
Efficient Parameterized Pattern Matching
in Sublinear Space

Haruki Ideguchi(B), Diptarama Hendrian , Ryo Yoshinaka ,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
haruki.ideguchi.q3@dc.tohoku.ac.jp,

{diptarama,ryoshinaka,ayumis}@tohoku.ac.jp

Abstract. The parameterized matching problem is a variant of string
matching, which is to search for all parameterized occurrences of a pat-
tern P in a text T . In considering matching algorithms, the combinatorial
natures of strings, especially periodicity, play an important role. In this
paper, we analyze the properties of periods of parameterized strings and
propose a generalization of Galil and Seiferas’s exact matching algorithm
(1980) into parameterized matching, which runs in O(π|T | + |P |) time
and O(log |P | + |Π|) space in addition to the input space, where Π is
the parameter alphabet and π is the number of parameter characters
appearing in P plus one.

Keywords: Parameterized matching · String matching · Sublinear
space · Combinatorics on words

1 Introduction

String matching is a problem to search for all occurrences of a pattern P in a text
T . Since it is one of the most important computer applications, many efficient
algorithms for the problem have been proposed. Let us denote the length of T
and P by n and m, respectively. While a naive algorithm takes O(nm) time to
solve the problem, Knuth, Morris, and Pratt [13] gave an algorithm which runs
in only O(n+m) time by constructing auxiliary arrays called border arrays. After
that, various algorithms to solve the problem in linear time have been proposed,
which use auxiliary data structures, such as suffix trees [19], suffix arrays [15],
LCP arrays [15]. All of those algorithms outperform the naive algorithm in terms
of time complexity. They require additional space to store their auxiliary data,
whose sizes are typically Θ(n) or Θ(m). On the other hand, studies for reducing
such extra space were conducted. Firstly, Galil and Seiferas reduced extra space
usage to O(log m) [11], and later several time-space-optimal, O(n+m) time and
O(1) extra-space algorithms were devised [5,6,12].

In this paper, we consider a variant of string matching: parameterized match-
ing. It is a pattern matching paradigm in which two strings are considered a
match if we can map some characters (parameter characters) in one string to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 271–283, 2023.
https://doi.org/10.1007/978-3-031-43980-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_22&domain=pdf
http://orcid.org/0000-0002-8168-7312
http://orcid.org/0000-0002-5175-465X
http://orcid.org/0000-0002-4978-8316
https://doi.org/10.1007/978-3-031-43980-3_22

272 H. Ideguchi et al.

characters in another string. This paradigm was first introduced by Baker [4] for
use in software maintenance by the ability to detect ‘identical’ computer pro-
grams renaming their variables. For solving the parameterized matching prob-
lem, a number of linear-time algorithms have been proposed that extend algo-
rithms for exact matching [2,7,8,10,14,17,18]. See also [16] for a survey. How-
ever, we know of no previous attempt to reduce extra space usage to sublinear
for time-efficient parameterized matching algorithms, although one can solve the
problem in constant extra space if the time efficiency does not matter.

The main contribution of this paper is to give a sublinear-extra-space algo-
rithm for the parameterized matching problem by extending Galil and Seiferas’s
exact matching algorithm [11]. It runs in O(|ΠP |n+m) time and O(log m+ |Π|)
space in addition to the input space, where Π is the set of parameter characters
and ΠP is the non-empty1 set of parameter characters appearing in P .

In order to provide the basis for our algorithm, we also investigate the proper-
ties of periodicity of parameterized strings in this paper. It is widely known that
periods of strings are useful for exact matching algorithms [5,6,11–13], which
is also the case for parameterized matching [2]. We extend previous work on
parameterized periods by Apostolico and Giancarlo [3] and derive several prop-
erties for our algorithm. In particular, we focus on ‘sufficiently short’ periods of
parameterized strings having properties useful for matching algorithms. Those
results contain a parameterized version of Fine and Wilf’s periodicity lemma [9].

Remark 1. The time and space complexities of our algorithm stated above are
based on a computing model in which functions Π → N can be stored as arrays.
If not, one can use AVL trees [1] instead of arrays to store such functions. Then,
our algorithm runs in O((|ΠP |n + m) log |ΠP |) time and O(log m + |ΠP |) extra
space.

2 Preliminaries

Let N and N
+ be the set of natural numbers including and excluding 0, respec-

tively. For x, y ∈ N, we denote by x | y that y is a multiple of x.
For n ∈ N and a function f whose domain and codomain are the same, we

denote by fn the composite of the function n times.

2.1 Parameterized Matching Problem

In parameterized matching, we consider two disjoint alphabets: the constant
alphabet Σ and the parameter alphabet Π. A string over Σ ∪ Π is called a param-
eterized string or a p-string. Consider a p-string w ∈ (Σ ∪ Π)∗. We denote the
length of w by |w|. For 0 ≤ i < |w|, let us denote i-th letter of w by w[i],
where the index i is 0-based. For 0 ≤ i ≤ j ≤ |w|, we denote the substring
w[i]w[i + 1] · · · w[j − 1] by w[i : j]. (Note that w[i : j] does not contain w[j].)

1 We can assume ΠP �= ∅ without loss of generality. See Remark 2.

Efficient Parameterized Pattern Matching in Sublinear Space 273

We denote the set of permutations of Π by SΠ. Throughout this paper, for
a permutation f ∈ SΠ and a constant character c ∈ Σ, let f(c) = c. Then, the
map f is naturally expanded as a bijection over p-strings: (Σ ∪ Π)∗ → (Σ ∪ Π)∗.

Definition 1 (Baker [4]). Two p-strings x and y are called a parameterized-
match or a p-match if and only if there exists a permutation f ∈ SΠ such that
f(x) = y. Denote this relation by x ≡ y.

Example 1. Let Σ = {a, b, c} and Π = {A, B, C}. We have ABaCBCa ≡ BCaACAa
with a permutation f such that f(A) = B, f(B) = C, and f(C) = A.

Clearly, the relation ≡ is an equivalence relation over (Σ ∪ Π)∗. Note that
if x ≡ y, we have |x| = |y| and x[i : j] ≡ y[i : j] for any 0 ≤ i ≤ j ≤ |x|. By
this relation, the problem we consider in this paper, the parameterized matching
problem, is defined as follows.

Problem 1 ([4]). Given two p-strings T (text) and P (pattern), find all 0 ≤
i ≤ |T | − |P | such that T [i : i + |P |] ≡ P .

Remark 2. For Problem 1, we can assume that P contains at least one parameter
character without loss of generality. If P ∈ Σ∗, choose any c ∈ Σ appearing in P
and let constant and parameter alphabets be Σ ∪ Π \ {c} and {c}, respectively.
Our algorithm presented in Sect. 4 is based on this assumption.

2.2 Periodicity of Parameterized Strings

Periodicity is one of the most fundamental concepts in combinatorics of strings
and a wealth of applications. In exact matching, the Knuth-Morris-Pratt algo-
rithm and various algorithms based on it rely on the properties of periods
[5,6,11–13]. It is also the case for parameterized matching [2], where periods
of parameterized strings are defined as follows:

Definition 2 (Apostolico and Giancarlo [3]). Consider w ∈ (Σ ∪ Π)∗ and
p ∈ N

+ with p ≤ |w|. Then, p is called a period of w if and only if w[0 : |w| − p] ≡
w[p : |w|].

If p is a period of w, there exists f ∈ SΠ satisfying f(w[0 : |w| − p]) =
w[p : |w|] by definition. We denote this relation by p ‖f w or simply by p ‖ w
when f is not specified.

In general, a p-string w can have multiple periods. We denote the shortest
period of w as period(w). It is clear that a period p of a p-string w is also a
period of any substring w′ of w such that |w′| ≥ p.

Example 2. Let Σ = {a, b, c} and Π = {A, B, C}. For w := ABaCBCaACAa, we have
4 ‖f w as ABaCBCa ≡ BCaACAa with f(A) = B, f(B) = C, and f(C) = A.

Instead of Definition 2, one can use the following equivalent definition for
periods, which is a more intuitive representation of the repetitive structure of
strings:

274 H. Ideguchi et al.

Lemma 1 ([3]). Consider w ∈ (Σ ∪ Π)∗, p ∈ N
+, and f ∈ SΠ. Then, p ‖f w

holds if and only if w can be written as

w = f0(v) · f1(v) · f2(v) · · · f�ρ�−1(v) · f�ρ�(v′),

where ρ = |w|
p , v = w[0 : p] and v′ is a prefix of v (allowing the case v′ is empty).

The following lemma has important applications for various matching algo-
rithms. Particularly, it is used to shift the pattern string safely in the Knuth-
Morris-Pratt algorithm and variants [2,13].

Lemma 2. Consider x, y ∈ (Σ ∪ Π)∗ with x ≡ y. For any 0 < δ < period(y),
we have x[δ : |x|] 	≡ y[0 : |y| − δ].

Proof. We give a proof by contraposition. Suppose x[δ : |x|] ≡ y[0 : |y| − δ]. Then
we have y[0 : |y| − δ] ≡ x[δ : |x|] ≡ y[δ : |y|], which means δ ‖ y. Hence, δ ≥
period(y) holds.
�

One of the main interest regarding string periodicity is what holds when
a string w has two different periods p and q. For ordinary strings, Fine and
Wilf’s periodicity lemma [9] gives an answer: gcd(p, q) is also a period when
|w| ≥ p+q−gcd(p, q), where gcd(p, q) is the greatest common divisor of p and q.
Apostolico and Giancarlo showed a similar property for parameterized strings.

Lemma 3 ([3]). For w ∈ (Σ ∪ Π)∗, p, q ∈ N
+, and f, g ∈ SΠ, assume that

p ‖f w and q ‖g w. If |w| ≥ p + q and fg = gf , we have gcd(p, q) ‖ w.

It is known that the length |w| = p + q − gcd(p, q) is not sufficient for this
lemma unlike in the case of ordinary strings [3].

3 Properties of Parameterized Periods

In this section, we show some properties of periods of parameterized strings.
They play an important role in our algorithm presented in Sect. 4.

3.1 Alternative Periodicity Lemma

The requirements of Lemma 3 are slightly different from Fine and Wilf’s lemma
for ordinary strings. Particularly, the commutativity of f and g is essential
(Lemma 5 in [3]). In this section, we show a new periodicity lemma for param-
eterized strings which does not assume the commutativity.

Firstly, we focus on parameter characters contained in a given p-string and its
substrings. For w ∈ (Σ ∪ Π)∗, we denote by Πw the set of parameter characters
appearing in w.

Example 3. Let Σ = {a, b, c} and Π = {A, B, C}. For w := ABabAca, we have
Πw = {A, B}.

Efficient Parameterized Pattern Matching in Sublinear Space 275

Lemma 4. Consider w ∈ (Σ ∪ Π)∗ and any of its substrings w′ and w′′. Then,
the following hold:

– If |w′| ≥ period(w) · (|Πw| − 1), we have |Πw′ | ≥ |Πw| − 1.
– If |w′′| ≥ period(w) · |Πw|, we have Πw′′ = Πw.

Proof. The case Πw = ∅ is trivial. Suppose Πw 	= ∅. Let p := period(w) and f
be a permutation of Π such that p ‖f w. It suffices to show the lemma for the
cases |w′| = p · (|Πw| − 1) and |w′′| = p · |Πw|. By Lemma 1, w′ and w′′ can
be written as w′ = v′ · f(v′) · · · f |Πw|−2(v′) and w′′ = v′′ · f(v′′) · · · f |Πw|−1(v′′),
where v′ and v′′ are the prefixes of w′ and w′′ of length p, respectively. Now, we
consider the cyclic decomposition of f .

Suppose the characters in Πw make one cyclic permutation in f . Let a be
any parameter character contained in v′. Note that a, f(a), · · · , f |Πw|−2(a) are
all different characters and all appear in w′. Therefore, we have |Πw′ | ≥ |Πw|−1.
The analogous argument shows |Πw′′ | = |Πw|.

Suppose the characters in Πw make two or more cyclic permutations in f .
Then, those cyclic permutations are all of length |Πw|−1 or less. For 0 ≤ i < |w|,
there exists an integer k such that w[i + kp], w[i + (k + 1)p], · · · , w[i + (k +
|Πw| − 2)p] are all contained in w′. Then, those characters can be represented
as fk(w[i]), fk+1(w[i]), · · · , fk+|Πw|−2(w[i]), and by the assumption about f , at
least one of them is equal to w[i]. Therefore, we have w[i] ∈ Πw′ . Since i is
arbitrary, we end up with Πw ⊆ Πw′ , as required.
�

Now, we show a variant of Lemma 3. It does not require any assumption on
the permutations, in exchange of a stricter requirement for the length of strings.

Lemma 5. Suppose w ∈ (Σ ∪ Π)∗ with Πw 	= ∅ has periods p and q. If |w| ≥
p + q + min(p, q) · (|Πw| − 1), we have gcd(p, q) ‖ w.

Proof. Let f and g be permutations of Π such that p ‖f w and q ‖g w. Without
loss of generality, we suppose f(a) = a and g(a) = a for any a ∈ Π \ Πw. By
Lemma 3, it suffices to show that fg = gf . Let w′ := w[0 : |w| − p − q]. Then,
notice that fg(w′) = f(w[q : |w| − p]) = w[p + q : |w|] = g(w[p : |w| − q]) =
gf(w′), which claims fg(a) = gf(a) for any a ∈ Πw′ . Moreover, given |w′| =
|w|−p−q ≥ min(p, q)·(|Πw|−1) ≥ period(w)·(|Πw−1|), we have |Πw′ | ≥ |Πw|−1
by Lemma 4. Hence, the permutations fg and gf behave the same for at least
|Π| − 1 parameter characters. This implies fg = gf .
�

Corollary 1. Suppose w ∈ (Σ ∪ Π)∗ with Πw 	= ∅ has a period q. If q ≤ |w|
|Πw|+1 ,

then period(w) | q.

Proof. Let p := period(w). By p ≤ q ≤ |w|
|Πw|+1 , we have p · |Πw| + q ≤ q · (|Πw| +

1) ≤ |w|
|Πw|+1 (|Πw|+1) = |w|. Hence, we can use Lemma 5 to obtain gcd(p, q) ‖ w.

Then, since p is the smallest period of w, we have gcd(p, q) ≥ p, which means
gcd(p, q) = p i.e. p | q, as required.
�

276 H. Ideguchi et al.

Table 1. Let Π = {A, B}. A p-string w := ABABBABAABABBABAABBA has prefix periods
1 and 4. Circled numbers in the table below are prefix periods of w with w[0 : i + 1]
as witnesses. For instance, 4 is a prefix period of w with w[0 : 18] as a witness because

period(w[0 : 18]) = 4 and 4 ≤ |w[0:18]|
k

. (Note that k = |Πw| + 2 = 4.)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

w[i] A B A B B A B A A B A B B A B A A B B A

period(w[0 : i + 1]) 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 18 18

reachw(1) = 4 reachw(4) = 18

3.2 Prefix Periods

Galil and Seiferas’s exact matching algorithm [11] can be regarded as an exten-
sion of the Knuth-Morris-Pratt algorithm [13]. The main idea of their algorithm
is to deal with only periods of pattern prefixes which are ‘short enough.’ They
pointed out that periods shorter than 1

k times the length of the string have useful
properties for saving space usage in exact string matching for an arbitrarily fixed
k ≥ 3. We show, in this section, that similar properties hold for parameterized
strings as well when k is set to be |Πw| + 2. Most of those properties come from
Lemma 5 we proved in the previous section.

Lemma 6. Suppose w ∈ (Σ ∪ Π)∗ has a period p. If p ≤ |w|
|Πw|+1 , there exists

only one character a ∈ Σ ∪ Π such that p ‖ wa.

Proof. Consider the prefix w′ := w[0 : |w| − p]. By p ≤ |w|
|Πw|+1 , we have |w|−p ≥

p|Πw| ≥ period(w)|Πw|. By Lemma 4, Πw′ = Πw. Therefore, w[|w| − p] already
appears in w′ as w[i] = w[|w| − p] for some i < |w| − p. Hence, for any f such
that p ‖f w, it holds that p ‖f wa if and only if a = w[i + p].
�
Corollary 2. Suppose w ∈ (Σ ∪ Π)∗ has a period p. For any � ∈ N

+ such that
�p ≤ |w|

|Πw|+1 , we have p ‖ wa ⇐⇒ �p ‖ wa for any a ∈ Σ ∪ Π.

Proof. By Lemma 6, the characters a1 and a2 such that p ‖ wa1 and �p ‖ wa2

are unique respectively. Then, since p ‖ wa1 =⇒ �p ‖ wa1 (shown immediately
by Lemma 1), we get a1 = a2, as required.
�

Now, we introduce the key concept for our algorithm: prefix periods. This
is a natural extension of the one introduced in [12] for parameterized strings.
Hereafter in this section, we consider a fixed p-string w ∈ (Σ ∪ Π)∗ with Πw 	= ∅
and let k := |Πw| + 2.

Definition 3. A positive integer p ∈ N
+ is called a prefix period of w if and

only if there exists a prefix w′ of w such that period(w′) = p and p ≤ |w′|
k .

We give an example of prefix periods in Table 1. For a fixed p, only prefixes
w′ of w satisfying |w′| ≥ kp can be a witness for p being a prefix period. We show
in the following lemmas that it suffices to consider only one prefix w′ = w[0 : kp]
for checking whether p is a prefix period.

Efficient Parameterized Pattern Matching in Sublinear Space 277

Lemma 7. For any a ∈ Σ ∪ Π, if period(wa) 	= period(w), we have period(wa)
> |w|

|Πw|+1 .

Proof. We show the lemma by contraposition. Suppose period(wa) ≤ |w|
|Πw|+1 .

Since period(wa) is also a period of w, we can use Corollary 1 to obtain
period(w) | period(wa). Therefore, we get period(w) ‖ wa by Corollary 2, which
implies period(w) ≥ period(wa). On the other hand, we have period(w) ≤
period(wa) by definition. Thus period(w) = period(wa) holds.
�

Lemma 8. Consider any 0 < p ≤ |w|
k . Then, p is a prefix period of w if and

only if period(w′) = p where w′ := w[0 : kp].

Proof. (⇐=) Immediate by the definition of prefix periods.
(=⇒) Let v be a prefix of w that witnesses p being a prefix period, i.e.,
|v| ≥ kp and period(v) = p. If |v| = kp, we are done. Suppose |v| > kp and let
u := v[0 : |v| − 1]. Then, period(v) = p < |v|

k ≤ |v|
|Πu|+2 < |u|

|Πu|+1 . By Lemma 7,
we have period(u) = period(v) = p. By repeatedly applying this discussion, we
can shorten the witness up to length kp.
�

Next, we introduce an auxiliary function reachw.

Definition 4. For any 0 < p ≤ |w|, let
reachw(p) := max{r ∈ N : r ≤ |w| and p ‖ w[0 : r]}.

Note that p ‖ w[0 : r] ⇐⇒ reachw(p) ≥ r holds by definition. Using reachw,
we get an equivalent definition of prefix periods as follows, which is directly used
in our searching algorithm.

Lemma 9. Consider any 0 < p ≤ |w|
k . Then, p is a prefix period of w if and

only if all the following hold:

(1) reachw(p) ≥ kp,
(2) reachw(q) < reachw(p) for any 0 < q < p.

Proof. (=⇒) (1) is by definition. We show (2). By Lemma 8, period(w[0 : kp]) =
p. Thus, q < p is not a period of w[0 : kp], i.e., reachw(q) < kp ≤ reachw(p) by
(1).
(⇐=) Let w′ := w[0 : reachw(p)]. (2) implies period(w′) = p since any q

satisfying 0 < q < p is not a period of w′. Additionally, we have p ≤ |w′|
k by (1).

Thus p is a prefix period of w with w′ as a witness.
�
Galil and Seiferas [11] in Corollary 1 pointed out that the number of prefix

periods of a word w is O(log |w|). We show in the following lemma that it is
the case for parameterized strings. It contributes directly to reducing the space
complexity of our algorithm.

Lemma 10. Suppose w has prefix periods p and q. If p < q, then 2p ≤ q.

278 H. Ideguchi et al.

Proof. We prove the lemma by contradiction. Suppose p < q < 2p. By definition,
p ‖ w[0 : kp] and q ‖ w[0 : kq] hold. Let w′ := w[0 : kp]. By Lemma 8, p is the
shortest period of w′. Since both p and q are periods of w′ and p · |Πw′ | + q <
p · |Πw| + 2p = kp = |w′|, we get gcd(p, q) ‖ w′ by Lemma 5. Hence, we have
gcd(p, q) ≥ period(w′) = p, which claims gcd(p, q) = p i.e. p | q. However, this
contradicts to the assumption p < q < 2p.
�
Corollary 3. The number of prefix periods of w ∈ (Σ ∪ Π)∗ is at most log2 |w|.

4 Proposed Algorithm

In this section, we propose a sublinear-extra-space algorithm for the parame-
terized matching problem. Throughout this section, let T and P be p-strings
whose lengths are n and m respectively, and let k := |ΠP | + 2. Besides, we sup-
pose ΠP 	= ∅. Our algorithm is an extension of Galil and Seiferas’s exact string
matching algorithm [11] and runs in O(|ΠP |n+m) time and O(log m+|Π|) extra
space. When |Π| = |ΠP | = 1, our algorithm behaves exactly as theirs.

Firstly, we introduce a method for testing whether two p-strings match. While
it is common to use the prev-encoding [4] for this purpose, it is not suitable for
our goal since it requires additional space proportional to the input size. Thus
we use an alternative method as follows, which requires only O(|Π|) extra space.

Lemma 11. Consider a prefix x of P and y ∈ (Σ ∪ Π)∗ with x ≡ y and any
a, b ∈ Σ ∪ Π. We have xa ≡ yb if and only if one of the following holds:

1. a ∈ Σ and a = b,
2. a ∈ Π and firstP (a) ≥ |x| and b ∈ Π and county(b) = 0,
3. a ∈ Π and firstP (a) < |x| and y[firstP (a)] = b,

where firstP : Π → N and county : Π → N are defined as follows:

firstP (c) =

{
min{i ∈ N : i < |P | and P [i] = c} if c ∈ ΠP ,
|P | if c ∈ Π \ ΠP ,

county(c) = |{i ∈ N : i < |y| and y[i] = c}|

Proof. By definition, we have xa ≡ yb if and only if b = f(a), where f satisfies
y = f(x). If a is a constant character or appears in x, the value f(a) is determined
(Cases 1 and 3). Otherwise, b must be a parameter character not appearing in
y (Case 2).
�

Let MATCH(x, y, a, b,firstP , county) be the function which returns whether
xa ≡ yb under the condition x ≡ y using Lemma 11. Clearly, one can com-
pute it in constant time if firstP and county are given as arrays. Note that
firstP can be computed in O(m) time and O(|Π|) space.

Efficient Parameterized Pattern Matching in Sublinear Space 279

Algorithm 1: PREFIX PERIODS

Input: P ∈ (Σ ∪ Π)∗

Output: a list of all prefix periods of P and their reaches
1 begin
2 k ← |ΠP | + 2
3 first ← firstP
4 PP ← empty list // PP is a list of pairs (val, reach)

5 idx ← −1
6 (p, r) ← (1, 1)
7 foreach a ∈ Π do count [a] ← 0
8 max reach ← 0
9 while kp ≤ |P | do

10 while MATCH(P [0 : r − p], P [p : r], P [r − p], P [r],first , count) do
11 Increment count [P [r]]
12 r ← r + 1

13 if idx + 1 < |PP | and PP [idx + 1].val ≤ r−p
k

then Increment idx

14 if r ≥ kp and r > max reach then
15 Push (p, r) into PP

16 max reach ← max{max reach, r}

17 if 0 ≤ idx < |PP | and PP [idx].reach ≥ r − p > 0 then
18 for p ≤ i < p + PP [idx].val do Decrement count [P [i]]
19 p ← p + PP [idx].val

20 else
21 for p ≤ i < r do Decrement count [P [i]]

22 p ← p + 	 r−p
k

 + 1
23 r ← p

24 until PP [idx].val ≤ r−p
k

or idx = −1 do Decrement idx

25 return PP

4.1 Pattern Preprocessing

In this section, we show the preprocessing for the pattern P for our matching
algorithm. The output of the preprocessing is the list of pairs of a prefix period of
P (in ascending order) and its reach, just like Galil and Seiferas [11] introduced
for exact string matching. The list plays a similar role to the border array in the
parameterized Knuth-Morris-Pratt algorithm [2]. While border array uses Θ(m)
space to memorize the shortest periods of all prefixes of P , the prefix period list
requires only O(log m) space by Corollary 3.

We present the preprocess in Algorithm 1. The algorithm finds prefix periods
and their reaches in order from the smallest to the largest and put them into
the list PP . By PP [idx].val and PP [idx].reach, we denote the idx -th prefix
period and its reach in PP , respectively. Starting with p = 1, it monotonically

280 H. Ideguchi et al.

increases p and checks whether an integer p is a prefix period based on Lemma 9.
Throughout the algorithm run, we maintain the invariant

p ‖ P [0 : r], i.e., P [0 : r − p] ≡ P [p : r] (♠)

We calculate reachP (p) by increasing r as long as P [0 : r − p] ≡ P [p : r]
holds (Lines 10–13). To let the function MATCH decide P [0 : r − p] ≡ P [p : r],
we use two auxiliary arrays first and count that satisfy first [a] = firstP (a)
and count [a] = countP [p:r](a), defined in Lemma 11. Moreover, we maintain
the variable max reach to be the largest reach calculated so far. By Lemma 9,
the condition of Line 14 is satisfied if and only if p is a prefix period. One can
construct the list PP by incrementing p one by one, but it takes too much time.
Instead, we use a more efficient way explained later to make the algorithm run
in linear time.

The following lemmas justify the behavior of our algorithm.

Lemma 12. Throughout Algorithm 1, the value of the variable idx is always
the upper bound that satisfies PP [idx].val ≤ r−p

k . If there exists no such index,
we have idx = −1.

Proof. The variable idx is updated in conjunction with p and r to preserve the
condition. See Lines 13 and 24.
�
Lemma 13. Let ♠ hold at Line 17 in Algorithm 1. If period(P [0 : r − p]) ≤
r−p

k , we have PP [idx].val = period(P [0 : r − p]).

Proof. Let w′ := P [0 : r − p], p′ := period(w′), p′′ := PP [idx].val , and w′′ =
P [0 : kp′′]. By the assumption, p′ is a prefix period of P . Additionally, we have
p′ ≤ p since p ‖ w′. Thus p′ is in the list PP , and thus we have p′ ≤ p′′ by
Lemma 12. On the other hand, we have period(w′′) = p′′ by Lemma 8. Since
|w′′| = kp′′ ≤ r − p = |w′|, we have period(w′′) ≤ period(w′), i.e. p′′ ≤ p′. Hence
we get p′ = p′′.
�
Lemma 14. Let ♠ hold at Line 17 in Algorithm 1. We have PP [idx].reach ≥
r − p ⇐⇒ period(P [0 : r − p]) ≤ r−p

k .

Proof. Let w′ := P [0 : r − p] and p′ := PP [idx].val .
(=⇒) We have p′ ‖ w′ by the assumption. Then period(w′) ≤ p′ ≤ r−p

k holds
by Lemma 12.
(⇐=) By Lemma 13, we have p′ = period(w′). Then PP [idx].reach =
reachP (p′) = reachP (period(w′)) ≥ |w′| = r − p.
�

Now, we show that the invariant ♠ always holds.

Lemma 15. Throughout Algorithm 1, we have P [0 : r − p] ≡ P [p : r].

Proof. One must see the condition preserved at the lines in which p or r is
updated. The update at Lines 22–23 is trivial. Line 12 preserves the condition,
ensured by the condition of Line 10. For Line 19, let q := PP [idx].val . Since q =

Efficient Parameterized Pattern Matching in Sublinear Space 281

period(P [0 : r − p]) by Lemma 13, we have P [0 : r − (p + q)] ≡ P [q : r − p] ≡
P [p + q : r]. Note that Lemma 13 requires ♠ only at Line 17, so the argument
does not circulate.
�

The following lemma plays a key role to avoid incrementing p one by one.

Lemma 16. Consider P ∈ (Σ ∪ Π)∗, p ∈ N
+ and let r := reachP (p). Then, no

prefix period q of P exists such that p < q < p + period(P [0 : r − p]).

Proof. We use Lemma 2 for x := P [p : r], y := P [0 : r − p], δ := q − p to obtain
P [q : r] 	≡ P [0 : r − q], which means q ∦ P [0 : r]. Thus we have reachP (q) < r =
reachP (p), which implies that q is not a prefix period of P by Lemma 9.
�

We now present the way to compute the list of prefix periods efficiently, in
which we skip calculating reachP (p) if we are sure that p is not a prefix period.
For realizing an efficient shift, we maintain a variable idx so that it points at the
largest index of PP such that PP [idx].val ≤ r−p

k (Lemma 12). The shift amount
is determined in the following manner. If PP [idx].reach ≥ r − p > 0 at Line 17,
Lemmas 14 and 13 imply PP [idx].val = period(P [0 : r − p]). Hence, Lemma 16
justifies the shift amount PP [idx].val of p at Line 19. On the other hand, if
PP [idx].reach < r − p, by Lemma 14, we have period(P [0 : r − p]) > r−p

k . This
justifies the shift � r−p

k � + 1 of p at Line 22 again by Lemma 16. If r − p = 0,
then p is incremented by just one.

Now, we show that the algorithm runs in O(m) time. Firstly, notice that the
while loops at Line 9 and 10 are repeated only O(m) times in total, since the
quantity kp + r keeps increasing and kp + r ≤ k · m

k + m = O(m). Hence, the
fact we must show is that decrementing count and idx at Line 18, 21, and 24
takes O(m) time in total. As their values are always greater than or equal to
their initial values, the number of decrements does not exceed the number of
increments, which is O(m) since they are in Line 11–13.

Theorem 1. All prefix periods of P and their reaches can be calculated in O(m)
time and O(log m + |Π|) extra space.

4.2 Searching for Parameterized Matches

Our matching algorithm is shown in Algorithm 2. As it is the case for the Galil-
Seiferas algorithm, it resembles the preprocess. Now, the invariants in Algo-
rithm 2 are obtained by replacing p, r, and P [p : r] in Lemma 12–15 with i, j,
and T [i : j], respectively. Particularly, by the invariant that P [0 : j − i] ≡ T [i : j],
one can find matching positions i when j = i+ |P | (Line 13). The shift amounts
are also justified by using Lemma 2 for x := T [i : j] and y := P [0 : j − i], whose
conclusion T [i + δ : j] 	≡ P [0 : j − i − δ] implies T [i + δ : i + δ + |P |] 	≡ P for
any δ smaller than the shift by the algorithm. We can show that the searching
phase (Line 8–22) runs in O(|ΠP |n) time in the same way as for the preprocess
with the increasing quantity ki + j.

Theorem 2. The parameterized matching problem can be solved in O(|ΠP |n +
m) time and O(log m + |Π|) extra space.

282 H. Ideguchi et al.

Algorithm 2: SEARCH
Input: T, P ∈ (Σ ∪ Π)∗

Output: all 0 ≤ i ≤ |T | − |P | such that T [i : i + |P |] ≡ P
1 begin
2 k ← |ΠP | + 2
3 first ← firstP
4 PP ← PREFIX PERIODS(P)
5 idx ← −1
6 (i, j) ← (0, 0)
7 foreach a ∈ Π do count [a] ← 0
8 while i < |T | − |P | do
9 while MATCH(P [0 : j − i], T [i : j], P [j − i], T [j],first , count) do

10 Increment count [T [j]]
11 j ← j + 1

12 if idx + 1 < |PP | and PP [idx + 1].val ≤ j−i
k

then Increment idx

13 if j − i = |P | then
14 output i

15 if 0 ≤ idx < |PP | and PP [idx].reach ≥ j − i > 0 then
16 for i ≤ u < i + PP [idx].val do Decrement count [T [u]]
17 i ← i + PP [idx].val

18 else
19 for i ≤ u < j do Decrement count [T [u]]

20 i ← i + 	 j−i
k

 + 1
21 j ← i

22 until PP [idx].val ≤ j−i
k

or idx = −1 do Decrement idx

5 Conclusion and Future Work

We studied the periodicity of parameterized strings and extended the Galil-
Seiferas algorithm [11] for parameterized matching. The proposed algorithm
requires only sublinear extra space. The properties of periods of parameterized
strings we presented in this paper may be used to design more space-efficient
algorithms for parameterized matching, as Galil and Seiferas [12] used prefix
periods to design a constant-extra-space algorithm for exact matching.

Acknowledgements. The authors deeply appreciate the anonymous reviewers help-
ful comments. This work was supported by JSPS KAKENHI Grant Numbers
JP19K20208 (DH), JP18K11150 (RY), JP20H05703 (RY), JP23K11325 (RY), and
JP21K11745 (AS).

Efficient Parameterized Pattern Matching in Sublinear Space 283

References

1. AdelsonVelskii, M., Landis, E.M.: An algorithm for the organization of information.
Joint Publications Research Service Washington DC, Technical report (1963)

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994)

3. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discret. Appl. Math. 156(9), 1389–1398 (2008)

4. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

5. Crochemore, M.: String-matching on ordered alphabets. Theor. Comput. Sci.
92(1), 33–47 (1992)

6. Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 650–674
(1991)

7. Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: Proceedings of the Prague Stringology Confer-
ence 2008, pp. 84–94 (2008)

8. Diptarama, Katsura, T., Otomo, Y., Narisawa, K., Shinohara, A.: Position heaps
for parameterized strings. In: Proceedings of the 28th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2017), pp. 8:1–8:13 (2017)

9. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965)

10. Fujisato, N., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Right-to-left
online construction of parameterized position heaps. In: Proceedings of the Prague
Stringology Conference 2018 (PSC 2018), pp. 91–102 (2018)

11. Galil, Z., Seiferas, J.: Saving space in fast string-matching. SIAM J. Comput. 9(2),
417–438 (1980)

12. Galil, Z., Seiferas, J.: Time-space-optimal string matching. J. Comput. Syst. Sci.
26(3), 280–294 (1983)

13. Knuth, D.E., Morris, J.H., Jr., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

14. Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix trees.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, pp. 631–638 (1995)

15. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

16. Mendivelso, J., Thankachan, S.V., Pinzón, Y.: A brief history of parameterized
matching problems. Discret. Appl. Math. 274, 103–115 (2020)

17. Nakashima, K., et al.: Parameterized DAWGs: efficient constructions and bidirec-
tional pattern searches. Theor. Comput. Sci. 933, 21–42 (2022)

18. Nakashima, K., Hendrian, D., Yoshinaka, R., Shinohara, A.: An extension of linear-
size suffix tries for parameterized strings. In: SOFSEM 2020 Student Research
Forum, pp. 97–108 (2020)

19. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
Symposium on Switching and Automata Theory, pp. 1–11 (1973)

	Efficient Parameterized Pattern Matching in Sublinear Space
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Matching Problem
	2.2 Periodicity of Parameterized Strings

	3 Properties of Parameterized Periods
	3.1 Alternative Periodicity Lemma
	3.2 Prefix Periods

	4 Proposed Algorithm
	4.1 Pattern Preprocessing
	4.2 Searching for Parameterized Matches

	5 Conclusion and Future Work
	References

