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Abstract. Colorectal cancer is a prevalent form of cancer, and many
patients develop colorectal cancer liver metastasis (CRLM) as a result.
Early detection of CRLM is critical for improving survival rates. Radi-
ologists usually rely on a series of multi-phase contrast-enhanced com-
puted tomography (CECT) scans done during follow-up visits to perform
early detection of the potential CRLM. These scans form unique five-
dimensional data (time, phase, and axial, sagittal, and coronal planes
in 3D CT). Most of the existing deep learning models can readily han-
dle four-dimensional data (e.g., time-series 3D CT images) and it is not
clear how well they can be extended to handle the additional dimension
of phase. In this paper, we build a dataset of time-series CECT scans
to aid in the early diagnosis of CRLM, and build upon state-of-the-art
deep learning techniques to evaluate how to best predict CRLM. Our
experimental results show that a multi-plane architecture based on 3D
bi-directional LSTM, which we call MPBD-LSTM, works best, achieving
an area under curve (AUC) of 0.79. On the other hand, analysis of the
results shows that there is still great room for further improvement. Our
code is available at https://github.com/XueyangLiOSU/MPBD-LSTM.
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1 Introduction

Colorectal cancer is the third most common malignant tumor, and nearly half
of all patients with colorectal cancer develop liver metastasis during the course
of the disease [6,16]. Liver metastases after surgery of colorectal cancer is the
major cause of disease-related death. Colorectal cancer liver metastases (CRLM)
have therefore become one of the major focuses in the medical field. Patients
with colorectal cancer typically undergo contrast-enhanced computed tomogra-
phy (CECT) scans multiple times during follow-up visits after surgery for early
detection of CRLM, generating a 5D dataset. In addition to the axial, sagit-
tal, and coronal planes in 3D CT scans, the data comprises contrast-enhanced
multiple phases as its 4th dimension, along with different timestamps as its 5th
dimension. Radiologists heavily rely on this data to detect the CRLM in the
very early stage [15].

Extensive existing works have demonstrated the power of deep learning on
various spatial-temporal data, and can potentially be applied towards the prob-
lem of CRLM. For example, originally designed for natural data, several main-
stream models such as E3D-LSTM [12], ConvLSTM [11] and PredRNN [13] use
Convolutional Neural Networks (CNN) to capture spatial features and Long
Short-Term Memory (LSTM) to process temporal features. Some other models,
such as SimVP [4], replace LSTMs with CNNs but still have the capability of
processing spatiotemporal information. These models can be adapted for classi-
fication tasks with the use of proper classification head.

However, all these methods have only demonstrated their effectiveness
towards 3D/4D data (i.e., time-series 2D/3D images), and it is not clear how
to best extend them to work with the 5D CECT data. Part of the reason is
due to the lack of public availability of such data. When extending these mod-
els towards 5D CECT data, some decisions need to be made, for example: 1)
What is the most effective way to incorporate the phase information? Simply
concatenating different phases together may not be the optimal choice, because
the positional information of the same CT slice in different phases would be lost.
2) Shall we use uni-directional LSTM or bi-direction LSTM? E3D-LSTM [12]
shows uni-directional LSTM works well on natural videos while several other
works show bi-directional LSTM is needed in certain medical image segmenta-
tion tasks [2,7].

In this paper, we investigate how state-of-art deep learning models can be
applied to the CRLM prediction task using our 5D CECT dataset. We evaluate
the effectiveness of bi-directional LSTM and explore the possible method of
incorporating different phases in the CECT dataset. Specifically, we show that
the best prediction accuracy can be achieved by enhancing E3D-LSTM [12] with
a bi-directional LSTM and a multi-plane structure.
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2 Dataset and Methodology

2.1 Dataset

Fig. 1. Representative slices from 3D CT images of different patients in our dataset,
at A/V phases and timestamps T0, T1, T2 (cropped to 256 × 256 for better view).

Table 1. Characreristics of our dataset

Cohort # of positive cases # of negative cases total cases positive rate

1st 60 141 201 0.299

2nd 9 59 68 0.132

Total 69 200 269 0.257

When patients undergo CECT scans to detect CRLM, typically three phases
are captured: the unenhanced plain scan phase (P), the portal venous phase
(V), and the arterial phase (A). The P phase provides the basic shape of the
liver tissue, while the V and A phases provide additional information on the
liver’s normal and abnormal blood vessel patterns, respectively [10]. Professional
radiologists often combine the A and V phases to determine the existence of
metastases since blood in the liver is supplied by both portal venous and arterial
routes.

Our dataset follows specific inclusion criteria:

– No tumor appears on the CT scans. That means patients have not been
diagnosed as CRLM when they took the scans.
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– Patients were previously diagnosed with colorectal cancer TNM stage I to
stage III, and recovered from colorectal radical surgery.

– Patients have two or more times of CECT scans.
– We already determined whether or not the patients had liver metastases

within 2 years after the surgery, and manually labeled the dataset based
on this.

– No potential focal infection in the liver before the colorectal radical surgery.
– No metastases in other organs before the liver metastases.
– No other malignant tumors.

Our retrospective dataset includes two cohorts from two hospitals. The first
cohort consists of 201 patients and the second cohort includes 68 patients. Each
scan contains three phases and 100 to 200 CT slices with a resolution of 512×512.
Patients may have different numbers of CT scans, ranging from 2 to 6, depending
on the number of follow-up visits. CT images are collected with the following
acquisition parameters: window width 150, window level 50, radiation dose 120
kV, slice thickness 1 mm, and slice gap 0.8 mm. All images underwent manual
quality control to exclude any scans with noticeable artifacts or blurriness and
to verify the completeness of all slices. Additional statistics on our dataset are
presented in Table 1 and examples of representative images are shown in Fig. 1.
The dataset is available upon request.

Fig. 2. (a) The general structure of MPBD-LSTM. The yellow plane is the 1st plane
which is used to process the portal venous phase CT scans, and the gray plane is the
second one used to process the arterial phase CT scans. μ is the average function.
(b) The inner structure of a 3D-LSTM module. Blue arrow stands for the forward

pass which generates the output of
−→
h v,t0 and red arrow indicates the backward pass

generating the output of
←−
h v,t0 . σ is the function used to combine two hidden-state

outputs. yv,t0 is the output of this 3D-LSTM module after processed by σ. (Color
figure online)
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2.2 Methods

Numerous state-of-the-art deep learning models are available to effectively pro-
cess 4D data. In this paper, we will evaluate some of the most popular ones:

1) SaConvLSTM, introduced by Lin et al. [9], incorporates the self-attention
mechanism into the ConvLSTM [11] structure, which improves the ability to
capture spatiotemporal correlations compared to traditional LSTM.

2) E3D-LSTM, introduced by Wang et al. [12], integrates 3D CNNs into LSTM
cells to capture both short- and long-term temporal relations. They used 3D-
CNNs to handle the 3D data at each timestamp and LSTMs to compute
information at different timestamps.

3) PredRNN-V2, introduced by Wang et al. [13,14], uses Spatiotemporal LSTM
(ST-LSTM) by stacking multiple ConvLSTM units and connecting them in
a zigzag pattern to handle spatiotemporal data of 4 dimensions.

4) SimVP [4], introduced by Gao et al., uses CNN as the translator instead of
LSTM.

All of these models need to be modified to handle 5D CECT datasets. A straight-
forward way to extend them is simply concatenating the A phase and V phase
together, thus collapsing the 5D dataset to 4D. However, such an extension may
not be the best way to incorporate the 5D spatiotemporal information, because
the positional information of the same CT slice in different phases would be lost.
Below we explore an alternative modification multi-plane bi-directional LSTM
(MPBD-LSTM), based on E3D-LSTM, to handle the 5D data.

MPBD-LSTM. The most basic building block in MPBD-LSTM is the 3D-
LSTM modules. Each 3D-LSTM module is composed of two E3D-LSTM
cells [12]. Additionally, inspired by the bi-directional LSTM used in medical
image segmentation task [2], we replace the uni-directional connections with bi-
directional connections by using the backward pass in the 2nd E3D-LSTM cell
in each 3D-LSTM module. This allows us to further jointly compute informa-
tion from different timestamps and gives us more accurate modeling of temporal
dynamics. The inner structure of one such module is shown in Fig. 2(b). Aside
from the two E3D-LSTM cells, it also includes an output gate σ. Each 3D-LSTM
module will generate an output yv,t, which can be calculated as [3]:

yv,t = σ(
−→
h v,t,

←−
h v,t) (1)

where
−→
h v,t and

←−
h v,t are the output hidden state of the forward pass and back-

ward pass of phase v at timestamp t, and σ is the function which is used to
combine these two outputs, which we choose to use a summation function to get
the summation product of these two hidden states. Therefore, the output of the
bi-directional LSTM module presented in Fig. 2(b) can be represented as:

yv,t0 =
−→
h v,t0 ⊕ ←−

h v,t0 (2)
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in which ⊕ stands for summation. After this, the output yv,t0 is passed into
the bi-directional LSTM module in the next layer and viewed as input for this
module.

Figure 2(a) illustrates how MPBD-LSTM uses these 3D-LSTM building
blocks to handle the multiple phases in our CT scan dataset. We use two planes,
one for the A phase and one for the V phase, each of which is based on a backbone
of E3D-LSTM [12] with the same hyperparameters. We first use three 3D-CNN
encoders (not displayed in Fig. 2(a)) as introduced in E3D-LSTM to extract the
features. Each encoder is followed by a 3D-LSTM stack (the “columns”) that
processes the spatiotemporal data for each timestamp. The stacks are bidirec-
tionally connected, as we described earlier, and consist of two layers of 3D-LSTM
modules that are connected by their hidden states. When the spatiotemporal
dataset enters the model, it is divided into smaller groups based on timestamps
and phases. The 3D-LSTM stacks process these groups in parallel, ensuring that
the CT slices from different phases are processed independently and in order,
preserving the positional information. After the computation of the 3D-LSTM
modules in each plane, we use an average function to combine the output hidden
states from both planes.

An alternative approach is to additionally connect two planes by combining
the hidden states of 3D-LSTM modules and taking their average if a module
receives two inputs. However, we found that such design actually resulted in a
worse performance. This issue will be demonstrated and discussed later in the
ablation study.

In summary, the MPBD-LSTM model comprises two planes, each of which
contains three 3D-LSTM stacks with two modules in each stack. It modifies
E3D-LSTM by using bi-directional connected LSTMs to enhance communication
between different timestamps, and a multi-plane structure to simultaneously
process multiple phases.

3 Experiments

3.1 Data Augmentation and Selection

We selected 170 patients who underwent three or more CECT scans from our
original dataset, and cropped the images to only include the liver area, as shown
in Fig. 1. Among these cases, we identified 49 positive cases and 121 negative
cases. To handle the imbalanced training dataset, we selected and duplicated
60% of positive cases and 20% of negative cases by applying Standard Scale
Jittering (SSJ) [5]. For data augmentation, we randomly rotated the images
from −30◦ to 30◦ and employed mixup [17]. We applied the same augmentation
technique consistently to all phases and timestamps of each patient’s data. We
also used Spline Interpolated Zoom (SIZ) [18] to uniformly select 64 slices. For
each slice, the dimension was 256 × 256 after cropping. We used the A and
V phases of CECT for our CRLM prediction task since the P phase is only
relevant when tumors are significantly present, which is not the case in our
dataset. The dimension of our final input is (3 × 2 × 64 × 64 × 64), representing
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(T × P × D × H × W ), where T is the number of timestamps, P is the number
of different phases, D is the slice depth, H is the height, and W is the width.

3.2 Experiment Setup

As the data size is limited, 10-fold cross-validation is adopted, and the ratio of
training and testing dataset is 0.9 and 0.1, respectively. Adam optimizer [8] and
Binary Cross Entropy loss function [1] are used for network training. For MPBD-
LSTM, due to GPU memory constraints, we set the batch size to one and the
number of hidden units in LSTM cells to 16, and trained the model till converge
with a learning rate of 5e-4. Each training process required approximately 23
GB of memory and took about 20 h on an Nvidia Titan RTX GPU. We ran
the 10 folds in parallel on five separate GPUs, which allowed us to complete the
entire training process in approximately 40 h. We also evaluated E3D-LSTM [12],
PredRNN-V2 [14], SaConvLSTM [9], and SimVP [4]. As this is a classification
task, we evaluate all models’ performance by their AUC scores.

4 Results and Discussion

Table 2. AUC scores of different models on our dataset

Model AUC score

E3D-LSTM [12] 0.755

SaConvLSTM [9] 0.721

PredRNN-V2 [14] 0.765

SimVP [4] 0.662

MPBD-LSTM 0.790

Table 2 shows the AUC scores of all models tested on our dataset. Additional
data on accuracy, sensitivity specificity, etc. can be found in the supplementary
material. The MPBD-LSTM model outperforms all other models with an AUC
score of 0.790. Notably, SimVP [4] is the only CNN-based model we tested, while
all other models are LSTM-based. Our results suggest that LSTM networks are
more effective in handling temporal features for our problem compared with
CNN-based models. Furthermore, PredRNN-V2 [14], which passes memory flow
in a zigzag manner of bi-directional hierarchies, outperforms the uni-directional
LSTM-based SaConvLSTM [9]. Although the architecture of PredRNN-V2 is
different from MPBD-LSTM, it potentially supports the efficacy of jointly com-
puting spatiotemporal relations in different timestamps.
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Table 3. Ablation study on bi-directional connection and multi-planes

Model AUC score

MPBD-LSTM w/o multi-plane 0.774

MPBD-LSTM w/o bi-directional connection 0.768

MPBD-LSTM w/inter-plane connections 0.786

MPBD-LSTM 0.790

Ablation Study on Model Structures. As shown in Table 3, to evaluate
the effectiveness of multi-plane and bi-directional connections, we performed
ablation studies on both structures. First, we removed the multi-plane structure
and concatenated the A and V phases as input. This produced a one-dimensional
bi-directional LSTM (Fig. 2(a), without the gray plane) with an input dimension
of 3×128×64×64, which is the same as we used on other models. The resulting
AUC score of 0.774 is lower than the original model’s score of 0.790, indicating
that computing two phases in parallel is more effective than simply concatenating
them. After this, we performed an ablation study to assess the effectiveness of
the bi-directional connection. By replacing the bi-directional connection with
a uni-directional connection, the MPBD-LSTM model’s performance decreased
to 0.768 on the original dataset. This result indicates that the bi-directional
connection is crucial for computing temporal information effectively, and its
inclusion is essential for achieving high performance in MPBD-LSTM.

Also, as mentioned previously, we initially connected the 3D-LSTM mod-
ules in two planes with their hidden states. However, as shown in Table 3, we
observed that inter-plane connections actually decreased our AUC score to 0.786
compared to 0.790 without the connections. This may be due to the fact that
when taking CT scans with contrast, different phases have a distinct focus,
showing different blood vessels as seen in Fig. 1. Connecting them with hidden
states in the early layers could disrupt feature extraction for the current phase.
Therefore, we removed the inter-plane connections in the early stage, since their
hidden states are still added together and averaged after they are processed by
the LSTM layers.

Table 4. Ablation study on timestamps and phases

Model structure AUC score

MPBD-LSTM @ T0 0.660

MPBD-LSTM @ T1 0.676

MPBD-LSTM @ T2 0.709

MPBD-LSTM @ all timestamps w/only A phase 0.653

MPBD-LSTM @ all timestamps w/only V phase 0.752

MPBD-LSTM @ All 3 timestamps 0.790



MPBD-LSTM 387

Ablation Study on Timestamps and Phases. We conducted ablation stud-
ies using CT images from different timestamps and phases to evaluate the
effectiveness of time-series data and multi-phase data. The results, as shown
in Table 4, indicate that MPBD-LSTM achieves AUC scores of 0.660, 0.676, and
0.709 if only images from timestamps T0, T1, and T2 are used, respectively.
These scores suggest that predicting CRLM at earlier stages is more challenging
since the features about potential metastases in CT images get more significant
over time. However, all of these scores are significantly lower than the result
using CT images from all timestamps. This confirms the effectiveness of using
a time-series predictive model. Additionally, MPBD-LSTM obtains AUC scores
of 0.653 and 0.752 on single A and V phases, respectively. These results suggest
that the V phase is more effective when predicting CRLM, which is consistent
with medical knowledge [15]. However, both of these scores are lower than the
result of combining two phases, indicating that a multi-phase approach is more
useful.

Error Analysis. In Fig. 1, Patients B and C are diagnosed with positive CRLM
later. MPBD-LSTM correctly yields a positive prediction for Patient B with a
confidence of 0.82, but incorrectly yields a negative prediction for Patient C with
a confidence of 0.77. With similar confidence in the two cases, the error is likely
due to the relatively smaller liver size of Patient C. Beyond this case, we find
that small liver size is also present in most of the false negative cases. A possible
explanation would be that smaller liver may provide less information for accurate
prediction of CRLM. How to effectively address inter-patient variability in the
dataset, perhaps by better fusing the 5D features, requires further research from
the community in the future.

5 Conclusion

In this paper, we put forward a 5D CECT dataset for CRLM prediction. Based on
the popular E3D-LSTM model, we established MPBD-LSTM model by replacing
the uni-directional connection with the bi-directional connection to better cap-
ture the temporal information in the CECT dataset. Moreover, we used a multi-
plane structure to incorporate the additional phase dimension. MPBD-LSTM
achieves the highest AUC score of 0.790 among state-of-the-art approaches. Fur-
ther research is still needed to improve the AUC.
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