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Abstract. Reconstruction and visualization of cardiac structures play
significant roles in computer-aided clinical practice as well as scientific
research. With the advancement of medical imaging techniques, comput-
ing facilities, and deep learning models, automatically generating whole-
heart meshes directly from medical imaging data becomes feasible and
shows great potential. Existing works usually employ a point cloud met-
ric, namely the Chamfer distance, as the optimization objective when
reconstructing the whole-heart meshes, which nevertheless does not take
the cardiac topology into consideration. Here, we propose a novel cur-
rents-represented surface loss to optimize the reconstructed mesh topol-
ogy. Due to currents’s favorable property of encoding the topology of a
whole surface, our proposed pipeline delivers whole-heart reconstruction
results with correct topology and comparable or even higher accuracy.
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1 Introduction

With the advent of advanced medical imaging technologies, such as computed
tomography (CT) and magnetic resonance (MR), non-invasive visualizations of
various human organs and tissues become feasible and are widely utilized in clin-
ical practice [8,22]. Cardiac CT imaging and MR imaging play important roles
in the understanding of cardiac anatomy, diagnosis of cardiac diseases [20] and
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multimodal visualizations [9]. Potential applications range from patient-specific
treatment planning, virtual surgery, morphology assessment to biomedical sim-
ulations [2,17]. However, in traditional procedures, visualizing human organs
usually requires significant expert efforts and could take up to dozens of hours
depending on the specific organs of interest [7,24], which makes large-cohort
studies prohibitive and limits clinical applications [16].

Empowered by the great feature extraction ability of deep neural net-
works (DNNs) and the strong parallel computing power of graph processing
units (GPUs), automated visualizations of cardiac organs have been extensively
explored in recent years [18,24]. These methods typically follow a common pro-
cessing flow that requires a series of post-processing steps to produce acceptable
reconstruction results. Specifically, the organs of interest are first segmented
from medical imaging data. After that, an isosurface generation algorithm, such
as marching cubes [15], is utilized to create 3D visualizations typically with stair-
case appearance, followed by smoothing filters to create smooth meshes. Finally,
manual corrections or connected component analyses [11] are applied to remove
artifacts and improve topological correctness. The entire flow is not optimized in
an end-to-end fashion, which might introduce and accumulate multi-step errors
or still demand non-trivial manual efforts.

In such context, automated approaches that can directly and efficiently gen-
erate cardiac shapes from medical imaging data are highly desired. Recently,
various DNN works [1,3,4,12–14,19] delve into this topic and achieve promis-
ing outcomes. In particular, the method depicted in [1] performs predictions of
cardiac ventricles using both cine MR and patient metadata based on statistical
shape modeling (SSM). Similarly, built on SSM, [4] uses 2D cine MR slices to
generate five cardiac meshes. Another approach proposed in [19] employs dis-
tortion energy to produce meshes of the aortic valves. Inspiringly, graph neural
network (GNN) based methods [12–14] are shown to be capable of simultane-
ously reconstructing seven cardiac organs in a single pass, producing whole-heart
meshes that are suitable for computational simulations of cardiac functioning.
The training processes for these aforementioned methods are usually optimized
via the Chamfer distance (CD) loss, a point cloud based evaluation metric. Such
type of point cloud based losses is first calculated for each individual vertex,
followed by an average across all vertices, which nonetheless does not take the
overall mesh topology into consideration. This could result in suboptimal or even
incorrect topology in the reconstructed mesh, which is undesirable.

To solve this issue, we introduce a novel surface loss that inherently considers
the topology of the two to-be-compared meshes in the loss function, with a goal
of optimizing the anatomical topology of the reconstructed mesh. The surface
loss is defined by a computable norm on currents [6] and is originally introduced
in [23] for diffeomorphic surface registration, which has extensive applicability in
shape analysis and disease diagnosis [5,21]. Motivated by its inherent ability to
characterize and quantify a mesh’s topology, we make use of it to minimize the
topology-considered overall difference between a reconstructed mesh and its cor-
responding ground truth mesh. Such currents guided supervision ensures effec-
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tive and efficient whole-heart mesh reconstructions of seven cardiac organs, with
high reconstruction accuracy and correct anatomical topology being attained.

2 Methodology

Figure 1 illustrates the proposed end-to-end pipeline, consisting of a voxel fea-
ture extraction module (top panel) and a deformation module (middle panel).
The inputs contain a CT or MR volume accompanied by seven initial spherical
meshes. To be noted, the seven initial spherical meshes are the same for all train-
ing and testing cases. A volume encoder followed by a decoder is employed as the
voxel feature extraction module, which is supervised by a segmentation loss com-
prising binary cross entropy (BCE) and Dice. This ensures that the extracted
features explicitly encode the characteristics of the regions of interest (ROIs).
For the deformation module, a GNN is utilized to map coordinates of the mesh
vertices, combine and map trilinearly-interpolated voxel features indexed at each
mesh vertex, extract mesh features, and deform the initial meshes to reconstruct
the whole-heart meshes. There are three deformation blocks that progressively
deform the initial meshes. Each deformation block is optimized on three types
of losses: a surface loss for both accuracy and topology correctness purposes,

Fig. 1. Illustration of the proposed pipeline. Abbreviations are as follows: instance
normalization (IN), downsampling (DS), convolution (conv), graph convolution (GC),
residual convolution (res-conv), and residual graph convolution (res-GC).
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a point cloud loss for an accuracy purpose, and three regularization losses for
a smoothness purpose. The network structure details of the two modules are
detailed in the supplementary material.

For an input CT or MR volume, it passes into the voxel feature extraction
module to predict binary segmentation for the to-be-reconstructed ROIs. Mean-
while, the initial spherical meshes enter into the first deformation block along
with the trilinearly-interpolated voxel features to predict the vertex-wise dis-
placements of the initial meshes. Then, the updated meshes go through the fol-
lowing blocks for subsequent deformations. The third deformation block finally
outputs the reconstructed whole-heart meshes. The three deformation blocks
follow the same process, except for the meshes they deform and the trilinearly-
interpolated voxel features they operate on. In the first deformation block, we
use high-level voxel features, f3 and f4, obtained from the deepest layers of the
volume encoder. In the second deformation block, the middle-level voxel features,
f1 and f2, are employed. As for the last deformation block, its input meshes are
usually quite accurate and only need to be locally refined. Thus, low-level voxel
features are employed to supervise this refining process.

Surface Representation as Currents. Keeping in line with [23], we employ
a generalized distribution from geometric measure theory, namely currents [6],
to represent surfaces. Specifically, surfaces are represented as objects in a linear
space equipped with a computable norm. Given a triangular mesh S embedded
in R

3, it can be associated with a linear functional on the space of 2-form via
the following equation

S(ω) =

∫
S

ω(x)(u1
x, u2

x)dσ(x), (1)

where for each x ∈ S u1
x and u2

x form an orthonormal basis of the tangent
plane at x. ω(x) is a skew-symmetric bilinear function on R

3. dσ(x) represents
the basic element of surface area. Subsequently, a surface can be represented as
currents in the following expression

S(ω) =
∑

f

∫
f

ω̄(x) · (u1
x × u2

x)dσf (x), (2)

where S(ω) denotes the currents representation of the surface. f denotes each
face of S and σf is the surface measure on f . ω̄(x) is the vectorial representation
of ω(x), with · and × respectively representing dot product and cross product.
After the currents representation is established, an approximation of ω over each
face can be obtained by using its value at the face center.

Let f1
v , f2

v , f3
v denote the three vertices of a face f , e1 = f2

v −f3
v , e2 = f3

v −f1
v ,

e3 = f1
v − f2

v are the edges, c(f) = 1
3 (f1

v + f2
v + f3

v ) is the center of the face and
N(f) = 1

2 (e2 × e3) is the normal vector of the face with its length being equal to
the face area. Then, ω can be approximated over the face by its value at the face
center, resulting in S(ω) ≈ ∑

f ω̄(c(f))·N(f). In fact, the approximation is a sum

of linear evaluation functionals C(S) =
∑

f δ
N(f)
c(f) associated with a Reproducing

Kernel Hilbert Space (RKHS) under the constraints presented elsewhere [23].
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Thus, Sε, the discrepancy between two surfaces S and T , can be approximately
calculated via the RKHS as below

Sε = ||C(S) − C(T ))||2W ∗ =
∑
f,g

N(f)T kW (c(g), c(f))N(g)

− 2
∑
f,q

N(f)T kW (c(q), c(f))N(q)

+
∑
q,r

N(q)T kW (c(q), c(r))N(r),

(3)

where W ∗ is the dual space of a Hilbert space (W, 〈·, ·〉W ) of differential 2-forms
and || ||2 is l2-norm. ()T denotes the transpose operator. f , g index the faces of S
and q, r index the faces of T . kW is an isometry between W ∗ and W , and we have〈
δξ
x, δη

y

〉
W ∗ = kW (x, y)ξ · η [23]. The first and third terms enforce the structural

integrity of the two surfaces, while the middle term penalizes the geometric and
spatial discrepancies between them. With this preferable property, Eq. 3 fulfills
the topology correctness purpose, the key of this proposed pipeline.

Surface Loss. As in [23], we choose a Gaussian kernel as the instance of kW .
Namely, kW (x, y) = exp(−‖x−y‖2

σ2
W

), where x and y are the centers of two faces
and σW is a scale controlling parameter that controls the affecting scale between
the two faces. Therefore, the surface loss can be expressed as

Lsurface =
∑

t1,t2

exp(− ‖c(t1) − c(t2)‖2

σ2
W

)N(t1)
T · N(t2) − 2

∑

t,p

exp(− ‖c(t) − c(p)‖2

σ2
W

)N(t)
T · N(p)

+
∑

p1,p2

exp(− ‖c(p1) − c(p2)‖2

σ2
W

)N(p1)
T · N(p2),

(4)

where t1, t2, t and p1, p2, p respectively index faces on the reconstructed surfaces
SR and those on the corresponding ground truth surfaces ST . Lsurface not only
considers each face on the surfaces but also its corresponding direction. When
the reconstructed surfaces are exactly the same as the ground truth, the surface
loss Lsurface should be 0. Otherwise, Lsurface is a bounded positive value [23].
Minimizing Lsurface enforces the reconstructed surfaces to be progressively close
to the ground truth as the training procedure develops.

Figure 2 illustrates how σW controls the affecting scale of a face on a surface.
The three surfaces are identical meshes of a left atrium structure except for the
affecting scale (shown in different colors) on them. There are three colored circles
(red, blue, and green) respectively representing the centers of three faces on the
surfaces, and the arrowed vectors on these circles denote the corresponding face
normals. The color bar ranges from 0 to 1, with 0 representing no effect and 1
representing the most significant effect. From Fig. 2, the distance between the
blue circle and the red one is closer than that between the blue circle and the
green one, and the effect between the red circle and the blue one is accordingly
larger than that between the red circle and the green one. With σW varying
from a large value to a small one, the effects between the red face and other
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Fig. 2. Illustration of how σW controls the affecting scale in the surface loss. The three
surfaces represent an identical left atrium structure with different σW controls. Red,
blue, and green circles denote three centers of the same surface faces. The varying colors
represent the magnitudes of effects between the red circle and all other face centers on
the same surface.

remaining faces become increasingly small. In this way, we are able to control
the acting scale of the surface loss via changing the value of σW . Assigning σW a
value that covers the entire surface results in a global topology encoding of the
surface, while assigning a small value that only covers neighbors shall result in
a topology encoding that focuses on local geometries.

Loss Function. In addition to the surface loss we introduce above, we also
involve two segmentation losses LBCE and LDice, one point cloud loss LCD, and
three regularization losses Llaplace, Ledge, and Lnormal that comply with [13].
The total loss function can be expressed as:

Ltotal = Lseg + Lmesh1 + Lmesh2 + Lmesh3 , (5)
Lseg = ws(LBCE + LDice), (6)
Lmesh = Lw1

surface · Lw2
CD · Lw3

laplace · Lw4
edge · Lw5

normal. (7)

where ws is the weight for the segmentation loss, and w1, w2, w3 and w4 are
respectively the weights for the surface loss, the Chamfer distance, the Laplace
loss, and the edge loss. The geometric mean is adopted to combine the five
individual mesh losses to accommodate their different magnitudes.

Lseg ensures useful feature learning of the ROIs. Lsurface enforces the
integrity of the reconstructed meshes and makes them topologically similar to the
ground truth. LCD makes the point cloud representation of the reconstructed
meshes to be close to that of the ground truth. Additionally, Llaplace, Ledge,
and Lnormal are employed for the smoothness consideration of the reconstructed
meshes.
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3 Experiments

Datasets and Preprocessing. We evaluate and validate our method on a
publicly-accessible dataset MM-WHS (multi-modality whole heart segmenta-
tion) [24], which contains 3D cardiac images of both CT and MR modalities. 20
cardiac CT volumes and 20 cardiac MR volumes are provided in the training set.
40 held-out cardiac CT volumes and 40 held-out cardiac MR volumes are offered
in the testing set. All training and testing cases are accompanied by expert-
labeled segmentation of seven heart structures: the left ventricle (LV), the right
ventricle (RV), the left atrium (LA), the right atrium (RA), the myocardium of
the LV (Myo), the ascending aorta (Ao) and the pulmonary artery (PA). For pre-
processing, we follow [13] to perform resizing, intensity normalization, and data
augmentation (random rotation, scaling, shearing, and elastic warping) for each
training case. Data characteristics and preprocessing details are summarised in
the supplementary material.

Evaluation Metrics. In order to compare with existing state-of-the-art (SOTA)
methods, four metrics as in [13] are employed for evaluation, including Dice,
Jaccard, average symmetric surface distance (ASSD), and Hausdorff distance
(HD). Furthermore, intersected mesh facets are detected by TetGen [10] and
used for quantifying self-intersection (SI).

Table 1. Comparisons with two SOTA methods on the MM-WHS CT test data.
The MeshDeform [13] results are obtained from our self-reimplementation, while the
Voxel2Mesh results are directly copied from [13] since its code has not been open
sourced yet. WH denotes whole heart.

Myo LA LV RA RV Ao PA WH

Dice (↑) Ours 0.888 0.870 0.928 0.928 0.904 0.948 0.841 0.908

MeshDeform 0.883 0.864 0.928 0.921 0.885 0.925 0.814 0.899

Voxel2Mesh 0.501 0.748 0.669 0.717 0.698 0.555 0.491 0.656

Jaccard (↑) Ours 0.803 0.829 0.869 0.867 0.829 0.902 0.737 0.832

MeshDeform 0.806 0.766 0.870 0.855 0.801 0.861 0.704 0.819

Voxel2Mesh 0.337 0.600 0.510 0.570 0.543 0.397 0.337 0.491

ASSD (mm) (↓) Ours 1.528 1.106 0.962 1.727 1.211 0.593 1.344 1.308

MeshDeform 1.474 1.137 0.966 1.750 1.320 0.729 2.020 1.333

Voxel2Mesh 3.412 3.147 4.973 3.638 4.300 4.326 5.857 4.287

HD (mm) (↓) Ours 12.588 11.019 13.616 14.279 11.136 5.369 8.789 16.934

MeshDeform 13.143 9.177 13.823 14.140 7.66 5.408 9.664 17.681

Voxel2Mesh 15.526 13.683 22.146 16.834 18.390 19.419 35.322 37.065

SI (%) (↓) Ours 0.009 0.007 0.011 0.004 0.019 0.003 0.038 0.013

MeshDeform 0.014 0.006 0.017 0.007 0.024 0.005 0.049 0.017

Voxel2Mesh 0.269 0.000 0.000 0.003 0.000 0.000 0.020 0.042

Results. We compare our method with two SOTA methods on the five evalu-
ation metrics. Ours and MeshDeform [13] are trained on the same dataset con-
sisting of 16 CT and 16 MR data that are randomly selected from the MM-WHS
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training set with 60 augmentations for each, and the remaining 4 CT and 4 MR
are used for validation. Evaluations are performed on the encrypted testing set
with the officially provided executables. We reimplement MeshDeform [13] with
Pytorch according to the publicly available Tensorflow version. Please note the
Voxel2Mesh results are directly obtained from [13] since its code has not been
open sourced yet. Training settings are detailed in the supplementary material.

Table 1 shows evaluation results on the seven heart structures and the whole
heart of the MM-WHS CT testing set. Our method achieves the best results in
most entries. For SI, Voxel2Mesh holds the best results in most entries because
of its unpooling operations in each deformation procedure, in which topologi-
cal information is additionally used. However, as described in [13], Voxel2Mesh
may easily encounter out-of-memory errors for its increasing vertices along the
reconstruction process. More results for the MR data can be found in the sup-
plementary material.

Fig. 3. Demonstration of the best as well as the worst cases for MeshDeform with
respect to Dice and our results on the same cases.

Figure 3 shows the best and the worst CT results for MeshDeform with
respect to Dice and our results on the same cases. Noticeably, the best case
for MeshDeform is not the best for our method. For that best case of MeshDe-
form, we can see obvious folded areas on the mesh of PA, while our method
yields more satisfactory visualization results. As for the worst case, both meth-
ods obtain unsatisfactory visualizations. However, the two structures (PA and
RV) obtained from MeshDeform intersect with each other, leading to significant
topological errors. Our method does not have such topology issues.
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Ablation Study. For the ablation study, we train a model without the surface
loss while keeping the rest the same. Table 2 shows the ablation analysis results
on the CT data, which apparently validates the effectiveness of the surface loss.

Table 2. A comparison of reconstruction accuracy on the MM-WHS CT test data for
the proposed method with and without (w.o.) the surface loss.

Myo LA LV RA RV Ao PA WH

Dice (↑) Ours 0.888 0.870 0.928 0.928 0.904 0.948 0.841 0.908

Ours (w.o. Ls) 0.881 0.861 0.932 0.927 0.902 0.947 0.829 0.905

Jaccard (↑) Ours 0.803 0.829 0.869 0.867 0.775 0.902 0.737 0.832

Ours (w.o. Ls) 0.793 0.824 0.875 0.866 0.762 0.899 0.719 0.827

HD (mm) (↓) Ours 12.588 11.019 13.616 14.279 11.136 5.369 8.789 16.934

Ours (w.o. Ls) 14.347 10.954 10.100 14.901 13.225 6.781 10.484 17.602

4 Conclusion

In this work, we propose and validate a whole-heart mesh reconstruction method
incorporating a novel surface loss. Due to the intrinsic and favorable property
of the currents representation, our method is able to generate accurate meshes
with the correct topology.
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