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Abstract. We developed an interpretable deep biomarker known as
Siamese change biomarker generation network (SCBG-Net) to evalu-
ate the effects of therapies on carotid atherosclerosis based on the ves-
sel wall and plaque volume and texture features extracted from three-
dimensional ultrasound (3DUS) images. To the best of our knowledge,
SCBG-Net is the first deep network developed for serial monitoring of
carotid plaque changes. SCBG-Net automatically integrates volume and
textural features extracted from 3DUS to generate a change biomarker
called AutoVT (standing for Automatic integration of Volume and
Textural features) that is sensitive to dietary treatments. The pro-
posed AutoVT improves the cost-effectiveness of clinical trials required
to establish the benefit of novel treatments, thereby decreasing the period
that new anti-atherosclerotic treatments are withheld from patients need-
ing them. To facilitate the interpretation of AutoVT, we developed an
algorithm to generate change biomarker activation maps (CBAM) local-
izing regions having an important effect on AutoVT. The ability to visu-
alize locations with prominent plaque progression/regression afforded by
CBAM improves the interpretability of the proposed deep biomarker.
Improvement in interpretability would allow the deep biomarker to gain
sufficient trust from clinicians for them to incorporate the model into
clinical workflow.

Keywords: 3D Ultrasound Imaging · Carotid Atherosclerosis · Deep
Biomarker · Interpretable Machine Learning · Activation Map

1 Introduction

Although cardiovascular events are highly prevalent worldwide, it was estimated
75–80% of cardiovascular events in high-risk patients could be prevented through
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lifestyle changes and medical/dietary interventions [22]. The opportunity to pre-
vent cardiovascular events calls for the development of sensitive and cost-effective
tools to identify high-risk patients and monitor serial changes in response to ther-
apies. As carotid atherosclerosis is a major source of ischemic stroke and a major
indicator of systematic atherosclerosis [9], the carotid artery has long served as
a major imaging target for assessment of atherosclerotic diseases.

Carotid intima media thickness (IMT) is an early imaging biomarker mea-
sured from two-dimensional ultrasound (2DUS) images. The use of IMT in serial
monitoring is limited by the small annual change (∼0.015 mm) [4], which does
not allow treatment effects to be measured in a clinically affordable timeframe.
As plaques grow 2.4 times faster along the arteries than they thickens [3] and
change circumferentially as well, volume measurements, such as total plaque
volume (TPV) and vessel wall volume (VWV), afforded by 3DUS imaging tech-
niques are more sensitive to treatment effects [1,12]. Biomarkers derived from
plaque textural features extracted from 3DUS were also shown to be sensitive
to medical [2] and dietary treatments [5,14]. However, few studies consider both
volume and textural features, and the handcrafted textural features extracted
in previous studies are independent of the subsequent biomarker generation. To
address these issues, we propose an end-to-end Siamese change biomarker gen-
eration network (SCBG-Net) to extract features from the baseline and follow-up
images for generating a biomarker, AutoVT, quantifying the degree of change
in volume and texture automatically. Although deep networks have been pro-
posed for carotid plaque composition characterization [13], plaque echogenicity
classification [16,21], and plaque recognition [15,17], SCBG-Net is the first deep
network developed for serial monitoring of carotid atherosclerosis.

A convolutional neural network (CNN) is typically represented as a black-
box function that maps images to an output. However, a biomarker should be
interpretable for it to be trusted by clinicians. One approach to promote the
interpretability of the biomarker is to allow the visualization of regions that
have a prominent effect on the biomarker. Class activation map (CAM) [27]
and its variant [19,24] highlight regions having a strong contribution to clas-
sification results. Interpretability is not only desired in classification networks
but also in networks focusing on quantifying the similarity of images, such as
person re-identification [20,25]. The ranking activation map (RAM) [25] and
its variant, such as gradient-weighted ranking activation map (CG-RAM) [20],
highlight regions contributing to the similarity between a reference image and
other images. For our application, there is a need to develop a technique to
generate activation maps localizing regions with a prominent effect on the novel
biomarker. Another contribution of this paper is the development of such an
approach to generate change biomarker activation maps (CBAM).

2 Materials and Methods

2.1 3DUS Imaging and Preprocessing

In this work, we assessed the sensitivity of the proposed biomarker in evaluating
the effect of pomegranate juice and tablets. Pomegranate is anti-oxidative, and
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Fig. 1. Schematic of the Siamese change biomarker generation network (SCBG-Net).

previous studies have established that plaque texture features [5], the weighted
average change of vessel-wall-plus-plaque thickness [26] and local vessel wall and
plaque volume change [6] are able to detect the effect of pomegranate in the same
cohort investigated in this study. Subjects were recruited by Stroke Prevention &
Atherosclerosis Research Centre at Robarts Research Institute (London, Ontario,
Canada) for a clinical trial (ISRCTN30768139). A total of 120 subjects involved
in this study were randomized into two groups. 66 subjects received pomegranate
extract and 54 subjects were given a placebo once daily for a year. There is no
significant difference in the baseline characteristics between the two groups [26].
3DUS images were acquired for participants at the baseline and a follow-up
session, ranging from 283 to 428 days after the baseline scan. The reason for
quantifying changes based on only two time points (i.e., baseline and follow-
up) is that the rate of change of carotid plaque has been established as linear
between the age of 50 to 75 in two studies involving over 6000 patients [11,23].
The 3DUS images were obtained by translating an ultrasound transducer (L12-
5, Philips, Bothell, WA, USA) mounted on a mechanical assembly at a uniform
speed of 3 mm/s along the neck for about 4 cm. Ultrasound frames acquired
using an ultrasound machine (ATL HDI 5000, Philips) were digitized at the rate
of 30 Hz and reconstructed into a 3D image. The input image to SCBG-Net
was obtained by masking the ultrasound image with the manually segmented
boundaries (Supplementary Fig. 1). Each 3DUS image was resliced into a stack
of 2D axial images with a 1mm interslice distance (ISD) as described in [7].

2.2 Siamese Change Biomarker Generation Network (SCBG-Net)

Network Architecture. Figure 1 shows a schematic of the SCBG-Net. The
baseline and follow-up image stacks consist of 48 axial images each, 24 from
each of the left and right arteries. We denote the baseline (bl) and follow-up
(fu) image stacks by Xbl = {xbl

i }47i=0 and Xfu = {xfu
i }47i=0, respectively, where

xbl
i and xfu

i are axial slices with size 300 × 180. The baseline and follow-up
images are processed by a Siamese architecture. The volume-texture feature
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extraction module utilizes an identical ResNet50 to extract features, resulting
in 2048-dimensional vectors for each axial image. The vectors are then reduced
to 64 dimensions using a fully connected (FC) layer with a rectified linear unit
(ReLU) activation function, and these outputs are denoted as zbl

i = f(xbl
i ) and

zfu
i = f(xfu

i ) for the two respective streams.
The neighborhood slice smoothing module was designed to reduce the effect

of potential image misalignment. Although the baseline and follow-up 3DUS
images were aligned according to the bifurcation position and the manually iden-
tified common carotid artery (CCA) axis as previously described [7], the internal
carotid artery (ICA) of the two images may still be misaligned due to different
bifurcation angles and non-linear transformations resulting from different head
orientations [18]. To reduce the effect of potential image misalignment, the fea-
tures of three neighboring slices in the baseline and follow-up images are averaged
and denoted by z̄bl

i = 1
3

∑3i+2
j=3i zbl

j and z̄fu
i = 1

3

∑3i+2
j=3i zfu

j , for i = 0, 1, . . . , 15.
The slice-wise cosine “dissimilarity” for a baseline-follow-up slice pair was defined
by dc(·, ·) = 1−cos(·, ·). To represent disease progression and regression, the sign
of the slice-wise vessel wall volume change ΔV oli from baseline to follow-up was
used to determine the sign of the slice-wise score. ΔV oli of each smoothed slice
pair was computed by averaging vessel wall volume change (i.e., area change ×
1mm ISD) for a group of three neighbouring slices involved in the smoothing
operation. The slice-wise score was obtained by:

si = s(z̄bl
i , z̄fu

i ) = sgn(ΔV oli)dc(z̄bl
i , z̄fu

i ), (1)

where sgn represents the signed function. The use of ReLU in FC layers results
in non-negative zi, thereby limiting dc(z̄i

bl, z̄fu
i ) and s(z̄bl

i , z̄fu
i ) to the range of

[0, 1] and [−1, 1], respectively. Defined as such, si integrates vessel-wall-plus-
plaque volume change with textural features extracted by the network. Finally,
the AutoVT biomarker was obtained by averaging 16 slice-wise scores (i.e.,
AutoV T = 1

16

∑15
i=0 si).

Loss Functions. We developed a treatment label contrastive loss (TCL) to
promote discrimination between the pomegranate and placebo groups and a
plaque-focus (PF) constraint that considers slice-based volume change.

(i) Treatment Label Contrastive Loss. The contrastive loss [8] maps similar pairs
to nearby points and dissimilar pairs to distant points. In our biomarker learning
problem, instead of separating similar and dissimilar pairs, we aim to discrimi-
nate baseline-follow-up image pairs of the pomegranate and placebo subjects. As
changes occur in all patients, the baseline-follow-up image pairs are in general
dissimilar for both groups. However, pomegranate subjects tend to experience
a smaller plaque progression or even regression, whereas the placebo subjects
have a larger progression [26]. As such, our focus is more on differentiating the
two groups based on the signed difference between the baseline and follow-up
images. We designed a treatment label contrastive loss (TCL) specifically for our
biomarker learning problem:

Ltcl = y max(AutoV T, 0)2 + (1 − y)max(m − AutoV T , 0)2, (2)
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where y is the group label of the input subject (pomegranate = 1, placebo = 0).
For pomegranate subjects, instead of assigning a penalty based on the squared
distance as in [8] (i.e., AutoV T 2 in our context), in which the penalty applies to
both positive or negative AutoVT, we penalize only positive AutoVT since it is
expected that some pomegranate subjects would have a larger regression, which
would be represented by a negative AutoVT. For placebo subjects, the penalty
is applied only if AutoVT is smaller than m.

(ii) Plaque-focus Constraint. We observe that slice pairs with high volume change
are typically associated with a large plaque change (Supplementary Fig. 2). To
incorporate such volume change information into AutoVT, we assigned a pseudo
label ζi to each of the 16 smoothed slice pairs indexed by i based on the volume
change ΔV oli. |ΔV oli| was then ranked with the Kl slices with largest |ΔV oli|
assigned ζi = 1 and the Ks slices with smallest |ΔV oli| assigned ζi = 0. The
PF constraint was defined to promote the magnitude of si associated with slices
with large |ΔV oli| and suppress that associated with slices with small |ΔV oli|:

Lpf =
1

Ks

∑

i∈{i|ζi=0}
|si|2 +

1
Kl

∑

j∈{j|ζj=1}
(1.0 − |sj |)2. (3)

The overall loss L is a weighted combination of Ltcl and Lpf (i.e., L = Ltcl+wLpf,
where w is the weight).

2.3 Change Biomarker Activation Map (CBAM)

Figure 2 shows a schematic of the proposed CBAM developed for visualizing
important regions contributing to the AutoVT scoring. Like previous CAM meth-
ods, CBAM generates activation maps by linearly weighting feature maps at
different levels of a network. However, the weights associated with the attention
maps in CBAM are novel and tailored for the proposed SCBG-Net.

The importance of a feature map is determined by how much it affects the
absolute value of slice-wise score s (Eq. 1). The reason for focusing on |s| is that
we would highlight regions that contribute to both positive and negative changes.
We denote Ap,k

L,i as the kth channel of feature maps from the inner convolution
layer L of an image slice xp

i , where p ∈ {bl, fu}. The importance of Ap,k
L,i towards

the slice-wise score is defined in a channel-wise pair-associated manner by:

R(Ap,k
L,i) = |s(f(xp

i ◦ Mp,k
L,i ), f(xq

i ))| = dc(f(xp
i ◦ Mp,k

L,i ), f(xq
i )), (4)

with Mp,k
L,i = Norm(Up(Ap,k

L,i)), ◦ representing the Hadamard product and
(p, q) ∈ {(bl, fu), (fu, bl)}. Up(·) upsamples Ap,k

L,i into the size of xp
i , and Norm(·)

is a min-max normalization function mapping each element in the matrix into
[0, 1].

Ap,k
L,i is first upsampled and normalized to Mp,k

L,i , which serves as an activation
map to highlight regions in the input image. The importance of Ap,k

L,i to the slice-
wise score s is quantified by the cosine dissimilarity between the feature vectors
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Fig. 2. Schematic of change biomarker activation map (CBAM).

generated by SCBG-Net for the highlighted input image and the corresponding
image slice in the baseline-follow-up image pair. If the input image is a baseline
image, the corresponding slice would be from the follow-up image, and vice versa.

For each slice xp
i , the activation map from the convolutional layer L was

generated as Lp
CBAM,i = ReLU(

∑
k αp,k

L,iA
p,k
L,i), where the weight αp,k

L,i is R(Ap,k
L,i)

normalized by the softmax function: αp,k
L,i =

exp(R(Ap,k
L,i))

∑
h exp(R(Ap,h

L,i))
.

3 Experiments and Results

Statistical Evaluation. The discriminative power of biomarkers was evaluated
by p-values from two-sample t-tests for normally distributed measurements or
Mann-Whitney U tests for non-normally distributed measurements. P-values
quantify the ability of each biomarker to discriminate the change exhibited in
the pomegranate and placebo groups.

Experimental Settings. Our model was developed using Keras on a computer
with an Intel Core i7-6850K CPU and an NVIDIA RTX 1080Ti GPU. The
ResNet50 was initialized by the ImageNet pretrained weights. The SGD opti-
mizer was applied with an initial learning rate of 3×10−3. An exponential decay
learning rate scheduler was utilized to reduce the learning rate by 0.8 every 10
epochs. We set the number of slices with top/last |ΔV oli| in the definition of
the PF constraint as Kl = Ks = 3. All models were evaluated by three-fold
cross-validation with 80 labeled subjects and 40 test subjects. Labeled subjects
are further partitioned into training and validation sets with 60 and 20 subjects,
respectively. For the proposed SCBG-Net, the margin m and loss function weight
w were tuned using the validation set. In all three trials, the optimized m and
w were 0.8 and 0.15, respectively.

Comparison with Traditional Biomarkers. Table 1 shows p-values for
AutoVT and traditional biomarkers. The proposed biomarker based on the
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Fig. 3. Examples showing the sensitivity of AutoVT in highlighting texture-based
plaque change.

overall loss function L, AutoVT(L), was the most sensitive to the effect of
pomegranate with the lowest p-value. This biomarker has learned the volumetric
information from the input images, as demonstrated by the correlation coeffi-
cient of 0.84 between AutoVT(L) and ΔV WV . AutoVT(L) has also learned the
texture information, as demonstrated in Fig. 3. While the slice pairs in Fig. 3(a)
and (b) had similar ΔV ol, the changes in slice pairs shown in (a) were more
related to expansive remodeling of the vessel wall, whereas the changes in slice
pairs shown in (b) were caused by plaque growth. This difference is characterized
by the slice-wise score, which was higher for the example in Fig. 3(b) than in (a).

Comparison with Different Deep Models. We compared treatment effect
sensitivity attained by SCBG-Net to those attained by two alternative deep
models: the Aver-Net and Atten-Net. Given the smooth features {z̄bl

i }15i=0 and
{z̄fu

i }15i=0, Aver-Net first computes a uniform average vector for each of the
baseline and follow-up images by zp

aver = 1
16

∑15
i=0 z̄p

i where p ∈ {bl, fu} and
then generates a biomarker by bioaver = sgn(ΔV WV )dc(zbl

aver, z
fu
aver), where

V WV in the baseline/follow-up session was computed by summing the ves-
sel wall areas at each axial image of the left and right arteries and multipled
by the 1mm ISD. ΔV WV is the difference between VWV obtained from the
baseline and follow-up images. In contrast, Atten-Net computes a weighted

Table 1. Comparison of AutoVT with other biomarkers.

Measurements Placebo Pomegranate P-value

(n = 54) (n = 66)

Traditional ΔTPV (mm3) 25.0 ± 76.5 16.1 ± 83.9 0.24

ΔV WV (mm3) 112.4 ± 118.5 58.9 ± 104.9 0.01

Deep bioaver 0.151 ± 0.253 0.070 ± 0.138 0.028

bioatten 0.148 ± 0.227 0.065 ± 0.155 0.021

AutoV T (Ltcl) 0.234 ± 0.262 0.119 ± 0.206 0.0087

Loss AutoV T (Lce) 0.216 ± 0.255 0.107 ± 0.243 0.018

AutoV T (Lbd) 0.135 ± 0.165 0.060 ± 0.160 0.013

AutoV T (Ltcl) 0.234 ± 0.262 0.119 ± 0.206 0.0087

AutoV T (L) 0.241 ± 0.255 0.111 ± 0.209 0.0029



302 X. Chen et al.

average vector based on the attention weight generated by a multiple instance
learning-based attention module [10]. The baseline/follow-up attention-based
weighted average vectors are computed by zp

atten = 1
16

∑15
i=0 γp

i z̄p
i , where γp

i

is the attention weight for Slice i. The biomarker generated by Atten-Net is
bioatten = sgn(ΔV WV )dc(zbl

atten, zfu
atten). Aver-Net and Atten-Net do not involve

slice-by-slice comparison, whereas slice-by-slice comparison was involved in two
components of SCBG-Net: (i) the slice-wise score si (Eq. 1) and (ii) the PF con-
straint (Eq. 3). In this section, we focus on investigating the effect of Component
(i) and that of Component (ii) will be studied in the next section focusing on
loss functions. For this reason, the three models compared in this section were
driven only by Ltcl (Eq. 2) for a fair comparison. Table 1 shows that SCBG-Net
is the most sensitive to treatment effects among the three models.

Comparison with Different Losses. We compared our proposed loss with
another two losses, including cross-entropy loss and bi-direction contrastive
loss. Cross-entropy loss is expressed as Lce = −ylog(σ(1 − AutoV T )) − (1 −
y)log(σ(AutoV T )), where σ(·) is a sigmoid function. The bi-direction contrastive
loss is a symmetric version of Ltcl, expressed as Lbd = y max(m+AutoV T, 0)2 +
(1 − y)max(m − AutoV T, 0)2. The margin m in Lbd was tuned in the same way
as the proposed L, with m = 0.4 being the optimized parameter in all three
cross-validation trials. Table 1 shows p-values for different losses. Our proposed
loss Ltcl has a higher sensitivity than Lce and Lbd, with further improvement
attained by the incorporation of Lpf. Pomegranate, as a dietary supplement,
confers a weaker beneficial effect than intensive medical treatment [5,26]. Ltcl

was designed to better model the weak benefit by not forcing the AutoVTs of
pomegranate patients to get too negative; the AutoVTs of pomegranate patients
would not be penalized as long as it is smaller than 0. In contrast, Lce and Lbd

promote more negative AutoVTs for pomegranate patients. Ltcl was designed
to account for the weak beneficial effect of pomegranate, which may not lead
to significant plaque regression in pomegranate patients compared to high-dose
atorvastatin. Moreover, Lpf improves the discriminative power of AutoVT by
using the ranking of |ΔV V oli| among different axial images of the same patient.

Comparison with Other Activation Maps. Figure 4 compares the activation
maps generated by CBAM and CG-RAM from features maps in the second
convolutional layer. CBAM localizes regions with plaque changes accurately,

Fig. 4. Comparison between CBAM and CG-RAM.
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whereas CG-RAM is less successful in highlighting regions with plaque changes.
A possible reason for this observation is that CG-RAM is driven by gradient
and may be adversely affected by gradient saturation issues, whereas CBAM is
gradient-free and not affected by artifacts associated with gradient saturation.

4 Conclusion

We, for the first time, developed a deep biomarker to quantify the serial change of
carotid atherosclerosis by integrating the vessel wall and plaque volume change
and the change of textural features extracted by a CNN. We showed that the
proposed biomarker, AutoVT, is more sensitive to treatment effect than vessel
wall and plaque volume measurements. SCBG-Net involves slice-based compar-
ison of textural features and vessel wall volume (Eq. 1) and we showed that this
architecture results in a biomarker that is more sensitive than Aver-Net and
Atten-Net that quantify global change for the left and right arteries. This result
is expected as atherosclerosis is a focal disease with plaques predominantly occur-
ring at the bifurcation. For the same reason, PF constraint that involves local
slice-based assessment further improves the sensitivity of AutoVT in detecting
treatment effects. We developed a technique to generate activation maps high-
lighting regions with a strong influence on AutoVT. The improvement in the
interpretability of AutoVT afforded by the activation maps will help promote
clinical acceptance of AutoVT .
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