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Abstract. Skin diseases are among the most prevalent health issues,
and accurate computer-aided diagnosis methods are of importance for
both dermatologists and patients. However, most of the existing meth-
ods overlook the essential domain knowledge required for skin disease
diagnosis. A novel multi-task model, namely DermImitFormer, is pro-
posed to fill this gap by imitating dermatologists’ diagnostic procedures
and strategies. Through multi-task learning, the model simultaneously
predicts body parts and lesion attributes in addition to the disease itself,
enhancing diagnosis accuracy and improving diagnosis interpretability.
The designed lesion selection module mimics dermatologists’ zoom-in
action, effectively highlighting the local lesion features from noisy back-
grounds. Additionally, the presented cross-interaction module explicitly
models the complicated diagnostic reasoning between body parts, lesion
attributes, and diseases. To provide a more robust evaluation of the
proposed method, a large-scale clinical image dataset of skin diseases
with significantly more cases than existing datasets has been established.
Extensive experiments on three different datasets consistently demon-
strate the state-of-the-art recognition performance of the proposed app-
roach.
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1 Introduction

As the largest organ in the human body, the skin is an important barrier pro-
tecting the internal organs and tissues from harmful external substances, such as
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Fig. 1. The relationship between dermatologists’ diagnostic procedures and our pro-
posed model (best viewed in color).

sun exposure, pollution, and microorganisms [8,10]. In recent years, the increas-
ing number of deaths by skin diseases has aroused widespread public concern
[16,17]. Due to the complexity of skin diseases and the shortage of dermato-
logical expertise resources, developing an automatic and accurate skin disease
diagnosis framework is of great necessity.

Among non-invasive skin imaging techniques, dermoscopy is currently widely
used in the diagnosis of many skin diseases [1,7], but it is technically demanding
and not necessary for many common skin diseases. Clinical images, on the con-
trary, can be easily acquired through consumer-grade cameras, increasingly uti-
lized in teledermatology, but their diagnostic value is underestimated. Recently,
deep learning-based methods have received great attention in clinical skin dis-
ease image recognition and achieved promising results [3,5,11,18,20,23,25,26].
Sun et al. [18] released a clinical image dataset of skin diseases, namely SD-198,
containing 6,584 images from 198 different categories. The results demonstrate
that deep features from convolutional neural networks (CNNs) outperform hand-
crafted features in exploiting structural and semantic information. Gupta et al.
[5] proposed a dual stream network that employs class activation maps to localize
discriminative regions of the skin disease and exploit local features from detected
regions to improve classification performance.

Although these approaches have achieved impressive results, most of them
neglect the domain knowledge of dermatology and lack interpretability in diag-
nosis basis and results. In a typical inspection, dermatologists give an initial
evaluation with the consideration of both global information, e.g. body part,
and local information, e.g. the attributes of skin lesions, and further information
including the patient’s medical history or additional examination is required
to draw a diagnostic conclusion from several possible skin diseases. Recogniz-
ing skin diseases from clinical images presents various challenges that can be
summarized as follows: (1) Clinical images taken by portable electronic devices
(e.g. mobile phones) often have cluttered backgrounds, posing difficulty in accu-
rately locating lesions. (2) Skin diseases exhibit high intra-class variability in
lesion appearance, but low inter-class variability, thereby making discrimina-
tion challenging. (3) The diagnostic reasoning of dermatologists is empirical and
complicated, which makes it hard to simulate and model.
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To tackle the above issues and leverage the domain knowledge of dermatology,
we propose a novel multi-task model, namely DermImitFormer. The model is
designed to imitate the diagnostic process of dermatologists (as shown in Fig. 1),
by employing three distinct modules or strategies. Firstly, the multi-task learn-
ing strategy provides extra body parts and lesion attributes predictions, which
enhances the differential diagnosis accuracy with the additional correlation from
multiple predictions and improves the interpretability of diagnosis with more
supporting information. Secondly, a lesion selection module is designed to imitate
dermatologists’ zoom-in action, effectively highlighting the local lesion features
from noisy backgrounds. Thirdly, a cross-interaction module explicitly models
the complicated diagnostic reasoning between body parts, lesion attributes, and
diseases, increasing the feature alignments and decreasing gradient conflicts from
different tasks. Last but not least, we build a new dataset containing 57,246 clin-
ical images. The dataset includes 49 most common skin diseases, covering 80%
of the consultation scenarios, 15 body parts, and 27 lesion attributes, following
the International League of Dermatological Societies (ILDS) guideline [13].

Fig. 2. The overall architecture of the multi-task imitation model (DermImitFormer)
with shared backbone and task-specific heads.

The main contributions can be summarized as follows: (1) A novel multi-
task model DermImitFormer is proposed to imitate dermatologists’ diagnostic
processes, providing outputs of diseases, body parts, and lesion attributes for
improved clinical interpretability and accuracy. (2) A lesion selection module
is presented to encourage the model to learn more distinctive lesion features.
A cross-interaction module is designed to effectively fuse three different fea-
ture representations. (3) A large-scale clinical image dataset of skin diseases
is established, containing significantly more cases than existing datasets, and
closer to the real data distribution of clinical routine. More importantly, our
proposed approach achieves the leading recognition performance on three differ-
ent datasets.
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2 Method

The architecture of the proposed multi-task model DermImitFormer is shown in
Fig. 2. It takes the clinical image as input and outputs the classification results of
skin diseases, body parts, and attributes in an end-to-end manner. During diag-
nostic processes, dermatologists consider local and global contextual features of
the entire clinical image, including shape, size, distribution, texture, location,
etc. To effectively capture these visual features, we use the vision transformer
(ViT) [4] as the shared backbone. Three separate task-specific heads are then
utilized to predict diseases, body parts, and attributes, respectively, with each
head containing two independent ViT layers. In particular, in the task-specific
heads of diseases and attributes, the extracted features of each layer are sepa-
rated into the image features and the patch features. These two groups of features
are fed into the lesion selection module (LSM), to select the most informative
lesion tokens. Finally, the feature representations of diseases, body parts, and
attributes are delivered to the cross-interaction module (CIM) to generate a
more comprehensive representation for the final differential diagnosis.

Shared Backbone. Following the ViT model, an input image X is divided to
Np squared patches {xn, n ∈ {1, 2, ..., Np}}, where Np = (H × W )/P 2, P is the
side length of a squared patch, H and W are the height and width of the image,
respectively. Then, the patches are flattened and linearly projected into patch
tokens with a learnable position embedding, denoted as tn, n ∈ {1, 2, ..., Np}.
Together with an extra class token t0, the network inputs are represented as
tn ∈ R

D, n ∈ {0, 1, ..., Np} with a dimension of D. Finally, the tokens are fed to
L consecutive transformer layers to obtain the preliminary image features.

Lesion Selection Module. As introduced above, skin diseases have high vari-
ability in lesion appearance and distribution. Thus, it requires the model to
concentrate on lesion patches so as to describe the attributes and associated
diseases precisely. The multi-head self-attention (MHSA) block in ViT generates
global attention, weighing the informativeness of each token. Inspired by [19],
we introduce a lesion selection module (LSM), which guides the transformer
encoder to select the tokens that are most relevant to lesions at different levels.
Specifically, for each attention head in MHSA blocks, we compute the attention
matrix Am = Softmax(QKT /

√
D) ∈ R

(Np+1)×(Np+1), where m ∈ {1, 2, ..., Nh},
Nh denoting the number of heads, Q and K the Query and Key representa-
tions of the block inputs, respectively. The first row calculates the similarities
between the class token and each patch token. As the class token is utilized
for classification, the higher the value, the more informative each token is. We
apply softmax to the first row and the first column of Am, denoted as am0,n and
amn,0, n ∈ {1, 2, ..., Np}, representing the attention scores between the class token
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and other tokens:

am0,n =
eA

m
0,n

Np∑

i=1

eA
m
0,i

, amn,0 =
eA

m
n,0

Np∑

i=1

eA
m
i,0

, sn =
1
Nh

Nh∑

m=1

am0,n · amn,0 (1)

The mutual attention score sn is calculated across all attention heads. There-
after, we select the top K tokens according to sn for two task heads as lkd and
lka, k ∈ {1, 2, ...,K}.

Fig. 3. Schematic of cross-interaction module.

Cross-Interaction Module. A diagnostic process of skin diseases takes multi-
ple visual information into account, which is relatively complicated and difficult
to model in an analytical way. Simple fusion operations such as concatenation
are insufficient to simulate the diagnostic logic. Thus, partially inspired by [21],
the CIM is designed to learn complicated correlations between disease, body
part, and attribute. The detailed module schematic is shown in Fig. 3. Firstly,
the features of body-part and disease are integrated to enhance global repre-
sentations by a cross-attention block. For example, the fusion between the class
token of disease and patch tokens of body-part is:

zb = LN(GAP (p1
b ,p

2
b , ......,p

Np

b )) (2)

Q = LN (gD)WQ
BD, K = zbW

K
BD, V = zbW

V
BD (3)

gB
D = LN (gD) + linear(softmax(

QKT

√
F/Nh

)V) (4)

where gB , gD are the class token, pi
b, pi

d, i ∈ {1, 2, ..., Np} the corresponding
patch tokens. GAP and LN denote the global average pooling and layer normal-
ization, respectively. WQ

BD,WK
BD,W V

BD ∈ RF×F denote learnable parameters.
F denotes the dimension of features. gD

B is computed from the patch tokens
of disease and the class token of body-part in the same fashion. Similarly, we
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can obtain the fused class tokens (gD
A and gA

D) and the fused local class tokens
(lDA and lAD) between attribute and disease. Note that the disease class token
gD is replaced by gB

D in the later computations, and local class tokens lA and
lD in Fig. 3 are generated by GAP on selected local patch tokens from LSM.
Finally, these mutually enhanced features from CIM are concatenated together
to generate more accurate predictions of diseases, body parts, and attributes.

Learning and Optimization. We argue that joint training can enhance the
feature representation for each task. Thus, we define a multi-task loss as follows:

Table 1. Ablation study for DermImitFormer on Derm-49 dataset. D, B, and A denote
the task-specific head of diseases, body parts, and attributes, respectively.

Dimension LSM Fusion F1-score (%) Accuracy(%)

Concat CIM Disease Body part Attribute Disease

D 76.2 - - 80.4

D ✓ 77.8 - - 82.0

D + B ✓ ✓ 78.1 85.0 - 82.4

D + A ✓ ✓ 78.4 - 68.7 82.6

D + B + A ✓ ✓ 79.1 85.1 69.0 82.9

D + B + A ✓ ✓ 79.5 85.9 70.4 83.3

Lx = − 1
Ns

Ns∑

i=1

nx∑

j=1

yij log (pij), x ∈ {d, d′} (5)

Lh = − 1
Ns

Ns∑

i=1

nh∑

j=1

yij log (pij) + (1 − yij) log (1 − pij), h ∈ {a, b} (6)

L = Ld + Ld′ + Lb + La (7)

where Ns denotes the number of samples, nx, nh the number of classes for each
task, and pij , yij the prediction and label, respectively. Notably, body parts
and attributes are defined as multi-label classification tasks, optimized with the
binary cross-entropy loss, as shown in Eq. 6. The correspondence of x and h is
shown in Fig. 2.

3 Experiment

Datasets. The proposed DermImitFormer is evaluated on three different clinical
skin image datasets including an in-house dataset and two public benchmarks.
(1) Derm-49: We establish a large-scale clinical image dataset of skin diseases,
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collected from three cooperative hospitals and a teledermatology platform. The
57,246 images in the dataset were annotated with the diagnostic ground truth
of skin disease, body parts, and lesions attributes from the patient records. We
clean up the ground truth into 49 skin diseases, 15 body parts, and 27 lesion
attributes following the ILDS guidelines [13]. (2) SD-198 [18]: It is one of the
largest publicly available datasets in this field containing 198 skin diseases and
6,584 clinical images collected through digital cameras or mobile phones. (3)
PAD-UFES-20 [15]: The dataset contains 2,298 samples of 6 skin diseases.
Each sample contains a clinical image and a set of metadata with labels such as
diseases and body parts.

Implementation Details. The DermImitFormer is initialized with the pre-
trained ViT-B/16 backbone and optimized with SGD method (initial learning
rate 0.003, momentum 0.95, and weight decay 10−5) for 100 epochs on 4 NVIDIA
Tesla V100 GPUs with a batch size of 96. We define the input size i.e. H =
W = 384 that produces a total of 576 spatial tokens i.e. Np = 576 for a ViT-B
backbone. K = 24 in the LSM module. For data augmentation, we employed
the Cutmix [24] with a probability of 0.5 and Beta(0.3, 0.3) during optimization.
We adopt precision, recall, F1-score, and accuracy as the evaluation metrics.

Fig. 4. Comparative results on Derm-49 dataset. Red, blue, green, and purple fonts
denote diseases on heads, faces, hands, and feet (best viewed in color).
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Ablation Study. The experiment is conducted based on ViT-B/16 and the
results are reported in Table 1. (1) LSM: Quantitative results demonstrate that
the designed LSM yields 1.6% improvement in accuracy. Qualitative results are
shown in Fig. 4(a), which depicts the attention maps obtained from the last
transformer layer. Without LSM, vision transformers would struggle of localiz-
ing lesions and produce noisy attention maps. With LSM, the attention maps
are more discriminative and lesions are localized precisely, regardless of varia-
tions in terms of scale and distribution. (2) Multi-task learning: The models
are trained with a shared backbone and different combinations of task-specific
heads. The results show that multi-task learning (D+B+A) increases the F1-
score from 77.8 to 79.1. (3) CIM: Quantitative results show that the presented
CIM can further improve the F1-score of diseases to 79.5. Notably, the p-value of
1.03e-05 (<0.01) is calculated by comparing the results of 5-fold cross-validation
with the baseline, illustrating the significance of our model. In particular, the
representation with fused features of body parts and attributes can improve the
recognition performance of diseases. As shown in Fig. 4(b) and (c), statistics
show that the classification performance of these diseases is improved by the
multi-task learning strategy and CIM. For instance, rosacea and tinea versicolor
share the same attributes of macule and papular, but rosacea typically affects
the face. By fusing the representation of body parts, the F1-score of rosacea
is increased by 4.5%. Similarly, our model improves the recognition accuracy
of diseases with distinctive lesion attributes such as skin tags, urticaria, etc.
Meanwhile, the extra information about body parts and attributes improves the
interpretability of diagnoses.

Table 2. Comparison to state-of-the-art methods on Derm-49 dataset (top) and two
public benchmarks: SD-198 dataset (mid), PAD-UFES-20 dataset (bottom).

Datasets Methods F1-score (%) Precision (%) Recall (%) Accuracy (%)

Derm-49 DX [6] 72.6± 2.3 73.7± 0.6 72.2± 3.1 73.4± 0.7

ViT-Base [4] 75.9± 0.8 80.6± 0.7 72.9± 0.9 80.4± 0.4

Swin-Base [12] 76.6± 0.6 83.5± 1.1 71.0± 0.9 80.6± 0.5

DermImitFomer 78.8± 0.5 83.5± 0.6 74.6± 1.1 82.6± 0.5

SD-198 SPBL [23] 66.2± 1.6 71.4± 1.7 65.7± 1.6 67.8± 1.8

Aux-D [22] 68.0± 1.0 67.9± 1.0 69.2± 0.9 -

Dual Stream [5] 70.9± 1.2 73.1± 1.4 69.2± 1.1 71.4± 1.1

TPC [9] 63.2± 1.6 65.6± 1.7 64.7± 1.6 -

IASN [3] 68.6± 0.7 71.9± 0.8 70.0± 0.9 70.7± 0.8

PCCT [2] 65.2± 1.6 68.4± 1.4 66.0± 1.5 -

DermImitFomer-ST 73.6± 2.6 76.1± 2.6 75.1± 2.2 74.5± 2.6

PAD-UFES-20 PAD [15] 71.0± 2.9 73.4± 2.9 70.8± 2.8 70.7± 2.8

T-Enc [14] - - - 61.6± 5.1

ResNet-50 [15] 67.8± 3.7 72.0± 4.1 67.0± 4.1 67.1± 4.1

ViT-Base [4] 69.9± 1.4 69.4± 1.5 70.4± 2.2 70.6± 1.8

Swin-Base [12] 72.1± 2.5 72.0± 2.9 72.7± 2.6 72.7± 2.5

DermImitFomer-ST 73.6± 2.8 72.8± 3.2 74.4± 2.4 74.4± 2.4

DermImitFomer 74.5± 2.5 73.9± 2.9 75.0± 2.1 75.0± 2.1
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Results. To evaluate the effectiveness of our proposed DermImitFormer, we
conduct a comparison with various state-of-the-art methods on three different
datasets. The results are reported in Table 2. (1) Derm-49: Compared with
other state-of-the-art approaches, our proposed DermImitFormer achieves the
leading classification performance in our established dataset with the 5-fold
cross-validation splits. (2) SD-198: Since the dataset does not contain labels
of lesion attributes and body parts, the proposed DermImitFormer in Single-
Task mode (w/o CIM) is implemented in the experiment. The result is based on
the provided 5-fold cross-validation splits. Quantitative results in Table 2(mid)
demonstrate that our proposed DermImitFormer-ST achieves state-of-the-art
classification performance. In contrast to other approaches, our model can pre-
cisely localize more discriminative lesion regions and thus has superior classi-
fication accuracy. (3) PAD-UFES-20: The dataset contains labels of diseases
and body parts. Thus, the proposed DermImitFormer with different modes is
evaluated in the experiment by the 5-fold cross-validation splits. Quantitative
results in Table 2 (bottom) demonstrate that our proposed model outperforms
the CNN-based [14,15], and transformer-based methods [4,12], achieving the
state-of-the-art classification performance. In particular, the performance of Der-
mImitFormer is better than that of DermImitFormer-ST in Single-Task mode
(w/o CIM), which further indicates the effectiveness of the multi-task learning
strategy and CIM.

4 Conclusion

In this work, DermImitFormer, a multi-task model, has been proposed to better
utilize dermatologists’ domain knowledge by mimicking their subjective diagnos-
tic procedures. Extensive experiments demonstrate that our approach achieves
state-of-the-art recognition performance in two public benchmarks and a large-
scale in-house dataset, which highlights the potential of our approach to be
employed in real clinical environments and showcases the value of leveraging
domain knowledge in the development of machine learning models.
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