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Abstract. Existing deep learning models have achieved promising per-
formance in recognizing skin diseases from dermoscopic images. However,
these models can only recognize samples from predefined categories, when
they are deployed in the clinic, data from new unknown categories are con-
stantly emerging. Therefore, it is crucial to automatically discover and
identify new semantic categories from new data. In this paper, we propose
a new novel class discovery framework for automatically discovering new
semantic classes from dermoscopy image datasets based on the knowledge
of known classes. Specifically, we first use contrastive learning to learn a
robust and unbiased feature representation based on all data from known
and unknown categories. We then propose an uncertainty-aware multi-
view cross pseudo-supervision strategy, which is trained jointly on all cat-
egories of data using pseudo labels generated by a self-labeling strategy.
Finally, we further refine the pseudo label by aggregating neighborhood
information through local sample similarity to improve the clustering per-
formance of the model for unknown categories. We conducted extensive
experiments on the dermatology dataset ISIC 2019, and the experimen-
tal results show that our approach can effectively leverage knowledge from
known categories to discover new semantic categories. We also further vali-
dated the effectiveness of the different modules through extensive ablation
experiments. Our code will be released soon.

Keywords: Novel Class Discovery · Skin Lesion Recognition · Deep
Learning

1 Introduction

Automatic identification of lesions from dermoscopic images is of great impor-
tance for the diagnosis of skin cancer [16,22]. Currently, deep learning mod-
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els, especially those based on deep convolution neural networks, have achieved
remarkable success in this task [17,18,22]. However, this comes at the cost of a
large amount of labeled data that needs to be collected for each class. To allevi-
ate the labeling burden, semi-supervised learning has been proposed to exploit
a large amount of unlabeled data to improve performance in the case of limited
labeled data [10,15,19]. However, it still requires a small amount of labeled data
for each class, which is often impossible in real practice. For example, there are
roughly more than 2000 named dermatological diseases today, of which more
than 200 are common, and new dermatological diseases are still emerging, mak-
ing it impractical to annotate data from scratch for each new disease category
[20]. However, since there is a correlation between new and known diseases, a
priori knowledge from known diseases is expected to help automatically identify
new diseases [9].

One approach to address the above problem is novel class discovery (NCD)
[7,9,24], which aims to transfer knowledge from known classes to discover new
semantic classes. Most NCD methods follow a two-stage scheme: 1) a stage of
fully supervised training on known category data and 2) a stage of clustering
on unknown categories [7,9,24]. For example, Han et al. [9] further introduced
self-supervised learning in the first stage to learn general feature representations.
They also used ranking statistics to compute pairwise similarity for clustering.
Zhong et al. [24] proposed OpenMix based on the mixup strategy [21] to further
exploit the information from known classes to improve the performance of unsu-
pervised clustering. Fini et al. [7] proposed UNO, which unifies multiple objective
functions into a holistic framework to achieve better interaction of information
between known and unknown classes. Zhong et al. [23] used neighborhood infor-
mation in the embedding space to learn more discriminative representations.
However, most of these methods require the construction of a pairwise similar-
ity prediction task to perform clustering based on pairwise similarity pseudo
labels between samples. In this process, the generated pseudo labels are usually
noisy, which may affect the clustering process and cause error accumulation. In
addition, they only consider the global alignment of samples to the category
center, ignoring the local inter-sample alignment thus leading to poor clustering
performance.

In this paper, we propose a new novel class discovery framework to auto-
matically discover novel disease categories. Specifically, we first use contrastive
learning to pretrain the model based on all data from known and unknown cat-
egories to learn a robust and general semantic feature representation. Then, we
propose an uncertainty-aware multi-view cross-pseudo-supervision strategy to
perform clustering. It first uses a self-labeling strategy to generate pseudo-labels
for unknown categories, which can be treated homogeneously with ground truth
labels. The cross-pseudo-supervision strategy is then used to force the model to
maintain consistent prediction outputs for different views of unlabeled images.
In addition, we propose to use prediction uncertainty to adaptively adjust the
contribution of the pseudo labels to mitigate the effects of noisy pseudo labels.
Finally, to encourage local neighborhood alignment and further refine the pseudo
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Fig. 1. The overall framework of our proposed novel class discovery algorithm.

labels, we propose a local information aggregation module to aggregate the infor-
mation of the neighborhood samples to boost the clustering performance. We
conducted extensive experiments on the dermoscopy dataset ISIC 2019, and the
experimental results show that our method outperforms other state-of-the-art
comparison algorithms by a large margin. In addition, we also validated the
effectiveness of different components through extensive ablation experiments.

2 Methodology

Given an unlabeled dataset {xu
i }Nu

i=1 with Nu images, where xu
i is the ith unla-

beled image. Our goal is to automatically cluster the unlabeled data into Cu

clusters. In addition, we also have access to a labeled dataset {xl
i, y

l
i}N

l

i=1 with
N l images, where xl

i is the ith labeled image and yl
i ∈ Y =

{
1, . . . , Cl

}
is its

corresponding label. In the novel class discovery task, the known and unknown
classes are disjoint, i.e., Cl ∩ Cu = ∅. However, the known and unknown classes
are similar, and we aim to use the knowledge of the known classes to help
the clustering of the unknown classes. The overall framework of our proposed
novel class discovery algorithm is shown in Fig. 1. Specifically, we first learn gen-
eral and robust feature representations through contrastive learning. Then, the
uncertainty-aware multi-view cross-pseudo-supervision strategy is used for joint
training on all category data. Finally, the local information aggregation module
benefits the NCD by aggregating the useful information of the neighborhood
samples.
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Contrastive Learning. To achieve a robust feature representation for the NCD
task, we first use noise contrastive learning [8] to pretrain the feature extractor
network, which effectively avoids model over-fitting to known categories. Specif-
ically, we use xi and x′

i to represent different augmented versions of the same
image in a mini-batch. The unsupervised contrastive loss can be formulated as:

Lucl
i = − log

exp (zi · z′
i/τ)

∑
n 1[n�=i] exp (zi · zn/τ)

(1)

where zi = E(xi) is the deep feature representation of the image xi, E is the
feature extractor network, and τ is the temperature value. 1 is the indicator
function.

In addition, to help the feature extractor learn semantically meaningful fea-
ture representations, we introduce supervised contrastive learning [12] for labeled
known category data, which can be denoted as:

Lscl
i = − 1

|N(i)|
∑

q∈N(i)

log
exp (zi · zq/τ)

∑
n 1[n�=i] exp (zi · zn/τ)

(2)

where N(i) represents the sample set with the same label as xi in a mini-batch
data. |N(i)| represents the number of samples.

The overall contrastive loss can be expressed as: Lcl = (1 − μ)
∑

i∈B Lucl
i +

μ
∑

i∈Bl
Lscl
i , where μ denotes the balance coefficient. Bl is the labeled subset

of mini-batch data.

Uncertainty-Aware Multi-view Cross-Pseudo-Supervision. We now
describe how to train uniformly on known and unknown categories using the
uncertainty-aware multi-view cross-pseudo-supervision strategy. Specifically, we
construct two parallel classification models M1 and M2, both of them composed
of a feature extractor and two category classification heads, using different ini-
tialization parameters. For an original image xi, we generate two augmented
versions of xi, xv1

i and xv2
i . We then feed these two augmented images into M1

and M2 to obtain the predictions for xv1
i and xv2

i :

pv1i,1 = M1(xv1
i ), pv2i,1 = M1(xv2

i ), pv1i,2 = M2(xv1
i ), pv2i,2 = M2(xv2

i ). (3)

The prediction outputs are obtained by concatenating the outputs of the
two classification heads and then passing a softmax layer [7]. Then, we can
compute the ensemble predicted output of M1 and M2: pM1

i =
(
pv1i,1 + pv2i,1

)
/2,

pM2
i =

(
pv1i,2 + pv2i,2

)
/2.

Next, we need to obtain training targets for all data. For an input image
xi, if xi is from the known category, we construct the training target as one
hot vector, where the first Cl elements are ground truth labels and the last Cu

elements are 0. If xi is from the unknown category, we set the first Cl elements
to 0 and use pseudo labels for the remaining Cu elements.



28 W. Feng et al.

We follow the self-labeling method in [1,3] to generate pseudo labels. Specifi-
cally, the parameters in the unknown category classification head can be viewed
as prototypes of each category, and our training goal is to distribute a set of
samples uniformly to each prototype while maximizing the similarity between
samples and prototypes [1]. Let P =

[
pu1 ; . . . ; puBu

] ∈ R
Bu×Cu

denotes the ensem-
ble prediction of data of unknown categories in a mini-batch, where Bu represents
the number of samples. Here we only consider the output of the unknown cate-
gories head due to the samples coming from unknown categories [7]. We obtain
the pseudo label by optimizing the following objective:

max
Y∈S

tr
(
YP�)

+ δH(Y) (4)

where Y =
[
yu
1 ; . . . ; yu

Bu

] ∈ R
Bu×Cu

will assign Bu unknown category samples to
Cu category prototypes uniformly, i.e., each category prototype will be selected
Bu/Cu times on average. S is the search space. H is the entropy function used
to control the smoothness of Y. δ is the hyperparameter. The solution to this
objective can be calculated by the Sinkhorn-Knopp algorithm [6]. After gener-
ating the pseudo-labels, we can combine them with the ground truth labels of
known categories as training targets for uniform training.

To mitigate the effect of noisy pseudo labels, we propose to use prediction
uncertainty [14] to adaptively adjust the weights of pseudo labels. Specifically,
we first compute the variance of the predicted outputs of the models for the
different augmented images via KL-divergence:

V1 = E
[
pv1i,1 log

(
pv1
i,1

pv2
i,1

)]
, V2 = E

[
pv1i,2 log

(
pv1
i,2

pv2
i,2

)]
, (5)

where E represents the expected value. If the variance of the model’s predictions
for different augmented images is large, the pseudo label may be of low quality,
and vice versa. Then, based on the prediction variance of the two models, the
multi-view cross-pseudo supervision loss can be formulated as:

Lcps = E
[
e−V1Lce

(
pM2 , yv1

)
+ V1

]
+ E

[
e−V2Lce

(
pM1 , yv2

)
+ V2

]
(6)

where Lce denotes the cross-entropy loss. yv1 and yv2 are the training targets.

Local Information Aggregation. After the cross-pseudo-supervision training
described above, we are able to assign the instances to their corresponding clus-
tering centers. However, it ignores the alignment between local neighborhood
samples, i.e., the samples are susceptible to interference from some irrelevant
semantic factors such as background and color. Here, we propose a local infor-
mation aggregation to enhance the alignment of local samples. Specifically, as
shown in Fig. 1, we maintain a first-in-first-out memory bank M = {zmk , ym

k }Nm

k=1
during the training process, which contains the features of Nm most recent sam-
ples and their pseudo labels. For each sample in the current batch, we compute
the similarity between its features and the features of each sample in the memory
bank:
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dk =
exp (z · zmk )

∑Nm

k=1 exp (z · zmk )
. (7)

Then based on this feature similarity, we obtain the final pseudo labels as:
yu = ρyu+(1−ρ)

∑Nm

k=1 dky
m
k , where ρ is the balance coefficient. By aggregating

the information of the neighborhood samples, we are able to ensure consistency
between local samples, which further improves the clustering performance.

3 Experiments

Dataset. To validate the effectiveness of the proposed algorithm, we con-
duct experiments on the widely used public dermoscopy challenge dataset ISIC
2019 [4,5]. The dataset contains a total of 25,331 dermoscopic images from
eight categories: Melanoma (MEL), Melanocytic Nevus (NV), Basal Cell Carci-
noma (BCC), Actinic Keratosis (AK), Benign Keratosis (BKL), Dermatofibroma
(DF), Vascular Lesion (VASC), and Squamous Cell Carcinoma (SCC). Since the
dataset suffers from severe category imbalance, we randomly sampled 500 sam-
ples from those major categories (MEL, NV, BCC, BKL) to maintain category
balance. Then, we construct the NCD task where we treat 50% of the categories
(AK, MEL, NV, BCC) as known categories and the remaining 50% of the cate-
gories (BKL, SCC, DF, VASC) as unknown categories. We also swap the known
and unknown categories to form a second NCD task. For task 1 and task 2, we
report the average performance of 5 runs.

Implementation Details. We used ResNet-18 [11] as the backbone of the
classification model. The known category classification head is an l2 -normalized
linear classifier with Cl output units. The unknown category classification head
consists of a projection layer with 128 output units, followed by an l2 -normalized
linear classifier with Cu output units. In the first contrastive learning pre-training
step, we used SGD optimizer to train the model for 200 epochs and gradually
decay the learning rate starting from 0.1 and dividing it by 5 at the epochs 60,
120, and 180. μ is set to 0.5, τ is set to 0.5. In the joint training phase, we fix the
parameters of the previous feature extractor and only fine-tune the parameters
of the classification head. We use the SGD optimizer to train the model for 200
epochs with linear warm-up and cosine annealing (lrbase = 0.1, lrmin = 0.001),
and the weight decay is set to 1.5 × 10−4. For data augmentation, we use ran-
dom horizontal/vertical flipping, color jitter, and Gaussian blurring following
[7]. For pseudo label, we use the Sinkhorn-Knopp algorithm with hyperparam-
eters inherited from [7]: δ = 0.05 and the number of iterations is 3. We use a
memory bank M of size 100 and the hyperparameter ρ is set to 0.6. The batch
size in all experiments is 512. In the inference phase, we only use the output
of the unknown category classification head of M1 [9]. Following [9,23,24], we
report the clustering performance on the unlabeled unknown category dataset.
We assume that the number of unknown categories is known and it can also be
obtained by the category number estimation method proposed in [9].
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Table 1. Clustering performance of different comparison algorithms on different tasks.

Method Task1 Task2

ACC NMI ARI ACC NMI ARI

Baseline 0.4685 0.2107 0.1457 0.3899 0.0851 0.0522

RankStats [9] 0.5652 0.2571 0.2203 0.4284 0.1164 0.1023

RankStats+ [9] 0.5845 0.2633 0.2374 0.4362 0.1382 0.1184

OpenMix [24] 0.6083 0.2863 0.2512 0.4684 0.1519 0.1488

NCL [23] 0.5941 0.2802 0.2475 0.4762 0.1635 0.1573

UNO [7] 0.6131 0.3016 0.2763 0.4947 0.1692 0.1796

Ours 0.6654 0.3372 0.3018 0.5271 0.1826 0.2033

Following [2,9], we use the average clustering accuracy (ACC), normalized
mutual information (NMI) and adjusted rand index (ARI) to evaluate the clus-
tering performance of different algorithms. Specifically, we first match the clus-
tering assignment and ground truth labels by the Hungarian algorithm [13]. After
the optimal assignment is determined, we then compute each metric. We imple-
ment all algorithms based on the PyTorch framework and conduct experiments
on 8 RTX 3090 GPUs.

Comparison with State-of-the-Art Methods. We compare our algorithms
with some state-of-the-art NCD methods, including RankStats [9], RankStats+
(RankStats with incremental learning) [9], OpenMix [24], NCL [23], UNO [7]. we
also compare with the benchmark method (Baseline), which first trains a model
using known category data and then performs clustering on unknown category
data. Table 1 shows the clustering performance of each comparison algorithm on
different NCD tasks. It can be seen that the clustering performance of the bench-
mark method is poor, which indicates that the model pre-trained using only the
known category data does not provide a good clustering of the unknown category.
Moreover, the state-of-the-art NCD methods can improve the clustering perfor-
mance, which demonstrates the effectiveness of the currently popular two-stage
solution. However, our method outperforms them, mainly due to the fact that
they need to generate pairwise similarity pseudo labels through features obtained
based on self-supervised learning, while ignoring the effect of noisy pseudo labels.
Compared with the best comparison algorithm UNO, our method yields 5.23%
ACC improvement, 3.56% NMI improvement, and 2.55% ARI improvement on
Task1, and 3.24% ACC improvement, 1.34% NMI improvement, and 2.37% ARI
improvement on Task2, which shows that our method is able to provide more
reliable pseudo labels for NCD.

Ablation Study of Each Key Component. We performed ablation exper-
iments to verify the effectiveness of each component. As shown in Table 2, CL
is contrastive learning, UMCPS is uncertainty-aware multi-view cross-pseudo-
supervision, and LIA is the local information aggregation module. It can be
observed that CL brings a significant performance gain, which indicates that
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Table 2. Ablation study of each key component.

Method Task1 Task2

CL UMCPS LIA ACC NMI ARI ACC NMI ARI

✗ ✗ ✗ 0.4685 0.2107 0.1457 0.3899 0.0851 0.0522

✓ 0.5898 0.2701 0.2375 0.4402 0.1465 0.1322

✓ ✓ 0.6471 0.3183 0.2821 0.5012 0.1732 0.1851

✓ ✓ 0.6255 0.3122 0.2799 0.4893 0.1688 0.1781

✓ ✓ ✓ 0.6654 0.3372 0.3018 0.5271 0.1826 0.2033

Table 3. Ablation study of contrastive learning and uncertainty-aware multi-view
cross-pseudo-supervision.

Method Task1 Task2

ACC NMI ARI ACC NMI ARI

Baseline 0.4685 0.2107 0.1457 0.3899 0.0851 0.0522

SCL 0.5381 0.2362 0.1988 0.4092 0.1121 0.1003

UCL 0.5492 0.2482 0.2151 0.4291 0.1173 0.1174

SCL+UCL 0.5898 0.2701 0.2375 0.4402 0.1465 0.1322

w/o CPS 0.6021 0.2877 0.2688 0.4828 0.1672 0.1629

CPS 0.6426 0.3201 0.2917 0.5082 0.1703 0.1902

UMCPS 0.6654 0.3372 0.3018 0.5271 0.1826 0.2033

contrastive learning helps to learn a general and robust feature representation
for NCD. In addition, UMCPS also improves the clustering performance of the
model, which indicates that unified training helps to the category information
interaction. LIA further improves the clustering performance, which indicates
that local information aggregation helps to provide better pseudo labels. Finally,
our algorithm incorporates each component to achieve the best performance.

Ablation Study of Contrastive Learning. We further examined the effec-
tiveness of each component in contrastive learning. Recall that the contrastive
learning strategy includes supervised contrastive learning for the labeled known
category data and unsupervised contrastive learning for all data. As shown in
Table 3, it can be observed that both components improve the clustering perfor-
mance of the model, which indicates that SCL helps the model to learn seman-
tically meaningful feature representations, while UCL makes the model learn
robust unbiased feature representations and avoid its overfitting to known cate-
gories.

Uncertainty-Aware Multi-view Cross-Pseudo-Supervision. We also
examine the effectiveness of uncertainty-aware multi-view cross-pseudo-
supervision. We compare it with 1) w/o CPS, which does not use cross-pseudo-
supervision, and 2) CPS, which uses cross-pseudo-supervision but not the uncer-
tainty to control the contribution of the pseudo label. As shown in Table 3, it can
be seen that CPS outperforms w/o CPS, which indicates that CPS encourages
the model to maintain consistent predictions for different augmented versions
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of the input images, and enhances the generalization performance of the model.
UMCPS achieves the best clustering performance, which shows its ability to use
uncertainty to alleviate the effect of noisy pseudo labels and avoid causing error
accumulation.

4 Conclusion

In this paper, we propose a novel class discovery framework for discovering
new dermatological classes. Our approach consists of three key designs. First,
contrastive learning is used to learn a robust feature representation. Second,
uncertainty-aware multi-view cross-pseudo-supervision strategy is trained uni-
formly on data from all categories, while prediction uncertainty is used to alle-
viate the effect of noisy pseudo labels. Finally, the local information aggregation
module further refines the pseudo label by aggregating the neighborhood infor-
mation to improve the clustering performance. Extensive experimental results
validate the effectiveness of our approach. Future work will be to apply this
framework to other medical image analysis tasks.
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