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Abstract. During ultrasonic scanning processes, real-time lesion detec-
tion can assist radiologists in accurate cancer diagnosis. However, this
essential task remains challenging and underexplored. General-purpose
real-time object detection models can mistakenly report obvious false
positives (FPs) when applied to ultrasound videos, potentially mislead-
ing junior radiologists. One key issue is their failure to utilize nega-
tive symptoms in previous frames, denoted as negative temporal contexts
(NTC) [15]. To address this issue, we propose to extract contexts from
previous frames, including NTC, with the guidance of inverse optical
flow. By aggregating extracted contexts, we endow the model with the
ability to suppress FPs by leveraging NTC. We call the resulting model
UltraDet. The proposed UltraDet demonstrates significant improvement
over previous state-of-the-arts and achieves real-time inference speed. We
release the code, checkpoints, and high-quality labels of the CVA-BUS
dataset [9] in https://github.com/HaojunYu1998/UltraDet.

Keywords: Ultrasound Video · Real-time Lesion Detection · Negative
Temporal Context · False Positive Suppression

1 Introduction

Ultrasound is a widely-used imaging modality for clinical cancer screening. Deep
Learning has recently emerged as a promising approach for ultrasound lesion
detection. While previous works focused on lesion detection in still images [25]
and offline videos [9,11,22], this paper explores real-time ultrasound video lesion
detection. Real-time lesion prompts can assist radiologists during scanning, thus
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Fig. 1. Illustration of Negative Temporal Context Aggregation (NTCA) module. (a)
Our motivation: mining negative temporal contexts for FP suppression. (b) The NTCA
module leverages temporal contexts to suppress the FP. (Color figure online)

being more helpful to improve the accuracy of diagnosis. This task requires the
model to infer faster than 30 frames per second (FPS) [19] and only previous
frames are available for current frame processing.

Previous general-purpose detectors [1,2] report simple and obvious FPs
when applied to ultrasound videos, e.g. the red box in Fig. 1(a). These
FPs, attributable to non-lesion anatomies, can mislead junior readers. These
anatomies appear like lesions in certain frames, but typically show negative
symptoms in adjacent frames when scanned from different positions. So experi-
enced radiologists will refer to corresponding regions in previous frames, denoted
as temporal contexts (TC), to help restrain FPs. If TC of a lesion-like region
exhibit negative symptoms, denoted as negative temporal contexts (NTC), radi-
ologists are less likely to report it as a lesion [15]. Although important, the
utilization of NTC remains unexplored. In natural videos, as transitions from
non-objects to objects are implausible, previous works [1,2,20] only consider
inter-object relationships. As shown in Sect. 4.4, the inability to utilize NTC is
a key issue leading to the FPs reported by general-purpose detectors.

To address this issue, we propose a novel UltraDet model to leverage NTC.
For each Region of Interest (RoI) R proposed by a basic detector, we extract
temporal contexts from previous frames. To compensate for inter-frame motion,
we generate deformed grids by applying inverse optical flow to the original reg-
ular RoI grids, illustrated in Fig. 1. Then we extract the RoI features from the
deformed grids in previous frames and aggregate them into R. We call the over-
all process Negative Temporal Context Aggregation (NTCA). The NTCA module
leverages RoI-level NTC which are crucial for radiologists but ignored in previous
works, thereby effectively improving the detection performance in a reliable and
interpretable way. We plug the NTCA module into a basic real-time detector to
form UltraDet. Experiments on CVA-BUS dataset [9] demonstrate that Ultra-
Det, with real-time inference speed, significantly outperforms previous works,
reducing about 50% FPs at a recall rate of 0.90.

Our contributions are four-fold. (1) We identify that the failure of general-
purpose detectors on ultrasound videos derives from their incapability of utilizing
negative temporal contexts. (2) We propose a novel UltraDet model, incorpo-
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rating an NTCA module that effectively leverages NTC for FP suppression. (3)
We conduct extensive experiments to demonstrate the proposed UltraDet sig-
nificantly outperforms the previous state-of-the-arts. (4) We release high-quality
labels of the CVA-BUS dataset [9] to facilitate future research.

2 Related Works

Real-Time Video Object Detection is typically achieved by single-frame
detectors, often with temporal information aggregation modules. One-stage
detectors [5,8,16,21] use only intra-frame information, DETR-based detec-
tors [20,26] and Faster R-CNN-based detectors [1,2,7,14,23,28] are also widely
utilized in video object detection. They aggregate temporal information by min-
ing inter-object relationships without considering NTC.

Ultrasound Lesion Detection [10] can assist radiologists in clinical practice.
Previous works have explored lesion detection in still images [25] and offline
videos [9,11,22]. Real-time video lesion detection is underexplored. In previous
works, YOLO series [17,24] and knowledge distillation [19] are used to speed
up inference. However, these works use single-frame detectors or post-process
methods while learnable inter-frame aggregation modules are not adopted. Thus
their performances are far from satisfactory.

Optical Flow [3] is used to guide ultrasound segmentation [12], motion estima-
tion [4] and elastography [13]. For the first time, we use inverse optical flow to
guide temporal context information extraction.

3 Method

Fig. 2. Illustration of UltraDet model. The yellow and green frames are sampled as
context frames, and their feature maps are inputs of the NTCA module. (Color figure
online)

In real-time video lesion detection, given the current frame It and a sequence of
T previous frames as {Iτ}t−1

τ=t−T , the goal is to detect lesions in It by exploiting
the temporal information in previous frames as illustrated in Fig. 2.
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3.1 Basic Real-Time Detector

The basic real-time detector comprises three main components: a lightweight
backbone (e.g. ResNet34 [6]), a Region Proposal Network (RPN) [14], and a
Temporal Relation head [2]. The backbone is responsible for extracting feature
map Fτ of frame Iτ . The RPN generates proposals consisting of boxes Bτ and
proposal features Qτ using RoI Align and average pooling:

Qτ = AvgPool (RoIAlign(Fτ ,Bτ )) (1)

where τ = t−T, · · · , t−1, t. To aggregate temporal information, proposals from
all T + 1 frames are fed into the Temporal Relation head and updated with
inter-lesion information extracted via a relation operation [7]:

Ql = Ql−1 +Relation(Ql−1,B) (2)

where l = 1, · · · , L represent layer indices, B and Q are the concatenation of all
Bτ and Qτ , and Q0 = Q. We call this basic real-time detector BasicDet. The
BasicDet is conceptually similar to RDN [2] but does not incorporate relation
distillation since the number of lesions and proposals in this study is much
smaller than in natural videos.

3.2 Negative Temporal Context Aggregation

In this section, we present the Negative Temporal Context Aggregation (NTCA)
module. We sample Tctxt context frames from T previous frames, then extract
temporal contexts (TC) from context frames and aggregate them into proposals.
We illustrate the NTCA module in Fig. 3 and elaborate on details as follows.

Fig. 3. Illustration of the Negative Temporal Context Aggregation module.

Inverse Optical Flow Align. We propose the Inverse Optical Flow Align (IOF
Align) to extract TC features. For the current frame It and a sampled context
frame Iτ with τ < t, we extract TC features from the context feature map Fτ

with the corresponding regions. We use inverse optical flow Ot→τ ∈ R
H×W×2
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to transform the RoIs from frame t to τ : Ot→τ = FlowNet(It, Iτ ) where H,
W represent height and width of feature maps. The FlowNet(It, Iτ ) is a fixed
network [3] to predict optical flow from It to Iτ . We refer to Ot→τ as inverse
optical flow because it represents the optical flow in inverse chronological order
from t to τ . We conduct IOF Align and average pooling to extract Ct,τ :

Ct,τ = AvgPool (IOFAlign(Fτ ,Bt,Ot→τ )) (3)

where IOFAlign(Fτ ,Bt,Ot→τ ) extracts context features in Fτ from deformed
grids generated by applying offsets Ot→τ to the original regular grids in Bt,
which is illustrated in the Fig. 1(b).

Temporal Aggregation. We concatenate Ct,τ in all Tctxt context frames to
form Ct and enhance proposal features by fusing Ct into Qt:

Ql
ctxt,t = Ql−1

ctxt,t +Attention(Ql−1
ctxt,t, Ct, Ct) (4)

where l = 1, · · · , L represent layer indices, Q0
ctxt,t = Qt, and Attention(Q,K, V )

is Multi-head Attention [18]. We refer to the concatenation of all TC-enhanced
proposal features in T +1 frames as Qctxt. To extract consistent TC, the context
frames of T previous frames are shared with the current frame.

3.3 UltraDet for Real-Time Lesion Detection

We integrate the NTCA module into the BasicDet introduced in Sect. 3.1 to
form the UltraDet model, which is illustrated in Fig. 2. The head of UltraDet
consists of stacked NTCA and relation modules:

Ql = Ql
ctxt +Relation(Ql

ctxt,B). (5)

During training, we apply regression and classification losses L = Lreg + Lcls
to the current frame. To improve training efficiency, we apply auxiliary losses
Laux = L to all previous T frames. During inference, the UltraDet model uses
the current frame and T previous frames as inputs and generates predictions
only for the current frame. This design endows the UltraDet with the ability to
perform real-time lesion detection.

4 Experiments

4.1 Dateset

CVA-BUS Dateset. We use the open source CVA-BUS dataset that consists
of 186 valid videos, which is proposed in CVA-Net [9]. We split the dataset
into train-val (154 videos) and test (32 videos) sets. In the train-val split, there
are 21423 frames with 170 lesions. In the test split, there are 3849 frames
with 32 lesions. We focus on the lesion detection task and do not utilize the
benign/malignant classification labels provided in the original dataset.
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High-Quality Labels. The bounding box labels provided in the original CVA-
BUS dataset are unsteady and sometimes inaccurate, leading to jiggling and
inaccurate model predictions. We provide a new version of high-quality labels
that are re-annotated by experienced radiologists. We reproduce all baselines
using our high-quality labels to ensure a fair comparison. Visual comparisons
of two versions of labels are available in supplementary materials. To facilitate
future research, we will release these high-quality labels.

Table 1. Quantitative results of real-time lesion detection on CVA-BUS [9].

Model Type Pr80 Pr90 FP80 FP90 AP50 R@16 FPS

One-Stage Detectors

YOLOX [5] Image 69.73.7 43.47.7 23.84.8 87.624.5 80.41.6 97.50.5 59.8
RetinaNet [8] Image 75.72.5 57.22.9 9.32.0 32.86.5 84.51.0 95.10.6 53.6
FCOS [16] Image 87.22.2 72.25.1 11.02.4 23.03.7 89.51.4 98.80.3 56.1
DeFCN [21] Image 81.51.8 67.52.3 21.13.2 33.44.3 86.41.3 99.30.3 51.2
Track-YOLO [24] Video 75.12.7 47.03.1 18.11.9 74.214.7 80.11.0 94.70.9 46.0

DETR-Based Detectors

DeformDETR [27] Image 90.13.2 72.710.6 5.62.2 37.820.9 90.52.0 98.70.3 33.8
TransVOD [26] Video 92.52.2 77.57.2 3.11.3 23.711.5 90.11.8 98.40.4 24.2
CVA-Net [9] Video 92.32.6 80.26.1 4.72.6 19.65.6 91.61.9 98.60.8 23.1
PTSEFormer [20] Video 93.31.9 85.46.0 2.81.1 12.59.8 91.51.6 97.91.2 9.1

FasterRCNN-Based Detectors

FasterRCNN [14] Image 91.30.9 75.23.6 6.91.4 34.46.7 88.01.4 92.41.0 49.2
RelationNet [7] Image 91.41.3 79.22.9 6.22.0 24.45.6 87.61.7 92.40.9 42.7
FGFA [28] Video 92.91.5 82.24.1 4.41.6 13.33.7 90.51.1 93.60.9 33.8
SELSA [23] Video 91.61.7 80.22.5 7.51.5 23.35.5 89.21.1 92.60.8 43.8
MEGA [1] Video 93.91.5 86.92.3 3.11.7 11.73.0 90.91.0 93.60.7 40.2
BasicDet (RDN) [2] Video 92.41.0 83.62.2 3.81.2 13.43.2 88.71.4 92.70.6 42.2
UltraDet (Ours) Video 95.71.2 90.81.4 1.90.4 5.71.6 91.61.6 93.81.3 30.4

4.2 Evaluation Metrics

Pr80, Pr90. In clinical applications, it is important for detection models to be
sensitive. So we provide frame-level precision values with high recall rates of 0.80
and 0.90, which we denote as Pr80 and Pr90, respectively.

FP80, FP90. We further report lesion-level FP rates as critical metrics. Frame-
level FPs are linked by IoU scores to form FP sequences [24]. The number of FP
sequences per minute at recall rates of 0.80 and 0.90 are reported as FP80 and
FP90, respectively. The unit of lesion-level FP rates is seq/min.

AP50. We provide AP50 instead of mAP or AP75 because the IoU threshold of
0.50 is sufficient for lesion localization in clinical practice. Higher thresholds like
0.75 or 0.90 are impractical due to the presence of blurred lesion edges.

R@16. To evaluate the highest achievable sensitivity, we report the frame-level
average recall rates of Top-16 proposals, denoted as R@16.



Mining Negative Temporal Contexts to Suppress FPs 9

4.3 Implementation Details

UltraDet Settings. We use FlowNetS [3] as the fixed FlowNet in IOF Align and
share the same finding with previous works [4,12,13] that the FlowNet trained
on natural datasets generalizes well on ultrasound datasets. We set the pooling
stride in the FlowNet to 4, the number of UltraDet head layers L = 2, the
number of previous frames T = 15 and Tctxt = 2, and the number of proposals is
16. We cached intermediate results of previous frames and reuse them to speed
up inference. Other hyper-parameters are listed in supplementary materials.

Shared Settings. All models are built in PyTorch framework and trained using
eight NVIDIA GeForce RTX 3090 GPUs. We use ResNet34 [6] as backbones and
set the number of training iterations to 10,000. We set the feature dimensions of
detection heads to 256 and baselines are re-implemented to utilize only previous
frames. We refer to our code for more details.

4.4 Main Results

Quantitative Results. We compare performances of real-time detectors with
the UltraDet in Table 1. We perform 4-fold cross-validation and report the mean
values and standard errors on the test set to mitigate fluctuations. The UltraDet
outperforms all previous state-of-the-art in terms of precision and FP rates.
Especially, the Pr90 of UltraDet achieves 90.8%, representing a 5.4% absolute
improvement over the best competitor, PTSEFormer [20]. Moreover, the FP90

of UltraDet is 5.7 seq/min, reducing about 50% FPs of the best competitor,
PTSEFormer. Although CVA-Net [9] achieve comparable AP50 with our method,
we significantly improve precision and FP rates over the CVA-Net [9].

Fig. 4. (a) Ratios of FPs that are suppressible by leveraging NTC. (b) Visual compar-
isons of BasicDet and UltraDet prediction results at recall 0.90. Blue boxes are true
positives and red boxes are FPs. (Color figure online)

Importance of NTC. In Fig. 4(a), we illustrate the FP ratios that can be
suppressed by using NTC. The determination of whether FPs can be inhibited
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by NTC is based on manual judgments of experienced radiologists. We find that
about 50%–70% FPs of previous methods are suppressible. However, by utilizing
NTC in our UltraDet, we are able to effectively prevent this type of FPs.

Inference Speed. We run inference using one NVIDIA GeForce RTX 3090
GPU and report the inference speed in Table 1. The UltraDet achieves an infer-
ence speed of 30.4 FPS and already meets the 30 FPS requirement. Using Ten-
sorRT, we further optimize the speed to 35.2 FPS, which is sufficient for clinical
applications [19].

Qualitative Results. Figure 4(b) visually compares BasicDet and UltraDet.
The BasicDet reports FPs at t = 30 and 40 as it fails to leverage NTC when
t = 20, while the UltraDet successfully suppresses FPs with the NTCA module.

4.5 Ablation Study

Table 2. Ablation study of each NTCA sub-module.

IOFAlign TempAgg Pr80 Pr90 FP80 FP90 AP50 R@16 FPS

- - 92.41.0 83.62.2 3.81.2 13.43.2 88.71.4 92.70.6 42.2
- � 93.71.8 84.31.4 3.41.0 12.50.8 90.01.9 93.01.3 37.2
� - 94.52.3 88.72.2 2.60.6 9.01.5 90.51.9 92.91.4 32.3
� � 95.71.2 90.81.4 1.90.4 5.71.6 91.61.6 93.81.3 30.4

Effectiveness of Each Sub-module. We ablate the effectiveness of each sub-
module of the NTCA module in Table 2. Specifically, we replace the IOF Align
with an RoI Align and the Temporal Aggregation with a simple average pool-
ing in the temporal dimension. The results demonstrate that both IOF Align
and Temporal Aggregation are crucial, as removing either of them leads to a
noticeable drop in performance.

Table 3. Design of the NTCA Module.

Num Pr80 Pr90 FP80 FP90 AP50 R@16 FPS

Feature-level 94.00.9 84.62.9 2.90.8 11.73.0 90.80.7 93.30.6 30.6
RoI-level 95.71.2 90.81.4 1.90.4 5.71.6 91.61.6 93.81.3 30.4
Both-level 94.61.0 88.71.8 2.50.9 7.92.4 90.81.5 93.80.9 26.9

Design of the NTCA Module. Besides RoI-level TC aggregation in UltraDet,
feature-level aggregation is also feasible. We plug the optical flow feature warping
proposed in FGFA [28] into the BasicDet and report the results in Table 3.
We find RoI-level aggregation is more effective than feature-level, and both-
level aggregation provides no performance gains. This conclusion agrees with
radiologists’ skills to focus more on local regions instead of global information.
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5 Conclusion

In this paper, we address the clinical challenge of real-time ultrasound lesion
detection. We propose a novel Negative Temporal Context Aggregation (NTCA)
module, imitating radiologists’ diagnosis processes to suppress FPs. The NTCA
module leverages negative temporal contexts that are essential for FP suppres-
sion but ignored in previous works, thereby being more effective in suppressing
FPs. We plug the NTCA module into a BasicDet to form the UltraDet model,
which significantly improves the precision and FP rates over previous state-of-
the-arts while achieving real-time inference speed. The UltraDet has the poten-
tial to become a real-time lesion detection application and assist radiologists in
more accurate cancer diagnosis in clinical practice.
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China (2022ZD0114900) and National Science Foundation of China (NSFC62276005).
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