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Abstract. Automated magnetic resonance imaging (MRI) pathology
localization can significantly reduce inter-reader variability and the time
expert radiologists need to make a diagnosis. Many automated localiza-
tion pipelines only operate on a single series at a time and are unable to
capture inter-series relationships of pathology features. However, some
pathologies require the joint consideration of multiple series to be accu-
rately located in the face of highly anisotropic volumes and unique
anatomies. To efficiently and accurately localize a pathology, we pro-
pose a Multi-series jOint ATtention localization framework (MOAT)
for MRI, which shares information among different MRI series to jointly
predict the pathological location(s) in each MRI series. The framework
allows different MRI series to share latent representations with each other
allowing each series to get location guidance from the others and enforc-
ing consistency between the predicted locations. Extensive experiments
on three knee MRI pathology datasets, including medial compartment
cartilage (MCC) high-grade defects, medial meniscus (MM) tear and
displaced fragment/flap (DF) with 2729, 2355, and 4608 studies respec-
tively, show that our proposed method outperforms the state of the art
approaches by 3.4 to 8.0 mm on L1 distance, 6 to 27% on specificity and
5 to 14% on sensitivity across different pathologies.
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1 Introduction

MRI is an essential diagnostic and investigative tool in clinical and research
settings. Expert radiologists rely on multiple MRI series of varying acquisi-
tion parameters and orientations to capture different aspects of the underlying
anatomy and diagnose any defect or pathology that may be present. For a knee
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study, it is typical to acquire MRI series with coronal, sagittal, and axial ori-
entations using proton density (PD), proton density fat suppressed (PDFS) or
T2-weighted fat suppressed series (T2FS) for each study. When series are ana-
lyzed in concert, a radiologist can make a more effective diagnosis and mark
down the location of any corresponding defect in each series. The defect location
is typically represented as a single point [3] regardless of the defect size as a
balance of effectiveness and efficiency.

In recent years, convolutional neural networks (CNNs) have achieved promis-
ing results in pathology localization. Many approaches rely on generating a
multi-variate Gaussian heatmap, where the peak of the distribution represents
the pathology localization. Hourglass [11,16], an encoder-decoder style archi-
tecture [9], is a mainstream model to generate a Gaussian heatmap. It uses
a series of convolutional and pooling layers to extract features from the input
image followed by upsampling and convolutional layers to generate the Gaussian
heatmap. However, Hourglass-based methods can be overly resource-intensive
when applied to 3D volumes [11]. To overcome this, regression-based models
are becoming popular for detecting defects wherein a fully-connected layer is
used on top of the encoder blocks to directly predict the location. These meth-
ods also alleviate the need for heatmap generation and post-processing methods
to compute the location. Recently, transformer-based models have emerged as
a promising trend in localization [4,6,14], and their performance has exceeded
that of encoder-decoder based methods on single MRI volumes [4,7]. With the
availability of multiple series, we propose a framework that imitates a clinical
workflow, by simultaneously analyzing multiple series and paying attention to
the location that corresponds to a pathology across multiple series.

To do this, we design a framework that utilizes self-attention across multi-
ple series and we further add a mask to allow the model to focus on relevant
areas, which we term as Masked Self-Attention (MSA). To predict the pathology
location, we use a transformer decoder with an encoder-based initialization of
the reference points. This approach provides a strong initial guess of the pathol-
ogy location, improving the accuracy of the model’s predictions. Overall, our
framework leverages the strengths of both self-attention and encoder-decoder
architectures to enhance the performance of pathology localization.

Specifically, our contributions are:

– We introduce a framework that enables the simultaneous use of multiple series
from an MRI study, allowing for the sharing of pathology information across
different series through Masked Self-Attention.

– We design a transformer-based decoder model to predict consistent locations
across series in an MRI study, which reduces the network’s parameters com-
pared to standard heatmap-based approaches.

– Through extensive experiments on three knee pathologies, we demonstrate
the effectiveness and efficiency of our framework, showing the benefits of
Masked Self-Attention and a Pathology localization decoder to accurately
predict pathology locations.



Improving Pathology Localization 255

Overall, our framework represents a promising step towards more consistent
and accurate localization, which could have important applications in medical
diagnosis and treatment.

Fig. 1. Overview. More than 1 series are passed to encoders that have shared param-
eters. “Stem”, “layer1”, “layer2”, “layer3” and “layer4” follows the ResNet [12] archi-
tecture convention. We perform Masked Self-Attention starting from layer 2. The
Pathology localization decoder accepts feature maps from layer 2 to layer 4 and uses
a query for each series to perform deformable cross attention to generate pathological
landmarks.

2 Methods

2.1 Our Architecture

We aim to produce a reliable pathology location for each series in a given study
if a location is available for that series. More formally, we assume that we are
given a dataset, D = {Xi, Yi}Ni=1, with N denoting the total number of studies
in the dataset, Xi and Yi denoting the set of series and corresponding location
for each series. Due to different acquisition protocols, the number of series in
each Xi can vary. Similarly, each Yi can have a different number of location.
Our goal is to predict a pathology location for each series and its corresponding
confidence score. Figure 1 outlines our framework which can accept multiple
series to generate a more accurate locations for each series.

2.2 Backbone

Our framework contains a backbone, which is responsible for generating multi-
level feature maps. The multi-level feature maps are then fed into the pathology
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localization decoder. We use a 3D ResNet50 [12], which accepts the volume as
the input and generates multiple feature maps. Each series has its own back-
bone with the weights been shared. Given an input Xk

i ∈ R
d×w×h, denoting

a series k from the study i, we extract multiple feature maps of resolutions
F j ∈ (d1 , w

8 , h
8 ), (d2 , w

16 , h
16 ), (d4 , w

32 , h
32 ) for each series k. We adhere to common

standards by initializing the 3D ResNet50 backbone with pretrained weights.
Prior work fine-tunes weights from the ImageNet dataset, but this may not be
optimal if the target dataset has different characteristics. Our pretrained model
for medical image analysis is based on ConVIRT [15], which uses visual repre-
sentations and descriptive text from our internal dataset that contains 35433
image and text pairs.

2.3 Masked Self-attention

To explore the complementary information between different series, we use
Masked Self-Attention inspired from [2] which we call MSA, a powerful tool
commonly used in multi-modality [8,10] models that enable to capture long-
range dependencies between features. More formally, we denote the latent fea-
ture maps Rl = {F j

l }Jj=1, where j and l represents jth series and lth layer,
F j
l ∈ (Cin × d′ × w′ × h′) with Cin representing the number of channels, d′

representing the depth dimension, and w′ and h′ representing the width and
height dimensions, respectively. We concatenate the features F j

l along the depth
dimension d′ and add position embedding on the concatenated features. The
transformer uses a linear projection for computing the set of queries, keys and
values Q, K and V respectively. We adhere to the naming conventions used in [8].

Q = Rl.U
q,K = Rl.U

k, V = Rl.U
v (1)

where Uq ∈ R
Cin×Cq , Uk ∈ R

Cin×Ck and Uv ∈ R
Cin×Cv . The self-attention is

calculated by taking the dot products between Q and K and then aggregating
the values for each query,

A = Softmax
(

Ml−1 + B +
QKT

√
Ck

)
V (2)

Ml−1 =

{
0 if Ml−1 = 1
−∞ otherwise

(3)

where, the attention mask Ml−1 ∈ {0, 1} is a binarized output (thresholded
at δt) of the the resized mask prediction of the previous (l − 1)-th layer. δt is
empirically set to 0.15. The attention mask ignores the features that are not
relevant to the pathology and attends to pathological features. B is a mask to
handle missing series and it shares the same equation as 3.

Finally, the transformer uses a non-linear transformation to calculate the
output features, Rl+1, which shares the same resolution as that of Rl.

Rl+1 = MLP(A) + Rl (4)
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The transformer applies the attention mechanism 3 L times to generate a deep
representation learning among the features. This approach allows the trans-
former model to effectively capture the relationships between different input
positions.

2.4 Pathology Localization Decoder

The localization decoder follows the transformer decoder paradigm, using a
query, reference points, and input feature maps to predict a location and cor-
responding score. The decoder has N identical layers, each consisting of cross-
attention and feed forward networks (FFNs). The query Q ∈ R

1×256 and refer-
ence points R ∈ R

3 go through each layer, generating an updated Q as input for
the next layer. Unlike Deformable DETR [17], the decoder initializes reference
points by taking the last layer of the backbone feature map and applying Global
Average Pooling, followed by a fully connected layer to generate the initial ref-
erence point. The localization refinement stage outputs location and scores for
each layer Ni, similar to Deformable DETR, providing fast convergence.

2.5 Loss Functions

The model generates a single location ŷl ∈ R
3, score ys and auxiliary heatmap

outputs H for each series in a given study. The goal of our framework is to
generate one reasonable location and its corresponding score for each series. Since
there may be multiple locations annotated for a series, we use the Hungarian
Matching function [17] to find optimal matching with the prediction to one of
many ground truth locations. This is similar to the approach used in DETR.
The Masked Self-Attention in our framework uses heatmaps generated from the
previous layers. To ensure accurate heatmap generation, we apply an auxiliary
heatmap loss using Mean Square Error (MSE) between the generated heatmap
and the ground truth Gaussian heatmap, where the loss is defined as,

Lheatmap =
K∑
i=1

(x − hi)2 (5)

where K is the number of intermediate heatmaps generated, x and hi are ground
truth heatmap and predicted heatmap. To penalize the predicted location, we
use the Huber loss defined as,

Lpoint =
N∑
i=1

{
1
2 (yi

l − ŷi
l)

2 if
∣∣∣(yi

l − ŷi
l)

∣∣∣ < δ

δ((yi
l − ŷi

l) − 1
2δ) otherwise

(6)

where δ is empirically set to 0.3. The distance of a pathology does not differ
more than λ (which can be calculated from the dataset) across series. With
this information, we enforce proximity between the world coordinates which can
be converted from the predicted volume coordinates across different series. We
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employ a Margin L1 loss, which penalizes the distance between points if they
exceed the margin. Formally,

Lcons =
N∑
i=1

N∑
j=i+1

max(0, L1(wc
ŷi
l

, wc ˆ
yj
l

) − λ) (7)

where N is the number of series in a given study, wcŷl
is the world coordinates

converted from volume coordinates.
We then formulate the confidence score loss by considering the sum over the

series of the binary cross entropy between the ground truth confidence score and
predicted confidence score, formally defined as,

Lscore =
N∑
i=1

−(yi
s log(pi) + (1 − yi

s) log(1 − pi)) (8)

Overall, the entire loss for a given study is formulated as,

L = w1Lpoint + w2Lscore + w3Lcons + w4Lheatmap (9)

We set the hyper parameter w1, w2, w3 and w4 as 10, 1, 0.1, 1 respectively.
These values are empirically set based on the validation loss.

3 Experiment

3.1 Implementation Details, Datasets and Evaluation Protocols

Implementation Details. Our model was implemented in Pytorch 1.13.1 on a
NVIDIA A6000 GPU. We used an AdamW [5] optimizer with a weight decay of
10−4. The initial learning rate for encoder was empirically set as 10−5 and 10−4

for all other modules. Before running the pathology detection, we perform a pre-
processing step similar to [3] and resize the volume to 28×128×128. Furthermore,
we clip the intensity of the images at the 1st and 99th percentile, followed by
an intensity normalization to ensure a mean of 0 and standard deviation of 1.
Other hyper-parameters are mentioned in the supplementary paper.

Datasets. The study is limited to secondary use of existing HIPPA-based de-
identified data. No IRB required. We primarily conduct our experiments using
knee MRI datasets, with a specific focus on MM tear, MM displaced fragment
flap (DF), and MCC defect. Studies were collected at over 25 different institu-
tions, and differed in scanner manufacturers, magnetic field strengths, and imag-
ing protocols. The pathological locations were annotated by American Board
certified sub-specialists radiologists. The most common series types included
fat-suppressed (FS) sagittal (Sag), coronal (Cor) and axial (Ax) orientations,
using either T2-weighted (T2) or proton-density (PD) protocols. For pathology
detection, we use CorFS, SagFS, and SagPD. The dataset statistics that we use
for training, validation and test are shown in Table 1.
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Table 1. Cor, Sag, SagPD refers to Coronal FS, Sagittal FS, Sagittal PD respectively.
Values under series refer to number of series where defect locations are available. Neg-
atives refer to number of studies that does not have a pathology.

Pathology Train Validation Test

Negatives Cor Sag SagPD Union Cor Sag SagPD Union Cor Sag SagPD Union

MM Tear 1215 1466 1173 1146 2679 975 843 771 975 954 857 765 954

DF 673 387 306 243 1862 247 176 148 277 190 146 106 216

MCC 1000 759 797 364 1926 360 387 152 437 304 317 136 366

Evaluation Protocols. A useful pathology detection device should point the
user to the correct location of a pathology. For model evaluation, we use the L1
distance between the predicted location to any annotation of the same pathology,
labeled on the same series. To evaluate the pathology localization in a given
study, we use the predicted pathology localization mask, which is obtained by
thresholding the confidence score.

However, this alone does not provide a complete picture of the model’s perfor-
mance. To evaluate our confidence score’s performance, we analyze the specificity
and sensitivity of the confidence scores. We report the mean over all series in
the test studies in Table 2

Table 2. Quantitative results. We show the L1 distance measured in (mm), Sensitivity
(Sn), and Specificity (Sp) score for different models. “*” refers to the models that were
trained with different hyper-parameters from their mentioned ones. The results are
evaluated on the test dataset.

Methods Param FLOPs MM Tear MM DF MCC defect

(M) (G) L1↓ Sn↑ Sp↑ L1↓ Sn↑ Sp↑ L1↓ Sn ↑ Sp↑
UNet∗ [3] 54.6 117.3 10.1 0.63 0.71 16.1 0.53 0.62 9.5 0.70 0.71

UNet w MSA 63.7 135.4 9.4 0.70 0.71 15.3 0.59 0.68 8.1 0.70 0.72

KNEEL∗ [11] 74.2 152.1 9.1 0.68 0.70 14.5 0.61 0.70 9.1 0.69 0.72

Regression 24.1 45.7 17.2 0.71 0.75 21.4 0.70 0.72 10.1 0.72 0.74

DETR∗ [1] 51.4 67.3 14.6 0.75 0.73 20.2 0.72 0.71 13.4 0.72 0.74

Def. DETR∗ [17] 37.1 71.4 15.8 0.77 0.80 21.3 0.73 0.75 12.9 0.75 0.79

Poseur∗ [6] 35.1 65.1 13.1 0.76 0.80 17.3 0.71 0.75 11.5 0.78 0.79

Poseur w MSA 44.2 71.3 10.3 0.80 0.81 14.9 0.73 0.76 7.2 0.80 0.86

MOAT 28.2 63.4 4.7 0.85 0.86 8.1 0.80 0.81 3.9 0.88 0.86

3.2 Comparison with SOTA Methods

Heatmap-Based Architectures. The proposed architecture was compared to
two other models, the Gaussian Ball approach [3] which utilizes a UNet architec-
ture to generate a heatmap and KNEEL [11], which uses an hourglass network
architecture to predict the Gaussian heatmap. Two variants of UNet were com-
pared, one with MSA and one without. The threshold was set for each model
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which balanced sensitivity and specificity on the validation data. The comparison
revealed that the sensitivity and specificity of the proposed MOAT model were
14 to 27% and 15 to 17% higher, respectively, than those of the other models.
Additionally, the L1 distance of the heatmap-based model was approximately
5.4 to 8.0 mm higher than that of MOAT for all true positives. Overall, the
results suggest that MOAT outperforms the other models in terms of sensitivity,
specificity, and L1 distance.

Regression-Based Architectures. We compared our proposed architecture
with several other methods: 1) a simple regression method that removes the
pathology localization decoder and uses a fully connected layer to predict the
pathology locations, 2) DETR, 3) deformable DETR [17], and 4) Poseur [6],
which uses Residual Log estimation. We adopt our ConVIRT pretrained encoder
and add MSA to all the regression models to ensure a fair comparison. MOAT,
which has 63.4G FLOPs, is highly efficient when compared to State-Of-The-Art
(SOTA) regression models and has L1 distance lower than other models (4.7
mm) and the highest sensitivity and specificity among the models. We attach
the standard deviation scores for each model in the supplementary section.

3.3 Ablation Study

We first analyze the importance of MSA to our framework by training models
with and without MSA. As MSA is a variant of self-attention, we also experiment
with self-attention and with an attention mechanism [13] that was popular prior
to self-attention. Table 4 shows the L1 distance for Medial Meniscus Tear (MM
Tear) pathology, where our MSA which is a variant of self-attention is able
to achieve the lowest L1 distance. Similarly, we analyze the weight factor for
consistency loss, as different weight factor yields different results. From Table 3,
we can see that the lowest L1 distance was obtained when the weight factor was
0.1. All the ablation studies were performed on the MM Tear validation dataset.

Table 3. Ablation study on MM Tear
dataset to analyze the need for Masked
Self-Attention.

Methods L1 distance ↓
No Masked Self-Attention 11.3

self-attention 8.8

Masked Self-Attention 6.1

CBAM [13] 16.2

Table 4. Ablation study on MM Tear
to analyze the weight factor for the con-
sistency loss.

Consistency(w3) L1 distance ↓
10 11.2

1 6.4

0.1 6.1

0.01 5.1

4 Conclusion

We propose MOAT, a framework for performing localization in multi-series MRI
studies which benefits from the ability to share relevant information across series
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via a novel application of self-attention. We increase the efficiency of the MOAT
model by using a pathology localization decoder which is a variant of deformable
decoder and initializes the reference points from the backbone of the model. We
evaluate the effectiveness of our proposed framework (MOAT) on three challeng-
ing pathologies from knee MRI and find that it represents a significant improve-
ment over several SOTA localization techniques. Moving forward, we aim to
apply our framework to pathologies from other body parts with multiple series.
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