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Abstract. Cardiovascular disease is a high-fatality illness. Intravascu-
lar Optical Coherence Tomography (IVOCT) technology can signifi-
cantly assist in diagnosing and treating cardiovascular diseases. How-
ever, locating and classifying lesions from hundreds of IVOCT images
is time-consuming and challenging, especially for junior physicians. An
automatic lesion detection and classification model is desirable. To
achieve this goal, in this work, we first collect an IVOCT dataset,
including 2,988 images from 69 IVOCT data and 4,734 annotations
of lesions spanning over three categories. Based on the newly-collected
dataset, we propose a multi-class detection model based on Vision Trans-
former, called G-Swin Transformer. The essential part of our model
is grid attention which is used to model relations among consecutive
IVOCT images. Through extensive experiments, we show that the pro-
posed G-Swin Transformer can effectively localize different types of
lesions in IVOCT images, significantly outperforming baseline meth-
ods in all evaluation metrics. Our code is available via this link.
https://github.com/Shao1Fan/G-Swin-Transformer
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1 Introduction

Despite the rapid development of new detection and treatment methods, the
prevalence of cardiovascular disease continues to increase [1]. It is still reported
to be the most prevalent and deadly disease worldwide, with more than 1 million
people diagnosed with acute coronary syndrome (ACS) in the U.S. in 2016. The
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average cost of hospital discharge for ACS patients is as high as $63,578 [2],
which significantly increasing the financial burden on society and patients.

Optical coherence tomography (OCT) [3] is a new biomedical imaging
technique born in the 19901990ss. Intravascular optical coherence tomography
(IVOCT) [4] has a higher resolution compared with other imaging modalities in
the vasculature and is considered to be the best imaging tool for plaque rup-
ture, plaque erosion, and calcified nodules [5]. Therefore, most existing work on
IVOCT images focuses on identifying vulnerable plaques in the vasculature [6–
9], while neglecting other characteristic manifestations of atherosclerotic plaques
in IVOCT images, such as macrophage infiltration and thrombus formation.
These lesions are closely related to the development of plaque changes [10].
Studies have shown that atherosclerosis is an inflammatory disease dominated
by macrophages and T lymphocytes, that a high density of macrophages usu-
ally represents a higher risk, and that thrombosis due to plaque rupture is a
common cause of acute myocardial infarction [11,12]. In addition, some spon-
taneous coronary artery dissection (SCAD) can be detected in IVOCT images.
The presence of the dissection predisposes to coronary occlusion, rupture, and
even death [13,14]. These lesions are inextricably linked to ACS. All three types
of features observed through IVOCT images are valuable for clinical treatment,
as shown in Fig. 1. These lesions are inextricably linked to ACS and should be
considered in clinical management.

Fig. 1. Example images and annotations of our dataset. Each IVOCT data is converted
to PNG images for annotation. The blue/green/red boxes represent bounding box of
macrophages, cavities/dissections, thrombi, respectively. (Color figure online)

Achieving multi-class lesion detection in IVOCT images faces two challenges:
1) There is no public IVOCT dataset specifically designed for multi-class lesion
detection. Most IVOCT datasets only focus on a single lesion, and research on
the specific types of lesions in the cardiovascular system is still in its early stage.
2) It is difficult to distinguish between different lesions, even for senior radiolo-
gists. This is because these lesions vary in size and appearance within the same
class, and some of them do not have regular form, as shown in Fig. 1. In clini-
cal diagnosis, radiologists usually combine different pathological manifestations,
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lesion size, and the continuous range before and after in the IVOCT image to
design accurate treatment strategies for patients. Unfortunately, most existing
works ignore such information and do not consider the continuity of lesions in
the 3D dimension. To address the above issues, we collaborated with the Car-
diovascular Research Center of Sichuan Provincial People’s Hospital to collect
an IVOCT dataset and introduce a novel detection model that leverages the
information from consecutive IVOCT images.

Overall, the contribution of this work can be summarized as follows: 1) We
propose a new IVOCT dataset that is the first multi-class IVOCT dataset with
bounding box annotations for macrophages, cavities/dissections, and thrombi. 2)
We design a multi-class lesion detection model with a novel self-attention module
that exploits the relationship between adjacent frames in IVOCT, resulting in
improved performance. 3) We explore different data augmentation strategies for
this task. 4) Through extensive experiments, we demonstrate the effectiveness
of our proposed model.

2 Dataset

We collected and annotated a new IVOCT dataset consisting of 2,988
IVOCT images, including 2,811 macrophages, 812 cavities and dissections, and
1,111 thrombi. The collected data from 69 patients are divided into train-
ing/validation/test sets in a 55:7:7 ratio, respectively. Each split contains
2359/290/339 IVOCT frames. In this section, we will describe the data collection
and annotation process in detail.

2.1 Data Collection

We collaborated with the Cardiovascular and Cerebrovascular Research Center
of Sichuan Provincial People’s Hospital, which provided us with IVOCT data
collected between 2019 and 2022. The data include OCT examinations of pri-
mary patients and post-coronary stenting scenarios. Since DICOM is the most
widely-used data format in medical image analysis, the collecting procedure was
exported to DICOM, and the patient’s name and other private information con-
tained in DICOM were desensitized at the same time. Finally, the 69 DICOM
format data were converted into PNG images with a size of 575 × 575 pixels. It
is worth noting that the conversion from DICOM to PNG did not involve any
downsampling operations to preserve as much information as possible.

2.2 Data Annotation

In order to label the lesions as accurately as possible, we designed a two-step
annotation procedure. The first round was annotated by two expert physicians
using the one-stop medical image labeling software Pair. Annotations of the two
physicians may be different. Therefore, we asked them to discuss and reach agree-
ment on each annotation. Next, the annotated data was sent to senior doctors
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to review. The review starts with one physician handling the labeling, including
labeling error correction, labeling range modification, and adding missing labels.
After that, another physician would continue to check and review the previous
round’s results to complete the final labeling. Through the above two steps, 2,988
IVOCT images with 4,734 valid annotations are collected.

3 Methodology

Recently, object detection models based on Vision Transformers have achieved
state-of-the-art (SOTA) results on various object detection datasets, such as the
MS-COCO dataset. Among them, the Swin Transformer [19] model is one of
the best-performing models. Swin Transformer uses a self-attention mechanism
within local windows to ensure computational efficiency. Moreover, its sliding
window mechanism allows for global modeling by enabling self-attention compu-
tation between adjacent windows. Its hierarchical structure allows flexible mod-
eling of information at different scales and is suitable for various downstream
tasks, such as object detection.

3.1 G-Swin Transformer

In traditional object detection datasets such as the MS-COCO dataset, the
images are typically isolated from each other without any correlation. However,
in our proposed IVOCT dataset, each IVOCT scan contains around 370 frames
with a strong inter-frame correlation. Specifically, for example, if a macrophage
lesion is detected at the [x, y, w, h] position in frame Fi of a certain IVOCT scan,
it is highly likely that there is also a macrophage lesion near the [x, y, w, h] posi-
tion in frame Fi−1 or Fi+1, due to the imaging and pathogenesis principles of
IVOCT and ACS. Doctors also rely on the adjacent frames for diagnosis rather
than a single frame when interpreting IVOCT scans. But, the design of the Swin-
Transformer did not consider the utilization of inter-frame information. Though
global modeling is enabled by using the sliding window mechanism. In the tem-
poral dimension, it still has a locality because the model did not see adjacent
frames.

Based on the Swin Transformer, we propose a backbone called G-Swin Trans-
former. Our proposed G-Swin Transformer is used as the basic module of the
encoder in the full model, which is developed based on Faster R-CNN. The
overall structure of the model is shown in Fig. 2. The model input consists of
k 3-channel RGB images, and the input dimension is [k ∗ B, 3,H,W ], where k
indicates the number of frames that used in an iteration. After passing through
Patch Partition and Linear Embedding layers, k feature maps belonging to frame
F0, F1, ... Fk−1, respectively, are obtained, each with a size of H/4 * W/4 * C.
These feature maps are then input to the G-Swin Transformer, where they go
through 4 layers and a total of 12 Transformer blocks. Between each layer, a
patch merging layer is used to reduce resolution, and model features of different
dimensions. The output feature maps at different scales are then passed to a
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Fig. 2. The overall model structure. The proposed G-Swin Transformer is used as
backbone network. The detection head follows Faster-RCNN’s head. W-MGSA and
SW refer to Window-Multihead Grid Self Attention and Shifted Window, respectively.

feature pyramid network (FPN) for fusion of features at different resolutions.
The RPN Head is then applied to obtain candidate boxes, and finally, the ROI
Head is used for classification and refinement of candidate boxes to obtain class
and bbox (bounding box) predictions. The inter-frame feature fusing is happend
in the attention block, introduced in the next subsection.

3.2 Grid Attention

To better utilize information from previous and future frames and perform
feature fusion, we propose a self-attention calculation mode called ”Grid Atten-
tion”. The structure shown in Fig. 3 is an application of Grid Attention. The
input of the block is 3 feature maps respectively from frames 0, 1, and 2. (Here
we use k = 3.) Before entering the W-MSA module for multi-head self-attention
calculation, the feature maps from different frames are fused together.

Based on the feature map of the key frame (orange color), the feature maps of
the previous (blue) and next (green) frames first do a dimensional reduction from
[H,W,C] to [H,W,C/2]. Then they are down-sampled and a grid-like feature
map are reserved. The grid-like feature map are then added to key-frame feature
map, and the fusion progress finishes. In the W-MSA module, the self-attention
within the local window and that between adjacent local windows are calculated,
and the inter-frame information is fully used. The local window of key-frame has
contained information from other frames, and self-attention calculation happens
in inter-frames. The frame-level feature modeling can thus be achieved, simulat-
ing the way that doctors view IVOCT by combining information from previous
and next frames.
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Fig. 3. Illustration of the proposed Grid Attention. The blue/orange/green feature map
belongs to a local window of the previous/current/next frame. After the dimensional
reduction and downsampling operation, the feature maps of previous/next frame is
added to the current frame’s feature map. (Color figure online)

During feature fusion with Grid Attention, the feature maps from different
frames are fused together in a grid-like pattern (as shown in the figure). The
purpose of this is to ensure that when dividing windows, half of the grid cells
within a window come from the current frame, and the other half come from
other frames. If the number of channels in the feature map is C, and the number
of frames being fused is 3 (current frame + previous frame + next frame), then
the first C/2 channels will be fused between the current frame and the previous
frame, and the last C/2 channels will be fused between the current frame and
the next frame. Therefore, the final feature map consists of 1/4 of the previous
frame, 1/2 of the current frame, and 1/4 of the next frame. The impact of the
current frame on the new feature map remains the largest, as the current frame
is the most critical frame.

4 Experiments

Baseline Methods and Evaluation Metrics. The baseline is based on a
PyTorch implementation of the open-source object detection toolbox MMDetec-
tion. We compare our proposed approach with Swin Transformer and four CNN-
based network models including Faster-RCNN [15], YOLOv3 [16], YOLOv5 [17],
Retinanet [18]. All the baseline model is pre-trained on the ImageNet dataset.

To ensure objective comparison, all experiments were conducted in the
MMdetection framework. The metric we used is the AP/AR for each lesion
and the mAP , based on the COCO metric and the COCO API (the default
evaluation method in the MMdetection framework). We trained the model for
60 epochs with an AdamW optimizer following Swin Transformer. The learning
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Table 1. Comparison of our proposed method and baseline methods.

AP50 mAP Recall50

Method Macrophage cavities/

dissection

thrombus Macrophage cavities/

dissection

thrombus

Faster-RCNN 27.34 44.32 31.86 34.51 74.65 76.04 70.60

YOLOv3 20.25 35.42 33.17 29.61 67.37 75.52 61.82

YOLOv5 27.34 40.63 46.93 38.30 79.31 82.67 83.86

RetinaNet 25.86 38.93 30.17 31.65 84.48 88.54 73.03

Swin-

Transformer

27.91 44.94 48.87 40.57 89.11 89.06 92.85

G-Swin-

Transformer

(Ours)

30.55 52.25 51.92 44.91 91.49 89.58 95.45

Fig. 4. Visualization results. From left to right are ground-truth, results of our model,
Faster-RCNN, YOLOv3, YOLOv5 and RetinaNet. Our model achieves better results.

rate and weight decay is set to be 1e-4 and 1e-2, respectively. The batch size is
set to be 2.

Quantitative and Qualitative Results. All experiments are conducted on our
newly-collected dataset. Each model is trained on the training set, selected based
on the performance of the validation set, and the reported results are obtained on
the test set. Table 1 shows the comparison between the baseline methods and the
G-Swin Transformer method. Methods based on Swin Transformer outperformed
the four baseline methods in terms of precision and recall, and our proposed G-
Swin Transformer outperforms the baseline method Swin Transformer by 2.15%
in mAP.

Figure 4 compares some results of our method and baselines. The first row
is the detection of the macrophage. Our method’s prediction is the most closed
to the ground truth. The second row is the detection of cavities/dissections and
thrombi. Only our method gets the right prediction. The YOLOv3, YOLOv5,
Faster-RCNN and RetinaNet model failed to detect all lesions, while RetinaNet
model even produced some false positive lesions.
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Table 2. Results of using different data augmentation strategies.

Augmentation Strategy Metric

Random

Resize

Random

Crop

Random

Flip

Random

Bright-

ness

Random

Contrast

mAP AR

� � � � � 33.13 79.12

� � � � � 35.64 82.31

� � � � � 38.52 85.81

� � � � � 41.31 85.69

� � � � � 41.92 85.31

� � � � � 42.39 86.17

� � � � � 43.34 91.41

� � � � � 44.91 92.18

Table 3. Effect of different hyper-parameters in Grid Attention.

Fusion Layers Fusion Strategy mAP AR

5 replace 41.69 89.28

5 add 40.31 90.52

3 replace 44.39 88.86

3 add 44.91 92.18

Table 4. Comparison of different fusion strategies.

Fusion methods mAP AR

No fusion 40.57 90.34

2.5D 38.25 78.44

Weighted sum 40.64 83.54

Ours 44.91 92.18

Effect of Different Data Augmentation Methods. We compared the
impact of different data augmentation strategies in our task. As shown in
Table 2, Random Resize and Random Crop had a significant impact on perfor-
mance improvement. Resize had the greatest impact on the model’s performance
because different-sized OCT images were generated after data augmentation, and
the lesions were also enlarged or reduced proportionally. Since the sizes of lesions
in different images are usually different, different-sized lesions produced through
data augmentation are advantageous for the model to utilize multi-scale features
for learning.

Effect of Different Hyper-parameters. Table 3 shows the impact of hyper-
parameters on the performance of the G-Swin Transformer model. The best
mAP was achieved when using a 3-layer image input. Using the upper and lower
5 layers of image input not only increased the training/inference time, but also
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may not provide more valuable information since frame 0 and frame 4 are too
far away from the key frame. The fusion strategy indicates how the feature map
from other frames are combined with the key-frame feature map. We can find add
them up gets better result then simply replacement. We think this is because by
this way, the 1× 1 convolutional layer can learn a residual weights, keeps more
detail of the key-frame.

Effect of Fusion Methods. In addition to Grid Attention, there are other
methods of feature fusion. The first method is like 2.5D convolution, in which
multiple frames of images are mapped into 96-dimensional feature maps directly
through convolution in the Linear Embedding layer. This method is the simplest,
but since the features are fused only once at the initial stage of the network, the
use of adjacent frame features is very limited. The second method is to weight
and sum the feature maps of different frames before each Attention Block, giving
higher weight to the current frame and lower weight to the reference frames.
Table 4 shows the impact of other feature fusion methods on performance. Our
method gets better mAP and AR.

5 Conclusion

In this work, we have presented the first multi-class lesion detection dataset
of IVOCT scans. We have also proposed a Vision Transformer-based model,
called G-Swin Transformer, which uses adjacent frames as input and leverages
the temporary dimensional information inherent in IVOCT data. Our method
outperforms traditional detection models in terms of accuracy. Clinical evalua-
tion shows that our model’s predictions provide significant value in assisting the
diagnosis of acute coronary syndrome (ACS).
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