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Abstract. Mitral regurgitation (MR) is the most common heart valve
disease. Prolonged regurgitation can cause changes in the heart size,
lead to impaired systolic and diastolic capacity, and even threaten life.
In clinical practice, MR is evaluated by the proximal isovelocity surface
area (PISA) method, where manual measurements of the regurgitation
velocity and the value of PISA radius from multiple ultrasound images
are required to obtain the mitral regurgitant stroke volume (MRSV)
and effective regurgitant orifice area (EROA). In this paper, we pro-
pose a fully automatic method for MR quantification, which follows the
pipeline of ECG-based cycle detection, Doppler spectrum segmentation,
PISA radius segmentation, and MR quantification. Specifically, for the
Doppler spectrum segmentation, we proposed a novel adaptive-weighting
multi-channel segmentation network, PISA-net, to accurately identify
the upper and lower contours of the PISA radius from a pair of coupled
M-mode PISA image and corresponding M-mode decolored image. Using
the complementary information of the two coupled images and combing
with the spatial attention module, the proposed PISA-net can well iden-
tify the contours of the PISA radius and therefore lead to accurate quan-
tification of MR parameters. To the best of our knowledge, this is the
first study of automatic MR quantification. Experimental results demon-
strated the effectiveness of the whole pipeline, especially the PISA-net
for PISA radius segmentation. The full method achieves a high Pear-
son correlation of 0.994 for both MRSV and EROA, implying its great
potential in the clinical application of MR diagnosis.
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1 Introduction

Mitral regurgitation (MR) is the most common heart valve disease. The inci-
dence increases significantly with age, with more than 13% prevalence in the
population over 75 years old [12]. MR is a mitral valve lesion caused by organic
or functional changes in the mitral leaflets, annulus, papillary muscles, or tendon
cords. Prolonged regurgitation can cause changes in the heart size, and lead to
impaired systolic and diastolic capacity, resulting in decreased cardiac function
and even being life-threatening.

In the clinical diagnosis of MR, physicians assess the extent of MR by cal-
culating the effective regurgitant orifice area (EROA) and mitral regurgitant
stroke volume (MRSV) of MR patients from ultrasound images, including con-
tinuous wave Doppler images (CW) and color Doppler image (CD). The most
commonly applied method for calculating EROA and MRSV uses measurements
derived from the proximal isovelocity surface area (PISA) method [3,4,6,18,20].
It is a hemispherical isovelocity surface that points to the regurgitant blood flow
at the valve orifice when accelerated, and this phenomenon is used for quanti-
tative evaluation of regurgitant flow. Bargiggia et al. [1] used the single-point
PISA method to estimate MRSV in the routine clinical diagnosis. However, the
underlying assumption that the size of the regurgitant orifice (during systole) is
constant can not be held, therefore usually leads to overestimation or underesti-
mation of MRSV. To account for the dynamic variation, Chen et al. [2] proposed
an M-mode PISA and Enriquez-Sarano et al. [5] proposed a Serial PISA. How-
ever, the average orifice area used in M-mode PISA and the temporal sampling in
Serial PISA undermine the accuracy of the estimation. Militaru et al. [11] sought
to evaluate the accuracy of a new postprocessing software to quantify MR that
allows semi-automated computation of MR severity from 3D color Doppler trans-
esophageal echocardiographic images. The method significantly underestimates
MR and can only measure MRSV, ignoring other parameters like EROA, which
may be a better predictor. Singh et al. [15] evaluated a semi-automated method
using 3D color data sets of MR to quantify MRSV and transmitral dynamic flow
curves. However, The EROA is subject to inaccuracy in the setting of altered
tissue or color gain, which cannot extrapolate to the effectiveness of this method.
Modified PISA [9,14,16] was proposed later to calculate more accurate MRSV
and EROA with continued temporal curves of the blood velocity and the PISA
radius obtained from multi-channel ultrasound images, including CW image,
two-dimensional M-mode ultrasound image (M2D) and M-mode color Doppler
image (MCD). However, it is still time-consuming and laborious to implement
the method manually. In this paper, we aim to automatize this procedure, where
automatic identification of the above-mentioned two curves during the regurgi-
tation period is required.

Most of the existing methods for the automatic detection of Doppler image
contours were based on noise reduction and boundary tracking algorithms. In
[7,17], classic image processing techniques such as low-pass filtering, threshold-
ing, and edge detection were used. However, robustness and generalization in
the presence of severe image artifacts cannot be guaranteed. A probabilistic,
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Fig. 1. Examples of the multi-channel ultrasound images, (1)continuous wave Doppler
images (CW) are used to capture the blood velocity; (2)two-dimensional M-mode ultra-
sound images (M2D) provide the lower bound of the PISA radius; (3)M-mode color
Doppler images (MCD) provide the upper bound of the PISA radius.

hierarchical, and discriminant(PHD) framework [21], was successfully applied to
the automatic contour tracking of three kinds of Doppler blood flow images.
Some related works have focused on model-based image segmentation algo-
rithms. Indeed, knowing the expected shape can improve the tracking of velocity
profiles. In the work of Wang et al. [19], a model-based feedback and adaptive
weighted tracking algorithm was proposed. The algorithm combines a nonpara-
metric statistical comparison of image intensities to estimate the edges of noisy
impulse Doppler signals and a statistical shape model learned during manual
tracking of the contours using. As for the M-mode ultrasound images, there is
no existing automatic analysis method yet. In this method, we aim to estimate
MRSV and EROA from multi-channel ultrasound images: CW, M2D, and MCD
images (as illustrated in Fig. 1). While the CW image is used to estimate the
blood velocity, the M2D and MCD images are used to estimate the contour of
the PISA radius. Besides the presence of heavy noise in the images, a non-trivial
challenge is that the M2D image is good at capturing the lower bound of the
PISA radius, while the upper bound of the MCD image. To estimate the contour
of the PISA radius, complementary information should be well extracted from
the two images.

The contribution of the paper can be summarized as follows: First, we propose
the first fully automatic pipeline for MR quantification from multi-channel ultra-
sound images based on the modified PISA method. The pipeline includes ECG-
based cycle detection, Doppler spectrum segmentation, PISA radius segmenta-
tion, and MR quantification; Secondly, we propose a novel adaptive-weighting
multi-channel segmentation network, PISA-net, to identify the lower and upper
contours of the PISA radius from the complementary and coupled images, i.e.,
M2D and MCD. The network can adaptively select the related information of
the corresponding input image and lead to an accurate estimation of the radius
contour. Thirdly, after calculation based on the modified method, our method
achieves accurate estimation of MRSV and EROA, with a Pearson correlation
of 0.994 with the ground truths for both MR parameters.
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Fig. 2. Overview of the framework for MR quantification. This framework predicts
four parameters from multi-channel ultrasound images: the peak flow velocity(Vmax),
the flow velocity time integral(VTI), the mitral regurgitant stroke volume(MRSV), and
the effective regurgitant orifice area(EROA).

2 Method

The overview of the proposed method illustrate in Fig. 2, and it contains three
stages:(1) ECG-based cycle detection, (2) Doppler spectrum and PISA radius
segmentation, and (3) MR quantification. The details of the proposed pipeline
are as follows.

2.1 ECG-Based Cardiac Cycle Detection

Multiple cardiac cycles appear in the above-mentioned ultrasound images
(Fig. 1). The first step in the pipeline is to segment the image content of each
cycle, as shown in Fig. 2. The regions of interest in these ultrasound images,
i.e., the blood spectrum in CW, and the texture content in the M2D and MCD
are first cropped out according to the meta information of the DICOM file. The
ECG signals as shown at the bottom of these images are first extracted and then
used to segment the cropped images into multiple single-cycle images.

2.2 Doppler Spectrum and PISA Radius Segmentation

We proposed the PISA-net to obtain the Doppler spectrum and PISA radius
segmentation from multi-channel images. The architecture of the PISA-net is
shown in Fig. 3. We employ a classic U-net structure (Fig. 3(a)) as the baseline
model for our task. Considering the above-mentioned challenges, we introduce
the adaptive-weighting strategy for features from different images in the encoder
so that PISA-net can learn which image should be used to extract the low-level
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Fig. 3. Overview of the proposed PISA-net. (a) the architecture of PISA-net. (b)
Squeeze-and-excitation(SE) block with attention mechanism on channel features. (c)
Attention gate(AG) with attention mechanism on spatial features.

features for the lower and upper bounds of the PISA radius, respectively. To alle-
viate the effect of the heavy noise in these images, we introduce spatial attention
mechanisms for features of the decoder layers, so that the global context can be
used to suppress local noisy features.

Adaptive-Weighting Multi-channel Attention. PISA radius segmentation
requires complementary information of both M2D and MCD images, and may
also be affected by the image quality. We utilize the SE block [8] to adaptively
weight features from different image channels. The structure of the SE block is
shown in Fig. 3(b). Convolution features from M2D and MCD images are first
contacted together. Through the global average pooling (GPA), each feature
channel is compressed into a real number that can represent the global infor-
mation of the channel. Then two fully connected layers and a Sigmoid layer are
used to generate weights for each feature channel. Finally, the contacted fea-
tures of M2D and MCD are weighted according to the weight vector to adjust
the relative importance.

Spatial Attention. The features in the decoder are further enhanced with
a spatial attention mechanism using features of the encoder. In this work, the
attention gate block [13] (as shown in Fig. 3(c)) is used. Let xl be the output
feature map from layer l of the encoder, and g represents features from the
previous block. Then, these features are fused by the addition operation and
passed through a Sigmoid function to calculate the spatial attention map. The
feature map xl is then multiplied with the attention map to the enhanced features
x̂l, which makes the value of irrelevant regions smaller and the value of the target
region larger, and therefore improves both the network prediction speed and the
segmentation accuracy.
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2.3 MR Quantification

As shown in Fig. 2, the Doppler spectrum segmentation result of the CW image
represents the velocity curve of the blood flow v(t) at time t in the PISA radius.
From v(t), the maximum velocity vmax and the velocity time integral V TI can
be calculated. The PISA-net predicts the upper bound and the lower bound
of the radius contour from the M2D and MCD images. The distance between
the two bounds represents PISA radius r(t), which can be used to quantify the
regurgitant flow rate F (t) and MRSV. Finally, EROA is calculated from the
regurgitant flow rate F (t) and the blood flow velocity v(t). Detailed formulas
are as follows:

F (t) = 2 · π · r2(t) · Va (1)

MRSV =
∫ t

0

F (t) dt = 2 · π · Va ·
∫ t

0

r2(t) dt (2)

EROA(t) =
F (t)
v(t)

(3)

EROAmean =

∫ T

0
EROA(t) dt

T
(4)

where Va is a constant representing the aliasing velocity, and T denotes the
duration length of the regurgitation.

3 Experiment and Results

3.1 Experimental Configuration

We obtained Doppler ultrasound images of 205 MR patients from a local hospital,
and 157 of them were collected by GE VividE95 while the rest 48 were collected
by PHILIPS CX50. For each patient, three images were included: CW, M2D,
and MCD, as shown in Fig. 1. Data use declaration and acknowledgement: Our
dataset was collected from Zhongshan Hospital, Fudan University. This study
was approved by local institutional review boards. We divide these ultrasound
images into a training dataset (159 patients) and a test dataset (46 patients).
Among the test set, 45 patients had degenerative mitral regurgitation, and 1
had functional mitral regurgitation. All images were annotated by experienced
doctors using the Pair annotation software package (https://www.aipair.com.
cn/en/, Version 2.7, RayShape, Shenzhen, China) [10].

We used the Dice score to evaluate the segmentation accuracy, and the Pear-
son correlation coefficient (corr), mean absolute error (MAE), and mean relative
error (MRE) to assess the performance of MR parameters estimation.

Our method was implemented using Pytorch 1.7.1 and trained on an NVIDIA
A100 GPU. The size of the input image is 3 × 256 × 256. The model was
optimized by minimizing the binary cross-entropy loss function and using the
Adam optimization algorithm. The learning rate was set as 0.001.

https://www.aipair.com.cn/en/
https://www.aipair.com.cn/en/
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3.2 Results and Analysis

Effect of Adaptive Weighting and Multiple Channel. We test the effect of
the adaptive weighting mechanism in PISA-net when placed in different positions
of the encoder. Table 1 shows the segmentation performance for single inputs
and multi-channel inputs, with the adaptive weighting in different layers. It
can be drawn that 1)for both the spectrum segmentation and the PISA radius
segmentation, the adaptive weighting performs best when placed after the second
convolution block of the encoder; and 2) the multi-channel inputs for PISA radius
segmentation do help improve the performance, implying that PISA-net can
effectively make use of the complementary information in these images. Results
in the third and fourth columns of Table 2 also validate this.

Table 1. Effect of the adaptive weight-
ing and multiple channel inputs.

Image layer1 layer2 layer3 layer4

CW 0.961 0.962 0.960 0.960
MCD 0.923 0.925 0.924 0.923
M2D+MCD 0.926 0.937 0.926 0.924

Table 2. Mean Dice of CW image input,
MCD image input, and M2D and MCD
inputs on the test set.

Method CW MCD M2D+MCD

Unet 0.958 0.910 0.886
Unet+SE 0.958 0.911 0.918
Att-Unet 0.961 0.925 0.926
PISA-net 0.962 0.925 0.937

Segmentation Performance. We compared PISA-net with three different
methods: Unet, Unet with SE block(Unet+SE), and Attention Unet(Att-Unet)
with different images as the input, and the results are shown in Table 2. The
proposed PISA-net achieves the best accuracy, while the Unet gets the lowest
accuracy. When M2D and MCD are combined as the input, Unet+SE, Att-
Unet, and PISA-net achieve better accuracy than that of single input MCD.
These results demonstrate the effectiveness of multi-channel adaptive weighting
and spatial attention. Figure 4 shows examples of the summation of the weights
learned for features from M2D and MCD images, respectively. It can be observed
that our method can learn the weights of the two images adaptively for different
samples.
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Fig. 4. Visualization of the average weights of the two inputs after using the SE block.

Table 3. Comparison of MR parameters quantification. The unit of MRE is %, For
MAE, the unit of vmax is m/s, the unit of V TI is cm, the unit of MRSV is ml, the
unit of EROAmean is cm2.

Method Vmax VTI MRSV EROA-mean
corr MAE MRE corr MAE MRE corr MAE MRE corr MAE MRE

Unet 0.971 0.21 3.87 0.914 13.94 5.79 0.802 35.66 67.48 0.860 0.156 64.28
Unet+SE 0.894 0.20 3.70 0.930 19.96 8.63 0.960 14.63 18.12 0.981 0.054 15.05
Att-Unet 0.914 0.16 2.95 0.949 14.24 6.15 0.982 14.07 17.41 0.988 0.059 17.82
PISA-net 0.909 0.18 3.29 0.939 14.20 6.25 0.994 8.49 9.95 0.994 0.040 11.27

Fig. 5. (a) The MRSV and EROA calculated from the segmentation results of the four
methods are compared with ground truth(GT). Bland-Altman plots show their bias.
(b) Comparison of the segmentation results of a bad case in four methods.



MR Quantification from Multi-channel Ultrasound Images via PISA-net 231

Parameters Quantification. Table 3 is the comparison result for MR parame-
ters quantification by different methods. PISA-net significantly outperforms the
other methods for MRSV and EROA, with a Pearson correlation coefficient of
0.994 for both MR parameters. Figure 5(a) shows the Bland-Altman analysis of
MRSV and EROA obtained. The PISA-net results in the least estimation bias.
Figure 5(b) shows the segmentation results of a bad case for all four methods.
PISA-net can still identify the lower and upper contours of the PISA radius from
the complementary and coupled images accurately, showing the effectiveness of
the adaptive weighting and the spatial attention.

4 Conclusion

In this work, we proposed the first fully automatic pipeline for MR quantifica-
tion from multi-channel ultrasound images (CW, M2D, and MCD), based on
the modified PISA method. An adaptive weighting mechanism and a spatial
attention mechanism weighting were used to combine features of multi-channel
inputs and enhance the local feature with a global context. Extensive exper-
iments demonstrate that the proposed method is capable of delivering good
segmentation results and excellent quantification of MR parameters, and has
great potential in the clinical application of MR diagnosis.
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