig. 2A). In this method, the
content and the style images are sampled from training and target sources,
respectively. Firstly, the traditional augmentation is applied to transform the
content image, which can prevent overfitting. The traditional augmentation
includes rotation, translation, scaling, and deformation transformations. Next,
we translate the style of the augmented content image to that of the style image
using the WCT2 [14] style transfer network, generating a stylized content image.
Finally, inspired by AugMix [15], we mix the stylized and augmented content
images using random weights to create a style-augmented image that includes
information from the training source. MixStyleAug allows the augmented train-
ing dataset to implicitly contain information from multiple sources, improving
the model’s performance across different sources. However, this method requires
a large number of available images as reference styles for style augmentation,
making it impractical for small-sized datasets.
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2.2 Network Architecture and Feature Augmentation (FeatAug)

To address the limitation of MixStyleAug in small-size medical datasets, FeatAug
is applied for augmenting image styles at the feature level during the network
training (Fig. 2B). In this work, we design a simple multi-task network for simul-
taneous segmentation and classification, and FeatAug is applied to the feature
maps for feature augmentation.

The architecture of our designed multi-task network (Fig. S1 in the Supple-
mentary Materials) includes four encoders, four decoders, and a classification
head. Each encoder includes two 3 × 3 convolutional layers with padding that
are used to fuse the features. Each convolutional layer is followed by a rectified
linear unit (ReLU) and a batch normalization (BN) [16]. Max-pooling layer is
used to downsample the feature maps for dimension reduction. Through these
encoders, the feature maps are generated and fed into the decoders and clas-
sification head to generate segmentation and classification results, respectively.
Each decoder consists of three 3 × 3 convolutional layers with padding, three
BN layers, three ReLUs, and a max-unpooling layer. In the classification head,
the feature maps from the encoders are reduced to 128 channels by using a 3
× 3 convolutional layer with padding followed by ReLU and BN layer. Then,
a global average pooling is used to downsample the feature maps. Finally, the
features are fed into a fully connected layer followed by a sigmoid layer to output
the classification result.

Previous studies reported that changing the mean and standard deviation of
the feature maps could lead to different image styles [17,18]. Thus, we design
a module to randomly alter these values to augment the styles at the feature
level. To avoid over-augmentation at the feature level, this module is randomly
applied with a 50% probability after the residual connection in each encoder.
The module is defined as follows:

A′ =
A − μA

σA
· (σA +N (μ, σ)

)
+

(
μA +N (μ, σ)

)
(1)

where A indicates the feature map, A′ indicates the augmented feature map,
μA indicates the mean of feature map A, σA indicates the standard deviation
of feature map A, and N (μ, σ) indicates a value randomly generated from a
normal distribution with mean μ and standard deviation σ. In this study, the μ
and σ of the normal distribution were empirically set to 0 and 0.1 according to
preliminary experimental results, respectively.

2.3 Mask-Based Style Augmentation (MaskAug)

In general, the style transfer uses the style information of the entire image, but
this approach may not be ideal when the regions outside of the ROIs contain
conflicting style information as compared to the regions within the ROIs, as
illustrated in Fig. 1. To mitigate the impact of irrelevant or even adverse style
information, we propose a mask-based augmentation technique (MaskAug) that
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emphasize the ROIs in the ultrasound image during style transfer network train-
ing.

Figure 2C shows the pipeline of MaskAug and the steps are: 1) Content and
style images are randomly chosen from training and target sources, respectively.
2) A trained multi-task network, which has been trained for several epochs and
will be updated in the later epochs, is used to automatically generate ROIs of
these images. 3) The content image, style image and their ROIs are input to the
style transfer network. 4) During the style transfer, the intensity distribution of
the ROI in the content image is changed to that of the style image. 5) Finally,
mask-based style augmented images are produced and these images are then
input to the multi-task network for further training.

2.4 Loss Function and Implementation Details

We utilized cross-entropy (CE) as the primary loss function for segmentation and
classification during the training stage. Additionally, Dice loss [19] was computed
as an auxiliary loss for segmentation. These loss functions are defined as:

Lm = LSeg
CE + LSeg

Dice + LCls
CE (2)

where LCE denotes CE loss, LDice denotes Dice loss, Lm denotes the loss for
the multi-task network optimization, LSeg denotes the loss computed from the
segmentation result, and LCls denotes the loss computed from the classification
result.

We adopted Pytorch to implement the proposed framework, and the multi-
task network was trained on Nvidia RTX 3070 with 8 GB memory. During
training, the batch size was set to 16, the maximum epoch number was 300,
and the initial learning rate was set to 0.0005. We decayed the learning rate
with cosine annealing [20] for each epoch, and the minimum learning rate was
set to 0.000001. The restart epoch of cosine annealing was set to 300, ensuring
that the learning rate monotonically decreased during the training process. For
optimization, we used the AdamW optimizer [21] in our experiments. The whole
training takes about 6 h and the inference time for a sample is about 0.2 s.

3 Experimental Results and Discussion

Datasets and Evaluation Metrics. We evaluated our framework on five
ultrasound datasets (each representing a source) collected from multiple cen-
ters using different ultrasound scanners, including three liver datasets and two
thyroid nodules datasets. A detailed description of the collected datasets is pro-
vided in Table S1 of the Supplementary Materials. We used the dataset with the
largest sample size as the training source to prevent overfitting, while the other
datasets were the target sources. For each datasets, we randomly split 20% of
the samples for test, and used the remaining 80% for training the network. All
the results in this study are based on the test set. In the training set, 20% data
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was randomly selected as validation set. In the data preprocessing, the input
images were resized to 224×224 and were normalized by dividing 255.

AUROC is used to evaluate the classification performance. DSC is used to
assess the performance of the segmentation. The DSC is defined as:

DSC =
2TP

FP + 2TP + FN
(3)

where TP refers to the pixels where both the predicted results and the gold
standard are positive, FP refers to the pixels where the predicted results are
positive and the gold standard are negative, and FN refers to the pixels where
the predicted results are negative and the gold standard are positive.

Table 1. Comparison of segmentation and classification performance of different aug-
mentation methods in five ultrasound datasets in terms of DSC (%) and AUROC
(×100%). Training/Target: Training/Target source datasets. MixStyleAug: mixed style
augmentation. FeatAug: feature augmentation. MaskAug: mask-based style augmen-
tation. LD: liver dataset. TD: thyroid nodule dataset.

Method Metric LD1 LD2 LD3 TD1 TD2
Training Target Target Training Target

Traditional Augmentation DSC 94.5 88.3 89.6 64.0 63.1
AUROC 86.6 61.3 65.6 72.6 62.3

MixStyleAug DSC 94.0 87.3 91.1 62.8 65.7
AUROC 87.9 64.0 68.9 78.1 62.3

MixStyleAug+FeatAug DSC 94.0 86.9 90.2 63.9 65.2
AUROC 89.7 66.3 68.8 85.5 64.2

MixStyleAug+FeatAug+MaskAug DSC 94.8 89.7 91.2 77.9 65.9
AUROC 92.3 67.3 69.3 83.0 62.4

Ablation Study. We evaluated the effects of MixStyleAug, FeatAug, and
MaskAug by training a multi-task network with different combinations of
these augmentation strategies. Table 1 shows that MixStyleAug improves the
segmentation and classification performance on the target sources compared
to traditional augmentation. Furthermore, The combination of FeatAug and
MixStyleAug improves the classification performance slightly in the liver datasets
and significantly in the thyroid nodule datasets. This improvement is due to the
style transfer at the feature level, which make the augmented features more
similar to the target sources.

Using MaskAug improved both segmentation and classification performance
on both training and target sources, compared to the combination of FeatAug
and MixStyleAug. This resulted in excellent performance. Figure 3 shows that
the mask-based stylized content image has a more similar distribution to the
style image than the other images, which helps the model perform better on
both training and target sources.
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Comparison with Previous Studies. We compared our proposed method
with BigAug [3], the style augmentation method by Hesse et al. [8], AutoAug [10],
and UDA [22] on our collected datasets. Table 2 shows that our method performs
excellently on both training and target sources. Unlike BigAug [3], our method
uses style augmentation instead of intensity transformations, which avoids a drop
in classification performance. Hesse et al. [8] only uses training sources for style

Fig. 3. Illustrations of the conventional style transfer and mask-based style transfer in
an ultrasound image. A neural style transfer network is used to translate the content
image to the style image, resulting in a stylized image with reference to the style of
the entire style image. In contrast, mask-based stylized images are generated with
reference to the style of the liver substance in the stylized image. The histogram shows
the intensity distribution of the liver region, with μ and σ representing the mean and
standard deviation of the liver parenchyma in the ultrasound image, respectively.

Table 2. Segmentation and classification performance of our proposed framework and
previous studies in five ultrasound datasets in terms of DSC (%) and AUROC (×100%).
Training/Target: Training/Target source datasets. LD: liver dataset. TD: thyroid nod-
ules dataset. UDA: unsupervised domain adaptation.

Method Metric LD1 LD2 LD3 TD1 TD2
Training Target Target Training Target

BigAug [3] DSC 93.8 88.0 90.8 54.5 56.4
AUROC 82.1 59.2 51.9 62.7 63.9

Hesse et al. [8] DSC 92.6 86.9 91.3 61.4 62.7
AUROC 79.6 64.9 68.3 71.7 58.8

AutoAug [10] DSC 93.9 87.6 91.4 68.7 53.5
AUROC 87.1 65.3 67.8 76.9 39.2

UDA [22] DSC 94.2 57.7 64.9 65.1 35.2
AUROC 84.6 61.9 67.9 67.2 55.3

Proposed method DSC 94.8 89.7 91.2 77.9 65.9
AUROC 92.3 67.3 69.3 83.0 62.4
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augmentation, which fail to improve performance on target sources, especially
in classification tasks, when using a small-sized, single-source training dataset.
Our method outperforms AutoAug [10], which relies on large samples to obtain
the optimal augmentation strategy. UDA [22] is hard to train with a small-sized
dataset due to overfitting and the complex adversarial training.

4 Conclusion

We proposed an augmentation framework based on style transfer method to
improve the segmentation and classification performance of the network on ultra-
sound images from multiple sources. Our framework consists of MixStyleAug,
FeatAug, and MaskAug. MixStyleAug integrates the image information from
various sources for well generalization, while FeatAug increases the number of
styles at the feature level to compensate for potential style variations. MaskAug
uses the segmentation results to guide the network to focus on the style infor-
mation of the ROI in the ultrasound image. We evaluated our framework on
five datasets from various sources, and the results showed that our frame-
work improved the segmentation and classification performance across different
sources.
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