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Abstract. A string w is called a minimal absent word (MAW ) for a
string S if w does not occur as a substring in S and all proper substrings
of w occur in S. MAWs are well-studied combinatorial string objects that
have potential applications in areas including bioinformatics, musicology,
and data compression. In this paper, we generalize the notion of MAWs to
a set S = {S1, . . . , Sk} of multiple strings. We first describe our solution
to the case of k = 2 strings, and show how to compute the set M of MAWs
in optimal O(n+|M|) time and with O(n) working space, where n denotes
the total length of the strings in S. We then move on to the general
case of k > 2 strings, and show how to compute the set M of MAWs
in O(n�k/ log n� + |M|) time and with O(n(k + log n)) bits of working
space, in the word RAM model with machine word size ω = log n. The
latter algorithm runs in optimal O(n + |M|) time for k = O(log n).

1 Introduction

A non-empty string w is said to be an absent word (a.k.a. a forbidden word) for
a string S if w is not a substring of S. An absent word w for S is said to be a
minimal absent word (MAW ) for S if all proper substrings of w occur in S. For
instance, for string S = bbacccbaa over an alphabet Σ = {a, b, c, d}, the set
MAW(S) of all MAWs for S is {aaa, bbb, cccc, d, ab, ca, bc, aac, acb, cbb, accb,
cbac, bbaa}. MAWs are combinatorial string objects, and their interesting
mathematical properties have extensively been studied in the literature (see
[1,7,16,17,19,23] and references therein). MAWs also enjoy several applica-
tions including phylogeny [11], data compression [3,15,18], musical information
retrieval [14], and bioinformatics [2,12,22,24].
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It is known that the number |MAW(S)| of MAWs for a string S of length n
over an alphabet of size σ is O(σn) and that this bound is tight [17]. Crochre-
more et al. [17] gave an algorithm that computes MAW(S) in O(σn) time with
O(n) working space. Fujishige et al. [20] showed an improved algorithm for com-
puting MAW(S) in optimal O(n + |MAW(S)|) time with O(n) working space,
for an input string S of length n over an integer alphabet of polynomial size in
n. Both of the two aforementioned algorithms utilize an O(n)-size string data
structure called the (directed acyclic word graph) DAWG [9], which recognizes
the set of substrings of S, and can be built in O(n log σ) time for general ordered
alphabets [9], and in O(n) time for integer alphabets of polynomial size in n [20].
There also exist other efficient algorithms for computing MAWs with other string
data structures such as suffix arrays and Burrows-Wheeler transforms [4,8].

The aim of this paper is to extend the notion of MAWs to a set S =
{S1, . . . , Sk} of multiple k strings. We are aware of a few related attempts in
earlier work: Chairungsee and Crochemore [11] introduced a string similarity
measure based on the symmetric difference MAW(S1) �MAW(S2) of the sets of
MAWs for two strings S1 and S2 to compare. They introduced a length threshold
� ≥ 1, and described an approach for computing (MAW(S1) � MAW(S2)) ∩ Σ�

with the two following steps: First, the tries of size O(n�) each representing the
substrings of S1 and S2 of length up to � are built, where n = |S1| + |S2|.
Then, two tries each representing MAW(S1) ∩ Σ� and MAW(S2) ∩ Σ� are
built, which require O(nσ) space. Finally, the length-bounded symmetric dif-
ference (MAW(S1) � MAW(S2)) ∩ Σ� is computed from MAW(S1) ∩ Σ� and
MAW(S2) ∩ Σ�, but the authors did not explicitly describe how this compu-
tation is done in their method. Overall, their algorithm requires Ω(n(� + σ))
time and space [11]1. Charalampapaulose et al. [12] tackled the same problem
of computing the symmetric difference MAW(S1) � MAW(S1) (without length
threshold �), and proposed a solution that requires O(σn) time and space. Their
method firstly computes MAW(S1) and MAW(S2) separately, and then removes
the elements that are in MAW(S1)∩MAW(S2). Charalampopoulos, Crochemore,
and Pissis [13] presented how to count the number |MAW(S1) � MAW(S2)| of
elements in the symmetric difference MAW(S1) �MAW(S2) in O(n) time in the
case of integer alphabets of polynomial size in n, by avoiding to list the elements
explicitly.

Let S = {S1, . . . , Sk} be the input set of k strings, and B ∈ {0, 1}k be a
given bit vector of length k. Our problem is to list (generalized) MAWs w for S
and B such that w ∈ MAW(Si) for every B[i] = 1, and w /∈ MAW(Si) for every
B[i] = 0. For k = 2, the aforementioned problem of computing MAW(S1) �
MAW(S2) is equivalent to solving our problem for B = 01 and B = 10. In
Sect. 4 and Sect. 5, we deal with the case with k = 2, and present an algorithm
running in O(n + |MB|) time with O(n) working space, where MB denotes the
set of (generalized) MAWs to output for a given bit vector B (Theorem 2). This
immediately gives us an algorithm for listing the elements of the symmetric

1 The claimed time bound for computing the trie is O(nσ) (Theorem 1 of [11]). It
seems that the authors regarded the length threshold � as a constant.



Linear-Time Computation of Generalized Minimal Absent Words 333

difference MAW(S1)�MAW(S2) in optimal O(n+ |MAW(S1)�MAW(S2)|) time
(Corollary 1). In Sect. 6, we deal with the general case of k > 2, and extend our
solution for k = 2 to the general case. Let n be the total length of the input
k strings in S. Our solution for general k > 2 works in O(n�k/ log n� + |MB|)
time with O(n(k + log n)) bits of working space on the word RAM model with
machine word size ω = log n. Thus, for k = O(log n), our algorithm runs in
optimal O(n + |MB|) time. All the bounds claimed in this paper are valid for
linearly sortable alphabets, including integer alphabets of polynomial size in n.

As in the previous work [17,20,21], our key data structure is the DAWG for
the input set S of strings. The best-known algorithm for constructing the DAWG
for a set of strings of total length n takes O(n log σ) time [10], thus it can require
O(n log n) time for large alphabets. We describe how the DAWG for a given set
S of strings over an integer alphabet of polynomial size in n can be obtained in
optimal O(n) time (Theorem 1), which may be of independent interest.

2 Preliminaries

Strings. Let Σ be an ordered alphabet. An element of Σ is called a character. For
characters a, b ∈ Σ, we write a ≺ b (or equivalently b 	 a) if a is lexicographically
smaller than b. An element of Σ∗ is called a string. The length of a string S is
denoted by |S|. The empty string ε is the string of length 0. If S = xyz, then
x, y, and z are called a prefix, substring, and suffix of S, respectively. They are
called a proper prefix, proper substring, and proper suffix of S if x 
= S, y 
= S,
and z 
= S, respectively. Let Substr(S) denote the set of substrings of string
S. For any 1 ≤ i ≤ |S|, the i-th character of S is denoted by S[i]. For any
1 ≤ i ≤ j ≤ |S|, S[i..j] denotes the substring of S starting at i and ending at j.
For convenience, let S[i..j] = ε for 0 ≤ j < i ≤ |S| + 1. We say that a string w
occurs in a string S iff w is a substring of S. Note that by definition the empty
string ε is a substring of any string S and hence ε always occurs in S.

For a set S of strings, let ‖S‖ denote the total length of the strings in S, that
is, ‖S‖ =

∑
S∈S |S|. Let Substr(S) denote the set of substrings of the strings in

S, that is, Substr(S) =
(⋃

S∈S{S[i..j] | 1 ≤ i ≤ j ≤ |S|}
)

∪ {ε}.

Minimal Absent Words (MAWs). A string w is called an absent word for a
string S if w does not occur in S. Let AW(S) = Σ∗ \ Substr(S) denote the set of
absent words for a string S. An absent word w ∈ AW(S) for string S is called a
minimal absent word or MAW for S if any proper substring of w occurs in S.
We denote by MAW(S) the set of all MAWs for S. Let nonMAW(S) = AW(S) \
MAW(S) be the set of absent words for S which are not MAWs. Note that, for
strings w and S, it holds that w /∈ MAW(S) iff w ∈ Substr(S) ∪ nonMAW(S).

We extend the aforementioned notion of MAWs to a set S = {S1, . . . , Sk} of
k strings for k ≥ 1, as follows: Let B be a bit-vector of length k, and let SB be a
subset of S such that SB = {Si | B[i] = 1}. Let SB = {Si | B[i] = 0} = S \ SB.
A string w is said to be a MAW for SB if (1) w ∈

⋂
Si∈SB

MAW(Si) and (2) w /∈⋃
Si∈SB

MAW(Si). Condition (1) implies that w is a MAW for any string in SB.
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Condition (2) implies that w is not a MAW for any string in SB, which is equiva-
lent to say that w ∈

⋂
Si∈SB

(Substr(Si)∪nonMAW(Si)). Let MAW(SB) be the set
of all MAWs for SB. Here is some example: For string set S = {abaab, aacbba}
over the alphabet Σ = {a, b, c, d}, MAW(S10) = {aaba, bab, bb, c}, MAW(S01) =
{ab, baa, bac, bbb, bc, ca, cba, cc}, and MAW(S11) = {aaa, d}.

The problem we consider in this paper is the following:

Problem 1 (MAWs for multiple input strings). Given a set S = {S1, . . . , Sk} of
k strings over an alphabet Σ and a bit vector B of length k, compute MAW(SB).

3 The DAWG Data Structure

We use the directed acyclic word graph (DAWG) [9] data structure for a set
S = {S1, . . . , Sk} of k strings, which is a DFA of size O(‖S‖) that recognizes all
suffixes of the strings in S.

To give a formal definition of DAWG(S), let End PosS(w) denote the set of
ending positions of all occurrences of a string w in the strings of S, that is,

End PosS(w) = {(i, j) | Si[j − |w| + 1..j] = w, 1 ≤ i ≤ k, 1 ≤ j ≤ |Si|}.

We consider an equivalence relation ≡S of strings over Σ w.r.t. S such that,
for any two strings w and u, w ≡S u iff End PosS(w) = End PosS(u). For any
string x ∈ Σ∗, let [x]S denote the equivalence class for x w.r.t. ≡S . All the non-
substrings x /∈ Substr(S) form a unique equivalence class, called the degenerate
class.

Definition 1. The DAWG of a set S of strings, denoted DAWG(S), is an edge-
labeled DAG (V,E) such that

V = {[x]S | x ∈ Substr(S)},

E = {([x]S , b, [xb]S) | x, xb ∈ Substr(S), b ∈ Σ}.

We also define the set L of suffix links of DAWG(S) by

L = {([ax]S , a, [x]S) | x, ax ∈ Substr(S), a ∈ Σ, [ax]S 
= [x]S}.

Namely, two substrings x and y in Substr(S) are represented by the same node
of DAWG(S) iff the ending positions of x and y in the strings of S are equal.
Note that DAWG(S) does not contain the node for the degenerate class nor its
in-coming edges. This is important for DAWG(S) to have a total linear number
of edges [9], and for our linear-time algorithm for listing all the MAWs for a
given query.

For convenience, assume that each string Si in S = {S1, . . . , Sk} terminates
with a unique end-marker #i which does not occur elsewhere, where #i 
= #j

for i 
= j. Then DAWG(S) has exactly k sink nodes, each of which recognizes all
the non-empty suffixes of Si. For each 1 ≤ i ≤ k, the sink that recognizes the
suffixes of Si is labeled by i.
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The DAWG for a single string T is the DAWG for a singleton {T} and is
denoted by DAWG(T ).

The state-of-the-art algorithm that builds DAWG(S) is Blumer et al.’s online
algorithm [9] which runs in O(n log σ) time with O(n) space, where n = ‖S‖ is
the total length of the strings in S and σ is the alphabet size. Below we describe
a faster construction of DAWG(S) in the case of integer alphabets:

Theorem 1 (Linear-time DAWG construction for a set of strings).
For a given set S = {S1, . . . , Sk} of k strings of total length n over an integer
alphabet Σ of polynomial size in n, one can build the edge-sorted DAWG(S) in
O(n) time and space.

Proof. We first create a concatenated string T = S1 · · · Sk of total length n from
the strings in S. We build DAWG(T ) for the single string T in O(n) time and
space, using the algorithm of Fujishige et al. [20,21], where the out-going edges of
every node are lexicographically sorted. Our goal is to convert GT = DAWG(T )
to GS = DAWG(S). For a set P of integer pairs and a pair (a, b) of integers, let
P ⊕ (a, b) = {(p + a, q + b) | (p, q) ∈ P}. Our key observation is that, for any
substrings w ∈ Substr(S) that do not contain separators #i except for their last
positions, it holds that

End PosS(w)

= End PosS1(w) ∪

⎛

⎝
⋃

2≤i≤k

End PosSi
(w) ⊕ (i − 1, |S1 · · · Si−1|)

⎞

⎠ . (1)

Equation (1) implies that the substrings w of T = S1 · · · Sk which are also
substrings of S are represented by essentially the same nodes in GT and in GS ,
meaning that there is an injection from the nodes of GS to the nodes of GT .

What is left is how to remove the redundant nodes in GT which represent the
substrings y of T containing a separator #i inside, which are thus not substrings
of S. Let us call the longest path of GT that represents T as the spine. Since each
#i occurs exactly once in T , any substrings of T that contain #i are represented
by the spine of GT . Thus, we can obtain GS by removing the redundant nodes
from the spine of GT , but we ensure that for every i the suffixes of Si ending
with #i are still represented in the graph. This can be achieved as follows:
We process i = k, . . . , 2 in decreasing order. We first split the spine into two
parts each spelling out S1 · · · Sk−1 and Sk. We remove the nodes in the Sk part
which are not reachable from the source of the modified graph, together with
their out-going edges and suffix links. This gives us DAWG({S1 · · · Sk−1, Sk}).
After processing i = k, we continue the same process for i = k − 1 with the
remaining spine that spells out S1 · · · Sk−1. After processing i = 2, we obtain
GS = DAWG(S). See Fig. 1 for an example of our construction. It is trivial that
all the redundant nodes can be removed in O(n) time. ��

We remark that the order of concatenating the strings in S does not affect the
correctness nor the complexity of our algorithm.
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Fig. 1. Illustration for our linear-time construction of DAWG(S) for a set S =
{abc#1, bbac#2, abca#3} of strings. We first build DAWG(T ) for the concatenated
string T = abc#1bbac#2abca#3. Then, we remove the redundant nodes in the spine of
the DAWG for i = 3 and then for i = 2. This gives us DAWG(S).
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4 Algorithm Overview for k = 2

In what follows, we consider the case where our input set S consists of two strings
S1 and S2 which respectively terminate with special characters #1 and #2. We
show how, given a bit vector B ∈ {00, 01, 10, 11} of length 2, we can compute
MAW(SB) in O(n + |MAW(SB)|) time and O(n) working space, where n = ‖S‖.

We first build the edge-sorted DAWG(S) for a given S = {S1, S2} in O(n)
time and space with Theorem 1. We label each node v of DAWG(S) by #i iff v
represents a substring of Si (1 ≤ i ≤ 2). Let label(v) ∈ {#1,#2,#1#2} denote
the label of node v. The labels of all nodes can be precomputed in O(n) time.

Our algorithm is based on Fujishige et al.’s algorithm [20,21] for computing
all the MAWs in the case of a single input string. As such, for each node x of
DAWG(S) we focus on the shortest string represented by x and denote it by au,
where a ∈ Σ and u ∈ Σ∗. We use the suffix link of the node x and its target
node y whose longest member is u (namely, the first letter a of au is removed
by following the suffix link from x to y). For ease of explanation, we identify the
node x with the string au, and the node y with the string u.

Fujishige et al.’s algorithm compares the out-going edges of au and those of
u one by one in the sorted order. Suppose au has an out-going edge labeled b. If
u does not have an out-going edge labeled b, then their algorithm outputs aub
as a MAW for the input string. Otherwise, it outputs nothing, and the cost is
charged to the out-going edge of au labeled b. Each MAW aub in the output is
encoded by a tuple (a, i, j) such that w[i..j] = ub, thus taking O(1) space. This is
how Fujishige et al.’s algorithm works in O(n + |MAW(S)|) time and with O(n)
working space for a single string S.

However, in our case of multiple strings, depending on the label of nodes au,
aub and ub, and depending on the value of the given bit vector B, there may
exist some edge comparisons that cannot be charged either to the output MAWs
or to the out-going edges of node au. It is also possible that even if there is a
node representing aub in DAWG(S), still aub is a MAW for some string(s) in S.
To overcome these difficulties, we introduce skip links that permit us to avoid
unwanted edge character comparisons.

5 Skip Links for k = 2

We use the same conventions for the nodes au, aub and u on DAWG(S) as in the
previous section, and also consider the node ub. We have three possible cases for
the label of node au, where label(au) = #1#2, label(au) = #1, or label(au) = #2.
In each of the three cases, there are some sub-cases for the labels of node aub
and node ub. By inspection, we obtain all the possible cases that need to be
considered, as shown in Fig. 2.

When B = 00, then since MAW(S00) = Σ∗ \ (MAW(S1) ∪ MAW(S2)), there
are no MAWs to output. In what follows, we describe our solutions to the cases
with B ∈ {10, 11}. We remark that the case with B = 01 is symmetric to the
case with B = 10.
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5.1 When B = 10

There are four cases in which we output aub as a MAW for MAW(S10) (see the
table on the left of Fig. 2):

Fig. 2. Left: All possible cases of the labels of the nodes au, aub, and ub, and their
corresponding bit vectors B. “absent” refers to the case where there is no out-going edge
labeled b from node au. The cells with “-” refer to impossible combinations of node
labels. Middle: Illustration for DAWG(S) which shows the case where au is labeled
#1#2, aub is labeled #1, and ub is labeled #1#2. In this case aub is a MAW in
MAW(SB) with B = 01 (see the left table). Right: The regions corresponding to the
bit vectors B ∈ {00, 01, 10, 11}.

(1) label(au) = #1#2, label(aub) = #2, and label(ub) = #1#2;
(2) label(au) = #1#2, aub ∈ AW(S), and label(ub) = #1;
(3) label(au) = #1, aub ∈ AW(S), and label(ub) = #1;
(4) label(au) = #1, aub ∈ AW(S), and label(ub) = #1#2.

When label(au) = #1#2. We create skip links that simultaneously manage
Cases (1) and (2), both having label(au) = #1#2. We create a selected list
schar(u) of out-going edge labels of node u such that schar(u) = {b | label(ub) =
#1}, where the elements are lexicographically sorted. Let char(au) be the sorted
list of all out-going edge labels of node au. For any list L of characters and any
character c ∈ Σ, let succ(c, L) denote the lexicographical successor of c in L.
Our algorithm for B = 10 and label(au) = #1#2 is described in Algorithm 1.

When label(au) = #1. We create skip links that simultaneously manage
Cases (3) and (4), both having label(au) = #1. We create another selected list
schar′(u) of out-going edge labels of node u such that schar′(u) = {b | label(ub) ∈
{#1,#1#2}}, where the elements are lexicographically sorted. We use the same
char(au) in the previous case. Our algorithm for B = 10 and label(au) = #1 is
described in Algorithm 2.

Lemma 1 (Linear-time MAW computation for B = 10). Given B = 10,
one can compute MAW(S10) in O(n+ |MAW(S10)|) time and O(n) working space
for integer alphabets of polynomial size in n = ‖S‖.
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Algorithm 1: Algorithm for B = 10 and label(au) = #1#2

Input: A node au of DAWG(S) such that label(au) = #1#2, B = 10.
Output: A subset M of MAWs aub with b ∈ Σ.

1 M ← ∅;
2 U ← char(au) ∪ {$U} ; /* $U is lex. largest in U */

3 L ← schar(u) ∪ {$L} ; /* $L is lex. largest in L and $L ≺ $u */

4 b̂ ← U [1]; b ← L[1] ; /* start with lex. smallest characters */

5 while b 	= $L do

6 if b̂ = b then
7 if label(aub) = #2 and label(ub) = #1#2 then
8 M ← M ∪ {aub} ; /* output aub */

9 b̂ ← succ(b̂, U) ; /* move to the next character in U */

10 b ← succ(b, L) ; /* move to the next character in L */

11 else if b̂ 
 b then
12 M ← M ∪ {aub} ; /* output aub */

13 b ← succ(b, L) ; /* move to the next character in L */

14 return M ;

Proof. We run Algorithm 1 and Algorithm 2 for every node au of DAWG(S).
In the preprocessing phase, we build the edge-sorted DAWG(S) in O(‖S‖)

time and space by Theorem 1. Since the out-going edges of every node are
sorted, we can easily compute the sorted lists char(au), schar(u), schar′(u), and
schar′′(u) for all nodes in O(n) total time.

Let us consider the complexity of the scanning phase of Algorithm 1. Each
edge-label comparison that falls into “b̂ = b” in line 6 of Algorithm 1 is associated
either to the reported MAW aub if label(aub) = #2 and label(ub) = #1#2 (in
line 7 and line 8), or to the out-going edge of node au labeled b otherwise.
Each edge-label comparison that falls into “b̂ 	 b” in line 11 is associated to
the reported MAW aub in line 12. This ensures the desired time complexity for
Algorithm 1. The complexity for Algorithm 2 is similar to show.

The correctness of Algorithm 1 and Algorithm 2 is immediate from the tables
in Fig. 2 and 3. ��

5.2 When B = 11

There is a single case in which we output aub as a MAW for MAW(S11) (see
Fig. 2): label(au) = #1#2, aub ∈ AW(S), and label(ub) = #1#2.

Unwanted comparisons can occur here if aub ∈ AW(S), and label(ub) = #1

or label(ub) = #2. To avoid such comparisons, we consider another carefully
selected list schar′′(u) of out-going edge labels of node u such that schar′′(u) =
{b | label(ub) = #1#2}, where the elements are lexicographically sorted. We can
use the same char(au) in the previous subsection.

We can modify Algorithm 2 for B = 01 with label(au) = #1 so that the
modified algorithm computes MAWs for B = 11, only by using schar′′(u) in
place of schar′(u). This leads us to the following lemma:
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Fig. 3. Illustration for our algorithm for B = 10 and label(au) = #1#2. The white
cells in the table show the cases where we output elements of MAW(S10). We compare
the labels of the selected out-going edges of node au and u which are connected by the
skip links, in sorted order. In this diagram, aud and aui are output in line 12 and auc
and aue are output in line 12 of Algorithm 1 as elements of MAW(S10).

Lemma 2 (Linear-time MAW computation for B = 11). Given B = 11,
one can compute MAW(S11) in O(n+ |MAW(S11)|) time and O(n) working space
for integer alphabets of polynomial size in n = ‖S‖.

5.3 Our Main Result for k = 2

Finally we obtain the main result for a case of two strings with k = 2.

Theorem 2 (Linear-time MAW computation for a set of two strings).
Given a set S = {S1, S2} of two strings of total length n and a bit vector B ∈
{01, 10, 11}, one can compute MAW(SB) in O(n + |MAW(SB)|) time and O(n)
working space for integer alphabets of polynomial size in n.

The following corollary is immediate from Theorem 2.

Corollary 1. Given a set S = {S1, S2} of two strings of total length n, one can
compute MAW(S1)∩MAW(S2), MAW(S1)∪MAW(S2), and MAW(S1)�MAW(S2)
in O(n+ |MAW(S1)∩MAW(S2)|) time, O(n+ |MAW(S1)∪MAW(S2)|) time, and
O(n+ |MAW(S1)�MAW(S2)|) time, respectively, using O(n) working space, for
integer alphabets of polynomial size in n.

6 Algorithm for Arbitrary k > 2

In this section, we present our algorithm for computing MAW(SB) in case where
S = {S1, . . . , Sk} contains k > 2 strings.
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Algorithm 2: Algorithm for B = 10 and label(au) = #1

Input: A node au of DAWG(S) such that label(au) = #1, B = 10.
Output: A subset M of MAWs aub with b ∈ Σ.

1 M ← ∅;
2 U ← char(au) ∪ {$U} ; /* $U is lex. largest in U */

3 L ← schar′(u) ∪ {$L} ; /* $L is lex. largest in L and $L ≺ $u */

4 b̂ ← U [1]; b ← L[1] ; /* start with lex. smallest characters */

5 while b 	= $L do

6 if b̂ = b then

7 b̂ ← succ(b̂, U) ; /* move to the next character in U */

8 b ← succ(b, L) ; /* move to the next character in L */

9 else if b̂ 
 b then
10 M ← M ∪ {aub} ; /* output aub */

11 b ← succ(b, L) ; /* move to the next character in L */

12 return M ;

Let B ∈ {0, 1}k \ {0k} be an input bit vector of length k > 2. We redefine
the labels of the nodes of DAWG(S) such that label(v)[i] = 1 iff v is a substring
of Si for 1 ≤ i ≤ k. Namely, label(v) is now also a bit vector of length k.

Let aub ∈ Σ∗ (a, b ∈ Σ and u ∈ Σ∗) be a candidate of an element of
MAW(SB) as in the previous sections, where the suffix link of node au points to
node u and node u has an out-going edge labeled b. Then, it follows from the
definition of MAW(SB) that aub ∈ MAW(SB) iff

(A) label(aub)[i] = 0, label(au)[i] = 1, and label(ub)[i] = 1 (i.e. aub ∈ MAW(Si)),
or

(A’) au has no out-going edge labeled b, label(au)[i] = 1, and label(ub)[i] = 1
(i.e. aub ∈ MAW(Si))

for all 1 ≤ i ≤ k with B[i] = 1, and

(B) label(aub)[i] = 1 (i.e. aub ∈ Substr(Si)), or
(C) label(aub)[i] = 0, and label(au)[i] = 0 or label(ub)[i] = 0

(i.e. aub ∈ nonMAW(Si)), or
(C’) au has no out-going edge labeled b, and label(au)[i] = 0 or label(ub)[i] = 0

(i.e. aub ∈ nonMAW(Si))

for all 1 ≤ i ≤ k with B[i] = 0.
For each node au in DAWG(S) whose suffix link points to node u, we create

a united single skip link schar(ub) for the children ub of node u such that b ∈
schar(ub) iff label(ub)[i] = 1 for every i with B[i] = 1.

After the above preprocessing is finished, we proceed to the scanning phase of
our algorithm. For each node au, we scan the skip links char(aub) and schar(ub)
in parallel, analogously to the case with k = 2. Let b̂ ∈ char(aub) and b ∈
schar(ub). Our algorithm compares these characters in sorted order while keeping
the invariant b̂ � b as in the case with k = 2.
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When the comparison falls into the case “b̂ = b”, then we output aub as
an element of MAW(SB) if Case (A) is satisfied and if Case (B) or Case (C) is
satisfied. When the comparison falls into the case “b̂ 	 b”, then we output aub
as an element of MAW(SB) if Cases (A’) and (C’) are both satisfied.

This already gives us an O(nk)-time algorithm for computing MAW(SB)
using O(n(k+log n)) bits of working space, or alternatively O(n�k/ log n�) words
of working space in the word RAM model with machine word size ω = log n.

We can speed up checking Cases (A), (B), (C) for each node au by using bit
masks of size ω = log n each stored at nodes aub, au, and ub, from O(k) time to
O(�k/ log n�) time. For Cases (A’) and (C’), it suffices for us to use only the bit
masks stored at nodes au and ub, since node aub does not exist in these cases
and we detect this as a result of “b̂ 	 b” comparison.

Theorem 3 (Efficient MAW computation for a set of k strings). Given
a set S = {S1, . . . , Sk} of k strings of total length n and a bit vector B ∈
{0, 1}k \ {0k}, one can compute MAW(SB) in O(n�k/ log n� + |MAW(SB)|) time
and O(n(k + log n)) bits of working space (or alternatively O(n�k/ log n�) words
of working space), for integer alphabets of polynomial size in n.

7 Discussions

Béal et al. [6] considered a different version of MAWs MAW′(S) for a set S of
k strings, where a string w = aub is a MAW for S = {S1, . . . , Sk} if aub /∈
Substr(S), au ∈ Substr(Si) and ub ∈ Substr(Sj) for some 1 ≤ i, j ≤ k. They
gave an O(σn)-time and space solution for computing MAW′(S). This version of
MAWs can be computed in optimal O(n + |MAW′(S)|) time, independently of
k, by running our algorithm without skip links. Ayad et al. [3] considered the
problem of computing the same version of MAWs of length up to � > 1.

Independently to our work, the recent work by Béal and Crochemore [5]
considered the following problem: Let T and R be sets of strings, where T is
called a target and R is called a reference. A T -specific string with respect to R is
a string u such that u ∈ Substr(T ), u /∈ Substr(R), v ∈ Substr(R) for any proper
substring v of u. By definition, a string u is a T -specific string with respect to
R if and only if u ∈ MAW(R) ∩ Substr(T ). Béal and Crochemore [5] showed
an algorithm for finding all T -specific strings w.r.t. R in O(nσ)-time and O(n)
space, where n is the total length of the strings in T and R, assuming that the
edges of the DAWG are represented by transition matrices (Proposition 2, [5]).
Their algorithm also uses the DAWG built on T and R and marks its nodes in
an appropriate way (Proposition 1, [5]). This marking technique is very similar
to our skip links from Sect. 5 for the case of k = 2, and thus our algorithm can
be extended to solve this problem in O(n) time and space for integer alphabets.
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