
Franco Maria Nardini
Nadia Pisanti
Rossano Venturini (Eds.)

LN
CS

 1
42

40

30th International Symposium, SPIRE 2023
Pisa, Italy, September 26–28, 2023
Proceedings

String Processing
and Information Retrieval

Lecture Notes in Computer Science 14240
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Franco Maria Nardini · Nadia Pisanti ·
Rossano Venturini
Editors

String Processing
and Information Retrieval
30th International Symposium, SPIRE 2023
Pisa, Italy, September 26–28, 2023
Proceedings

Editors
Franco Maria Nardini
ISTI-CNR
Pisa, Italy

Rossano Venturini
University of Pisa
Pisa, Italy

Nadia Pisanti
University of Pisa
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-43979-7 ISBN 978-3-031-43980-3 (eBook)
https://doi.org/10.1007/978-3-031-43980-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-3183-334X
https://orcid.org/0000-0002-9830-3936
https://orcid.org/0000-0003-3915-7665
https://doi.org/10.1007/978-3-031-43980-3

Preface

The 30th International Symposium on String Processing and Information Retrieval
(SPIRE) was held on September 26–28, 2023, in Pisa (Italy), followed by the 18th
Workshop on Compression, Text, and Algorithms (WCTA) held on September 29, 2023.

SPIRE started in 1993 as the South American Workshop on String Processing. It
was held in Latin America until 2000. Then, SPIRE moved to Europe, and from then
on, it has been held in Australia, Japan, the UK, Spain, Italy, Finland, Portugal, Israel,
Brazil, Chile, Colombia, Mexico, Argentina, Bolivia, Peru, the USA, and France. SPIRE
continues the long and well-established tradition of encouraging high-quality research at
the broad nexus of string processing, information retrieval, and computational biology.

This volume contains the accepted papers presented at SPIRE 2023. SPIRE 2023
received a total of 47 submissions. Each submission received at least three reviews. After
an intensive discussion phase, the Scientific ProgramCommittee accepted 31 papers.We
thank all the authors for their valuable contributions and presentations at the conference
and the Program Committee members for their valuable work during the review and
discussion phases. We thank Springer for publishing the proceedings of SPIRE 2023 in
the LNCS series and ACM SIGIR for sponsoring the conference.

The scientific program of SPIRE 2023 includes invited talks by three eminent
researchers in the field: Sebastian Bruch (Pinecone, USA), Inge Li Gørtz (Technical
University of Denmark, Denmark), and Jakub Radoszewski (University of Warsaw,
Poland).

SPIRE 2023 had a Best Paper Award, sponsored by Springer. The award was
announced during the conference.

Finally, we thank the Local Organizing Committee members for making the
conference successful.

August 2023 Franco Maria Nardini
Nadia Pisanti

Rossano Venturini

Organization

Program Committee Chairs

Franco Maria Nardini ISTI-CNR, Pisa, Italy
Nadia Pisanti University of Pisa, Italy
Rossano Venturini University of Pisa, Italy

Program Committee

Diego Arroyuelo Universidad Técnica Federico Santa María, Chile
Jasmijn Baaijens TU Delft, The Netherlands
Golnaz Badkobeh Goldsmiths, University of London, UK
Ricardo Baeza-Yates Northeastern University, USA, OptIA, Chile, and

Universitat Pompeu Fabra, Spain
Giulia Bernardini Università di Trieste, Italy
Paola Bonizzoni Università degli Studi di Milano - Bicocca, Italy
Panagiotis Charalampopoulos Birkbeck, University of London, UK
Giorgio Maria Di Nunzio Università di Padova, Italy
Gabriele Fici Università di Palermo, Italy
Travis Gagie Dalhousie University, Canada
Pawel Gawrychowski University of Wroclaw, Poland
Filippo Geraci Institute for Informatics and Telematics of

C.N.R., Italy
Daniel Gibney Georgia Institute of Technology, USA
Shunsuke Inenaga Kyushu University, Japan
Dominik Kempa Stony Brook University, USA
Tomasz Kociumaka Max Planck Institute for Informatics, Germany
Dominik Köppl Tokyo Medical and Dental University, Japan
Susana Ladra University of A Coruña, Spain
Thierry Lecroq University of Rouen Normandy, France
Zsuzsanna Liptak Università degli Studi di Verona, Italy
Felipe A. Louza Universidade Federal de Uberlândia, Brazil
Sean MacAvaney University of Glasgow, UK
Joel Mackenzie University of Queensland, Australia
Cinzia Pizzi Università di Padova, Italy
Giovanna Rosone Università di Pisa, Italy
Kunihiko Sadakane University of Tokyo, Japan

viii Organization

Blerina Sinaimeri LUISS Guido Carli University, Italy
Jouni Sirén University of California, Santa Cruz, USA
Hélène Touzet CNRS, CRIStAL, Lille, France
Oren Weimann University of Haifa, Israel
Wiktor Zuba CWI, The Netherlands

Additional Reviewers

Abedin, Paniz
Baier, Uwe
Bannai, Hideo
Barton, Carl
Brown, Nathaniel
Chubet, Oliver
David, Julien
Della Vedova, Gianluca
Dondi, Riccardo
Fariña, Antonio
Fuentes, Jose
Gabory, Estéban
Guerrini, Veronica
I, Tomohiro
Jin, Ce
Kammer, Frank
Lefebvre, Arnaud
Limasset, Antoine

Lukasiewicz, Aleksander
Masillo, Francesco
Mendivelso, Juan
Nakashima, Yuto
Nogler, Jakob
Park, Kunsoo
Parmigiani, Luca
Pirola, Yuri
Prezza, Nicola
Radoszewski, Jakub
Rizzi, Raffaella
Sommer, Frank
Steiner, Teresa Anna
Telles, Guilherme
van Bemmelen, Jasper
Vinciguerra, Giorgio
Walen, Tomasz

Abstracts of Invited Talks

Information Retrieval Needs More Theoreticians

Sebastian Bruch

Pinecone, New York, NY, USA
sbruch@acm.org

Abstract.The juxtaposition of “theory” and “InformationRetrieval” (IR)
often invites much eyebrow-raising and chin-stroking. That is because a
trove of exciting applied work in IR—particularly since the dawn of deep
learning—along with a constant drift of the literature towards empirical
studies and heuristics, tempt one to conclude that “experimental” is a
more apt adjective to describe much of the discipline. The reality, how-
ever, is more nuanced: experimental explorations rest on foundational
algorithmic and data structure research that is routinely overlooked.

Embarking on a quick journey through time helps unearth the theo-
retical underpinnings of IR. Historical examples abound, from compactly
indexing massive amounts of text with compressed inverted indexes; to
efficient set intersection algorithms and mechanisms for the dynamic
pruning of inverted lists for fast top-k retrieval; to compressed represen-
tations of decision forests and their efficient inference for learning-to-
rank. One can effortlessly draw a direct line from these developments to
a range of applications such as search and recommendation systems that
have flourished at massive scales.

As the IR landscape evolves and the field becomes more intertwined
with deep learning, vectors and matrices replace text as units of infor-
mation. That, in turn, gives way to fascinating new algorithmic problems
for which the existing tools are not only insufficient but are also wrong.
In fact, a strategy of avoiding new problems and resorting instead to
the existing arsenal of data structures and algorithms holds us back and
restrains us from looking beyond the lamppost for new ideas.

That is the argument I will make in this keynote: For IR research to
remain innovative, more theoreticians must go back to the drawing board,
reexamine and possibly reinvent much of what is at its core. To illustrate
this point, Iwill give concrete examples of someof today’s openproblems.
These include developing (non-linear) sketching algorithms for vectors
and matrices for the purposes of fast retrieval at scale; building compact
indexes; designing approximate top-k retrieval bymaximal inner product,
possibly subject to additional constraints; and generalizing retrieval from
inner product to matrix norms. I hope that this talk will convince us of
the need for more theoretical work and entice this particular community
to explore new challenges in IR.

http://orcid.org/0000-0002-2469-8242

Regular Expression Matching

Inge Li Gørtz

Technical University of Denmark, Denmark
inge@dtu.dk

A regular expression specifies a set of strings formed by single characters combined
with concatenation, union, and Kleene star operators. Given a regular expression R
and a string Q, the regular expression matching problem is to decide if Q matches
any of the strings specified by R. Regular expressions are a fundamental concept in
formal languages and regular expression matching is a basic primitive for searching
and processing data. A standard textbook solution [Thompson, CACM 1968] constructs
and simulates a nondeterministic finite automaton, leading to an O(nm) time algorithm,
where n is the length of Q and m is the length of R. Despite considerable research efforts
only polylogarithmic improvements of this bound are known. Recently, conditional
lower bounds provided evidence for this lack of progress when Backurs and Indyk
[FOCS 2016] proved that, assuming the strong exponential time hypothesis (SETH),
regular expression matching cannot be solved in O

(
(nm)1−ε

)
, for any constant ε > 0.

Hence, the complexity of regular expression matching is essentially settled in terms of
n and m.

In this talk we will give an overview of the main standard techniques for regular
expressionmatching, and show a new approach that goes beyondworst-case analysis in n
andm.We introduce a density parameter,�, that captures the amount of nondeterminism
in theNFA simulation onQ. The density is atmost nm+1 but can be significantly smaller.
Our main result is a new algorithm that solves regular expression matching in time.

O
(
�loglog

nm

�
+ n + m

)

http://orcid.org/0000-0002-8322-4952

Recent Results on the Longest Common Substring
Problem

Jakub Radoszewski

Institute of Informatics, University of Warsaw, Poland
jrad@mimuw.edu.pl

Abstract. In the longest common substring (LCS) problem, we are given
two strings S and T , each of length at most n, and are to find a longest
string occurring as a fragment of both S and T . An O(n)-time solution
for this classic problem, assuming that S and T are over a constant-sized
alphabet, dates back to Weiner’s seminal paper on suffix trees (SWAT
1973). This solution can be extended to strings over an integer alphabet
using Farach’s suffix tree construction algorithm (FOCS 1997) and to
computing the LCS of many strings of total length n (Hui, CPM 1992).

Recently it was shown that, under the word RAM model of com-
putation, the LCS of two strings over a constant-sized alphabet can be
computed even faster. More precisely, Charalampopoulos, Kociumaka,
Pissis, and Radoszewski (ESA 2021) showed that assuming the alpha-
bet size is σ and that the strings are represented in a packed form
of size O(n log σ/ log n), the LCS of S and T can be computed in
O(n log σ/

√
log n) time.

In the last 10 years, several further results on the LCS problem and
its variants have been presented. These include computing the LCS of
two strings using only O(s) space, where s < n, maintaining the LCS
of two dynamic strings, internal queries for the LCS of two fragments
of a given text, approximate variants of the LCS in which one searches
for the longest fragment of string S that resembles a fragment of string
T (the two fragments may be required to have a small Hamming or edit
distance), and computing the LCS with the assumption that one of the
strings is given in a compressed form (a less efficient algorithm assuming
that both S and T are compressed was known earlier).

In the talk Iwill present a survey of known results on theLCSproblem,
with an emphasis on the result from ESA 2021 and the underlying tech-
nique by Charalampopoulos et al. (CPM 2018), and list open problems
related to the LCS computation.

http://orcid.org/0000-0002-0067-6401

Contents

Longest Common Prefix Arrays for Succinct k-Spectra . 1
Jarno N. Alanko, Elena Biagi, and Simon J. Puglisi

On Suffix Tree Detection . 14
Amihood Amir, Eitan Kondratovsky, and Avivit Levy

Optimally Computing Compressed Indexing Arrays Based on the Compact
Directed Acyclic Word Graph . 28

Hiroki Arimura, Shunsuke Inenaga, Yasuaki Kobayashi,
Yuto Nakashima, and Mizuki Sue

Evaluating Regular Path Queries on Compressed Adjacency Matrices 35
Diego Arroyuelo, Adrián Gómez-Brandón, and Gonzalo Navarro

Approximate Cartesian Tree Matching: An Approach Using Swaps 49
Bastien Auvray, Julien David, Richard Groult, and Thierry Lecroq

Optimal Wheeler Language Recognition . 62
Ruben Becker, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric,
Alberto Policriti, and Nicola Prezza

Approximation and Fixed Parameter Algorithms for the Approximate
Cover Problem . 75

Guillaume Blin, Alexandru Popa, Mathieu Raffinot, and Raluca Uricaru

Data Structures for SMEM-Finding in the PBWT . 89
Paola Bonizzoni, Christina Boucher, Davide Cozzi, Travis Gagie,
Dominik Köppl, and Massimiliano Rossi

Compressibility Measures for Two-Dimensional Data . 102
Lorenzo Carfagna and Giovanni Manzini

From de Bruijn Graphs to Variation Graphs – Relationships Between
Pangenome Models . 114

Adam Cicherski and Norbert Dojer

CAGE: Cache-Aware Graphlet Enumeration . 129
Alessio Conte, Roberto Grossi, and Davide Rucci

xviii Contents

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 143
Nicola Cotumaccio, Travis Gagie, Dominik Köppl, and Nicola Prezza

Computing All-vs-All MEMs in Grammar-Compressed Text 157
Diego Díaz-Domínguez and Leena Salmela

Sublinear Time Lempel-Ziv (LZ77) Factorization . 171
Jonas Ellert

New Advances in Rightmost Lempel-Ziv . 188
Jonas Ellert, Johannes Fischer, and Max Rishøj Pedersen

Engineering a Textbook Approach to Index Massive String Dictionaries 203
Paolo Ferragina, Mariagiovanna Rotundo, and Giorgio Vinciguerra

Count-Min Sketch with Variable Number of Hash Functions:
An Experimental Study . 218

Éric Fusy and Gregory Kucherov

Dynamic Compact Planar Embeddings . 233
Travis Gagie, Meng He, and Michael St Denis

A Simple Grammar-Based Index for Finding Approximately Longest
Common Substrings . 246

Travis Gagie, Sana Kashgouli, and Gonzalo Navarro

On the Number of Factors in the LZ-End Factorization . 253
Paweł Gawrychowski, Maria Kosche, and Florin Manea

Non-overlapping Indexing in BWT-Runs Bounded Space 260
Daniel Gibney, Paul Macnichol, and Sharma V. Thankachan

Efficient Parameterized Pattern Matching in Sublinear Space 271
Haruki Ideguchi, Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Largest Repetition Factorization of Fibonacci Words . 284
Kaisei Kishi, Yuto Nakashima, and Shunsuke Inenaga

String Covers of a Tree Revisited . 297
Łukasz Kondraciuk

Compacting Massive Public Transport Data . 310
Benjamín Letelier, Nieves R. Brisaboa, Pablo Gutiérrez-Asorey,
José R. Paramá, and Tirso V. Rodeiro

Contents xix

Constant Time and Space Updates for the Sigma-Tau Problem 323
Zsuzsanna Lipták, Francesco Masillo, Gonzalo Navarro,
and Aaron Williams

Linear-Time Computation of Generalized Minimal Absent Words
for Multiple Strings . 331

Kouta Okabe, Takuya Mieno, Yuto Nakashima, Shunsuke Inenaga,
and Hideo Bannai

Frequency-Constrained Substring Complexity . 345
Solon P. Pissis, Michael Shekelyan, Chang Liu, and Grigorios Loukides

Chaining of Maximal Exact Matches in Graphs . 353
Nicola Rizzo, Manuel Cáceres, and Veli Mäkinen

Algorithms and Hardness for the Longest Common Subsequence of Three
Strings and Related Problems . 367

Lusheng Wang and Binhai Zhu

Binary Mixed-Digit Data Compression Codes . 381
Igor Zavadskyi and Maksym Kovalchuk

Author Index . 393

Longest Common Prefix Arrays
for Succinct k-Spectra

Jarno N. Alanko , Elena Biagi(B) , and Simon J. Puglisi

Helsinki Institute for Information Technology (HIIT), Department of Computer
Science, University of Helsinki, Helsinki, Finland

{jarno.alanko,elena.biagi,simon.puglisi}@helsinki.fi

Abstract. The k-spectrum of a string is the set of all distinct substrings
of length k occurring in the string. K-spectra have many applications
in bioinformatics including pseudoalignment and genome assembly. The
Spectral Burrows-Wheeler Transform (SBWT) has been recently intro-
duced as an algorithmic tool to efficiently represent and query these
objects. The longest common prefix (LCP) array for a k-spectrum is
an array of length n that stores the length of the longest common pre-
fix of adjacent k-mers as they occur in lexicographical order. The LCP
array has at least two important applications, namely to accelerate pseu-
doalignment algorithms using the SBWT and to allow simulation of
variable-order de Bruijn graphs within the SBWT framework. In this
paper we explore algorithms to compute the LCP array efficiently from
the SBWT representation of the k-spectrum. Starting with a straight-
forward O(nk) time algorithm, we describe algorithms that are efficient
in both theory and practice. We show that the LCP array can be com-
puted in optimal O(n) time, where n is the length of the SBWT of the
spectrum. In practical genomics scenarios, we show that this theoreti-
cally optimal algorithm is indeed practical, but is often outperformed
on smaller values of k by an asymptotically suboptimal algorithm that
interacts better with the CPU cache. Our algorithms share some features
with both classical Burrows-Wheeler inversion algorithms and LCP array
construction algorithms for suffix arrays. Our C++ implementations of
these algorithms are available at https://github.com/jnalanko/kmer-lcs.

Keywords: longest common prefix · LCP · longest common suffix ·
k-mer · string algorithms · compressed data structures · de Bruijn
graph · Burrows-Wheeler transform · BWT

1 Introduction

The k-spectrum of a string S is the set of substrings of a given length k that occur
in S. Indexing k-spectra has become an important topic in bioinformatics, per-
haps most notably in the form of de Bruijn graphs, which are a long-standing

Supported in part by the Academy of Finland via grants 339070 and 351150.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 1–13, 2023.
https://doi.org/10.1007/978-3-031-43980-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_1&domain=pdf
http://orcid.org/0000-0002-8003-9225
http://orcid.org/0000-0002-8573-3603
http://orcid.org/0000-0001-7668-7636
https://github.com/jnalanko/kmer-lcs
https://doi.org/10.1007/978-3-031-43980-3_1

2 J. N. Alanko et al.

tool for genome assembly [6] and more recently for pangenomics [3,8,11]. In
metagenomics, k-spectra are used as a concise approximation of the sequence
content of the sample, allowing rapid similarity estimation between data col-
lected from sequencing runs [10,12]. In most current genomics applications k is
in the range from 20 to 100.

Recently, the Spectral Burrows-Wheeler transform (SBWT) [2] has been
introduced as an efficient way to losslessly encode and query k-spectra. In partic-
ular, the SBWT encodes the k-mers of the spectrum in colexicographical order.
Combining the SBWT with entropy-compressed bitvectors leads to a data struc-
ture that encodes the spectrum in little more than 2 bits per k-mer [1,2]. Remark-
ably, while in this form, it is also possible to answer lookup queries on the spec-
trum rapidly, in fact in O(k) time.

The SBWT allows a lookup query for a given k-mer to be reduced to at most
k right-extension queries. The input to a right-extension query is a letter c and
an interval [i, j] in the colexicographic ordering of the k-mers of the spectrum
such that all k-mers in the interval share a suffix X. The query returns the
interval [i′, j′] that contains all the k-mers that have Xc as a suffix (or an empty
interval if none do).

Our focus in this paper is on augmenting the SBWT with a data structure
called the longest common suffix (LCS) array that stores the lengths of the
longest common suffixes of adjacent k-mers in colexicographical order (we give
a precise definition below1). The LCS array allows us to support so-called left
contraction queries: given an interval [i, j] in the colexicographical ordering of the
k-mers of the spectrum containing all the k-mers that share a suffix X of length
k′ ∈ (0, k] and a contraction point t < k′, a left contraction returns the interval
[i′, j′] containing all the k-mers having X[t..k′] as a suffix. Left contractions have
at least two interesting applications, namely the implementation of variable-
order de Bruijn graphs [5] and streaming k-mer queries [2]. We avoid further
treatment of these applications here, and refer the reader to [2,5] for details. Our
focus instead is on the efficient construction of the LCS array of a k-spectrum
given its SBWT, which is also an interesting problem in its own right.

We are aware of little prior work on efficient LCS array construction for
k-spectra. A naive approach is to expand the entire contents of the spectrum
from the SBWT and scan it in colexicographical order. This requires O(nk)
time and O(nk log σ) bits of space, where σ is the size of the alphabet of the
k-mers in the spectrum. Bowe et al. [5] make use of the LCS array for a k-
spectra for variable order de Bruijn graphs, but do not address construction. Very
recently, Conte et al. [7] introduced LCS arrays for Wheeler graphs2, but describe

1 We remark here that the LCS array of a colexicographically-ordered spectrum is
equivalent to the longest common prefix (LCP) array of the lexicographically-ordered
spectrum, and the algorithms we describe in this paper to compute the LCS array
are trivially adapted to compute the LCP array.

2 Wheeler graphs are a class of graphs including de Bruijn graphs, that admit a gen-
eralization of the Burrows-Wheeler transform. The SBWT can be seen as a special
case of the Wheeler graph indexing framework.

Longest Common Prefix Arrays for Succinct k-Spectra 3

no construction algorithm, mentioning only in passing that a polynomial-time
algorithm is possible. Prophyle, due to Salikov et al. [13] uses k-LCP information
for sliding window queries on the BWT and describes an O(nk) construction
algorithm, where n is the size of the full BWT, which can be orders of magnitude
larger than the SBWT for repetitive datasets.

Contribution. We describe three different algorithms for computing the LCS
array of a k-spectrum from its SBWT. The first of these essentially decodes the
k-mers of the k-spectrum in colexicographical order starting from their rightmost
symbols in k rounds, keeping track of when the suffixes become distinct using
just n(1+log σ) bits of side information (significantly less than the naive method
mentioned above) and taking O(nk) time overall. Our second approach is similar,
but exploits the small DNA alphabet to decode multiple symbols per round
with the effect of reducing computation and, importantly, CPU cache misses.
Its running time is O(cn + (k − c)n/c) overall with O(nc log σ + σc log n) bits of
extra space, where c ≤ k is a parameter controlling a space-time tradeoff. Our
final algorithm runs in time linear in n — independent of k — and while it is
shaded by the second algorithm on smaller k, it becomes dominant as k grows.

The remainder of this article is organized as follows. The next section
sets notation and basic definitions. Sections 3–5 then describe the three above-
mentioned LCS array construction algorithms in turn. Section 6 presents an
experimental analysis of their performance in the context of a real pangenomic
indexing task. Conclusions, reflections, and avenues for future work are then
offered.

2 Preliminaries

Throughout we consider a string S = S[1..n] = S[1]S[2] . . . S[n] on an integer
alphabet Σ of σ symbols. In this article we are mostly interested in strings on
the DNA alphabet, i.e. when Σ = {A,C,G, T}. The colexicographic order of
two strings is the same as the lexicographic order of their reverse strings. The
substring of S that starts at position i and ends at position j, j ≥ i, denoted
S[i..j], is the string S[i]S[i+1] . . . S[j]. If i > j, then S[i..j] is the empty string ε.
A suffix of S is a substring with ending position j = n, and a prefix is a substring
with starting position i = 1. We use the term k-mer to refer to a (sub)string of
length k. The following two basic definitions relate to k-spectra.

Definition 1. (k-spectrum). The k-spectrum of a string T , denoted with Sk(T),
is the set of all distinct k-mers of the string T .

Definition 2. (k-prefix set). The k-prefix set of a string T is defined as the
left-padded set of prefixes Pk(T) = {$k−iT [1..i] | i = 0, . . . , k − 1}, where $ is a
special character not found in the alphabet, that is smaller than all characters of
the alphabet.

4 J. N. Alanko et al.

The k-spectrum of a set of strings T1, . . . Tm, denoted with Sk(T1, . . . Tm), is
defined as the union of the k-spectra of the individual strings. For example, con-
sider the strings AGGTAAA and ACAGGTAGGAAAGGAAAGT. The 4-spectrum
is the set {GAAA, TAAA, GGAA, GTAA, AGGA, GGTA, AAAG, ACAG, GTAG,
AAGG, CAGG, TAGG, AAGT, AGGT}. Likewise, the k-prefix set Pk(T1, . . . Tm) is
the union of the k-prefix sets of the individual strings. In this case, the 4-prefix
set is {$$$$, $$$A, $$AG $AGG, $$AC, $ACA}.

Definition 3. (k-source set). The k-source set Rk(K) of a set of k-mers K is
the set Rk(K) = {x ∈ K | � ∃y ∈ K such that y[2..k] = x[1..k − 1]}
In our running example, the 4-source set of the 4-spectrum has just the 4-mer
{ACAG}. The extended k-spectrum is the union of the spectrum and the k-prefix
set of the k-source set, plus the k-mer $k that is always added to avoid some
corner cases.

Definition 4. (Extended k-spectrum). The extended k-spectrum S′
k(T1, . . . , Tm)

of a set of strings T1, . . . , Tm is the set Sk(T1, . . . , Tm) ∪ Pk(Rk(T1, . . . , Tm)) ∪
{$k}
We are now ready to define the SBWT. The definition below corresponds to the
multi-SBWT definition of Alanko et al. [2].

Definition 5. (Spectral Burrows-Wheeler transform, SBWT) Let {T1, . . . , Tm}
be a set of strings from an alphabet Σ. Let xi be the colexicographically i-th
element of the extended k-spectrum S′

k(T1, . . . , Tm) of size n. The SBWT of
order k is a sequence X1,X2, . . . Xn of subsets of Σ. The set Xi is the empty
set if i > 1 and xi−1[2..k] = xi[2..k], otherwise Xi = {c ∈ Σ | xj [2..k]c ∈
S′

k(T1, . . . , Tm)}
The sets in the SBWT represent the labels of outgoing edges in the node-centric
de Bruijn graph of the input strings, such that we only include outgoing edges
from k-mers that have a different suffix of length k − 1 than the preceding k-
mer in the colexicographically sorted list. Figure 1 illustrates the SBWT and
the associated de Bruijn graph. The addition of the k-prefix set of the k-source
set is a technical detail necessary to make the transformation invertible and
searchable.

There are many ways to represent the subset sequence of the SBWT [1,2].
In this paper, we focus on the matrix representation. This representation is
currently the most practical version known for small alphabets, and it is used
e.g. in the k-mer pseudoalignment tool Themisto [3].

Definition 6. (Plain Matrix SBWT) The plain matrix representation of the
SBWT sequence is a binary matrix M with σ rows and n columns. The value of
M [i][j] is set to 1 iff subset Xj includes the ith character in the alphabet.

Figure 3 illustrates the matrix SBWT of our running example. Lastly, we define
the central object of interest in this paper: the LCS array of an SBWT:

Longest Common Prefix Arrays for Succinct k-Spectra 5

Fig. 1. Left: The de Bruijn graph (with k = 4) of the set of two strings {AGGTAAA,
ACAGGTAGGAAAGGAAAGT}. Red dashed edges are pruned from the graph because
the node they point to can be reached from another (black) edge. Right: The extended
k-spectrum of the input strings in colexicographical order, together with the longest
common suffix (LCS) array and the spectral Burrows-Wheeler transform (SBWT).

Fig. 2. The binary matrix representation of the spectral Burrows-Wheeler transform
(SBWT).

Definition 7. (Longest common suffix array, LCS array) Let {T1, . . . , Tm}
be a set of strings and let xi denote the colexicographically i-th k-mer of
S′

k(T1, . . . , Tm). The LCS array is an array of length |S′
k(T1, . . . , Tm)| such that

LCS[1] = 0 and for i > 1, the value of LCS[i] is the length of the longest
common suffix of k-mers xi and xi−1.

In the definition above, the empty string is considered a common suffix of any
two k-mers, so the longest common suffix is well-defined for any pair of k-mers.
Figure 1 illustrates the LCS array of our running example.

3 Basic O(nk)-Time LCS Array Construction

Before describing how to compute the LCS array we are going to explain how
the whole k-spectrum can be recovered from the SBWT. We can reconstruct the

6 J. N. Alanko et al.

Fig. 3. The concatenated representation of the spectral Burrows-Wheeler transform
(SBWT) used by the super-alphabet-based LCS construction algorithm.

full k-spectrum from the binary matrix representation M of the SBWT with σ
rows and n columns and the cumulative array C included in the SBWT. Since
k-mers are colexicographically sorted, they are assembled back to front. First,
the last character of each k-mer is retrieved based on the C array. These last
added characters will be accessed later and are then stored in an array L. In
accordance with the LF mapping property, which also holds for the SBWT, the
previous character of each k-mer is recursively retrieved until reaching length k
as follows: First, at each iteration, a copy C ′ of the C array is saved and the
vector P for storing the last propagated characters is initialized with a dollar
symbol. Then, each column i of M is scanned. If M [c, i] is 1, the first free position
of the c block marked by the C ′ array in P is set to the character in L[i]. Since
we are scanning every column in M , we do not need to issue rank queries, but
it is instead sufficient to increase the counter C ′[c] by one. At the end of each
iteration, the newly propagated characters are copied to L. Considering the de
Brujin graph of the SBWT, with this procedure edge labels are propagated one
step forward in the graph.

Calculating the LCS array from the SBWT is similar to the procedure
described above. The LCS array is initialized as an array of zeros and it is
updated at each round of M scanning by checking the mismatches between
two adjacent newly propagated characters. Once an entry of the LCS array is
updated, it is never modified again. Since for each character of the k-mers we
need to traverse all columns of M once, the whole k-spectra can be retrieved in
O(nσk)-time, where n is the number of k-mers in the SBWT. Instead of scanning
M k times, we could traverse the Subset Wavelet Tree of the string (see [1]) and
issue a binary rank operation for every character in each subset. Repeating this
for each k-mer character will result in the LCS construction in time O(nk log σ).
This reduces to O(nk) assuming a constant σ. Computing the LCS array does
not alter this time complexity.

4 Faster Construction via Super-Alphabet Techniques

The super-alphabet techniques described here are based on first decoding a c-
symbol suffix of each k-mer using the previous algorithm in O(cn) time and
subsequently computing the remaining information in O(1 + (k − c)/c) rounds
and O(cn + (k − c)n/c) time overall with O(n) extra space. Given c = 2, the
algorithm first replicates the basic one up to the computation of the last 2
characters of each k-mer as well as their LCS values. At this point, the 2 last
symbols of the ith k-mer, P [i] and L[i], are combined to create a super-character

Longest Common Prefix Arrays for Succinct k-Spectra 7

Algorithm 1. Basic LCS array construction in O(nk) time.
Input: SBWT matrix M with n columns and σ rows, Σ = {1, . . . , σ} and C
array.
Output: k-bounded LCS array.

LCS ← Array of length n initialized to 0
mismatches ← Array of length n initialized to 0 � positions set in LCS
L ← Array of length n, with σ + 1 characters, initialized according to C
for round = 0 . . . k − 1 do

for i = 1 . . . n − 1 do � LCS[1]=0 by definition
if mismatches[i + 1] = 0 and L[i + 1] �= L[i] then

mismatches[i + 1] ← 1
LCS[i + 1] ← round � store the longest match length

P ← Array of length n initialized to $
C′ ← copy of the C array
for i = 1 . . . n do

for c ∈ Σ do
if M [c, i] = 1 then

C′[c] ← C′[c] + 1
P [C′[c]] ← L[i]

L ← P
return LCS

(or meta-character) P [i] · L[i] which is stored in L[i]. A new C array is then
generated from the alphabet of super-characters. The following super-characters
for each k-mer are then retrieved as in the basic algorithm. The only difference
is that in the present case, the algorithm uses the concatenated representation of
the SBWT of super-characters instead of the plain matrix representation. The
concatenated representation of the SBWT sequence3 consists of a concatenation
of the subsets characters, stored in a vector V , and an encoding of the subsets
sizes stored in a bitvector B. In further detail, let S(Xi) be the concatenation
of characters in the subset Xi, then V = S(Xi) · S(X2) · S(Xn). No symbol
will be stored in V if Xi is the empty set. The empty sets are represented in
B = 1 · 0|S(X1)| · 1 · 0|S(X2)| · · · 1 · 0|S(Xn)|. The concatenated representation of a
c-super-alphabet, V ′ and B′, can be obtained from V and B, the concatenated
representation of the c/2-(super-)alphabet. V ′ is filled in, scanning V , with V [j]
where 0 ≤ j ≤ |V | concatenated with the characters in the subset X marked
by the C array entry of V [j] in V . For each character in V , 1 · 0|X| is appended
to B′. No rank nor select queries are necessary as it is sufficient to update a
copy of the C array. Considering the de Brujin graph of the SBWT, to create a
super-concatenated representation edge labels are propagated one step backward
in the graph.

Similarly to the basic algorithm, the preceding super-character of each k-
mer is recursively retrieved until reaching length k as follows: First, at each
iteration, a copy of the super C array is stored and P is initialized with the

3 A similar but different structure is described in [2].

8 J. N. Alanko et al.

smallest super-character $c. Then V ′ is scanned keeping track of the number of
subsets encountered with a counter v which is increased by 1 if B[i + v] = 1. If
B[i + v] = 0, L[i] is assigned to P at the index corresponding to the position of
the V ′[i] super-character block marked by the C array. As for the basic alphabet,
since every subset is inspected in order, there is no need to issue rank queries,
but it is instead sufficient to increase the copied C ′ counter for V ′[i] by one. At
the end of each iteration, the newly propagated super-characters are stored in
L. Since we are skipping nodes in the graph, the iteration number r goes from c
to at most k + c − 1 with steps of size c.

The LCS array using super-characters is computed by checking first the pres-
ence of mismatches in the rightmost single characters with an appropriate mask
and only if no mismatch is found, subsequent characters are checked. The LCS
is then updated accordingly. Given a super-character with c = 2 at index i as
c2 · c1, the algorithm compares first c1[i] and c1[i − 1]. In the presence of a
mismatch LCS would be updated to the iteration number r. If c2[i] �= c2[i − 1],
LCS[i] = r + 1 since 1 is, in this case, the number of matches found in the char-
acters of the super-character. If on the contrary, c2[i] = c2[i − 1], the LCS could
not be updated yet. The algorithm never checks more characters than necessary
as it stops at the first encountered mismatch.

5 Construction in Linear Time

Our linear-time algorithm can be seen as a generalization of the linear-time LCP
algorithm of Beller et al. [4] from the regular BWT to the SBWT. When the
input is the spectrum of a single string and k approaches n, the SBWT coincides
with the BWT of the reverse of the input4, and both algorithms perform the
same iteration steps.

The algorithm fills in the LCS in increasing order of the values. The main
loop has k iterations, such that iteration i fills in LCS values that are equal to
i − 1. Values that are not yet computed are denoted with ⊥.

We denote the colexicographic interval of string α with [�, r]α, where � and
r respectively are the colexicographic ranks of the smallest and largest k-mer
in the SBWT that have α as a suffix. The right extensions of interval [�, r]α,
denoted with EnumerateRight(�, r), are those characters c such that αc is a
suffix of at least one k-mer in the SBWT. The interval of right extension c from
[�, r]α, denoted with ExtendRight(�, r, c), can be computed using the formula
[2+C[c]+ rankc(�−1), 1+C[c]+ rankc(r)]αc, where the rank is over the subset
sequence of the SBWT [2], and C[c] is the number of characters in the SBWT
that are smaller than c.

The input to iteration i is a list of colexicographic intervals of substrings
of length i − 1. For each interval [�, r]α in the list, the algorithm computes all
right-extensions [�′, r′]αc. If LCS[r′ + 1] is not yet filled yet, the algorithm sets
LCS[r′ + 1] = i − 1 and adds [�′, r′]αc to the list of intervals for the next round.
4 Assuming the input to the BWT is terminated with a $-symbol, and there is an

added $-edge from the last k-mer of the input to the root of the SBWT graph.

Longest Common Prefix Arrays for Succinct k-Spectra 9

Otherwise, LCS[r′ + 1] is not modified and interval [�′, r′]αc is not added to the
next round. Algorithm 2 lists the pseudocode. The algorithm is designed so that
at the end, every value of the LCS array has been computed.

Algorithm 2. Construction in O(n log σ) time.
Input: SBWT with support for EnumerateRight and ExtendRight.
Output: k-bounded LCS array.
1: LCS ← Array of length n initialized to ⊥
2: LCS[1] ← 0 � By definition.
3: I ← ([1, n]) � List of intervals for current round.
4: I ′ ← ([1, 1]) � List of intervals for the next round. Here interval of $
5: for i = 1..k do
6: while |I| > 0 do
7: [�, r] ← Pop I
8: for c ∈ EnumerateRight(�, r) do
9: [�′, r′] ← ExtendRight(�, r, c)

10: if r′ < n and LCS[r′ + 1] = ⊥ then
11: LCS[r′ + 1] ← i − 1
12: Push [�′, r′] to I ′

13: I ← I ′

14: I ′ ← Empty list

15: return LCS

5.1 Correctness

To prove the correctness of the algorithm, we introduce the concept of an L-
interval. A colexicographic interval [�, r]α is called an L-interval iff it is the
longest colexicographic interval of a string with interval endpoint r. In case there
are multiple strings with the same interval [�, r], then the α in the subscript of
the notation is the shortest string with this interval. The number of L-intervals
is clearly O(n) because each L-interval has a distinct endpoint. LCS array can
be derived from the L-intervals as follows:

Lemma 1. If [�, r]cα is an L-interval, with α ∈ Σ∗ and c ∈ Σ, then LCS[r+1] =
|α|
Proof. It must be that LCS[r + 1] < |cα| because otherwise the k-mer with
colexicographic rank r + 1 should have been included in the interval [�, r]cα. It
must be that LCS[r + 1] ≥ |α| because otherwise the interval of α also has
endpoint r, which means that cα is not the shortest string with interval ending
at r, contradicting the initial assumption.

The L-intervals form a tree, where the children of [�, r]α are the single-character
right-extensions [�′, r′]αc that are L-intervals. The lemma below implies that
every L-interval is reachable by right extensions by traversing only L-intervals
from the interval of the empty string:

10 J. N. Alanko et al.

Lemma 2. Let αc be a substring of the input such that α ∈ Σ∗ and c ∈ Σ. If
[�, r]αc denotes an L-interval, then [�′, r′]α is an L-interval.

Proof. Suppose for a contradiction that the Lemma does not hold. Then there
exists an L-interval interval [x, r′]β with x ≤ �′ such that β is a proper suffix of
α. Then by the SBWT right extension formula, the interval [�′′, r′′]βc is such that
r′′ = r and �′′ ≤ �. It can’t be that �′′ = �, or otherwise αc was not the shortest
string with interval [�, r], and it can’t be that �′′ < � because then the starting
point � was not minimal for end point r. In both cases we have a contradiction,
which proves the claim.

We can now prove the correctness and the time complexity of the algorithm:

Theorem 1. Given an SBWT having n subsets of alphabet Σ with |Σ| = O(1),
Algorithm 2 correctly computes every value of the LCS array in time O(n).

Proof. The algorithm traverses the L-interval tree in breadth-first order by right-
extending from the empty string and visiting the shortest string representing
each L-interval. Whenever the algorithm comes across an interval [�′, r′] such
that LCS[r′ + 1] is already set, we know that endpoint r′ has already been
visited before with a string shorter than the current string, so either [�′, r′] is
not an L-interval or the current string is not the shortest representative of it,
so we can ignore it. By Lemma 2, the shortest representative string of every L-
interval is reachable this way. There is guaranteed to be an L-interval for every
endpoint r because there is at least a singleton colexicographic interval to every
endpoint. Therefore, every value of the LCS array is eventually computed, and
by Lemma 1, every computed value is correct. Since the number of L-intervals
is O(n), and EnumerateRight and ExtendRight can be implemented in constant
time for a constant-sized alphabet, the total time is O(n).

For small alphabets, the call to EnumerateRight can be replaced by a process
that tries all σ possible right extensions. In this case, it is enough to track only
interval endpoints, halving the space and number of rank queries required.

6 Experimental Evaluation

Experimental Setup. All our experiments were conducted on a machine with
four 2.10 GHz Intel Xeon E7-4830 v3 CPUs with 12 cores each for a total of 48
cores, 30 MiB L3 cache, 1.5 TiB of main memory, and a 12 TiB serial ATA hard
disk. The OS was Linux (Ubuntu 18.04.5 LTS) running kernel 5.4.0–58-generic.
The compiler was g++ version 10.3.0 and the relevant compiler flags were -O3
and -DNDEBUG (-march=native was not used). All runtimes were recorded by
instrumenting the code with calls to std::chrono. The peak memory (RSS)
was measured using the getrusage Linux system call. C++ source code of the
implementations tested is available upon request from the authors.

Longest Common Prefix Arrays for Succinct k-Spectra 11

Datasets. We experiment on three data sets representing different types of
sequencing data found in genomics applications:

1. A pangenome of 3682 E. coli genomes. The data was downloaded during the
year 2020 by selecting a subset of 3682 assemblies listed in ftp://ftp.ncbi.nlm.
nih.gov/genomes/genbank/bacteria/assembly summary.txt with the organ-
ism name “Escherichia coli” with date before March 22, 2016. The result-
ing collection is available at zenodo.org/record/6577997. It contains 745,409
sequences of a total length 18,957,578,183.

2. The human reference genome version GRCh38.p14, available at https://www.
ncbi.nlm.nih.gov/assembly/GCF 000001405.40. It contains 705 sequences of
total length 3,298,430,636.

3. A set of 34,673,774 paired-end Illumina HiSeq 2500 reads each of length 251
sampled from the human gut (SRA identifier ERR5035349) in a study on
irritable bowel syndrome and bile acid malabsorption [9]. The total length of
this data set is 8,703,117,274 bases.

We focus solely on genomic data as that is currently the main application of
the SBWT. The constructed index structures include both forward and reverse
DNA strands. We experiment with values k = 16, 32, 48, 64, 80, 96, 112, 128 and
255. For the metagenomic reads, the maximum value used was 251 since this is
the length of the reads. Figure 4 shows a plot of the number of distinct k-mers
for varying k.

Algorithms. The basic and linear algorithms are implemented on top of the
matrix representation of the SBWT. In the linear algorithm, we apply the obser-
vation mentioned at the end of Sect. 5.1 and only track interval end points.

The super-alphabet algorithm (labelled SA-2 in the plots) first constructs the
concatenated representation from the matrix representation and operates on it
alone after the initial round of alphabet expansion. We experimented only with a
super-alphabet of size 2, and leave a more detailed exploration, including larger
super-alphabets, for future work.

Results. Figure 5 shows on the top the runtime of each algorithm as a function
of the k-mer size for each of the three data sets. We observe that the super-
alphabet algorithm is consistently faster than the basic and linear algorithms
until k reaches 128, after which the linear algorithm is clearly fastest—roughly
three times faster than the basic algorithm on the E.coli dataset.

Memory usage for the algorithms is displayed at the bottom of Fig. 5. The
super-alphabet algorithm uses significantly more memory than the other two,
which is partly attributable to its use of the concatenated representation of the
SBWT, which it must first build from the matrix representation, increasing peak
memory. Moreoever, it uses a larger data type to hold the current column of the
SBWT matrix (a 16-bit word per element instead of an 8-bit one used in the basic
algorithm). In comparison, the basic and linear implementations use startlingly
little memory, which may make them preferable on systems where memory is
scarce.

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
https://zenodo.org/record/6577997
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.40
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.40

12 J. N. Alanko et al.

Fig. 4. The number of sets in the SBWT (approximately equal to the number of k-
mers) in each dataset for various k used in our experiments.

Fig. 5. Runtime and memory usage of LCS array construction algorithms versus k.

7 Concluding Remarks

We have explored the design space of longest common suffix array construc-
tion algorithms for k-spectra. In particular, we have described two algorithms
that, on real genomic datasets, significantly outperform our baseline O(nk)-time,
O(n) space approach. The first exploits the smaller nucleotide alphabet to form
metacharacters and reduce the number of rounds needed by the basic algorithm.
The second takes linear time (assuming a constant-size alphabet) by computing
the LCS values in a special order and also performs well in practice, especially
when k is large.

All our algorithms have some dependency on σ and we leave removing this
as an open problem. From a practical point of view, it would be interesting to
develop parallel algorithms that may further accelerate LCS array construction
on large data sets.

Longest Common Prefix Arrays for Succinct k-Spectra 13

References

1. Alanko, J.N., Biagi, E., Puglisi, S.J., Vuohtoniemi, J.: Subset wavelet trees. In:
Proceedings of the 21st International Symposium on Experimental Algorithms
(SEA), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

2. Alanko, J.N., Puglisi, S.J., Vuohtoniemi, J.: Small searchable k-spectra via subset
rank queries on the spectral burrows-wheeler transform. In Proceedings of SIAM
Conference on Applied and Computational Discrete Algorithms (ACDA), pp. 225–
236. Society for Industrial and Applied Mathematics (2023)

3. Alanko, J.N., Vuohtoniemi, J., Mäklin, T., Puglisi, S.J.: Themisto: a scalable col-
ored k-mer index for sensitive pseudoalignment against hundreds of thousands of
bacterial genomes. Bioinformatics (2023)

4. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. J. Discrete Algorithms
18, 22–31 (2013)

5. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de
Bruijn graphs. In: Proceedings of the 25th Data Compression Conference (DCC),
pp. 383–392. IEEE (2015)

6. Compeau, P.E., Pevzner, P.A., Tesler, G.: Why are de Bruijn graphs useful for
genome assembly? Nat. Biotechnol. 29(11), 987 (2011)

7. Conte, A., Cotumaccio, N., Gagie, T., Manzini, G., Prezza, N., Sciortino, M.:
Computing matching statistics on Wheeler DFAs. arXiv preprint arXiv:2301.05338
(2023)

8. Holley, G., Melsted, P.: Bifrost: highly parallel construction and indexing of colored
and compacted de Bruijn graphs. Genome Biol. 21(1), 1–20 (2020)

9. Jeffery, I.B., et al.: Differences in fecal microbiomes and metabolomes of people with
vs without irritable bowel syndrome and bile acid malabsorption. Gastroenterology
158(4), 1016–1028 (2020)

10. Maillet, N., Lemaitre, C., Chikhi, R., Lavenier, D., Peterlongo, P.: Compareads:
comparing huge metagenomic experiments. BMC Bioinf. 13(19), 1–10 (2012)

11. Marchet, C., Boucher, C., Puglisi, S.J., Medvedev, P., Salson, M., Chikhi, R.: Data
structures based on k-mers for querying large collections of sequencing data sets.
Genome Res. 31(1), 1–12 (2021)

12. Ondov, B.D., et al.: Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biol. 17(1), 1–14 (2016)

13. Salikhov, K.: Efficient algorithms and data structures for indexing DNA sequence
data. PhD thesis, Université Paris-Est; Université Lomonossov (Moscou) (2017)

http://arxiv.org/abs/2301.05338

On Suffix Tree Detection

Amihood Amir1 , Eitan Kondratovsky2 , and Avivit Levy3(B)

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
amir@esc.biu.ac.il

2 Cheriton School of Computer Science, Waterloo University, Waterloo, Canada
e2kondra@uwaterloo.ca

3 Software Engineering Department, Shenkar College of Engineering and Design,
Ramat-Gan, Israel

avivitlevy@shenkar.ac.il

https://u.cs.biu.ac.il/~amir/, https://u.cs.biu.ac.il/~kondrae

Abstract. A suffix tree is a fundamental data structure for string
processing and information retrieval, however, its structure is still not
well understood. The suffix trees reverse engineering problem, which its
research aims at reducing this gap, is the following. Given an ordered
rooted tree T with unlabeled edges, determine whether there exists a
string w such that the unlabeled-edges suffix tree of w is isomorphic to
T . Previous studies on this problem consider the relaxation of having the
suffix links as well as assume a binary alphabet. This paper is the first
to consider the suffix tree detection problem, in which the relaxation of
having suffix links as input is removed. We study suffix tree detection on
two scenarios that are interesting per se. We provide a suffix tree detec-
tion algorithm for general alphabet periodic strings. Given an ordered
tree T with n leaves, our detection algorithm takes O(n + |Σ|p)-time,
where p is the unknown in advance length of a period that repeats at
least 3 times in a string S having a suffix tree structure identical to T ,
if such S exists. Therefore, it is a polynomial time algorithm if p is a
constant and a linear time algorithm if, in addition, the alphabet has a
sub-linear size. We also show some necessary (but insufficient) conditions
for binary alphabet general strings suffix tree detection. By this we take
another step towards understanding suffix trees structure.

Keywords: Suffix tree · Reverse engineering · Suffix tree detection ·
Periodic string

1 Introduction

A suffix tree is a fundamental data structure for string processing and informa-
tion retrieval being one of the most well-known and widely used text indexing
structures. It provides a linear space full-text index of a given string and has
played a central role in combinatorial pattern matching and its applications. A
multitude of important problems can efficiently be solved using suffix trees [3,15].

Partly supported by ISF grant 1475/18 and BSF grant 2018141.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 14–27, 2023.
https://doi.org/10.1007/978-3-031-43980-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_2&domain=pdf
http://orcid.org/0000-0002-3939-337X
http://orcid.org/0000-0002-9625-7534
http://orcid.org/0000-0002-1686-0094
https://doi.org/10.1007/978-3-031-43980-3_2

On Suffix Tree Detection 15

Despite their essential role, the structure of suffix trees is still not well under-
stood. For instance, only almost forty years after this data structure was first
introduced by Peter Weiner [26], it was proved that each internal edge in a
suffix tree can contain at most one implicit suffix node [5]. For suffix arrays,
which are a known alternative data structure to suffix trees, several characteri-
zation theorems are known (e.g. [4,16,20,23]). For example, Kucherov et al. [20]
present a bijective characterization of suffix array permutations obtained from a
characterization of Burrows-Wheeler arrays. Considering the suffix trees reverse
engineering problem, which was first presented by [18] and studied also by [6,24],
is a step towards closing this gap in the understanding of suffix trees structure.

The idea of reverse engineering has been studied for several data structures.
For example, Franek et al. [11] verify a border array in linear time; I et al. [17]
verify and enumerate a parameterized border array; Duval et al. [9] validate
string automata; Bannai et al. [4] infer strings from graphs; Clément et al. [7]
reverse engineer prefix tables; Gawrychowski et al. [12] validate the KMP failure
function; Crochemore et al. [8] study cover array string recognition; Kärkkäinen
et al. [19] infer a string from the LCP array; Nakashima et al. [22] infer a string
from the Lyndon factorization and Gawrychowski et al. [13] prove some general
conditions that allow string reconstruction (e.g., maximal palindromes). There
are some known negative reverse engineering results, such as Gelle and Iván [14]
who showed that recognizing Union-Find trees is NP-complete.

The suffix trees reverse engineering problem is the following. Given an ordered
rooted tree T with unlabeled edges, determine whether there exists a string w
such that the unlabeled-edges suffix tree of w is isomorphic to T . I et al. [18]
emphasize that this problem is very challenging due to the following reasons:

1. The length of each edge string is not given;
2. The mapping from strings to edge-unlabeled suffix trees is not injective.

Therefore, only relaxed versions of the problem had been solved until now.

As a first step towards solving the problem, I et al. [18] restrict the problem
to a binary alphabet. In addition, they assume that suffix links of inner nodes are
given as input. Under these conditions, they solve the suffix trees reverse engi-
neering problem in linear time in the size of the input tree T . All other attempts
also assume that the suffix links are given. Starikovskaya and Vildhøj [24] prove
some new properties of suffix trees and show how to reverse engineer implicit suf-
fix trees (where there is no special end-of-string symbol). Casaux and Rivals [6]
assume the existence of leaf suffix links (where each leaf points to the next longer
leaf) besides the existence of internal nodes suffix links. Under these assumptions
they reverse engineer suffix trees over general alphabets in linear time.

Removing the relaxation of having the suffix links is quite a challenge posing
additional difficulties on the suffix tree structure analysis. For example:

1. It changes the degrees of freedom for the inner nodes suffix links references
from 1 to O(n), potentially, where n is the number of the suffix tree leaves,
as the number of inner nodes is O(n).

16 A. Amir et al.

2. Even for a binary alphabet, the ordered suffix tree structure does not necessar-
ily obey character-symmetry laws, i.e., by flipping a binary string characters,
one is not guaranteed to have a suffix tree with an isomorphic structure.

Therefore, the task of studying ordered suffix trees structure (even on binary
strings) where the suffix links are not given as input, is a natural next step in
the study of the structure of suffix trees, but also requires to cope with such
difficulties.

In this paper, we consider the reverse engineering problem, in which the
relaxation of having the suffix links as input is removed. Formally,

Definition 1. The Suffix Tree Detection problem is the following:

Input: An ordered rooted tree T
Output: YES, if there exists a string S such that its unlabeled-edges ordered

suffix tree is isomorphic to T ,
NO, otherwise.

We study suffix tree detection on two scenarios that are interesting per se:
(1) general alphabet periodic strings and (2) binary alphabet general strings. The
conditions on these two classes of strings considered in this paper are indeed
restrictive. Nevertheless, these classes are rich enough to retain an inherent dif-
ficulty of removing the relaxation of suffix links availability as input.

Paper Contribution. The main contributions of this paper are:

– Being the first, to our knowledge, to consider the suffix tree reverse engineer-
ing problem without the relaxation of suffix links availability.

– Providing a detection procedure for general alphabet periodic strings suffix
tree structure. Given an ordered tree T with n leaves, our detection algorithm
takes O(n+ |Σ|p)-time, where p is the unknown in advance length of a period
that repeats at least 3 times in a string S having a suffix tree structure
identical to T , if such S exists. Therefore, it is a polynomial time algorithm
if p is a constant and a linear time algorithm if, in addition, the alphabet has
a sub-linear size.1

– Proving several necessary (but insufficient) conditions for binary alphabet
general strings suffix tree detection.

By this we take another step towards understanding suffix trees structure.

Paper Organization. The paper is organized as follows. In Sect. 2 we give some
basic needed formal terms. In Sect. 3 we study the general alphabet periodic
strings suffix tree detection problem. In Sect. 4 we prove some necessary (but
insufficient) conditions for a binary alphabet general string suffix tree detection,
which can be validated using a linear time algorithm. We conclude the paper in
Sect. 5 with some open problems.
1 Though Sect. 3 studies periodic string having period length at least 2, which we

call non-trivial periodic strings, this complexity is also valid for detection of trivial
periodic strings (i.e., unary strings), as follows from condition 2 of Theorem 2 in
Sect. 4.

On Suffix Tree Detection 17

2 Preliminaries

In this section we describe some basic terms used in the paper. We begin with
a formal definition2 of the term suffix tree, which is the subject of this study.

Definition 2. Suffix Tree [21,25,26]
The suffix tree for the string S of length n is defined as a rooted tree such that:

1. The tree has exactly n leaves numbered from 1 to n.
2. Except for the root, every internal node has at least two children.
3. Each edge is labelled with a non-empty sub-string of S.
4. No two edges starting out of a node can have string-labels beginning with

the same character. The string obtained by concatenating all the string-labels
found on the path from the root to leaf i is the suffix S[i..n], 1 ≤ i ≤ n.

In order to ensure the existence of such a tree for any string, S is assumed to
end with a terminal symbol denoted by $, where $ /∈ Σ. This ensures that no
suffix is a prefix of another, and that there are n leaf nodes, one for each of the
n − 1 suffixes of S and an additional leaf for the $.

Throughout the paper, we assume that the suffix tree (thus, any given tree to be
checked) is ordered, i.e., the labels on edges are sorted by lexicographic order,
and that a $ is lexicographically smaller than every other character in Σ.

Notation. Wee denote by |S| the length of a string S. Let T be a suffix tree of
a string S.

– We denote by T (σi) the sub-tree of T ’s root that is reached by following the
edge-label starting with σi ∈ Σ, if σi appears in S.

– Similarly, let X be any internal node of T and TX be the sub-tree rooted at
X in T , we denote by TX(σi) the sub-tree of X that is reached by following
the edge-label starting with σi ∈ Σ, if it exists.

Common Terms. We use some common definitions and terms, as follows.

– Trees terms, such as nodes level (starting from 0 for the root), depth or
degree, refer to the unlabelled-edges suffix tree structure.

– Implicit nodes in a suffix tree T refer to any non-branching nodes that do
not exist in T but can be added between the nodes of T when edge-labels
longer than a single character are split to form shorter edge labels.

– The path label of a non-root internal node X in T refers to the concatena-
tion of edge-labels on the path from the root to X.

A well-known term related to the suffix tree data structure is that of a suffix
link, given in Definition 3. Suffix links are a key feature for some classical linear-
time construction algorithms [21,25,26], although Farach’s algorithm for suffix
tree construction [10] does not make use of them. Suffix links are also used in
some algorithms running on the tree.
2 Assuming the basic terms: rooted trees, internal tree nodes and tree leaves are known.

18 A. Amir et al.

Definition 3. Suffix Links
Given a suffix tree T , let s be a path label of a non-root internal node X, and let
s′ be the string s truncated by its first character. Let X ′ be a non-root internal
node with the path label s′. Then, the suffix tree edge from the node X to the
node X ′ is called a suffix link.

In Sect. 3 we deal with periodic strings, formally defined next.

Definition 4. Periodic and Primitive Strings
Let S be a string of length n. S is called periodic if S = P ipref(P), where
i ∈ N, i ≥ 2, P is a substring of S such that |P | ≤ n/2, P i is the concatenation
of P to itself i times, and pref(P) is a prefix of P . The shortest such substring
P is called the period of S.

If S is not periodic it is called aperiodic or primitive.
A periodic string having a period length at least 2 is called a non-trivial

periodic string.

Note that by Definition 4, the period P of a periodic string S is uniquely defined.
In addition, such a period P is a primitive string.

Notation. Let S be a periodic string having a period P = P [1 . . . p] of length
p ≥ 2. Denote by P (i) = P [i..p]P [1..i−1], the i-th rotation of P , where 1 ≤ i ≤ p.

Definition 5 describes a binary tree structure characterization that we use.

Definition 5. Tree/Sub-Tree Alignment
Let T be a full binary tree, i.e. each node is either a leaf or has exactly two
children. T is called left aligned (respectively, right aligned) if every right child
(respectively, left child) of an internal node in T is a leaf. We call this the left-
alignment condition (respectively, right-alignment condition).

A tree T with only a root and two leaves is called trivially right-aligned
(alternatively, trivially left-aligned).

A tree T is not aligned if it is neither left- nor right-aligned.
A sub-tree of T with a root t is called left aligned sub-tree (respectively,

right aligned) if the left-alignment condition (respectively, the right-alignment
condition) holds for the sub-tree of T rooted at t. The sub-tree of T rooted at t
is called non-aligned sub-tree if it is neither a left nor a right aligned sub-tree.

Note that the left and right child of an inner node in a full binary tree repre-
senting a suffix tree, correspond to following the edge with a smaller or larger
character by lexicographic order, respectively..

For the statement of condition 2 of Theorem 2 (stating necessary conditions
for binary string suffix tree detection) in Sect. 4, we need the term alignment
inversion and the classification of its types given next in Definition 6.

Definition 6. Alignment Inversion
Let T be a binary tree with root node t. Denote by t� the left child of t and by
tr the right child of t. We say that t has an alignment inversion if one of the
following conditions holds:

On Suffix Tree Detection 19

1. If t� has 2 children, tr is a leaf, whereas, the left child of t�, denoted by t��

is a leaf, and its right child, denoted by t�r
, has 2 children. We call this a

left-right inversion.
2. If t� is a leaf, tr has 2 children, whereas, the left child of tr, denoted by tr�

,
has 2 children, and its right child, denoted by trr

, is a leaf. We call this a
right-left inversion.

3. If both t� and tr have 2 children. We call this a balanced inversion.

Remark. In Sect. 4 we assume that |Σ| = 2, without loss of generality, Σ =
{a, b}.

3 Periodic Strings Suffix Tree Detection

In this section we study the structure of any ordered tree representing a suffix
tree of a non-trivial periodic string, i.e., having period length at least 2.3 We
begin by discussing limitations of periodic strings suffix tree detection. Note
that in this section, we refer to a string S ending with a $ as periodic (resp.
a-periodic), if it is periodic (resp. a-periodic) when the $ is omitted.

Detection Limitations. A major limitation for periodic strings suffix tree
structure characterization is non-uniqueness, i.e., there exist trees structures
that match both a periodic and a non-periodic string. Consider the periodic
string babbbabbbabbba$ and the non-periodic string bbbabbbabbbaba$, which have
identical suffix trees structure, but the “period” is violated in the incomplete
“occurrence” at the end of the non-periodic string. Another different example is
the periodic string babbbabbbabb$ and the non-periodic string babbbabbabbb$, in
which the last “occurrence” of the period has the correct quantity of each char-
acter but their order is different, however, both strings have identical suffix tree
structure. We conclude with the following periodic string: bbabbbbabbbbabbbbabb$
and the non-periodic string bbbbbbbabbbbabbbbabb$, which has one mismatch error
with the periodic string. They don’t have identical suffix tree structure, however,
the suffix tree structure of the second non-periodic string is identical to the suf-
fix tree structure of the following periodic string: bbbbbabbbbbabbbbbabb$. Thus,
violating the periodicity in a complete period occurrence, does not guarantee
the in-existence of a periodic string suffix tree that is isomorphic to the resulting
aperiodic string suffix tree structure. Therefore, our study is directed to differen-
tiate between ordered trees such that there exists a periodic string with identical
suffix tree structure and ordered trees where there is no periodic string suffix tree
with identical structure.

Another important limitation for periodic strings suffix tree structure char-
acterization is having a sufficient number of period repetitions. By periodicity
definition (see Definition 4) there should be at least two period repetitions in
a periodic string. However, we show that given an ordered tree, determining

3 Note that the structure of a unary string, which is a trivial periodic string with
period length 1, is characterized by Theorem 2.2 in Sect. 4.

20 A. Amir et al.

if it is isomorphic to a periodic string suffix tree can be done for strings with
at least three period repetitions. Having a sufficient number of repetitions is
also a limitation in the period recovery problem [1] as well as the cover recovery
problem [2].

Lemmas 1, 2 and 3 below specify necessary conditions on non-trivial periodic
strings suffix trees structure. Omitted proofs will appear in the full version of
this paper.

Lemma 1. Let T be an ordered suffix tree of a periodic string S of length n
having a period P of length p ≥ 2. Then, every internal node at depth at least
p − 1 has out-degree 2. Moreover, every internal node at depth at least p − 1 is
a root of a (maybe trivially) right-aligned sub-tree.

Proof. By the definition of a period, P is primitive, thus every P (i) and P (j),
where i �= j mod p, have at least one mismatch. Therefore, every two suffixes Si

and Sj , where i �= j mod p, have at least one mismatch in their first p characters.
Thus, at depth higher than p−1 an internal node can have out-degree more than
2 if at least 3 suffixes share a prefix, where the mismatches pairs are different.

Since there are at most p mismatches in the first p characters of every Si and
Sj , where i �= j mod p, then from depth p − 1 all suffixes that are still in the
same sub-tree have equivalent length modulo p. The only mismatch that creates
a new internal node in this set of suffixes is when a shorter suffix ends with a
$, while all the other suffixes are longer. Since all these suffixes have equivalent
length modulo p, in all the longer suffixes this character is equal to S[n − p].

We prove that the resulting sub-tree at depth p−1 is a right-aligned sub-tree,
from which, in particular, we get that every internal node at such a sub-tree has
out-degree 2. The order between pairs of suffixes Si and Sj , where i = j mod p,
is determined by the comparison of $ to the character S[n − p]. Recall that $
is smaller and thus forms a left leaf. By periodicity, S[n − p] repeats every p
positions, therefore, the repeated comparison forms a right-aligned sub-tree.

Lemma 2. Let T be an ordered suffix tree of a periodic string S of length n
having a period P of length p ≥ 2. Then, if �(n − 1)/p� > 2 (i.e., the period
appears at least 3 times), there are exactly p sub-trees with depth at least �(n −
1)/p�− 2 that are all (maybe trivially) right-aligned. Moreover, for every σ ∈ Σ,
the number of such sub-trees in T (σ) is the number of occurrences of σ in P .

Proof. From Lemma 1, it follows that after a prefix of length at most p until
the closest appearance of the last p characters of S (excluding the $), each set
of suffixes that have equivalent length modulo p are in the same right-aligned
sub-tree.

Each sub-tree corresponds to a different set of suffixes Si having equivalent
length modulo p. Since �n−1

p � > 2, each such set of suffixes Si having equivalent
length modulo p is not empty and has at least 2 suffixes. Thus, there must be
exactly p such right-aligned sub-trees.

Moreover, the number of suffixes in each of these sets is at least: �n−1
p � − 1.

In each level one such suffix ends as a $-labelled left leaf. Therefore, the number

On Suffix Tree Detection 21

of internal nodes in the each formed right-aligned sub-tree is at least �n−1
p � − 1.

Thus, the depth of the formed right-aligned sub-tree is at least �(n − 1)/p� − 2.
Since the period length is p, every Si which belongs to the same sub-tree

starts with the same character. That is, Si[1] = Si+p[1] = Si+2p[1] = . . ., for
any 1 ≤ i ≤ p. Since different length-equivalence classes modulo p are formed
by mismatches in the first p characters of S, the number of such right-aligned
sub-trees in T (σ), for every character σ, is the number of occurrences of σ in P .

Lemma 3. Let T be an ordered suffix tree of a periodic string S of length n
having a period P of length p ≥ 2. Then, the label of every edge:

1. to an inner node of T : has length at most p.
2. to a left leaf of T : has length 1 and its label is $.
3. to a right leaf of T : has length p + 1 and its label is the suffix S[n − p . . . n].

Lemmas 1, 2 (and 3) are not sufficient to reject any tree structure where no
periodic string has an identical suffix tree structure. However, they can be used
to reject the suffix tree of the following almost periodic string (with one deletion
error): bbbbabbbbbbabbbbbabb$. Lemma 4 below rejects its structure as matching
any periodic string suffix tree.

Lemma 4. Let T be an ordered suffix tree of a string of length n, then if the
following hold:

1. There exists p, such that 2 ≤ p < n, �(n−1)/p� > 2 and T has p right-aligned
sub-trees.

2. There exists a sub-tree at depth p − 1 that is not right-aligned.

Then, there is no periodic string with a suffix tree structure identical to T .

Lemmas 1, 2, 3 and 4 are still not sufficient to reject any tree structure where
no periodic string has an identical suffix tree structure. For example, they hold
for the suffix tree of the following non-periodic string babbabbbbbabbbbbabbb$, yet
there is no periodic string having an identical suffix tree structure. Nevertheless,
Lemma 5 below rejects its structure as matching any periodic string suffix tree.

Lemma 5. Let T be an ordered suffix tree of a string of length n, then if the
following hold:

1. There exists p, such that 2 ≤ p < n, �(n−1)/p� > 2 and T has p right-aligned
sub-trees.

2. The difference in depths of two of these p right-aligned sub-trees is strictly
greater than 1.

Then, there is no periodic string with a suffix tree structure identical to T .

Proof. If there exists p, such that 2 ≤ p < n, �(n − 1)/p� > 2 and T has p
right-aligned sub-trees, then by Lemma 2, the period of a periodic string with
a suffix tree T (if such a string exists) is of length p. We next show that the
difference in the depth of any two of these right-aligned sub-trees is at most 1.

22 A. Amir et al.

Each right-aligned sub-tree corresponds to a different set of suffixes having
equivalent length modulo p (see Lemma 2’s proof). Moreover, the number of
suffixes in each of these sets is at least: �n−1

p � − 1. Thus, their depth is at least
�(n − 1)/p� − 2. Also, note that the number of suffixes with equivalent length
modulo p in each such set cannot exceed �(n−1)/p	. It follows that the difference
in the depth of any two such sub-trees is at most 2.

Assume that there exists a non-empty set of �(n − 1)/p� − 1 suffixes having
equivalent length modulo p and let Si be the longest suffix in this set. The length
of Si is, therefore, r + p(�(n − 1)/p� − 2) + 1 (including the $), where r is the
length of the path label of Si’s right-aligned sub-tree root. We claim that in such
a case there is no other set with �(n − 1)/p	 suffixes having equivalent length
modulo p. Note that proving this claim concludes the proof of the lemma.

Every suffix Sj , where i �= j mod p, has a mismatch with Si which must
be encountered after at most p − 1 characters. Note that, n − 1 − (p − 1) ≥
p�(n − 1)/p� − p + 1 = p(�(n − 1)/p� − 1) + 1 = p(�(n − 1)/p� − 2) + p + 1. This
means that the shortest suffix with equivalent length to Si modulo p has the
same prefix of length p as Si and, therefore, its length is at least p+1 (including
the $). Thus, r ≥ p, since this shortest suffix ends with a $ as a left leaf of the
root of Si’s right-aligned sub-tree. Moreover, the label of the edge leading to the
root of Si’s right-aligned sub-tree is of length p. Therefore, r ≤ p − 1 + p < 2p.

Now, every other set of suffixes with equivalent length modulo p that has
more suffixes than �n−1

p � − 1, must have a longest suffix with length strictly
greater than that of Si. Since r < 2p, such a suffix must begin within the first
2p − 1 characters of S. Therefore, it can have at most one more suffix than the
number of suffixes in set of Si. This concludes the proof.

Theorem 1. Let T be an ordered tree with n leaves. Then, there exists a periodic
string S of length n having a period P of length p ≥ 2 that repeats at least 3
times in S s.t. T is identical to the structure of S’s suffix tree, if and only if:

1. Every internal node at depth at least p − 1 ≥ 1 has out-degree 2.
2. There are exactly p sub-trees with depth at least �(n − 1)/p� − 2 ≥ 1 that are

all (maybe trivially) right-aligned. Moreover, for every σ ∈ Σ, the number of
such sub-trees in T (σ) is the number of occurrences of σ in P .

3. Every sub-tree at depth p − 1 is right-aligned.
4. The depths difference between every two of the p right-aligned sub-trees of T

is at most 1.
5. Let T ′ be the tree T in which the p right-aligned sub-trees that T has by

condition 2 are trimmed at their sub-trees roots. Then, there exists an a-
periodic string P̂ of length x, such that p + 2 ≤ x ≤ 2p, P̂ [i] = P̂ [p + i], for
1 ≤ i ≤ x − p − 1, P̂ [x] = $ and the suffix tree of P̂ is identical to T ′.

Proof. Assume that there exists a periodic string S of length n having a period
P of length p ≥ 2 that repeats at least 3 times in S such that T is identical to the
structure of S’s suffix tree. Then, Lemmas 1–5 ensure that conditions 1–4 hold.
In addition, the set of at most 2p shortest suffixes of S determine the structure of
T above the p right-aligned sub-trees that T has by condition 2. This is because

On Suffix Tree Detection 23

at least one and at most p mismatches occur between the suffix of length p + 2
to every other shorter suffix. The mismatches of the p+2 shortest suffixes result
in inner nodes above the p right-aligned sub-trees, since these are suffixes that
do not have equivalent length modulo p. Suffixes with length p + 2 < x ≤ 2p
may still create an edge to a root of the p right-aligned sub-trees. Any longer
suffix has equivalent length modulo p to one of the suffixes of length at most
p + 1. Therefore, there exists x, p + 2 ≤ x ≤ 2p, such that by taking P̂ to be the
x-length suffix of S, we get that the suffix tree of P̂ is identical to T ′. Note that
P̂ is a-periodic (having length at most 2p including the $).

Assume that conditions 1–5 hold for an ordered tree T with n leaves, we show
that there exists a periodic string S of length n having a period P of length p ≥ 2
that repeats at least 3 times in S such that T is identical to the structure of S’s
suffix tree. By condition 5, we know that there exists an a-periodic string P̂ of
length x, such that p+2 ≤ x ≤ 2p, P̂ [i] = P̂ [p+i], for 1 ≤ i ≤ x−p−1, P̂ [x] = $
and the suffix tree of P̂ is identical to T ′, where T ′ is the tree T in which the p
right-aligned sub-trees that T has by condition 2 are trimmed at their sub-trees
roots. We inductively construct the periodic string S from end to beginning as
follows. We begin by assigning S[n−x+1 . . . n] ← P̂ . Then, for every i, starting
from n − x down to 1, we assign S[i] ← S[i + p]. Note that S is periodic with
a period of length p. By condition 1, we have that p ≥ 2 and by condition 2,
we have that �(n − 1)/p� > 2 (thus, the period repeats at least 3 times in S).
Let T ′′ be the suffix tree of S. Then, Lemmas 1–5 ensure that conditions 1–4
hold for T ′′. Since the construction of S only added suffixes longer than x which
belong to the right-aligned sub-trees, trimming the p right-aligned sub-trees of
T ′′ at their roots gives the tree T ′. Therefore, T ′′ is identical to T . The theorem
follows.

Corollary 1. General Alphabet Periodic String Suffix Tree Detection
Given an ordered tree T with n leaves, then there exists an O(n + |Σ|p)-time
algorithm to detect if there exists a non-trivial periodic string S of length n
over Σ having at least 3 period repetitions, s.t. T is identical to S’s suffix tree
structure, where p is the unknown in advance period length of S, if such S exists.

Proof. Given an ordered tree T with n leaves, the algorithm’s steps are:

1. Scan T to find the unique4 number p of right-aligned sub-trees with depth at
least �(n − 1)/p� − 2 ≥ 1 and the numbers pσ of the right-aligned sub-trees
in every T (σ) sub-tree of T .5

2. If �(n − 1)/p� ≤ 2 or p < 2, return NO.
3. If two of these p right-aligned sub-trees have depth difference strictly greater

than 1, return NO.
4. Scan T to check if every internal node at depth at least p − 1 has out-degree

2. If not, return NO.

4 p is unique by condition 2 of Theorem 1.
5 The characters σ ∈ Σ are chosen to the edges of T ’s root from left to right according

to the order of Σ, where the first edge is $.

24 A. Amir et al.

5. If the scan detects a sub-tree at depth p − 1 that is not right-aligned, return
NO.

6. Let T ′ be the tree T in which the p right-aligned sub-trees of T are trimmed
at their sub-trees roots and let x be the number of leaves in T ′.

7. For every a-periodic string P̂ of length x, such that P̂ [i] = P̂ [p + i], for
1 ≤ i ≤ x − p − 1, P̂ [x] = $, having pσ occurrences of each σ ∈ Σ in the last
p + 1 characters:
(a) Construct the suffix tree T P̂ of the string P̂ .
(b) If T P̂ is identical to T ′, return YES.

8. Return NO.

The algorithm correctness: Step 1 identifies the only possible candidate
period length p according to condition 2 of Theorem 1. Then, step 2 rejects
T if this candidate is not long enough or for this candidate there are not enough
repetitions, as we only detect suffix trees of non-trivial periodic strings with at
least three period repetitions. Step 3 rejects T according to condition 4 of The-
orem 1. Step 4 rejects T according to condition 1 of Theorem 1. This step is
performed after step 3 to prevent another unnecessary scan of T if the informa-
tion of the first three steps is enough to reject T . Step 5 rejects T according to
condition 3 of Theorem 1. Steps 6–8 reject or accept T according to condition 5
of Theorem 1.

The algorithm time complexity is O(n + |Σ|p), as steps 1– take time linear
in the size of T , which is O(n), step 7 takes O(|Σ|p +p) time (recall that p+2 ≤
x ≤ 2p by condition 5 of Theorem 1) and step 8 takes O(1) time.

4 Necessary Conditions on a Binary String Suffix Tree

In this section we describe some necessary conditions on any ordered tree rep-
resenting a binary string suffix tree. For completeness, we state Observation 1,
which follows from Definition 2 and the binary string ordered tree assumption.

Observation 1 Let T be an ordered suffix tree of a binary string of length n.
Then,

1. Every internal node of T has out-degree at least 2 and at most 3.
2. The leftmost child of the root of T has out-degree 0 (no children). This child

corresponds to the $ character in the string represented by T .
3. The edge to the leftmost child among three children of any node in T is labelled

with $.

Theorem 2 below lists several necessary conditions for a tree T to be a suffix
tree of a binary string.

Theorem 2. Necessary Conditions
Let T be an ordered suffix tree of a binary string of length n. Then,

On Suffix Tree Detection 25

1. The maximum out-degree (number of children) of nodes in the same depth
is monotonically non increasing with the node depth. I.e., if there exists an
internal node with out-degree 3, then all the above levels must have at least
one node with out-degree 3.

2. Let d ≥ 0 be the highest level at which the maximum out-degree of the nodes
is 2. Then the following hold:
– If d = 0, the tree is right-aligned.
– If d = 1, the root of T (a) cannot have left-right inversion, however, it can

have right-left or balanced inversion. On the other hand, the root of T (b)
can either be aligned or have left-right, right-left or balanced inversion.

3. The maximum number of leaves in TX(a), for an internal node X, is mono-
tonically non-increasing with the depth of X.

4. The maximum number of leaves in TX(b), for an internal node X, is mono-
tonically non increasing with the depth of X.

5. If all the possible strings of length 2: aa, ab, ba and bb, appear in the string
represented by T , then the root of T has only one child with out-degree 3.

The proof of Theorem 2 is deferred to the full version.
We conclude this section by referring to the algorithmic task of verifying if the

conditions specified in (Observation 1 and) Theorem 2 hold for a given ordered
tree T , assuming a binary string. Theorem 3 below can be achieved simply by
visiting the tree.

Theorem 3. Verification Algorithm
Given an ordered tree T , there exists an O(n) time algorithm to verify if each
of the conditions of (Observation 1 and) Theorem 2 holds, assuming a binary
string.

Remark. Theorem 2’s conditions are insufficient.

5 Conclusion and Open Problems

In this paper we made another step towards understanding the structure of suffix
trees by studying the suffix tree detection problem in which the relaxation of
having the suffix links as input is removed. Some interesting open problems are:

– Providing a full characterization theorem describing both necessary and suf-
ficient conditions for an ordered tree to be a suffix tree of some string.

– Improving the time complexity of our general alphabet periodic string suffix
tree detection algorithm.

We believe that these problems should be further addressed due to the impor-
tance of suffix trees and their fundamental role.

26 A. Amir et al.

References

1. Amir, A., Eisenberg, E., Levy, A., Porat, E., Shapira, N.: Cycle detection and
correction. ACM Trans. Algorithms 9(1), 1–20 (2012). https://doi.org/10.1145/
2390176.2390189

2. Amir, A., Levy, A., Lewenstein, M., Lubin, R., Porat, B.: Can we recover the
cover? Algorithmica 81(7), 2857–2875 (2019). https://doi.org/10.1007/s00453-
019-00559-8

3. Apostolico, A.: The myriad virtues of subword trees. In: Apostolico, A., Galil, Z.
(eds.) Combinatorial Algorithms on Words. NATO ASI Series, vol. 12, pp. 85–96.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82456-2 6

4. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 208–
217. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45138-9 15

5. Breslauer, D., Italiano, G.F.: On suffix extensions in suffix trees. Theoret. Comput.
Sci. 457, 27–34 (2012)

6. Cazaux, B., Rivals, E.: Reverse engineering of compact suffix trees and links: a
novel algorithm. J. Discrete Algorithms 28, 9–22 (2014)

7. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
Proceedings of the 26th International Symposium on Theoretical Aspects of Com-
puter Science STACS. LIPIcs, vol. 3, pp. 289–300. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2009)

8. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string
reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
251–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13509-
5 23

9. Duval, J., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border
arrays and validation of string matching automata. RAIRO Theor. Inform. Appl.
43(2), 281–297 (2009)

10. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
of the 38th IEEE Symposium on Foundations of Computer Science, pp. 137–143
(1997)

11. Franek, F., et al.: Verifying a border array in linear time. J. Comb. Math. Comb.
Comput. 42, 223–236 (2000)

12. Gawrychowski, P., Jez, A., Jez, L.: Validating the Knuth-Morris-Pratt failure func-
tion, fast and online. Theory Comput. Syst. 54(2), 337–372 (2014)

13. Gawrychowski, P., Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Uni-
versal reconstruction of a string. Theor. Comput. Sci. 812, 174–186 (2020)

14. Gelle, K., Iván, S.: Recognizing union-find trees is NP-complete, even without rank
info. Int. J. Found. Comput. Sci. 30(6–7), 1029–1045 (2019)

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

16. He, M., Munro, J.I., Rao, S.S.: A categorization theorem on suffix arrays with
applications to space efficient text indexes. In: SODA, vol. 5, pp. 23–32. Citeseer
(2005)

17. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Verifying and enumerating
parameterized border arrays. Theor. Comput. Sci. 412(50), 6959–6981 (2011)

18. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix
trees and links on a binary alphabet. Discrete Appl. Math. 163, 316–325 (2014)

https://doi.org/10.1145/2390176.2390189
https://doi.org/10.1145/2390176.2390189
https://doi.org/10.1007/s00453-019-00559-8
https://doi.org/10.1007/s00453-019-00559-8
https://doi.org/10.1007/978-3-642-82456-2_6
https://doi.org/10.1007/978-3-540-45138-9_15
https://doi.org/10.1007/978-3-642-13509-5_23
https://doi.org/10.1007/978-3-642-13509-5_23

On Suffix Tree Detection 27

19. Kärkkäinen, J., Piatkowski, M., Puglisi, S.J.: String inference from longest-
common-prefix array. In: Proceedings of the 44th International Colloquium on
Automata, Languages, and Programming, ICALP. LIPIcs, vol. 80, pp. 62:1–62:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

20. Kucherov, G., Tóthmérész, L., Vialette, S.: On the combinatorics of suffix arrays.
Inf. Process. Lett. 113(22), 915–920 (2013)

21. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
23, 262–272 (1976)

22. Nakashima, Y., Okabe, T., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.:
Inferring strings from Lyndon factorization. Theor. Comput. Sci. 689, 147–156
(2017)

23. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Theoret. Comput.
Sci. 395(2–3), 220–234 (2008)

24. Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree? J. Discrete
Algorithms 32, 14–23 (2015)

25. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
26. Weiner, P.: Linear pattern matching algorithm. In: Proceedings of the 14 IEEE

Symposium on Switching and Automata Theory, pp. 1–11 (1973)

Optimally Computing Compressed
Indexing Arrays Based on the Compact

Directed Acyclic Word Graph

Hiroki Arimura1(B) , Shunsuke Inenaga2 , Yasuaki Kobayashi1 ,
Yuto Nakashima2 , and Mizuki Sue1

1 Graduate School of IST, Hokkaido University, Sapporo, Japan
{arim,koba,sue}@ist.hokudai.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp, nakashima.yuto.003@m.kyushu-u.ac.jp

Abstract. In this paper, we present the first study of the computational
complexity of converting an automata-based text index structure, called
the Compact Directed Acyclic Word Graph (CDAWG), of size e for a
text T of length n into other text indexing structures for the same text,
suitable for highly repetitive texts: the run-length BWT of size r, the
irreducible PLCP array of size r, and the quasi-irreducible LPF array of
size e, as well as the lex-parse of size O(r) and the LZ77-parse of size z,
where r, z � e. As main results, we showed that the above structures can
be optimally computed from either the CDAWG for T stored in read-only
memory or its self-index version of size e without a text in O(e) worst-
case time and words of working space. To obtain the above results, we
devised techniques for enumerating a particular subset of suffixes in the
lexicographic and text orders using the forward and backward search on
the CDAWG by extending the result by Belazzougui et al. in 2015.

Keywords: Highly-repetitive text · suffix tree · longest common prefix

1 Introduction

Backgrounds. Compressed indexes for repetitive texts, which can compress
a text beyond its entropy bound, have received a lot of attention in the last
decade in information retrieval [12]. Among them, the most popular and powerful
compressed text indexing structures [12] are the run-length Burrows-Wheeler
transformation (RLBWT) [12] of size r, the Lempel-Ziv-parse (LZ-parse) [13] of
size z, and finally the Compact Directed Acyclic Word Graph (CDAWG) [5] of
size e. It is known [12] that the size parameters r, z, and e can be much smaller
than the information theoretic upperbound of a text for highly-repetitive texts
such as collections of genome sequences and markup texts [12]. Among these
repetition-aware text indexes, we focus on the CDAWG for a text T , which is
a minimized compacted finite automaton with e transitions for the set of all
suffixes of T [5]; It is the edge-labeled DAG obtained from the suffix tree for T
by merging all isomorphic subtrees [8], and can be computed from T in linear
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 28–34, 2023.
https://doi.org/10.1007/978-3-031-43980-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_3&domain=pdf
http://orcid.org/0000-0002-2701-0271
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0003-3244-6915
http://orcid.org/0000-0001-6269-9353
https://doi.org/10.1007/978-3-031-43980-3_3

Optimally Computing Compressed Indexing Arrays 29

time and space [12]. The relationships between the size parameters r, z, and e of
the RLBWT, LZ-parse, and CDAWG has been studied by, e.g. [2,4,6,10,11,14];
However, it seems that the actual complexity of converting the CDAWG into
the other structures in sublinear time and space has not yet been explored [12].

Research Goal and Main Results. In this paper, we study for the first time
the conversion problem from the CDAWG for T into the following compressed
indexing structures for T :

(i) the run-length BWT (RLBWT) [12] of size r � e;
(ii) the irreducible permuted longest common prefix (PLCP) array [9] of size r;
(iii) the quasi-irreducible longest previous factor (LPF) array [7] of size e (Sect.

2);
(iv) the lex-parse [13] with size at most 2r = O(r); and
(v) LZ-parse [13] with size z � e.

We present in Sect. 4 and 5 algorithms for solving the aforementioned con-
version problems from the CDAWG. Then, we obtain the following results.

Main Results (Theorem 4.1, 5.1, and 5.2). For any text T of length n over
an integer alphabet Σ, we can solve the conversion problems from the CDAWG
G of size e for T into the above compressed index array structures (i)–(v) for
the same text in O(e) worst-case time using O(e) words of working space, where
an input G is given in the form of either the CDAWG of size e for T stored in
read-only memory, or its self-index version [3,15] of size O(e) without a text.

Techniques. We devise in Sect. 3 techniques for enumerating a canonical subset
of suffixes in the lexicographic and text orders using the forward and backward
DFS at the CDAWG G extending [4]. For definitions and proofs omitted here,
see the manuscript [1]. Related work. Belazzougui et al. [4] showed that r � e
and z � e hold. As closely related work, the CDAWG G can be converted into the
LZ78-parse of size z78 ≥ z in O(e + z78 log z78) time and space [2] via an O(e)-
sized grammar [3] on G. In general, e = Θ(log n) and r = O(1) for Fibonacci
words [11]. For Thue-Morse words,1 our O(e)-time conversion method can run
as fast as O(r polylog(n))-time one since e = O(log n) [14] and r = Θ(log n) [6].

2 Preliminaries

We prepare the necessary notation and definitions in the following sections. For
precise definitions, see the literature [8,12] or the manuscript [1].

Basic Definitions and Notation. For any integers i � j, the notation [i..j] or
i..j denotes the interval {i, i + 1, . . . , j} of integers, and [n] denotes {1, . . . , n}.
For a string S[1..n] = S[1] · · · S[n] of length n and any i � j, we denote S[i..j] =
S[i]S[i + 1] · · · S[j]. Then, S[1..j], S[i..j], and S[i..|S|] are a prefix, a factor, and
a suffix of S, resp. The reversal of S is S−1 = S[n] · · · S[1]. Throughout, we
assume a string T [1..n] ∈ Σn, called a text, over an alphabet Σ with symbol
1 The n-th Thue-Morse word is τn = ϕn(0) for the morphism ϕ(0) = 01 and ϕ(1) = 10.

30 H. Arimura et al.

order �Σ , which is terminated by the end-marker T [n] = $ such that $ �Σ a
for ∀a ∈ Σ. Suf(T) = {T1, . . . , Tn} ⊆ Σ+ denotes the set of all of n non-empty
suffixes of T , where Tp := T [p..n] is the p-th suffix with position p. For any suffix
S ∈ Σ∗ in Suf(T), we define: (i) pos(S) := n+1−|S| gives the starting position
of S. (ii) rnk(S) gives the lexicographic rank of S in Suf(T). lcp(X,Y) denotes
the length of the longest common prefix of strings X and Y . In what follows, we
refer to any suffix as S, any factors of T as X,Y,U, L, P, . . ., nodes of a graph
as v, w, . . ., and edges as f, g, . . ., which are possibly subscripted. We denote by
�lex the lexicographic (lex-) order over Σ∗, and by �pos the text order defined
as X �pos Y ⇔ |X| ≥ |Y |.

The CDAWG [5] for a text T is an edge-labeled DAG G = CDAWG(T) = (V,
E, suf , root , sink), where V, E, and suf are the sets of nodes, labeled edges,
and suffix links; root and sink ∈ V are the root and sink, resp. Each labeled
edge f = (v,X,w) ∈ E goes from src(f) = v to dst(f) = w by spelling
lab(v) = X ∈ Σ+. The size of G is e := |E(G)| + |suf G|. For the definitions
of SA, BWT,PLCP,LPF , their compressed arrays, and the lex-parse and LZ-
parse for T , see, e.g., [1,7–9,12,13]. Throughout, all time and space complexities
are measured in the worst-case and in words, resp., over an integer alphabet Σ.

3 Techniques

Our Approach. The first idea is to use the one-to-one correspondence between
the set Path(G) of all n root-to-sink paths and the set Suf(T) of all n non-empty
suffixes of T , whose elements π and S are connected by str(π) = S, resp. We
represent a sparse indexing array ˜A : Dom → Range with domain Dom ⊆ [n]
by the graph ˜A = { (idx(S), val(S)) | S ∈ CS } of mapping ˜A and its index set
by Dom = { idx(S) | S ∈ CS } using some subset CS ⊆ Path(G) of canonical
suffixes and some mappings idx : CS → Dom and val : CS → Range. The
second idea is to enumerate elements (i, ˜A[i]) of ˜A on G = CDAWG−

Π(T) by
doing the DFS over a spanning tree for a set of certificates in E defined under the
pair Πpos

lex = (�pos,�lex) of path orderings. Below, we explain how to enumerate
elements of ˜A under Πpos

lex , where �pos and �lex play different roles.

(1) For the run-length BWT for T (Sect. 4), the set of primary edges (in the
sense of [5]) w.r.t. the first ordering �pos defines a spanning tree T over G
from the root, while the second ordering �lex specifies the order of traversal.
Finally, the set of secondary edges w.r.t. �pos provides a collection C of target
values to search in the DFS. Actually, we can extract an equal-letter run
from each secondary edge in constant time.

(2) For the quasi-irreducible LPF (Sect. 5), we do the backward DFS of G from
the sink based on the pair Π = (�pos,�pos). Then, the set of primary edges
(defined below) w.r.t. the second ordering �pos defines a spanning tree, the
first ordering �pos specifies the text order, and the set of secondary edges
w.r.t. the first ordering �pos provides a collection of target values, which are
the LCP values of neighboring suffixes. The PLCP array can be computed
in a similar way, but with the pair Π = (�pos,�lex).

Optimally Computing Compressed Indexing Arrays 31

Ordered CDAWG. Below, we introduce necessary terminology for Sect. 4 and
Sect. 5. Consider the CDAWG G with an underlying pair Π = (�–,�+) of path
orderings. Let v be any node, and let us read the elements of {−,+} “upper” and
“lower”, resp. Then, U−(v) denotes the set of all paths from the root to v [4,5],
called upper paths, in G, while U+(v) denotes the set of all paths from v to the
sink, called lower paths. For any δ ∈ {−,+}, the δ-representative of the set Uδ is
the smallest element reprδ(v) of Uδ(v) under �δ, i.e., reprδ(v) := min�δ

Uδ(v).
For example, under Πpos

lex = (�pos,�lex), repr−(v) is the longest strings in U−(v),
while repr+(v) is the lex-first string in U+(v). Πpos

pos has representatives, too.
We classify edges as follows: any δ-edge f ∈ Nδ(v), δ ∈ {−,+}, is said to

be δ-primary if reprδ(v) goes through f . We denote by E�
δ and E�

δ := E − E�
δ

the sets of allδ-primary and all δ-secondary edges, resp. We assume that in G
under Πpos

lex , all incoming and outgoing edges of N− and N+, resp., at any node
v are sorted by a pair of edge orderings Γ pos

lex = (�E
−,pos,�E

+,lex) compatible to
Πpos

lex . For example, f <E
−,pos f ′ is defined by comparing the lengths, U ≺pos U ′,

of longest paths U,U ′ ∈ U−(v) going through f, f ′ ∈ N−(v), while f1 �E
+,lex f2

is defined by the lex-order lab(f1)[1] <Σ lab(f2)[1] of the edge labels (see [1]).

Definition 3.1 (canonical suffix and search path). For δ ∈ {−,+}, we
define a δ-canonical suffix S, its δ-certificate fδ, and its δ-search path Pδ for fδ

as follows, where π = (f1, . . . , f�) is any root-to-sink path such that str(π) = S:

(a) If S is trivial, i.e., S = Sδ := reprδ(endδ) with end− = sink and end+ =
root , it is δ-canonical, fδ is a virtual one, fδ, Pδ := Sδ, and canoδ(fδ) := Sδ.

(b) Otherwise, S is non-trivial. Then, S is δ-canonical if it has a δ-canonical
factoring such that S = str(Uδ) · Xδ · str(Dδ) for some edge fδ = fk =
(v,Xδ, w) ∈ E�

δ , k ∈ [�], in π that satisfies: (i) fδ is the highest E�
−-edge in S

if δ = (−) and the lowest E�
+-edge in S if δ = (−);(ii) Uδ = (f1, . . . , fk−1) =

repr−(v);(iii) Lδ = (fk+1, . . . , f�) = repr+(w). Then, the δ-certificate is
fδ := fk, and the δ-search path for f is the path P− := U · X for δ = (−)
and the path P+ := X ·U for δ = (+), where X = lab(f). Let canoδ(fδ) = S.

	

We denote by CSδ(G) ⊆ Suf(T) and SPδ(G) ⊆ (E)∗ the set of all δ-canonical
suffixes of T and the set of all δ-search paths of G, resp. By definition, we can
reconstruct any canonical suffix Sδ from its certificate fδ by the bijection canoδ

between CEδ := E�
δ ∪ {fδ} and CSδ(G). Moreover, we have CS−(G) = CS+(G)

(see [1]), and thus, its elements are simply called canonical suffixes in G.
The forward (resp. backward) search tree T− (resp. T+) for certificates in

CEδ are constructed as the directed graph obtained by merging common prefixes
(resp. suffixes) of SP−(G) (resp. SP+(G)). We observe that (i) T− is connected
at the root (resp. so is T+ at the sink), and for every δ ∈ {−,+}, (ii) Tδ is span-
ning over CEδ, and (iii) Tδ contains at most e edges. Since SP−(G) is prefix-free
while SP+(G) is suffix-free (see [1]), T− and T+ are well-defined, resp. Finally,
we note that all operations above, used in Sect. 4 and 5, can be answered in O(1)
time after preprocessing G in O(e) time and space [3,4] (see [1] for details).

32 H. Arimura et al.

Algorithm 1: The algorithm for computing the quasi-irreducible BWT
for T [1..n] from the CDAWG G for T stored in read-only memory.
1 Procedure RecRBWT(v);
2 if N+(v) = ∅ then return (‘$’, 1) ; �Case: trivial suffix. T [n] = ‘$’
3 else � Case: non-trivial suffix
4 for each f = (v, X, w) ∈ N+(v) in order �E

+,lex compatible to �lex do
5 if is-primary−(f) then � Case: (−)-primary
6 RBWT ′ ← RecRBWT(w);
7 else � Case: (−)-secondary
8 c ← precsym(f); � ← nleaves(dst(f)); RBWT ′ ← (c, �);

9 RBWT ← RBWT ◦ RBWT ′ ; �Concatenation of encodings

10 return RBWT ;

4 Computing Run-Length BWT

Characterizations. Under Πpos
lex = (�pos,�lex), the set QIBWT of all quasi-

irreducible ranks is defined by the set QIBWT := { rnk(S) | S ∈ CS (G) } ⊆ [n],
We observe that |QIBWT | � e since |CS (G)| � e. We then have the interpolation
property below.

Lemma 4.1 (interpolation property). Under Πpos
lex , if i∗ �∈ QIBWT ,

BWT [i] = BWT [i − 1] ∈ Σ holds for ∀i ∈ [n].

Algorithm. In Algorithm 1, we present the recursive procedure that computes
the quasi-irreducible BWT for text T from either an input CDAWG G for T
stored in read-only memory or its self-index G = CDAWG−

Π(T) when it is
invoked with the root v. Let I = (I1, . . . , Ih), h = |E�

− ∪ {f−}| � e, be the
ordered partition of the rank space [1..n] consisting of the SA-intervals for all
(−)-search paths in SP−(G) sorted in the lex-order �lex, where for ∀i ∈ [h],
Ii = [sp(Pi)..ep(Pi)] ⊆ [n]. Firstly, the next lemma characterizes the BWT.

Lemma 4.2. Let T [1..n] be any text. (1) BWT [1..n] = BWT [I1]◦· · ·◦BWT [Ih].
(2)For ∀i ∈ [h], (i) and (ii) below hold: (i)If i = i∗ with SA[i∗] = 1, then Pi is a
trivial (−)-search path, Ii∗ = {i∗}, and BWT [Ii∗] = T [n] = ‘$’. (ii) If i �= i∗, Pi

is a non-trivial (−)-search path with certificate f ∈ E�
− .Then, BWT [Ii] is the

equal-symbol run c� ∈ Σ+, where c := T [p−1], � := |Ii|, and p = pos(canoδ(f)).

In Algorithm 1, the concatenation of two run-length encodings at line 9 can be
easily done in O(1) time by keeping the symbols at both ends. If a read-only text
T is available, the preceding symbol, precsym(f) := T [p − 1], of S = cano−(f)
can be computed in O(1) time at line 8. In the case of the self-index, we have
the next lemma, and then, the main result of this section.

Lemma 4.3. Given the self-index of G, the preceding symbol precsym(f) of
S = cano−(f) for ∀f ∈ E�

– can be computed in amortized O(1) time and space.

Optimally Computing Compressed Indexing Arrays 33

Algorithm 2: The algorithm for computing the quasi-irreducible
GLPF�+ array for a text T from the CDAWG for T or its self-index.

1 Procedure QIrrGLPF(v, QGL) ; �Assume path orderings Π = (�pos, �+)
2 if N−(v) = ∅ then � Case: trivial suffix at the root
3 QGL ← QGL ◦ (1, 0)
4 else � Case: non-trivial suffix at branching node
5 for each f = (w, X, v) in order �E

−,pos compatible to �pos do
6 if is-primary+(f) then � Case: (+)-primary
7 QIrrGLPF(w, QGL)
8 else � Case: (+)-secondary
9 � ← |repr−(w)|; p ← n + 1 − |repr−(w)| − |X| − |repr+(v)|;

10 QGL ← QGL ◦ (p, �); �output : GLPF [p] = �

Theorem 4.1. Given a self-index version of CDAWG(T) without a text, Algo-
rithm 1 constructs the RLBWT of size r � e in O(e) time and O(e) space.

5 Computing Irreducible GLPF Arrays

Let Π = (�pos,�+) with �+ ∈ {�lex,�pos}. First, we define a generalization
of PLCP and LPF, the generalized longest previous factor (GLPF) array for
a text T [1..n], under �+ by the array GLPF�+ [1..n] ∈ N

n such that for any
p ∈ [n], GLPF�+ [p] := max({ lcp(Tp, Tq) | Tq≺+Tp, q ∈ [n] } ∪ {0}). Then, the
quasi-irreducible GLPF array under path orderings Π is defined by the subset
G̃LPF := { (p,GLPF�+ [p]) | S ∈ CS (G), p = pos(S) } ⊆ [n] × N. We observe

that |G̃LPF | � e, PLCP = GLPF�lex , and LPF = GLPF�pos for any text T .

Lemma 5.1 (characterization of GLPF�+value). For ∀(p, �) ∈ [n]×N, the

conditions (a)–(c) below are equivalent: (a) (p, �) ∈ G̃LPF. (b) GLPF�+ [p] = �
and its length-� prefix is left-maximal in T . (c) For some S ∈ CS (G), p =
pos(S), and either (i) S is (+)-trivial and � = 0, or (ii) S is (+)-nontrivial,
S = cano+(f) and � = |repr−(w)| hold for some (+)-certificate f = (w,X, v) ∈
E�
+.

Proposition 5.1 (interpolation property). For any position p ∈ [n], if
p �∈ QIGLPF�+

then GLPF�+ [p] = GLPF�+ [p − 1] − 1 holds. Consequently,
PLCP and LPF satisfy the interpolation property as above w.r.t. QIGLPF .

Algorithm 2 computes the quasi-irreducible GLPF array for T from the self-
index G, when it is invoked with v = sink(G) and QGL = ε. Hence, we have:

Theorem 5.1. Given a self-index version of CDAWG(T) without a text, Algo-
rithm 2 constructs the quasi-irreducible GLPF�+ for T in O(e) time and space.

34 H. Arimura et al.

Theorem 5.2. The lex-parse of size 2r = O(e) and the LZ-parse of size z � r of
a text T [1..n] can be computed from a self-index version of CDAWG(T) without
a text for the same text in O(e) time and space.

Acknowledgments. The authors thank the anonymous reviewers for their comments
which greatly improved this paper. The first author is also grateful to Hideo Bannai
for information on conversion between text indexes, and to Mitsuru Funakoshi for
discussion on the sensitivity of text indexes.

References

1. Arimura, H., Inenaga, S., Kobayashi, Y., Nakashima, Y., Sue, M.: Optimally com-
puting compressed indexing arrays based on the compact directed acyclic word
graph. CoRR (2023). http://arxiv.org/abs/

2. Bannai, H., Gawrychowski, P., Inenaga, S., Takeda, M.: Converting SLP to LZ78
in almost linear time. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 38–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38905-4 6

3. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In:
CPM 2017. LIPIcs, vol. 78, pp. 7:1–7:13 (2017)

4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

5. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. JACM 34(3), 578–595 (1987)

6. Brlek, S., Frosini, A., Mancini, I., Pergola, E., Rinaldi, S.: Burrows-wheeler trans-
form of words defined by morphisms. In: Colbourn, C.J., Grossi, R., Pisanti, N.
(eds.) IWOCA 2019. LNCS, vol. 11638, pp. 393–404. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25005-8 32

7. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. IPL 106(2), 75–80 (2008)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

9. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02441-2 17

10. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. Commun. ACM 65(6), 91–98 (2022)

11. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the
clustering effect of BWT via RLE. Theoret. Comput. Sci. 698, 79–87 (2017)

12. Navarro, G.: Indexing highly repetitive string collections, part ii: Compressed
indexes. ACM Comput. Surv. (CSUR) 54(2), 1–32 (2021)

13. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
IEEE Trans. Inf. Theory 67(2), 1008–1026 (2020)

14. Radoszewski, J., Rytter, W.: On the structure of compacted subword graphs of
Thue-Morse words and their applications. JDA 11, 15–24 (2012)

15. Takagi, T., Goto, K., Fujishige, Y., Inenaga, S., Arimura, H.: Linear-size CDAWG:
new repetition-aware indexing and grammar compression. In: Fici, G., Sciortino,
M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 304–316. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 26

http://arxiv.org/abs/
https://doi.org/10.1007/978-3-642-38905-4_6
https://doi.org/10.1007/978-3-642-38905-4_6
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-030-25005-8_32
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1007/978-3-319-67428-5_26

Evaluating Regular Path Queries
on Compressed Adjacency Matrices

Diego Arroyuelo1,2 , Adrián Gómez-Brandón1,3(B) ,
and Gonzalo Navarro1,4

1 Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile
2 Department of Informatics, Universidad Técnica Federico Santa Maŕıa,

Viña del Mar, Chile
3 CITIC Research Center, Universidade da Coruña, A Coruña, Spain

adrian.gbrandon@udc.es
4 Department of Computer Science, University of Chile, Santiago, Chile

Abstract. Regular Path Queries (RPQs), which are essentially regular
expressions to be matched against the labels of paths in labeled graphs,
are at the core of graph database query languages like SPARQL. A way
to solve RPQs is to translate them into a sequence of operations on the
adjacency matrices of each label. We design and implement a Boolean
algebra on sparse matrix representations and, as an application, use them
to handle RPQs. Our baseline representation uses the same space as the
previously most compact index for RPQs and excels in handling the
hardest types of queries. Our more succinct structure, based on k2-trees,
is 4 times smaller and still solves complex RPQs in reasonable time.

1 Introduction and Related Work

Graph databases have emerged as a crucial tool in several applications such
as web and social networks analysis, the semantic web, and modeling knowl-
edge, among others. We are interested in labeled graph databases, where the
graph edges have labels. An important kind of queries in such databases are
the regular path queries (RPQs, for short), which search for paths of arbitrary
length matching a regular expression on their edge labels [3]. For example, in
the simple RDF model [23], one can represent points of interest in New York
City as nodes in a graph, and have edges such as x

walk−−→ y indicating that x

is within a short walking distance of y, as well as edges of the form x
L−→ y if

subway stations x and y are connected directly by subway line L. Then the RPQ
‘Central Park walk/(N|Q|R)+/walk ?y’, asks for all sites ?y of interest that are

Supported by ANID - Millennium Science Initiative Program – Code ICN17 002,
and Fondecyt Grant 1-230755, Fondecyt Grant 1221926; CITIC is funded by Xunta
de Galicia and CIGUS; GAIN/Xunta de Galicia Grant ED431C 2021/53 (GRC);
Xunta de Galicia/FEDER-UE Grant IN852D 2021/3; MCIN/AEI and NextGenera-
tionEU/PRTR Grants [PID2020-114635RB-I00, TED2021-129245B-C21].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 35–48, 2023.
https://doi.org/10.1007/978-3-031-43980-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_4&domain=pdf
http://orcid.org/0000-0002-2509-8097
http://orcid.org/0000-0002-1216-2176
http://orcid.org/0000-0002-2286-741X
https://doi.org/10.1007/978-3-031-43980-3_4

36 D. Arroyuelo et al.

reachable from Central Park by using subway lines N, Q, or R, through one or
more stations and allowing a short walk before and after using the subway.

RPQs are at the core of current graph database query languages, extend-
ing their expressiveness. In particular, the SPARQL 1.1 standard includes the
support for property paths, that is, RPQs extended with inverse paths (known
as two-way RPQs, or 2RPQs for short) and negated label sets. As SPARQL
has been adopted by several systems, RPQs have become a popular feature [3]:
out of 208 million SPARQL queries in the public logs from the Wikidata Query
Service [22], about 24% use at least one RPQ feature [9]. Further developments
like PGQL [28], Cypher [18], G-CORE [2], TigerGraph [15], and GQL [14], to
name some of the most popular ones, also support RPQ-like features.

Handling (2)RPQs can be computationally expensive to evaluate as they
usually involve a large number of paths [24], mostly for regular expressions
using Kleene stars. There are two main algorithmic approaches to support them
[33]: (1) to represent the regular expression of the 2RPQ using a finite automa-
ton, which is then used to search over the so-called product graph [25]; and
(2) to extend the relational algebra to support computing the transitive clo-
sure of binary relations to evaluate regular expressions having Kleene stars [21].
Although most theoretical results on 2RPQs have followed the first approach,
property path evaluation in SPARQL has followed the second one [33].

Recent research introduced not only time- but also space-efficient solutions
for evaluating graph joins [5,6,10]. With the big graphs available today, this is
an important step towards in-memory processing of graph queries. In particular,
the Ring data structure [6] is able to represent a labeled graph in space close to
its plain representation, while supporting worst-case optimal joins (used, as we
said, for BGP queries). Moreover, by using little extra space the Ring can be
used to support 2RPQs efficiently [4], using the product-graph approach [25].

In this paper, we introduce a space-efficient approach for evaluating 2RPQs
that, essentially, represents the subgraph corresponding to each graph label p
using a sparse representation of its Boolean adjacency matrix Mp. We evaluate
2RPQs by translating them into classic operations on Boolean matrices [21].
This approach is typically disregarded because matrix sizes are quadratic on the
number of graph nodes, but we exploit the sparsity of those matrices to represent
them efficiently, using k2-trees [11]. The use of k2-trees to represent each RDF
predicate is not new, for example it has been used to handle triple matching and
binary joins [1] and full BGPs [5], but not 2RPQs. We show how to translate
2RPQs into matrix operations and how to handle the particularities of 2RPQs.

The result is the most space-efficient graph database representation (nearly 4
bytes per graph edge on a Wikidata graph, 4 times less than the previously most
compact representation—the Ring [4]—and 14–21 times smaller than classical
systems). In exchange, our structure is on average 5 times slower than the Ring,
though it still solves most complex 2RPQs in a few seconds. We also implement
an uncompressed baseline for sparse matrices based on the CSR and CSC formats
[29, Sect. 3.4]. Its space matches that of the Ring and it excels on the most
expensive 2RPQs, namely those where no graph node is specified. It is only
outperformed by Blazegraph, which uses 5.5 times more space. Our new matrix-
algebra-based approach stands out in the space-time tradeoff map.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 37

2 Basic Concepts

2.1 Labeled Graphs and Regular Path Queries (RPQs)

Let U be a totally ordered, countably infinite set of symbols or constants, which
we call the universe. A directed edge-labeled graph G ⊆ U3 is a finite set of triples
(s, p, o) ∈ U3 encoding the graph edges s

p−→ o from vertex s to vertex o with
edge label p. In the RDF model [23] (which has gained popularity in representing
directed edge-labeled graphs), s is called a subject, p a predicate, and o an object.

For a graph G, we define its set of edge labels as P = {p | ∃ s, o, (s, p, o) ∈ G}.
Similarly, let V = {x | ∃ y, z, (x, y, z) ∈ G ∨ (z, y, x) ∈ G} be the set of graph
nodes. We assume that the graph nodes have been mapped to integers in the
range [1 . . |V |]. A path ρ from a node x0 to node xn in a graph G is a string
x0p1x1 · · · xn−1pnxn such that (xi−1, pi, xi) ∈ G for 1 ≤ i ≤ n. Given a path
ρ, we denote word(ρ) = p1 · · · pn the string labeling path ρ. Two-way RPQs
(2RPQs) also allow traversing reversed edges. Hence, we define the set of inverse
labels as ˆP = {̂ p | p ∈ P}, and P↔ = P ∪ ˆP the set of predicates and their
inverses. We define the inverse graph as ˆG = {(y, p̂, x) | (x, p, y) ∈ G}, and its
completion as G↔ = G∪ˆG. A two-way regular expression (2RE) is then formed
from the following rules: ε is a 2RE; if c ∈ P↔, then c is a 2RE; if E, E1 and
E2 are 2REs, then so are E∗ (Kleene star), E1/E2 (concatenation), and E1 | E2

(disjunction). If E is a 2RE, we also abbreviate E∗/E as E+ and ε|E as E?.
The language L(E) of E is defined exactly as that of the regular expressions

over the alphabet P↔ of terminals, and we say that a path ρ matches a 2RE E
iff word(ρ) ∈ L(E). A two-way regular path query, or 2RPQ for short, is a query
of the form (x,E, y), which looks for all the pairs of nodes (s, o) such that there
exists a path ρ = sp1 · · · pno in G↔ where word(ρ) ∈ L(E); x and/or y can be
constants (thus fixing the value of s and/or o, respectively), or variables.

2.2 An Algebra on Boolean Matrices

Let A = (ai,j)1≤i,j≤n and B = (bi,j)1≤i,j≤n be square n × n Boolean matrices.
We define the following operations of interest for our work:

– Transpose: AT , where aT
i,j = aj,i, for 1 ≤ i, j ≤ n.

– Sum: A + B = C = (ci,j), where ci,j = ai,j ∨ bi,j , for 1 ≤ i, j ≤ n.
– Product: A×B = C, where for 1 ≤ i, j ≤ n we have ci,j =

∨
1≤k≤n ai,k ∧ bk,j .

– Exponentiation: Ak =
∏k

i=1 A, that is, A × · · · × A, writing A k times.
– Transitive closure: A+ = A + A2 + · · · + An.
– Reflexive-transitive closure: A∗ = I +A+, where I is the identity matrix.
– Row/column restrictions: 〈r〉A, a matrix whose row r equals row r of A;

A〈c〉, a matrix whose column c equals column c of A; and 〈r〉A〈c〉, a matrix
whose cell (r, c) equals entry A[r][c]. The remaining cells are 0.

The implementation of these operations on sparse matrix representations is
relatively straightforward, except for the multiplication and transitive closures.

38 D. Arroyuelo et al.

2.3 K2-Trees

A k2-tree [11] is a data structure able to space-efficiently represent binary rela-
tions, point grids, and graphs. We will use it in this paper to represent Boolean
matrices, as follows. Let A be a v × v Boolean matrix, assuming v is a power
of 2.1 The root node of the k2-tree represents the whole matrix A. Then, A is
divided into 4 equally-sized quadrants, A =

(
A0 A1
A2 A3

)
, such that submatrix A0 is

represented recursively by the first child of the root, A1 by the second child, and
so on. The process stops as soon as one gets into an empty submatrix, which
is represented by a leaf node. Each node in this tree has 4 children (in general,
k2 children, yet we use k = 2). This order in which quadrants are represented
(i.e., top-left, top-right, bottom-left, and bottom-right) is known as z-order. The
resulting tree height is log4 v2 = log2 v.

To represent this tree space-efficiently, we traverse the tree in level order.
At each node, we write its 4-bit signature (which represents the node) indicat-
ing whether each of the 4 children represents an empty submatrix or not. For
instance, the signature 0110 indicates that quadrants 0 and 3 of the submatrix
represented by the current node are empty, whereas A1 and A2 (second and
third children) are non-empty. The result is a bit vector L[1 . . 4n], where n is
the number of internal nodes in the tree. Each tree node is represented by the
first bit of its signature. Given a node i, its j-th child (0 ≤ j ≤ 3) is represented
at position 4 · rank1(L, i)+1, where rank(L, i) counts the number of 1 s in L[1 . . i]
in O(1) time using o(n) additional bits of space [12,26].

The k2-tree representation is especially useful for representing sparse matri-
ces. Let matrix A have a 1 s. Then, in the worst case every 1 induces a 4-bit
signature in every level of the k2-tree, for a total of 4a log2 v bits. The actual
upper bound is lower because not all those signatures can be different: in the
worst case all the k2-tree nodes up to level �log4 a exist, and from there on each
1 of A has its own path; this adds up to 4a log4(v2/a) + 4a/3 + O(1) bits. The
figures further improve when the 1 s are clustered in A [7].

3 Evaluating RPQs Through the Boolean Matrix Algebra

For a given directed edge-labeled graph G of n edges, let P be the corresponding
set of graph labels as defined in Sect. 2.1. In our approach, for every p ∈ P we
define a |V |×|V | Boolean matrix Mp, such that Mp[x][y] = 1 iff (x, p, y) ∈ G. We
translate an RPQ into operations on those matrices, so that the resulting Boolean
matrix contains all pairs (x, y) that match the regular expression. We define next
the recursive formulas M to translate 2RPQs into matrix operations, following
Losemann and Martens’ work [21]. We start with the base cases: M(ε) = I, the
identity matrix; M(p) = Mp, for p ∈ P ; M(̂ p) = MT

p , for p ∈ P .
Next, let E1 and E2 be 2RPQs. We define the following recursive rules:

M(E1 | E2) = M(E1) + M(E2); M(E1/E2) = M(E1) × M(E2); M(E+
1) =

M(E1)+; M(E∗
1) = I + M(E1)+, where I is the corresponding identity matrix.

1 If v is not a power of 2 we round it up to the next power, leaving the extended cells
empty. This imposes almost no extra overhead on the k2-tree representation.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 39

Then, given a 2RPQ R = (x,E, y), we evaluate it as follows: (1) if x and y
are both variables, R(R) = M(E); (2) If x is a variable and y is a constant,
R(R) = M(E)〈y〉; (3) If x is a constant and y is a variable, R(R) = 〈x〉M(E);
(4) If x and y are both constant, R(R) = 〈x〉M(E)〈y〉.

4 Implementation of the Boolean Matrix Algebra

We now describe how the Boolean-matrix operations are carried out. To analyze
the corresponding algorithms, we use |Mp| as the number of 1 s in the matrix,
which is the number of edges with label p in graph G. We represent each matrix
Mp using a k2-tree of O(log |V |) levels, and each 1 in Mp induces O(log |V |) 1 s
in its k2-tree representation. We will use v = |V |, as well as a = |A| and b = |B|
for the number of 1 s in matrices A and B. We assume |V | = 2i, for i ≥ 0.

We implement k2-trees, and thus bitvectors with rank support, from scratch.
We store the bitvector as consecutive bits packed in a 64-bit-words array. To
support rank we store the cumulative sum of 1 s up to every sth cell of the array.
To save space, full 64-bit integers store the full sum only every 216 bits, and the
others are stored in relative form using 16-bit integers. To compute rank we start
from the last recorded sum and use popcount on the full words until reaching the
desired one, and a partial popcount on the desired word. Here s is a space-time
tradeoff parameter: we use n/1024 + n/(4s) additional bits of space for storing
a bitvector B[1 . . n], and compute rank in time O(s). We use s = 4.

4.1 Transposition

Transposition is used to implement reversed edges, as seen in Sect. 3. Instead of
materializing the transposed matrix as a k2-tree, we note that AT =

(AT
0 AT

2
AT

1 AT
3

)
.

So, the k2-tree for AT can be obtained by interchanging the roles of the second
and third children of every node. We do not materialize this interchange, but
associate a transposed flag to every matrix, so we simply have to toggle it in
order to transpose the matrix in O(1) time.

4.2 Boolean Sum

The easier case to implement A + B arises when no matrix is transposed. In
this case we can perform a sequential pass over both k2-tree bitvectors, so as to
merge their corresponding nodes levelwise, without need of any rank operation.

We implement this traversal with a queue of tasks, which are of two types.
(1) A copy task indicates just to copy the next node from A or B; and (2) a
merge task indicates merging the next nodes of A and B. The queue is initialized
with a merge task, the read-pointers (which indicate the next k2-tree node to
be read) at the beginning of the bitvectors of A and B, and the write-pointer at
the beginning of the output k2-tree bitvector.

To process a copy task, we append the next signature (of A or B) to the
output, and enqueue its (up to) 4 children, as copy tasks for A or B, respectively.

40 D. Arroyuelo et al.

To process a merge task, we append to the output the bitwise-or of the next 4-bit
signatures of A and B, and enqueue up to 4 new elements, as follows. For i from
1 to 4, if the ith bit of the signatures of both A and B are 1, we append a merge
task. If only one of them is 1, we append a copy task for the corresponding
matrix. If none is 1, we do not append a task. We do not append new tasks
when the corresponding nodes are k2-tree leaves. The process finishes when the
queue becomes empty. The total time is proportional to the sum of the bitvector
length of both matrices, O(a log(v2/a) + b log(v2/b)) ⊆ O((a + b) log v).

Handling Transpositions. If both A and B are transposed, we just merge them
as described and mark the result as transposed. When one is transposed and the
other is not, we cannot anymore resort to a sequential traversal of both bitvec-
tors. The transposed one must already have rank support built to enable k2-tree
traversals. We traverse sequentially the non-transposed k2-tree, and include in
the queue the corresponding node of the transposed one (as those nodes are not
read in left-to-right order). To generate the new tasks, we must use the k2-tree
traversal operations to locate the corresponding nodes in the transposed k2-tree.

While the time complexity is the same, summing a transposed with a non-
transposed matrix is slower in practice. We always choose that the transposed
matrix is the one with a shorter bitvector (we can because AT +B = (A+BT)T),
in order to minimize the non-local traversals.

4.3 Boolean Multiplication

For the multiplication A × B we use the following classic divide-and-conquer
recursive procedure. Let A =

(
A0 A1
A2 A3

)
and B =

(
B0 B1
B2 B3

)
be the four submatri-

ces into which the k2-tree representation splits A and B. Then, we recursively
compute 8 products of those submatrices in order to produce

A × B =

(
A0 × B0 + A1 × B2 A0 × B1 + A1 × B3

A2 × B0 + A3 × B2 A2 × B1 + A3 × B3

)

. (1)

A fortunate consequence of the k2-tree representation is that, if any of those
submatrices is empty (i.e., there is a 0 in the signature of the root of A or B),
then we know that its product with any other submatrix is also zero. Further,
summing a product Ai × Bj with a zero matrix does not even need to copy the
product; we just reference it as the final result.

Once the k2-tree bitvectors of the four submatrices are recursively obtained,
we concatenate them levelwise. There is no need to build the rank data structures
until we obtain the final matrix because the concatenation proceeds left-to-right
in each level. We only take care of maintaining, for each bitvector, O(log v)
pointers to the positions where the levels start.

Transpositions are handled easily, by exchanging the meaning of M1 and M2

in every node of the k2-tree bitvector if M =
(
M0 M1
M2 M3

)
is transposed.

Evaluating Regular Path Queries on Compressed Adjacency Matrices 41

A Rough Analysis. One term of the multiplication cost is given by the number
of recursive calls, which follows the recurrence T (v2) = 8 · T (v2/4). Since our
matrices are sparse, the worst case arises when every submatrix has points up to
the level � where we have 4� ≥ min(a, b) submatrices, that is, � = log4 min(a, b).
From this level, the worst case is that the max(a, b)/min(a, b) points in the sub-
matrices of the fuller matrix distribute uniformly for �′ = log4

max(a,b)
min(a,b) further

levels. Between those levels, the recurrence becomes T ′(v2) = 2·T ′(v2/4) because
the single point in the emptier submatrix can make us enter into at most two
submatrices of the other. This continues until, in level � + �′, both submatri-
ces contain one point each, and from there on the cost is just log2 v − � − �′

to track a single point along both submatrices. The cost up to level � is then
8� = min(a, b)3/2. From each of those 8� submatrices we have a cost of 2�′

=
(max(a, b)/min(a, b))1/2, and from each of those 8�2�′

= min(a, b)
√

max(a, b)
submatrices we have O(log(v2/max(a, b))) additional time. The total cost of
recursive calls is then O(min(a, b)

√
max(a, b) log(v2/max(a, b))).

The second part of the cost is that of summing pairs of partial submatrices.
In the worst case, those matrices may add up to a · b points at across every level
� of the recursion. Since summing submatrices in level � costs O(�) per element,
the total cost of summing partial results is in O(ab log2 v). Since this is an utterly
pessimistic upper bound, we offer an average-case time analysis for matrices with
uniformly distributed 1 s. We multiply 8� pairs of v/2�×v/2� submatrices in level
�. On average, each has a/4� 1 s in A and b/4� cells in B. Every such aik will
pair with every such bk′j iff k = k′, which occurs with probability 1/(v/2�),
so on average there will be 8�(a/4�)(b/4�)(2�/v) = ab/v 1 s to sum per level �,
with a maximum of v2. This leads to a total average cost upper bounded by
O(min(a, b)

√
max(a, b) log v + min(v2, (ab/v)) log2 v).

4.4 Closure

We opted for a simple transitive closure algorithm for now. The closure A+ is
obtained by iteratively computing A ← A + A × A until no change occurs in A
[19]. This occurs at most after log2 v iterations, so the time complexity is O(log v)
times that of multiplying A by itself (note that a grows in every iteration, so the
time complexity becomes bounded by O(|A+|3/2 log3 v)). The transitive closure
is computed as A∗ = I + A+, where I is the identity matrix.

Needless to say, unrestricted closure operations are the most expensive, both
in time complexity and in practice, so we aim to avoid them as much as possible.

4.5 Restrictions

Restrictions indicate that we only want to retrieve a column or a row of the
matrix after the operations, or even just a cell. A naive way to implement them is
to first obtain the full matrix M and then traverse the desired row or column. Yet,
restrictions give an important opportunity of optimizing all the other operations.

42 D. Arroyuelo et al.

Sums. For 〈r〉(A + B)〈c〉 (where only 〈r〉 or only 〈c〉 could be present as well),
we restrict the traversal of both matrices, acting as if the submatrices not inter-
secting the desired row and/or columm were empty. That is, we implement the
restricted sum as 〈r〉A〈c〉 + 〈r〉B〈c〉. We cannot, however, simply traverse both
k2-tree bitvectors and write the output left-to-right, as in Sect. 4.2, because now
we do not know beforehand whether a submatrix (or the merge of two sub-
matrices) will be nonempty after restricting it to some row/column, even if it
intersects the row/column. Our solution is then recursive, similar to the multi-
plication algorithm (yet still considerably simpler).

Products. A restricted product 〈r〉(A × B)〈c〉 is handled as (〈r〉A) × (B〈c〉),
where again only one of the restrictions may be present. We consider the column
or row restrictions along the whole recursion, pretending that the submatrices
that do not intersect the desired row or column are empty.

Closures. Operation A+〈c〉 is implemented as S ← (E + A)〈c〉, where E is the
empty matrix, and then repeatedly doing P ← A×S and S ← S+P until S does
not change. Note that the only nonzero column of P and S is c. To implement
A∗〈c〉 we start with S = (I + A)〈c〉 instead. A row restriction 〈r〉A+ is handled
analogously, starting with S = 〈r〉(A + E) and then iterating over P ← S × A
and S ← S + P , or using the initial step S ← 〈r〉(I + A) for 〈r〉A∗.

Note that this iteration does not make the path lengths grow exponentially
for the transitive closure, but linearly. Therefore, we could need up to v iterations
to compute the closure. In practice, the closure is reached much sooner and the
operations are significantly faster, leading to a much better solution.

When both row and column are restricted, we only want a cell of the transitive
closure. We then choose the row/column with fewer elements in A and run a row-
restricted or column-restricted closure, whichever is emptier. At each step, we
check if the desired cell is full, stopping immediately if so.

4.6 Query Plan

We first build the syntax tree of the 2RE E of the 2RPQ (x,E, y). In principle, we
can simply traverse the syntax tree and solve it in postorder in the standard way,
interpreting the leaves p as the matrix Mp, p̂ as MT

p , and ε as I, and interpreting
the internal nodes as the corresponding operations on the matrices resulting from
their children, according to the translations of Sect. 3. Our particular application,
however, enables some relevant optimizations.

Let us first assume that both x and y are variables. A first simple optimization
is that the closures are idempotent, so a sequence of closures is reduced to one.
More precisely, (A∗)∗ = (A∗)+ = (A+)∗ = A∗ and (A+)+ = A+. Sums and
products yield more important optimizations, though.

Sums. We exploit the fact that the Boolean sum is commutative and associative
to carry out a sequence of consecutive sums, E1 | . . . | Em, in the best possible
order. Since the cost of computing A + B is proportional to |A| + |B|, if it

Evaluating Regular Path Queries on Compressed Adjacency Matrices 43

were the case that |A + B| = |A| + |B|, the best possible order would be given
by building the Huffman tree [20] of the matrices Ai = M(Ei) using |Ai| as
their weight. Since, instead, it holds that max(|A|, |B|) ≤ |A + B| ≤ |A| + |B|,
we opt for a heuristic that simulates Huffman’s algorithm on the actual size of
the matrices as they are produced. Concretely, we start with {A1, . . . , Am} and
iteratively remove from the set the two matrices Ai and Aj with the smallest
sizes, sum them, and return Ai + Aj to the set, until it has a single matrix.

Products. Matrix multiplication is not commutative but still associative, so
we can decide the order in which the sequence of multiplications to compute
E1 / · · · / Em is carried out. We cannot apply the well-known optimal algorithm
to choose the order for dense matrices [13, Sect. 15.2] because the time com-
plexity of our sparse matrix multiplications depends on the number of 1 s in
the matrices. Further, this number of 1 s can increase or decrease after a mul-
tiplication. We then opt for a heuristic analogous to the one we use for sums:
we start from the sequence A1, . . . , Am = M(E1), . . . ,M(Em) and iteratively
choose the consecutive pair Ai, Ai+1 that minimizes |Ai|+|Ai+1|, multiply them,
and replace the pair by Ai × Ai+1, until the sequence has a single element.

Handling Restrictions. When x (resp., y) is a constant we are restricting a
row (resp., column) of the matrix after the operations. For efficiency, then, we
apply the restricted operations of Sect. 4.5. Regarding the sums, because 〈r〉(A+
B)〈c〉 = 〈r〉A〈c〉 + 〈r〉B〈c〉, we can restrict all the involved matrices at the
same time. Consequently, the sum can be computed in any order, and the plan
still focuses on looking for the best order based on Huffman’s algorithm. In the
restriction on products, we obtain a sequence 〈r〉A1×· · ·×Am〈c〉 (where only 〈r〉
or only 〈c〉 could be present). Consider the case 〈r〉A1×· · ·×Am. The number of
1 s reduces faster when multiplying the pair that contains the restricted matrix,
so we compute A′ = 〈r〉A1 × A2. The matrix A′ already has all zeros except
in row r, so we can continue left-to-right in the sequence with normal matrix
multiplications, A′ × A3, and so on. The case A1 × · · · × Am〈c〉 is analogous,
starting with A′ = Am−1 ×Am〈c〉 and then completing the multiplications right
to left. When both restrictions are present, we choose an end and proceed as
explained until the final multiplication, 〈r〉A′ × A′′〈c〉, which is carried out with
the restricted multiplication algorithm to enforce the other restriction.

Some restrictions can be inherited by the operands of a node, which speeds
up processing. Since 〈r〉(A + B)〈c〉 = 〈r〉A〈c〉 + 〈r〉B〈c〉, both children of a sum
inherit the same restrictions. Instead, the product 〈r〉(A × B)〈c〉 = (〈r〉A) ×
(B〈c〉), thus only the left child inherits a row restriction and only the right child
inherits a column restriction. Closures do not inherit their restrictions to their
operand, because 〈r〉A∗〈c〉 �= (〈r〉A〈c〉)∗ and 〈r〉A+〈c〉 �= (〈r〉A〈c〉)+. Restrictions
are not inherited to leaves of the syntax tree, however, because internal operands
handle them more efficiently than leaves. On the other hand, they are removed
from parents when inherited to children because the nonrestricted operands run
faster than those of Sect. 4.5 when their operands have already been restricted.

44 D. Arroyuelo et al.

Finally, we create a special implementation for the case A+×B〈c〉 that avoids
computing the full closure A+, as a kind of restricted positive closure that starts
instead with S ← A×B〈c〉. To handle A∗ ×B〈c〉 we start with S ← (E +B)〈c〉.
The cases 〈r〉A × B∗/+ are handled analogously, as well as the cases with both
restrictions. The parser is enhanced to detect those cases.

5 Experimental Results

We implemented our scheme in C++11 and ran our experiments on an Intel(R)
Xeon(R) CPU E5-2630 at 2.30GHz, with 6 cores, 15 MB of cache, and 384 GB
of RAM. We compiled using g++ with flags -std=c++11, -O3, and -msse4.2.

5.1 A Baseline

We implemented a baseline representation of sparse matrices, which combines
(and adapts to the Boolean case) the well-known CSR and CSC formats [29,
Sect. 3.4] in order to speed up multiplications. It stores a vector of nonempty
row numbers and a similar vector of their starting positions in a third, larger,
vector. This third vector stores, for each nonempty row, the increasing sequence
of the columns of its nonempty cells. Similar (redundant) vectors are stored for
the column-wise view of the matrix.

Transpositions are carried out in O(1) time by just exchanging the row-view
and the column-view vectors. The Boolean sum A + B merges the nonempty
rows, and when the same row appears in both matrices it merges their nonempty
columns. The column-view is computed analogously, thus the sum takes time
O(a + b). For the Boolean multiplication A × B, we use Schoor’s algorithm
[30], whose average time is O(ab/v) if the 1 s are uniformly distributed. Our
implementation, which is more space-efficient, takes O(ab log(v)/v) time.

Row and/or column restrictions are handled by restricting the above algo-
rithms to the given row/column; note that finding the desired rows/columns
takes just O(log v) time with the baseline format. Closure operations and their
restrictions are performed as for the k2-tree based representation. The parser
and its optimizations are also exactly the same.

5.2 Benchmark

We used a Wikidata graph [32] of n = 958,844,164 edges, v = 348,945,080 nodes,
and 5,419 predicates. Separating the edges by predicate and representing the two
nodes of each edge as two 32-bit integers, the data set requires 8.5 GB.

We compared our implementations with the following systems:

– Ring : A compact data structure that supports RPQs in labeled graphs [4].
– Jena: A reference implementation of the SPARQL standard.
– Virtuoso: A popular graph database that hosts the public DBpedia endpoint,

among others [17].

Evaluating Regular Path Queries on Compressed Adjacency Matrices 45

Table 1. Index space (in bytes per triple), indexing time (in hours), and some statistics
on the query times (in seconds). Row “Timeouts” counts queries that take over 60 s or
are rejected by the planner as too costly. 2RPQs with some constant node are indicated
by c, and without by ¬c.

k2-tree Baseline Ring Jena Virtuoso Blazegraph

Index space 4.33 16.45 16.41 95.83 60.07 90.79

Index time 0.3 5.5 7.5 37.4 3.0 39.4

Average 8.40 5.67 1.68 5.26 3.87 3.58

Median 1.38 2.46 0.08 0.20 0.14 0.13

Timeout 83 48 22 105 55 46

Average c 7.47 5.37 0.65 3.83 2.98 3.30

Median c 1.32 2.48 0.08 0.17 0.11 0.13

Timeout c 57 37 2 63 37 39

Average ¬c 24.19 10.75 19.22 29.59 18.95 8.35

Median ¬c 13.52 0.63 5.53 4.50 7.98 0.19

Timeout ¬c 26 11 20 42 18 7

– Blazegraph: The graph database system [31] hosting the official Wikidata
Query Service [22].

To evaluate complex real-world 2RPQs, we extracted all 2RPQs that were not
simple labels, from the code-500 (timeout) sections of the seven intervals of the
Wikidata Query Logs [22]. We then normalized variable names and removed dis-
rupting queries: duplicated queries and queries producing more than 106 results
for compatibility with Virtuoso. The result was 1,589 unique queries.

We ran the queries in each system with a timeout limit of 60 s. Table 1 sum-
marizes the space usage and time performance of all the systems. Notably, our
approach, using k2-trees, yields the most compact structure, requiring only 4.33
bytes per triple (bpt). This is less than half the space of the described plain rep-
resentation of the raw data, and nearly a fourth of the space used by the next
smallest representations that support 2RPQs (Ring and our baseline). Classical
systems use 14–21 times more space than our k2-trees. Note also that the k2-tree
representation is orders of magnitude faster to build than the others.

Our reduced space is paid in terms of time performance. Our structure is
around 5 times slower than the Ring, on average, and 1.5–2.5 times slower than
the classical systems. Still, we solve these complex 2RPQs in less than 10 s on
average. Among our matrix-based methods, our structure is 50% slower than the
baseline, which uses 4 times more space.

On 2RPQs with some constant, our structure is 11.5 times slower than the
Ring and 2.0–2.5 times slower than the classical systems. The gap is considerably
narrowed, however, on 2RPQs with both variables, where our structure is just
25% slower than the Ring. Blazegraph is the fastest system in this case, being
around 3 times faster than our structure, yet this comes at the expense of using

46 D. Arroyuelo et al.

Fig. 1. Space and query time distribution of the systems in general (left) and for the
2RPQs with no constants (right). The baseline and the Ring use almost the same space.

21 times more space. Our baseline yields the best tradeoff for these queries, as
it uses 5.5 times less space than Blazegraph and is only 30% slower.

Figure 1 displays the space and query time distribution of all the systems.
It can be seen that the k2-trees and the Ring are the dominant representations
in general. When it comes to handling the hardest types of 2RPQs (i.e., with-
out constants), the dominant representations are the two matrix-algebra-based
solutions we have introduced and Blazegraph.

6 Conclusions

We have explored the use of a matrix algebra to implement Regular Path Queries
(RPQs) on graph databases. This path is usually disregarded because the matrix
sizes are quadratic on the number of graph nodes, but we exploit their sparsity
to sidestep this issue. Our experiments show that even our baseline (i.e., uncom-
pressed) sparse matrix representation uses the same space of the most compact
among previous representations, and outperforms them on the most difficult
RPQs (i.e., those with no constant ends). We also develop a more compressed
sparse matrix representation based on k2-trees, which is four times smaller than
the baseline and, although slower, it still handles the RPQs within a few seconds.

Immediate extensions to our work are the implementation of negated labels,
which require a nonexpensive way to represent and handle submatrices full of
1 s. Such extensions of k2-trees have been proposed [8], but they have not been
adapted to handle Boolean matrix operations. We also plan to implement more
efficient transitive closure algorithms [27]. Finally, we plan to strenghten our
query optimizer in order to detect common subexpressions and exploit a number
of identities of the Boolean algebra we have disregarded for now.

This work can be combined with Qdags [6] to support multijoins as well. We
also plan to extend it to a complete algebra for sparse matrices, Boolean and
possibly numeric [29]. Such matrices arise, for example, in ML applications [16].

An extended version can be found in https://arxiv.org/abs/2307.14930.

https://arxiv.org/abs/2307.14930

Evaluating Regular Path Queries on Compressed Adjacency Matrices 47

References

1. Álvarez-Garćıa, S., Brisaboa, N.R., Fernández, J., Mart́ınez-Prieto, M., Navarro,
G.: Compressed vertical partitioning for efficient RDF management. Knowl. Inf.
Syst. 44(2), 439–474 (2015)

2. Angles, R., et al.: G-CORE: a core for future graph query languages. In: SIGMOD
International Conference on Management of Data, pp. 1421–1432. ACM (2018).
https://doi.org/10.1145/3183713.3190654

3. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv. 50(5),
68:1–68:40 (2017). https://doi.org/10.1145/3104031

4. Arroyuelo, D., Hogan, A., Navarro, G., Rojas-Ledesma, J.: Time- and space-
efficient regular path queries. In: Proceedings of the 38th IEEE International Con-
ference on Data Engineering (ICDE), pp. 3091–3105 (2022)

5. Arroyuelo, D., Navarro, G., Reutter, J.L., Rojas-Ledesma, J.: Optimal joins using
compressed quadtrees. ACM Trans. Database Syst. 47(2), article 8 (2022)

6. Arroyuelo, D., Hogan, A., Navarro, G., Reutter, J., Rojas-Ledesma, J., Soto, A.:
Worst-case optimal graph joins in almost no space. In: ACM International Confer-
ence on Management of Data (SIGMOD), pp. 102–114 (2021)

7. de Bernardo, G., Gagie, T., Ladra, S., Navarro, G., Seco, D.: Faster compressed
quadtrees. J. Comput. Syst. Sci. 131, 86–104 (2023)

8. de Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.:
Compact querieable representations of raster data. In: Kurland, O., Lewenstein,
M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02432-5 14

9. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of Wikidata query logs.
In: The World Wide Web Conference (WWW), pp. 127–138. ACM (2019)

10. Brisaboa, N., Cerdeira-Pena, A., de Bernardo, G., Fariña, A., Navarro, G.:
Space/time-efficient RDF stores based on circular suffix sorting. J. Supercomput.
79, 5643–5683 (2023)

11. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Syst. 39(1), 152–174 (2014)

12. Clark, D.R.: Compact PAT trees. Ph.D. thesis, University of Waterloo, Canada
(1996)

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

14. Deutsch, A., et al.: Graph pattern matching in GQL and SQL/PGQ. In: Pro-
ceedings of the International Conference on Management of Data (SIGMOD), pp.
2246–2258 (2022)

15. Deutsch, A., Xu, Y., Wu, M., Lee, V.E.: Aggregation support for modern graph
analytics in TigerGraph. In: SIGMOD International Conference on Management
of Data, pp. 377–392. ACM (2020). https://doi.org/10.1145/3318464.3386144

16. Elgohary, A., Boehm, M., Haas, P.J., Reiss, F.R., Reinwald, B.: Compressed linear
algebra for declarative large-scale machine learning. Commun. ACM 62(524), 83–
91 (2019)

17. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Pellegrini, T.,
Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked
Media. Studies in Computational Intelligence, vol. 221, pp. 7–24. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-02184-8 2

https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3104031
https://doi.org/10.1007/978-3-319-02432-5_14
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1007/978-3-642-02184-8_2

48 D. Arroyuelo et al.

18. Francis, N., et al.: Cypher: an evolving query language for property graphs. In:
SIGMOD International Conference on Management of Data, pp. 1433–1445. ACM
(2018)

19. Furman, M.E.: Application of a method of fast multiplication of matrices in the
problem of Finding the transitive closure of a graph. Sov. Math. Dokl. 11(5), 1252
(1970)

20. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. Inst. Electr. Radio Eng. 40(9), 1098–1101 (1952)

21. Losemann, K., Martens, W.: The complexity of evaluating path expressions in
SPARQL. In: Proceedings of the 31st Symposium on Principles of Database Sys-
tems (PODS), pp. 101–112. ACM (2012)

22. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph.
In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 23

23. Manola, F., Miller, E.: RDF primer. W3C Recommendation (2004). http://www.
w3.org/TR/rdf-primer/

24. Martens, W., Niewerth, M., Popp, T., Rojas, C., Vansummeren, S., Vrgoc, D.: Rep-
resenting paths in graph database pattern matching. Proc. VLDB Endow. 16(7),
1790–1803 (2023). https://www.vldb.org/pvldb/vol16/p1790-martens.pdf

25. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM J. Comput. 24(6), 1235–1258 (1995)

26. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
62034-6 35

27. Penn, G.: Efficient transitive closure of sparse matrices over closed semirings. The-
oret. Comput. Sci. 354(1), 72–81 (2006)

28. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph query
language. In: International Workshop on Graph Data Management: Experiences
and Systems (GRADES), p. 7. ACM (2016)

29. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
30. Schoor, A.: Fast algorithm for sparse matrix multiplication. Inf. Process. Lett.

15(2), 87–89 (1982)
31. Thompson, B.B., Personick, M., Cutcher, M.: The bigdata R©RDF graph database.

In: Linked Data Management, pp. 193–237. Chapman and Hall/CRC (2014)
32. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Com-

mun. ACM 57(10), 78–85 (2014)
33. Yakovets, N., Godfrey, P., Gryz, J.: Query planning for evaluating SPARQL prop-

erty paths. In: SIGMOD International Conference on Management of Data, pp.
1875–1889. ACM (2016)

https://doi.org/10.1007/978-3-030-00668-6_23
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
https://www.vldb.org/pvldb/vol16/p1790-martens.pdf
https://doi.org/10.1007/3-540-62034-6_35
https://doi.org/10.1007/3-540-62034-6_35

Approximate Cartesian Tree Matching: An
Approach Using Swaps

Bastien Auvray1(B), Julien David1,2, Richard Groult1,3, and Thierry Lecroq1,3

1 CNRS NormaSTIC FR 3638, Caen, Le Havre, Rouen, France
bastien.auvray@etu.univ-rouen.fr

2 Normandie University, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France
3 Univ Rouen Normandie, LITIS UR 4108, 76000 Rouen, France

Abstract. Cartesian tree pattern matching consists of finding all the
factors of a text that have the same Cartesian tree than a given pat-
tern. There already exist theoretical and practical solutions for the exact
case. In this paper, we propose the first algorithm for solving approxi-
mate Cartesian tree pattern matching. We consider Cartesian tree pat-
tern matching with one swap: given a pattern of length m and a text of
length n we present two algorithms that find all the factors of the text
that have the same Cartesian tree of the pattern after one transposition
of two adjacent symbols. The first algorithm uses a characterization of a
linear representation of the Cartesian trees called parent-distance after
one swap and runs in time Θ(mn) using Θ(m) space. The second algo-
rithm generates all the parent-distance tables of sequences that have the
same Cartesian tree than the pattern after one swap. It runs in time
O((m2 + n) logm) and has O(m2) space complexity.

Keywords: Cartesian tree · Approximate pattern matching · Swap ·
Transposition

1 Introduction

In general terms, the pattern matching problem consists of finding one or all
the occurrences of a pattern in a text. When both the pattern and the text are
strings the problem has been extensively studied and has received a huge number
of solutions [5]. Searching time series or list of values for patterns representing
specific fluctuations of the values requires a redefinition of the notion of pattern.
The question is to deal with the recognition of peaks, breakdowns, or more
features. For those specific needs one can use the notion of Cartesian tree.

Cartesian trees have been introduced by Vuillemin in 1980 [16]. They are
mainly associated to strings of numbers and are structured as heaps from which
original strings can be recovered by symmetrical traversals of the trees. It has
been shown that they are connected to Lyndon trees [3], to Range Minimum

Supported by the NormaSTIC Federation https://www.normastic.fr/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 49–61, 2023.
https://doi.org/10.1007/978-3-031-43980-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_5&domain=pdf
https://www.normastic.fr/
https://doi.org/10.1007/978-3-031-43980-3_5

50 B. Auvray et al.

Queries [4] or to parallel suffix tree construction [14]. Recently, Park et al. [12]
introduced a new metric of generalized matching, called Cartesian tree matching.
It is the problem of finding every factor of a text t which has the same Cartesian
tree as that of a given pattern p. Cartesian tree matching can be applied, for
instance, to finding patterns in time series such as share prices in stock markets
or gene sample time data.

Park et al. introduced the parent-distance representation which is a linear
form of the Cartesian tree and that has a one-to-one mapping with Cartesian
trees. They gave linear-time solutions for single and multiple pattern Cartesian
tree matching, utilizing this parent-distance representation and existing classical
string algorithms, i.e., Knuth-Morris-Pratt [9] and Aho-Corasick [1] algorithms.
More efficient solutions for practical cases were given in [15]. Recently, new
results on Cartesian pattern matching appeared [6,8,10,13].

All these previous works on Cartesian tree matching are concerned with
finding exact occurrences of patterns consisting of contiguous symbols. The
only results known on non-contiguous symbols presents an algorithm for episode
matching [11] (finding all minimal length factors of t that contain p as a subse-
quence) in Cartesian tree framework.

To the best of our knowledge, no result is known about approximate pattern
matching in this Cartesian tree framework. However in real life applications data
are often noisy and it is thus important to find factors of the text that are similar,
to some extent, to the pattern. In this paper, we present the first results in this
setting by considering approximate Cartesian tree pattern matching with one
transposition (aka swap) of one symbol with the adjacent symbol. Swap pattern
matching has received a lot of attention in classical sequences since the first
paper in 1997 [2] (see [7] and references therein). Swaps are common in real life
data and it seems natural to consider them in the Cartesian pattern matching
framework. We are able to design two algorithms for solving the Cartesian tree
pattern matching with at most one swap. The first one runs in time Θ(mn) and
uses a characterization of a linear representation of Cartesian trees while the
second one runs in O((m2+n) logm) and uses a graph to generate all the linear
representations of Cartesian trees of sequences that match the pattern after one
swap.

The remaining of the article is organized as follows: Sect. 2 presents the basic
notions and notations used in the paper. Given a sequence x, in Sect. 3 we give
a characterization of the parent-distance representations of Cartesian trees that
correspond to sequences x after one swap. Section 4 presents the swap graph
where vertices are Cartesian trees and there is an edge between two vertices if
both Cartesian trees can be obtained from the other using one swap. In Sect. 5
we give our two algorithms for Cartesian tree pattern matching with swaps.
Section 6 contains our perspectives.

Approximate Cartesian Tree Matching: An Approach Using Swaps 51

2 Preliminaries

2.1 Basic Notations

We consider sequences of integers with a total order denoted by <. For a given
sequence x, |x| denotes the length of x, x[i] is the i-th element of x and x[i . . . j]
represents the factor of x starting at the i-th element and ending at the j-th
element. For simplicity, we assume all elements in a given sequence to be distinct
and numbered from 1 to |x|.

2.2 Cartesian Tree Matching

Given a sequence x of length n, its Cartesian tree C(x) is recursively defined as
follows (see example Fig. 1):

– if x is empty, then C(x) is the empty tree;
– if x[1 . . . n] is not empty and x[i] is the smallest value of x, C(x) is the Carte-

sian tree with i as its root, the Cartesian tree of x[1 . . . i−1] as the left subtree
and the Cartesian tree of x[i + 1 . . . n] as the right subtree.

Fig. 1. A sequence x = (3, 5, 6, 2, 1, 7, 8, 4, 9), its Cartesian tree C(x) and its corre-
sponding parent-distance table

−−→
PDx.

We will denote by x ≈CT y if sequences x and y share the same Cartesian
tree. For example, x = (3, 5, 6, 2, 1, 7, 8, 4, 9) ≈CT (3, 4, 8, 2, 1, 7, 9, 5, 6).

The Cartesian tree matching (CTM) problem consists in finding all factors
of a text which share the same Cartesian tree as a pattern. Formally, Park et
al. [12] define it as follows:

Definition 1 (Cartesian tree matching). Given two sequences p[1 . . . m]
and t[1 . . . n], find every 1 ≤ i ≤ n−m+1 such that t[i . . . i+m−1] ≈CT p[1 . . . m].

In order to solve CTM without building every possible Cartesian tree, an
efficient representation of these trees was introduced by Park et al. [12], the
parent-distance representation (see example Fig. 1):

52 B. Auvray et al.

Definition 2 (Parent-distance representation). Given a sequence
x[1 . . . n], the parent-distance representation of x is an integer sequence−−→
PDx[1 . . . n], which is defined as follows:

−−→
PDx[i] =

{
i − max1≤j<i{j | x[j] < x[i]} if such j exists
0 otherwise

Since the parent-distance representation has a one-to-one mapping with
Cartesian trees, it can replace them without loss of information.

2.3 Approximate Cartesian Tree Matching

In order to define an approximate version of Cartesian tree matching, we use the
following notion of transposition on sequences:

Definition 3 (Swap). Let x and y be two sequences of length n, and i ∈
{1, . . . , n − 1}, we denote y = τ(x, i) to describe a swap, that is:

y = τ(x, i) if

⎧⎪⎨
⎪⎩

x[j] = y[j],∀j /∈ {i, i + 1}
x[i] = y[i + 1]
x[i + 1] = y[i]

This kind of transposition is the one made by the Bubble Sort algorithm. It is
therefore a natural operation on permutations and sequences. For the Cartesian
tree point of view, see Fig. 2. We use the notion of swap to define the approximate
Cartesian tree matching.

Definition 4. (CTτ Matching). Let x and y be two sequences of length n, we
have x

τ≈CT y if:{
x ≈CT y, or
∃ x′, y′,∃ i ∈ {1, . . . , n − 1}, x′ ≈CT x, y′ ≈CT y, x′ = τ(y′, i) and y′ = τ(x′, i)

Figure 2 shows an example of sequences that CTτ match.
Lastly, in order to fully characterize the approximate Cartesian tree match-

ing, we introduce the notion of reverse parent-distance of a sequence that we
compute as if read from right to left.

Definition 5 (Reverse parent-distance). Given a sequence x[1 . . . n], the
reverse parent-distance representation of x is an integer sequence

←−−
PDx[1 . . . n],

which is defined as follows:

←−−
PDx[i] =

{
mini<j≤n{j | x[i] > x[j]} − i if such j exists

0 otherwise

Approximate Cartesian Tree Matching: An Approach Using Swaps 53

Fig. 2. The sequence x CTτ matches y. A swap at position 4 moves the circled node
from the right subtree of the root to the left one. In general, a swap at position i
consists either in moving the leftmost descendant of the right subtree to a rightmost
position in the left subtree (that is if x[i] < x[i + 1]), or the opposite, in moving the
rightmost descendant of the left subtree to a leftmost position of the right subtree of
its parent. Note that we also have x

τ≈CT y′, x′ τ≈CT y and of course x′ τ≈CT y′.

3 Characterization of the Parent-Distance Tables When
a Swap Occurs

In this section, we describe how the parent-distances
−−→
PDx and

←−−
PDx of a sequence

x of length n are modified into tables
−−→
PDy and

←−−
PDy when y

τ≈CT x, with a swap
occurring at position i. Figure 3 sums up the different parts of the parent-distance
tables we are going to characterize. Those results will be used in Sect. 5 to obtain
an algorithm that solves the CTτ matching problem.

Fig. 3. This figure sums up the different Lemmas of this section. For instance, the
green zones correspond to Definition 6 and Lemma 3. The values −→ax,

−→
bx , . . ., are the

8 values found in the parent-distance tables of x and y at position i and i + 1, that is−−→
PDx[i] =

−→ax,
−−→
PDx[i + 1] =

−→
bx , . . . Values i − � and i + r respectively denote the last

and first position of each blue zone. (Color figure online)

First, we describe how the parent-distances are modified at positions i and
i + 1.

54 B. Auvray et al.

Lemma 1. Suppose that x[i] < x[i + 1], then the following properties hold:

1.
←−
by = 1

2.
−→
by =

{
0 if −→ax = 0
−→ax + 1 otherwise

3. ←−ay =

{
0 if

←−
bx = 0←−

bx − 1 otherwise

4. −→ay ≤
{

i − 1 if −→ax = 0
−→ax otherwise

Proof. Suppose x[i] < x[i + 1], we have
−→
bx = 1 by definition of the parent-

distance (Definition 2) and
←−
bx 	= 1 by definition of the reverse parent-distance

(Definition 5). Then, if a swap occurs at position i, y[i] > y[i + 1] and we have:

1.
←−
by = 1 by Definition 5.

2. If −→ax = 0, x[i] is the smallest element in x[1 . . . i] by Definition 2. Which
implies y[i + 1] is the smallest element in y[1 . . . i + 1] and thus

−→
by = 0 by

Definition 2.
Otherwise, x[i] (resp. y[i + 1]) is not the smallest element in x[1 . . . i] (resp.
y[1 . . . i+1]). y[i+1] has been pushed away from its parent in y[1 . . . i−1] by
one position compared to x[i] and its parent in x[1 . . . i−1]. Thus,

−→
by = −→ax+1.

3. If
←−
bx = 0, x[i] is the smallest element in x[i . . . n] by Definition 5. Which

implies y[i + 1] is the smallest element in y[i + 1 . . . n], and thus ←−ay = 0 by
Definition 5.
Otherwise,

←−
bx > 1 and x[i] (resp. y[i + 1]) is not the smallest element in

x[i . . . n] (resp. y[i + 1 . . . n]). y[i + 1] has been pushed closer to its parent
in y[i + 2 . . . n] by one position when compared to x[i] and its parent in
x[i + 2 . . . n]. Thus, ←−ay =

←−
bx − 1.

4. If −→ax > 0, that means there is an element smaller than x[i] at position i − −→ax

by Definition 2. After the swap, the parent-distance of y[i] either refers to
that same element at position i − −→ax or to a closer one that is smaller than
y[i] if such an element exists, and thus −→ay ≤ −→ax.
Otherwise, the only information we have is −→ay ≤ i − 1 by Definition 2.

Note that in the item 4 of Lemma 1 −→ay ≤ −→ax, −→ay cannot take all values in
{1, . . . ,−→ax}, since some won’t produce a valid parent-distance table.

Lemma 2. Suppose that x[i] > x[i + 1], then the following properties hold:

1.
−→
by = 1

2.
←−
by =

{
0 if ←−ax = 0
←−ax + 1 otherwise

3. −→ay =

{
0 if

−→
bx = 0−→

bx − 1 otherwise

Approximate Cartesian Tree Matching: An Approach Using Swaps 55

4. ←−ay ≤
{

i − 1 if ←−ax = 0
←−ax otherwise

The proof is similar to the one of Lemma 1. In the following, we define the green
and blue zones of the parent-distances tables, which are equal, meaning that they
are unaffected by the swap. Also, we define the red zones whose values differ by
at most 1. Due to a lack of space, proofs are omitted. We strongly invite the
reader to use Fig. 3 to get a better grasp of the definitions.

Definition 6 (The green zones). Given a sequence x and a position i, the
green zone of

−−→
PDx is

−−→
PDx[1 . . . i − 1] and the green zone of

←−−
PDx is

←−−
PDx[i +

2 . . . n].

Lemma 3 (The green zones). The green zones of
−−→
PDx and

−−→
PDy (resp.

←−−
PDx

and
←−−
PDy) are equal.

Definition 7 (The blue zones). Given a sequence x and a position i, the
blue zone of

−−→
PDx is

−−→
PDx[i + r . . . n] where:

r =

⎧⎪⎨
⎪⎩

←−
bx if x[i] < x[i + 1] and

←−
bx > 1

←−ax + 1 if x[i] > x[i + 1] and ←−ax > 0
n − i + 1 otherwise

The blue zone of
←−−
PDx is

←−−
PDx[1 . . . i − �] where:

� =

⎧⎪⎨
⎪⎩

−→ax if x[i] < x[i + 1] and −→ax > 0−→
bx − 1 if x[i] > x[i + 1] and

−→
bx > 1

i otherwise

Note that in the last cases, the blue zones are empty.

Lemma 4 (The blue zones). The blue zones of
−−→
PDx and

−−→
PDy (resp.

←−−
PDx

and
←−−
PDy) are equal.

Definition 8 (The red zones). Given a sequence x and a position i, if the blue
zone of

−−→
PDx is

−−→
PDx[i+r . . . n], then the right red zone is

−−→
PDx[i+2 . . . i+r−1].

Conversely, if the blue zone of
←−−
PDx is

←−−
PDx[1 . . . i − �], then the left red zone is←−−

PDx[i − � + 1 . . . i − 1].

Lemma 5 (The red zones). We distinguish two symmetrical cases:

1. x[i] < x[i + 1]:
(a) For each position j in the red zone of

−−→
PDx, we have either

−−→
PDy[j] =−−→

PDx[j] or
−−→
PDy[j] =

−−→
PDx[j] − 1.

(b) For each position j in the red zone of
←−−
PDx, we have either

←−−
PDy[j] =←−−

PDx[j] or
←−−
PDy[j] =

←−−
PDx[j] + 1.

56 B. Auvray et al.

2. x[i] > x[i + 1]:
(a) For each position j in the red zone of

−−→
PDx, we have either

−−→
PDy[j] =−−→

PDx[j] or
−−→
PDy[j] =

−−→
PDx[j] + 1.

(b) For each position j in the red zone of
←−−
PDx, we have either

←−−
PDy[j] =←−−

PDx[j] or
←−−
PDy[j] =

←−−
PDx[j] − 1.

We now show that swaps at different positions produce different Cartesian
trees.

Lemma 6. Let x be a sequence of length n and i, j ∈ {1, . . . , n− 1}, with i 	= j.
Then τ(x, i) 	≈CT τ(x, j).

Proof. Suppose without loss of generality that j > i. If j > i+1, then according
to Lemma 3, we have:

∀k < j,
−−→
PDx[k] =

−−→
PDτ(x,j)[k] =

−−→
PDτ(x,i)[k]

And according to Lemma 1, we have that
−−→
PDx[i + 1] 	= −−→

PDτ(x,i)[i + 1], which
leads to a contradiction.

Then suppose that j = i + 1, then it is sufficient to consider what happens
on a sequence of length 3: having local differences on the parent-distance tables
implies having different parent-distances and therefore do not CT match. One
can easily check that the lemma is true for each sequence of length 3.

4 Swap Graph of Cartesian Trees

Let Cn be the set of Cartesian trees with n nodes, which is equal to the set of
binary trees with n nodes. Also C =

⋃
n≥0 Cn. Let Gn = (Cn, En) be the Swap

Graph of Cartesian trees, where Cn is its set of vertices and En the set of edges.
Let x and y be two sequences, we have {C(x), C(y)} ∈ En if x

τ≈CT y. Figure 4
shows the Swap Graph with n smaller than 4.

In the following, we study the set of neighbors a vertex can have in the Swap
Graph. Let T ∈ Cn be a Cartesian tree of size n and ng(T) be its set of neighbors
in the Swap Graph. Also, for i < n, we note ng(T, i) the set of trees obtained by
doing a swap at position i on the associated sequences, that is

ng(T, i) = {C(y) ∈ Cn | ∃ x such that T = C(x) and y = τ(x, i)}
Also, we have

ng(T) =
n−1⋃
i=1

ng(T, i)

where all unions are disjoint according to Lemma 6.

Lemma 7. Let T ∈ Cn be a Cartesian tree of size n, with a left-subtree A of
size k − 1 and B a right subtree of size n − k. We have

|ng(T)| = |ng(A)| + |ng(B)| + |ng(T, k − 1)| + |ng(T, k)|

Approximate Cartesian Tree Matching: An Approach Using Swaps 57

Fig. 4. Swap Graph of Cartesian trees of size 2, 3 and 4.

Proof. The result follows from Lemma 6 and the definition of ng(T). Indeed, we
have |ng(A)| = |⋃k−2

i=1 ng(T, i)| and |ng(B)| = |⋃n−1
i=k+1 ng(T, i)|.

Let lbl : C
→ N be the function that computes the length of the left-branch
of a tree such that

∀ T ∈ C, lbl(T) =

{
0, if T is empty
1 + lbl(A), where A is the left-subtree of T.

The equivalent lbr function can be defined to compute the length of the right-
branch.

Lemma 8. Let T ∈ Cn be a Cartesian tree with a root i, a left-subtree A and a
right-subtree B.

|ng(T, i − 1)| = lbl(B) + 1 and |ng(T, i)| = lbr(A) + 1

Proof. We only prove that |ng(T, i − 1)| = lbl(B) + 1 since the rest of the proof
uses the same arguments. Let x be a sequence such that C(x) = T . As stated
in the definition section (see Fig. 2), the swap τ(x, i − 1) moves the rightmost
node of A into a leftmost position in B. Let j1, . . . , jlbl(B) be the positions in
the sequence x that corresponds to the nodes of the left branch of B. For each
� < lbl(B), there always exists a sequence y = τ(x, i) such that y[i] < y[j1] <
· · · < y[j�] < y[i − 1] < y[j�+1] < · · · < y[jlbl(B)]. Therefore, there exist exactly
lbl(B) + 1 possible output trees when applying such a swap.

58 B. Auvray et al.

Lemma 9. Let Th be the complete binary tree of height h > 0, we have

|ng(Th)| = 6(2h − 1) − 2h

Proof. Let us first remark that a complete binary tree of height 0 is simply a
leaf, thus ng(T0) = ∅. In the following, we consider h > 0. Using the fact we are
dealing with complete trees and Lemma 7, we have:

|ng(Th)| = 2|ng(Th−1)| + |ng(Th, 2h − 1)| + |ng(Th, 2h)|
Also, using Lemma 8 we have

|ng(Th)| = 2|ng(Th−1)| + 2(h + 1)

Using the telescoping technique we obtained that

|ng(Th)| =
h−1∑
i=0

(i + 2)2h−i

Which simplifies into
|ng(Th)| = 6(2h − 1) − 2h

This lemma can be reformulated: let n = 2h+1 − 1 be the number of nodes in
the complete tree, we have

|ng(Th)| = �3(n − 1) − 2(log2(n + 1) − 1)
Lemma 10. For every Cartesian tree T of size n, we have

n − 1 ≤ |ng(T)| ≤ �3(n − 1) − 2(log2(n + 1) − 1)
Proof. The first part of the inequality is given by Lemma 6: each tree has at
least n − 1 neighbors, since each transposition at a position in {1, . . . , n − 1}
produces different Cartesian trees. The upper bound is obtained by the following
reasoning: each Cartesian tree can be obtained starting from a complete binary
tree by iteratively removing some leaves. Let T be a Cartesian tree for which
the upper bound holds and T ′ the tree obtained after removing a leaf from T .

– If the leaf i had a right sibling (resp. left sibling), then |ng(T, i)| = 2 (resp.
|ng(T, i − 1)| = 2) and |ng(T, i + 1)| ≥ 2 (resp. |ng(T, i)| ≥ 2). In T ′, the
neighbors from ng(T, i) (resp. ng(T, i−1)) are lost and |ng(T ′, i)| = |ng(T, i+
1)|−1 (resp. |ng(T ′, i−1)| = |ng(T, i)|−1). Therefore at |ng(T ′)| ≤ |ng(T)|−3.

– If the leaf i had no sibling, then there are two possibilities:
• either the leaf were at an extremity of the tree (the end of the left/right

branch). In this case, removing the leaf will only remove 2 neighbors. This
can only be made twice for each level of the complete tree (only one time
for the first level), that is log2(n + 1) − 1 times.

• or the leaf is in “the middle” of the tree, in this case the tree is at least of
height 2 and we can remove at least 3 neighbors.

Approximate Cartesian Tree Matching: An Approach Using Swaps 59

We use the previous lemma to obtain a lower bound on the diameter of the
Swap Graph.

Lemma 11. The diameter of the Swap Graph Gn is Ω(n
lnn).

Proof. The number of vertices in the graph is equal to the number of binary trees

enumerated by the Catalan numbers, that is (2nn)
n+1 . Since the maximal degree of

a vertex is less than 3n according to Lemma 10, the diameter is lower bounded
by the value k such that:

(3n)k =

(
2n
n

)
n + 1

=⇒ k =
ln

(
(2nn)
n+1

)
ln(3) + ln(n)

=⇒ k =
2n ln(2n) − 2n ln(n) − ln(n + 1)

ln(3) + ln(n)
By decomposing 2n ln(2n) into 2n ln 2 + 2n lnn we obtain

=⇒ k =
2n ln(2)

ln(3) + ln(n)
− ln(n + 1)

ln(3) + ln(n)

=⇒ k = Ω
(n

lnn

)

5 Algorithms

In this section, we present two algorithms to compute the number of occurrences
of

τ≈CT matching of a given pattern in a given text. The first algorithm uses two
parent-distance tables and the set of Lemmas presented in Sect. 3. The second
algorithm uses Lemma 10 and the fact that each sequence has a bounded number
of Cartesian trees that can be obtained from a swap to build an automaton.

5.1 An Algorithm Using the Parent-Distance Tables

Algorithm 1, below, is based on Lemmas 1 to 6. The function candidateSwapPo-
sition at line 8 computes the exact location of the swap, using the green zones.
There can be up to two candidates for the position i of the swap but only one
can be valid according to Lemma 6.

Theorem 1. Given two sequences p and t of length m and n, Algorithm 1 has
a Θ(mn) worst-case time complexity and a Θ(m) space complexity.

Proof. The space complexity is obtained from the length of the parent-distance
tables. Regarding the time complexity, in the worst-case scenario, one has to
check the zones of each parent-distance table, meaning that the number of com-
parisons is bounded by 2m for each position in the sequence t. This worst case
can be reached by taking a sequence t whose associated Cartesian tree is a comb
and a sequence p obtained by doing a swap on a sequence associated to a comb.

60 B. Auvray et al.

Algorithm 1: DoubleParentDistanceMethod(p, t)
Input : Two sequences p and t

Output: The number of positions j such that t[j . . . j + p − 1]
τ≈CT p

1 occ ← 0;
2 (

−−→
PDp,

←−−
PDp) ← Compute the parent-distance tables of p;

3 for j ∈ {1, . . . , |t| − |p| + 1} do
4 (

−−→
PDx,

←−−
PDx) ← Compute the parent-distance tables of x = t[j . . . j + p − 1];

5 if
−−→
PDp =

−−→
PDx then

6 occ ← occ + 1;
7 else
8 foreach i ∈ candidateSwapPosition(

−−→
PDp,

←−−
PDp,

−−→
PDx,

←−−
PDx) do

9 if Lemmas 1, 2, 4 and 5 hold for p, x and i then
10 occ ← occ + 1;
11 return occ;

5.2 An Aho-Corasick Based Algorithm

The idea of the second method is to take advantage of the upper bound on the
size of the neighborhood of a given Cartesian tree in the Swap Graph. Given
a sequence p, we compute the set of its neighbors ng(C(p)), then we compute
the set of all parent-distance tables and build the automaton that recognizes
this set of tables using the Aho-Corasick method for multiple Cartesian tree
matching [12]. Then, for each position in a sequence t, it is sufficient to read the
parent-distance table of each factor t[j . . . j + |p| − 1] into the automaton and
check if it ends on a final state. The following theorem can be obtained from
Section 4.2 in [12].

Theorem 2. Given two sequences p and t of length m and n, the Aho-Corasick
based algorithm has an O((m2 + n) logm) worst-case time complexity and an
O(m2) space complexity.

6 Perspectives

From the pattern matching point of view, the first step would be to generalize
our result to sequences with a partial order instead of a total one. Then, it could
be interesting to obtain a general method, where the number of swaps is given
as a parameter. Though, we fear that if too many swaps are applied, the result
loses its interest, even though the complexity might grow rapidly.

The analysis of both algorithms should be improved. An amortized analysis
could be done on the first algorithm and on the computation of the set of parent-
distance tables for the second algorithm. In the second algorithm the upper
bounds on the time and space complexity could be improved by studying the
size of the minimal automaton.

Approximate Cartesian Tree Matching: An Approach Using Swaps 61

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern
matching with swaps. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 144–
153. IEEE Computer Society (1997)

3. Crochemore, M., Russo, L.M.: Cartesian and Lyndon trees. Theor. Comput. Sci.
806, 1–9 (2020)

4. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

5. Faro, S., Lecroq, T.: The exact online string matching problem: a review of the
most recent results. ACM Comput. Surv. 45(2), 13 (2013)

6. Faro, S., Lecroq, T., Park, K., Scafiti, S.: On the longest common Cartesian sub-
string problem. Comput. J. 66(4), 907–923 (2023)

7. Faro, S., Pavone, A.: An efficient skip-search approach to swap matching. Comput.
J. 61(9), 1351–1360 (2018)

8. Kim, S.H., Cho, H.G.: A compact index for Cartesian tree matching. In: CPM,
Wrocław, Poland, pp. 18:1–18:19 (2021)

9. Knuth, D.E., Morris, J.H., Jr., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(1), 323–350 (1977)

10. Nishimoto, A., Fujisato, N., Nakashima, Y., Inenaga, S.: Position heaps for
Cartesian-tree matching on strings and tries. In: SPIRE, Lille, France, pp. 241–254
(2021)

11. Oizumi, T., Kai, T., Mieno, T., Inenaga, S., Arimura, H.: Cartesian tree subse-
quence matching. In: Bannai, H., Holub, J. (eds.) CPM. LIPIcs, Prague, Czech
Republic, vol. 223, pp. 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2022)

12. Park, S., Amir, A., Landau, G., Park, K.: Cartesian tree matching and indexing.
In: CPM, Pisa, Italy, vol. 16, pp. 1–14 (2019)

13. Park, S.G., Bataa, M., Amir, A., Landau, G.M., Park, K.: Finding patterns and
periods in Cartesian tree matching. Theor. Comput. Sci. 845, 181–197 (2020)

14. Shun, J., Blelloch, G.E.: A simple parallel Cartesian tree algorithm and its appli-
cation to parallel suffix tree construction. ACM Trans. Parallel Comput. 1(1), 20
(2014)

15. Song, S., Gu, G., Ryu, C., Faro, S., Lecroq, T., Park, K.: Fast algorithms for single
and multiple pattern Cartesian tree matching. Theor. Comput. Sci. 849, 47–63
(2021)

16. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980)

Optimal Wheeler Language Recognition

Ruben Becker1 , Davide Cenzato1 , Sung-Hwan Kim1 , Bojana Kodric1 ,
Alberto Policriti2 , and Nicola Prezza1(B)

1 Ca’ Foscari University of Venice, Venice, Italy
{rubensimon.becker,davide.cenzato,sunghwan.kim,

bojana.kodric,nicola.prezza}@unive.it
2 University of Udine, Udine, Italy

alberto.policriti@uniud.it

Abstract. A Wheeler automaton is a finite state automaton whose
states admit a total Wheeler order, reflecting the co-lexicographic order
of the strings labeling source-to-node paths). A Wheeler language is a
regular language admitting an accepting Wheeler automaton. Wheeler
languages admit efficient and elegant solutions to hard problems such as
automata compression and regular expression matching, therefore decid-
ing whether a regular language is Wheeler is relevant in applications
requiring efficient solutions to those problems. In this paper, we show
that it is possible to decide whether a DFA with n states and m transi-
tions recognizes a Wheeler language in O(mn) time. This is a significant
improvement over the running time O(n13 + m logn) of the previous
polynomial-time algorithm (Alanko et al. Information and Computation
2021). A proof-of-concept implementation of this algorithm is available
in a public repository. We complement this upper bound with a condi-
tional matching lower bound stating that, unless the strong exponential
time hypothesis (SETH) fails, the problem cannot be solved in strongly
subquadratic time. The same problem is known to be PSPACE-complete
when the input is an NFA (D’Agostino et al. Theoretical Computer Sci-
ence 2023). Together with that result, our paper essentially closes the
algorithmic problem of Wheeler language recognition.

Keywords: Wheeler Languages · Regular Languages · Finite
Automata

1 Introduction

Wheeler automata were introduced by Gagie et al. in [10] as a natural general-
ization of prefix-sorting techniques (standing at the core of the most successful

The full version of this paper can be found in [3]. Ruben Becker, Davide Cenzato, Sung-
Hwan Kim, Bojana Kodric, and Nicola Prezza are funded by the European Union
(ERC, REGINDEX, 101039208. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority
can be held responsible for them. Alberto Policriti is supported by project National
Biodiversity Future Center-NBFC (CN_00000033, CUP G23C22001110007) under the
National Recovery and Resilience Plan of Italian Ministry of University and Research
funded by European Union–NextGenerationEU.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 62–74, 2023.
https://doi.org/10.1007/978-3-031-43980-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_6&domain=pdf
http://orcid.org/0000-0002-3495-3753
http://orcid.org/0000-0002-0098-3620
http://orcid.org/0000-0002-1117-5020
http://orcid.org/0000-0001-7242-0096
http://orcid.org/0000-0001-8502-5896
http://orcid.org/0000-0003-3553-4953
https://doi.org/10.1007/978-3-031-43980-3_6

Optimal Wheeler Language Recognition 63

string processing algorithms) to labeled graphs. Informally speaking, an automa-
ton on alphabet Σ is Wheeler if the co-lexicographic order of the strings labeling
source-to-states paths can be “lifted” to a total order of the states (a formal
definition is given in Definition 5). As shown by the authors of [10], Wheeler
automata can be encoded in just O(log |Σ|) bits per edge and they support
near-optimal time pattern matching queries (i.e. finding all nodes reached by a
path labeled with a given query string). These properties make them a power-
ful tool in fields such as bioinformatics, where one popular way to cope with
the rapidly-increasing number of available fully-sequenced genomes, is to encode
them in a pangenome graph: aligning short DNA sequences allows one to dis-
cover whether the sequences at hand contain variants recorded (as sub-paths) in
the graph [8].

Wheeler languages—that is, regular languages recognized by Wheeler
automata—were later studied by Alanko et al. in [1]. In that paper, the authors
showed that Wheeler DFAs (WDFAs) and Wheeler NFAs (WNFAs) have the
same expressive power. As a matter of fact, the class of Wheeler languages
proved to possess several other remarkable properties, in addition to represent
the class of regular languages for which efficient indexing data structures exist.
Such properties motivated them to study the following decisional problem (as
well as the corresponding variant on NFAs/regular expressions):

Definition 1 (WheelerLanguageDFA). Given a DFA A, decide if the
regular language L(A) recognized by A is Wheeler.

Alanko et al. [1] provided the following characterization: a language L is
Wheeler if and only if, for any co-lexicographically monotone sequence of strings
α1 ≺ α2 ≺ . . . (or with reversed signs �) belonging to the prefix-closure of L,
on the minimum DFA for L there exists some N ∈ N and state u such that
by reading αi from the source state we end up in state u for all i ≥ N . This
characterization allowed them to devise a polynomial-time algorithm solving
WheelerLanguageDFA. This result is not trivial for two main reasons: (1)
the smallest WDFA for a Wheeler language L could be exponentially larger than
the smallest DFA for L [1], and (2) the corresponding WheelerLanguageNFA
problem (i.e., the input A is an NFA) is PSPACE-complete [7].

Our Contributions. Despite being polynomial, the algorithm of Alanko et al.
has a prohibitive time complexity: O(n13 + m log n), where m and n are the
number of transitions and states of the input DFA1. In this paper, we present a
much simpler parameterized (worst-case quadratic) algorithm solving Wheel-
erLanguageDFA. The complexity of our algorithm depends on a parameter
p—the co-lex width of the minimum DFA Amin for the language [6] (Definition
11), which is never larger than n and which measures the “distance” of Amin

from being Wheeler; e.g., if Amin is itself Wheeler, then p = 1. We prove:

Theorem 1. WheelerLanguageDFA can be solved in O(mp + m log n) ⊆
O(mn) time on any DFA A with n states and m edges, where p ≤ n is the co-lex
width of the minimum automaton Amin equivalent to A.
1 While the authors only claim mO(1) time, a finer analysis yields this bound.

64 R. Becker et al.

The intuition behind Theorem 1 is the following. Starting from the character-
ization of Wheeler languages of Alanko et al. [1] based on monotone sequences,
we show that L(A) is not Wheeler if and only if the square automaton A2

min =
Amin × Amin contains a cycle (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1)
such that, for all i = 1, . . . , k, the following two properties hold: (i) ui 	= vi

and (ii) the co-lexicographic ranges of strings reaching ui and vi intersect. As
a result, after computing Amin (O(m log n) time by Hopcroft’s algorithm) and
directly building this “pruned” version of A2

min in O(mp + m log n) time using
recent techniques described in [2,13], testing its acyclicity yields the answer. A
proof-of-concept implementation of the algorithm behind Theorem 1 is available
at http://github.com/regindex/Wheeler-language-recognizer.

We complement the above upper bound with a matching conditional lower
bound. Our lower bound is obtained via a reduction from the following problem:

Definition 2 (Orthogonal Vectors problem (OV)). Given two sets A and
B, each containing N vectors from {0, 1}d, decide whether there exist a ∈ A and
b ∈ B such that aT b = 0.

By a classic reduction [15], for d ∈ ω(logN) OV cannot be solved in time
O(N2−η poly(d)) for any constant η > 0 unless the strong exponential time
hypothesis [12] (SETH) fails. We prove2 :

Theorem 2. If WheelerLanguageDFA can be solved in time O(m2−η) for
some η > 0 on a DFA with m transitions on a binary alphabet, then the Orthog-
onal Vectors problem with d ∈ Ω(logN) can be solved in time O(N2−η poly(d)).

To prove Theorem 2, we adapt the reduction used by Equi et al. [9] to study
the complexity of the pattern matching on labeled graphs problem. The intuition
is the following. Our new characterization of Wheeler languages states that we
essentially need to find two distinct equally-labeled cycles in the minimum DFA
for the language (in addition to checking some other properties on those cycles)
in order to solve WheelerLanguageDFA. Given an instance of OV, we build
a DFA (minimum for its language) having one (non-simple) cycle for each vector
in the instance, such that the strings labeling two such cycles match if and only
if the two corresponding vectors in the OV instance are orthogonal. As a result,
a subquadratic-time solution of WheelerLanguageDFA on this DFA yields
a subquadratic-time solution for the OV instance.

2 Preliminaries

Strings. Let Σ be a finite alphabet. A finite string α ∈ Σ∗ is a finite concatena-
tion of characters from Σ. The notation |α| indicates the length of the string α.
The symbol ε denotes the empty string. The notation α[i] denotes the i-th char-
acter from the beginning of α, with indices starting from 1. Letting α, β ∈ Σ∗,
2 Our lower bound states that there is no algorithm solving all instances in O(m2−η)

time. On sparse DFAs (m ∈ Θ(n)) our algorithm runs in O(mn) = O(m2) time.

http://github.com/regindex/Wheeler-language-recognizer

Optimal Wheeler Language Recognition 65

α · β (or simply αβ) denotes the concatenation of strings. The notation α[i..j]
denotes α[i] · α[i + 1] · . . . · α[j]. An ω-string β ∈ Σω (or infinite string/string
of infinite length) is an infinite numerable concatenation of characters from Σ.
In this paper, we work with left-infinite ω-strings, meaning that β ∈ Σω is con-
structed from the empty string ε by prepending an infinite number of characters
to it. In particular, the operation of appending a character a ∈ Σ at the end
of a ω-string α ∈ Σω is well-defined and yields the ω-string αa. The notation
αω, where α ∈ Σ∗, denotes the concatenation of an infinite (numerable) number
of copies of string α. The co-lexicographic (or co-lex) order ≺ of two strings
α, β ∈ Σ∗ ∪ Σω is defined as follows. (i) ε ≺ α for every α ∈ Σ+ ∪ Σω, and (ii)
if α = α′a and β = β′b (with a, b ∈ Σ and α′, β′ ∈ Σ∗ ∪ Σω), α ≺ β holds if and
only if (a ≺ b)∨(a = b∧α′ ≺ β′). In this paper, the symbols ≺ and will be used
to denote the total order on the alphabet and the co-lexicographic order between
strings/ω-strings. Notation [N] indicates the set of integers {1, 2, . . . , N}.

DFAs, WDFAs, and Wheeler Languages. In this paper, we work with
deterministic finite state automata (DFAs):

Definition 3 (DFA). A DFA A is a quintuple (Q,Σ, δ, s, F) where Q is a finite
set of states, Σ is an alphabet set, δ : Q×Σ → Q is a transition function, s(∈ Q)
is a source state, and F (⊆ Q) is a set of final states.

For u, v ∈ Q and a ∈ Σ such that δ(u, a) = v, we define λ(u, v) = a. We
extend the domain of the transition function to words α ∈ Σ∗ as usual, i.e., for
a ∈ Σ, α ∈ Σ∗, and u ∈ Q: δ(u, a · α) = δ(δ(u, a), α) and δ(u, ε) = u.

In this work, n = |Q| denotes the number of states and m = |δ| = |{(u, v, a) ∈
Q × Q × Σ : δ(u, a) = v}| the number of transitions of the input DFA.

The notation Iu indicates the set of words reaching u from the initial state:

Definition 4. Let A = (Q,Σ, δ, s, F) be a DFA. If u ∈ Q, let Iu be defined as:

Iu = {α ∈ Σ∗ : u = δ(s, α)};

The language L(A) recognized by A is defined as L(A) = ∪u∈F Iu.
A classic result in language theory [14] states that the minimum DFA

(denoted with Amin) recognizing the language L(A) of any DFA A is unique.
The DFA Amin can be computed from A in O(m log n) time [11].

Wheeler automata were introduced in [10] as a generalization of prefix sorting
from strings to labeled graphs. We consider the following particular case:

Definition 5 (Wheeler DFA). A Wheeler DFA (WDFA) [10] A is a DFA
for which there exists a total order < ⊆ Q×Q (called Wheeler order) satisfying:

(i) s < u for every u ∈ Q − {s}.
(ii) If u′ = δ(u, a), v′ = δ(v, b), and a ≺ b, then u′ < v′.
(iii) If u′ = δ(u, a) 	= δ(v, a) = v′ and u < v, then u′ < v′.

66 R. Becker et al.

The symbol < will indicate both the total order of integers and the Wheeler
order among the states of a Wheeler DFA. The meaning of symbol < will always
be clear from the context. Definition 5 defines the Wheeler order in terms of
local axioms. On DFAs, an equivalent global definition is the following [1]:

Definition 6. Let u, v be two states of a DFA A. Let u <A v if and only if
(∀α ∈ Iu)(∀β ∈ Iv) (α ≺ β).

Lemma 1 ([1]). A is Wheeler if and only if <A is total, if and only if <A is
the (unique) Wheeler order of A.

In fact, when a Wheeler order exists for a DFA, this order is unique [1]
(as opposed to the NFA case). The class of languages recognized by Wheeler
automata is of particular interest:

Definition 7 (Wheeler language). A regular language L is said to be
Wheeler if and only if there exists a Wheeler NFA A such that L = L(A),
if and only if there exists a Wheeler DFA A′ such that L = L(A′).

The equivalence between WNFAs and WDFAs was established in [1]. In the
same paper [1], the authors provided a Myhill-Nerode theorem for Wheeler lan-
guages that is crucial for our results. Their result can be stated in terms of the
minimum accepting DFA for L. We first need the following definition:

Definition 8 (Entanglement [5]). Given a DFA A, two distinct states u 	= v
of A are said to be entangled if there exists a monotone infinite sequence α1 ≺
β1 ≺ · · · ≺ αi ≺ βi ≺ αi+1 ≺ βi+1 ≺ · · · (or with reversed sign �) such that
αi ∈ Iu and βi ∈ Iv for every i ≥ 1.

The characterization of Wheeler languages of Alanko et al. [1] states that:

Lemma 2 ([1]). For a DFA A, L(A) is not Wheeler if and only if there exist
entangled states u and v in its minimum DFA Amin.

Lemma 2 is at the core of our algorithm for recognizing Wheeler languages.

2.1 Infima and Suprema Strings

Lemma 1 suggests that the Wheeler order can be defined by looking just at the
lower and upper bounds of Iu for each state u ∈ Q. Let us define:

Definition 9 (Infimum and supremum [13]). For a DFA A = (Q,Σ, δ, s, F),
let u ∈ Q be a state of A. The infimum string inf Iu and supremum string sup Iu

are the greatest lower bound and the least upper bound, respectively, of Iu:

inf Iu = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω s.t. (∀α ∈ Iu β α) β γ)
sup Iu = γ ∈ Σ∗ ∪ Σω s.t. (∀β ∈ Σ∗ ∪ Σω s.t. (∀α ∈ Iu α β) γ β)

Kim et al. [13] and Conte et al. [4] use the above definition to give yet another
equivalent definition of Wheeler order:

Optimal Wheeler Language Recognition 67

Lemma 3 ([4,13]). Let u, v be two states of a WDFA A. Let u < v if and only
if sup Iu inf Iv. Then < is the Wheeler order of A.

Following Lemma 3, it is convenient to represent each state u ∈ Q as an open
interval I(u) = (inf Iu, sup Iu), i.e., the subset of Σ∗ ∪ Σω containing all strings
co-lexicographically strictly larger than inf Iu and strictly smaller than sup Iu.
Note that, for two states u, v ∈ Q, if |Iu|, |Iv| > 1 then I(u) ∩ I(v) = ∅ if and
only if sup Iu inf Iv or sup Iv inf Iu. If |Iu| = 1 (analogously for |Iv| = 1),
then I(u) = ∅ so I(u) ∩ I(v) is always empty.

Following [13], in the rest of the paper the intervals I(u) = (inf Iu, sup Iu)
are encoded as pairs of integers: the co-lexicographic ranks of inf Iu and sup Iu

in {inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q}. Using this representation, the check
I(u) ∩ I(v) 	= ∅ can be trivially performed in constant time. The authors of [2]
show that the relative co-lexicographic ranks of all infima and suprema strings
of a DFA can be computed efficiently:

Lemma 4 ([2, Sec. 4]). Given a DFA A = (Q,Σ, δ, s, F), we can sort the set
{inf Iu : u ∈ Q} ∪ {sup Iu : u ∈ Q} co-lexicographically in O(|δ| log |Q|) time.

We conclude this section by mentioning two useful properties of infima and
suprema strings which will turn out useful later on in this work.

Lemma 5. Let u be a state of a DFA A, and γ ∈ Σ∗ be a finite string. Then
the following holds:

1. If inf Iu (sup Iu) is finite, then inf Iu ∈ Iu (sup Iu ∈ Iu).
2. For any finite suffix α′ of inf Iu or sup Iu, there exists α ∈ Iu suffixed by α′.
3. Iu is a singleton if and only if inf Iu = sup Iu.
4. If inf Iu ≺ γω, then there exists α ∈ Iu such that α ≺ γω; similarly, if

γω ≺ sup Iu, then there exists α ∈ Iu such that γω ≺ α.

Proof. (1)–(3) See [13, Observation 8]. (4) Assume inf Iu ≺ γω. If inf Iu is finite,
then inf Iu ∈ Iu by (1) and the claim follows by setting α = inf Iu. Let us assume
inf Iu has infinite length. Let α′ be the shortest suffix of inf Iu such that α′ ≺ γω

and α′ is not a suffix of γω; note that α′ is finite, otherwise α′ = inf Iu = γω

by definition of ≺, which contradicts the assumption inf Iu ≺ γω. Then by (2),
there exists α ∈ Iu suffixed by α′. By definition of α′, any string suffixed by α′

is smaller than γω, hence α ≺ γω. The case with γω ≺ sup Iu is analogous.

3 Recognizing Wheeler Languages

In this section, we present our algorithm to decide if the language accepted by
a DFA A = (Q,Σ, δ, s, F) is Wheeler. Let Amin = (Qmin, Σ, δmin, smin, Fmin)
be the minimum-size DFA accepting L(A).

68 R. Becker et al.

Definition 10 (Square automaton). The square automaton A2
min = Amin×

Amin = (Q2
min = Qmin × Qmin, Σ, δ′, (smin, smin), F 2

min = Fmin × Fmin) is the
automaton whose states are pairs of states of Amin and whose transition function
is defined as δ′((u, v), a) = (δmin(u, a), δmin(v, a)) for u, v ∈ Qmin and a ∈ Σ.

We are ready to prove our new characterization of Wheeler languages. The
characterization states that A2

min can be used to detect repeated cycles in Amin,
and that we can use this fact to check if L(Amin) = L(A) is Wheeler:

Theorem 3. For a DFA A, L(A) is not Wheeler if and only if A2
min contains a

cycle (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1) such that, for 1 ≤ ∀i ≤ k,
the following hold: (i) ui 	= vi and (ii) I(ui) ∩ I(vi) 	= ∅.
Proof. (⇐) Assume that A2

min contains such a cycle (u1, v1) → (u2, v2) →
· · · → (uk, vk) → (u1, v1) where k is the cycle length. Then, by definition
of A2

min there exist cycles u1 → u2 → · · · → uk → u1 and v1 → v2 →
· · · → vk → v1 in Amin, both of which are labeled by the same string γ =
λ(u1, u2) · · · λ(uk−1, uk)λ(uk, u1) = λ(v1, v2) · · · λ(vk−1, vk)λ(vk, v1) of length k.

Let γ1 = max{inf Iu1 , inf Iv1} and γ2 = min{sup Iu1 , sup Iv1}. First, we claim
γ1 ≺ γ2. To see this, without loss of generality, assume inf Iu1 inf Iv1 . Observe
|Iu1 |, |Iv1 | > 1 because u and v are on two cycles (hence Iu1 and Iv1 contain an
infinite number of strings). By Lemma 5.3 both inf Iu1 ≺ sup Iu1 and inf Iv1 ≺
sup Iv1 hold. Since I(u1)∩I(v1) 	= ∅, inf Iv1 ≺ sup Iu1 also holds. Then, inf Iu1
inf Iv1 ≺ sup Iu1 , sup Iv1 . Therefore γ1 = inf Iv1 ≺ min{sup Iu1 , sup Iv1} = γ2.

As a consequence, we can see that at least one of the following must hold: (i)
γ1 ≺ γω and (ii) γω ≺ γ2; note that the complement of the case (i) is γω γ1,
which implies γω ≺ γ2 because (γω)γ1 ≺ γ2. Therefore, by Lemma 5.4, there
must exist α ∈ Iu1 and β ∈ Iv1 such that either α, β ≺ γω or γω ≺ α, β hold.

Note that it holds α 	= β since Amin is deterministic. Without loss of gen-
erality, assume α ≺ β. We consider the case α ≺ β ≺ γω; the other case
(γω ≺ α ≺ β) is symmetric. Let l be any integer such that max{|α|, |β|} < l · |γ|.
Then we can see that, for every d ≥ 0, the following three properties hold: (i)
α(γl)d ≺ β(γl)d ≺ α(γl)d+1 ≺ β(γl)d+1, (ii) α(γl)d ∈ Iu1 (because α ∈ Iu1 and
γ labels a cycle from u1, so δmin(u1, γ

k) = u1 for any integer k ≥ 0) and, simi-
larly, (iii) β(γl)d ∈ Iv1 . Properties (i-iii) imply that there is an infinite monotone
nondecreasing sequence of strings alternating between Iu1 and Iv1 , i.e., u1 and v1
are entangled (Definition 8) and, by Lemma 2, L(Amin) = L(A) is not Wheeler.

(⇒) Assume that L(Amin) = L(A) is not Wheeler. By Lemma 2, there exist
entangled states u0 	= v0 in Amin (in particular, I(u0) ∩ I(v0) 	= ∅). Without
loss of generality, we can assume that there is an infinite nondecreasing sequence
S0 = α1 ≺ β1 ≺ α2 ≺ β2 ≺ · · · such that, for every i ≥ 1, αi ∈ Iu0 and βi ∈ Iv0

(the other case with the reversed sign is analogous).
Observe that, since the alphabet is finite, S0 must ultimately (i.e., from a

sufficiently large index i) contain strings αi, βi sharing the last character. We
can therefore assume without loss of generality that all strings in S0 end with
the same character a. Then, there exist u1, v1 such that δmin(u1, a) = u0 and
δmin(v1, a) = v0. Note that, by the determinism of Amin, it must be u1 	= v1.

Optimal Wheeler Language Recognition 69

Moreover, we can choose two entangled such u1, v1. To see this, let u1
1, . . . , u

s
1

and v1
1 , . . . , v

r
1 be the s and r predecessors of u0 and v0, respectively, such that

δmin(ui
1, a) = u0 and δmin(v

j
1, a) = v0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ r.

Assume for the purpose of contradiction that ui
1 and vj

1 are not entangled for
all pairs ui

1, v
j
1. Then, by definition of entanglement any monotone sequence

μ1 ≺ μ2 ≺ · · · ∈ Iui
1

∪ Ivj
1

ultimately ends up in just one of the two sets:
there exists N ∈ N such that either μN , μN+1, · · · ∈ Iui

1
or μN , μN+1, · · · ∈ Ivj

1
.

Since this is true for any pair ui
1, vj

1, any monotone sequence μ1 ≺ μ2 ≺ · · · ∈⋃s
i=1 Iui

1
∪ ⋃r

j=1 Ivj
1

ultimately ends up in either (i)
⋃s

i=1 Iui
1

or (ii)
⋃r

j=1 Ivj
1
.

But then, this implies that sequence S0 cannot exist: any monotone sequence
μ1a ≺ μ2a ≺ · · · ∈ Iu0 ∪ Iv0 ultimately ends up in either (i) Iu0 or (ii) Iv0 .

Summing up, we found u1 	= v1 such that δmin(u1, a) = u0, δmin(v1, a) = v0,
and u1, v1 are entangled (in particular, I(u1) ∩ I(v1) 	= ∅). We iterate this
process for k = |Qmin|2 times; this yields two paths uk → uk−1 → · · · → u0

and vk → vk−1 → · · · → v0 labeled with the same string of length k, with
ui 	= vi and I(ui) ∩ I(vi) 	= ∅ for all 0 ≤ i ≤ k. But then, since we chose
k = |Qmin|2, by the pigeonhole principle there must exist two indices j ≤ i
such that (ui, vi) = (uj , vj). In particular, there exists k′ ≤ k such that ui →
ui−1 → · · · → ui−k′+1 → ui and vi → vi−1 → · · · → vi−k′+1 → vi are two
cycles of the same length k′, labeled with the same string, such that ut 	= vt and
I(ut)∩ I(vt) 	= ∅ for all indices i − k′ +1 ≤ t ≤ i. This yields our main claim. ��

4 The Algorithm

Theorem 3 immediately gives a quadratic algorithm for WheelerLan-
guageDFA:

1. Compute Amin = (Qmin, Σ, δmin, smin, Fmin) by Hopcroft’s algorithm [11].
2. On Amin, compute intervals I(u) for each u ∈ Qmin, using3 [2, Sec. 4].
3. Compute A2

min.
4. Remove from A2

min all states (u, v) (and incident transitions) such that either
u = v or I(u) ∩ I(v) = ∅. Let Â2

min be the resulting pruned automaton.
5. Test acyclicity of Â2

min. If Â2
min is acyclic, return "L(A) is Wheeler". Oth-

erwise, return "L(A) is not Wheeler".

Since, by its definition, Amin cannot be larger than A, in the rest of the paper
we will for simplicity assume that Amin has n nodes and m transitions. Steps (1)
and (2) run in O(m log n) time. Note that, for each transition δmin(u, a) = u′ and
for each node v 	= u, by the determinism of Amin there exists at most one transi-
tion δmin(v, a) = v′ labeled with a and originating in v; such a pair of transitions
define one transition of A2

min. It follows that the number of transitions (thus the
size) of A2

min is O(mn), therefore steps (3–5) run in O(mn) time (acyclicity
can be tested in O(|A2

min|) time using, for example, Kahn’s topological sorting
algorithm). Overall, the algorithm runs in O(mn) time.
3 In the full version [3], we discuss more in detail how to apply [2, Sec. 4] on Amin.

70 R. Becker et al.

4.1 A Parameterized Algorithm

Our algorithm can be optimized by observing that we can directly build Â2
min,

which could be much smaller than A2
min. For example, if Amin is Wheeler, then

I(u) ∩ I(v) = ∅ for all states u 	= v of Amin (see Definition 6 and Lemma 1), so
Â2

min is empty. As a matter of fact, we show that the size of Â2
min depends on

the width of the (partial [6]) order <Amin
, i.e., the size of the largest antichain:

Definition 11 ([6]). The co-lex width width(A) of a DFA A is the width of
the order <A defined in Definition 6.

The co-lex width is an important measure parameterizing problems such as
pattern matching on graphs and compression of labeled graphs [5,6]. Note that
width(Amin) = 1 if and only if Amin is Wheeler. We show:

Lemma 6. Let p = width(Amin). Then, Â2
min has at most 2n(p−1) states and

at most 2m(p − 1) transitions and can be built from Amin in O(mp) time.

The intuition behind Lemma 6 is that Â2
min contains only states (u, v) such

that I(u)∩I(v) 	= ∅. By Lemma 3, this holds if and only if u and v are incompa-
rable by the order <Amin

. Since the width of this order is (by definition) p, the
bounds follow easily. To build Â2

min, we sort the states of Âmin by the strings
inf Iu and observe that incomparable states are adjacent in this order. It follows
that we can easily build Â2

min in time proportional to its size, O(mp). The details
can be found in the full version [3]. Theorem 1 follows.

Implementation. We implemented the algorithm of Theorem 1. The code is
available at http://github.com/regindex/Wheeler-language-recognizer. It takes
in input either a regular expression or a DFA and checks if the recognized
language is Wheeler. We tested our algorithm on two random DFA datasets:

Fig. 1. Wall clock time for our algorithm on different random DFA datasets (a) different
n, m = 3n, and p is similar to n; (b) different p with fixed m.

http://github.com/regindex/Wheeler-language-recognizer

Optimal Wheeler Language Recognition 71

(i) one with different combinations of number of states and transitions where
n = {500 · 2i : i = 0, . . . , 5} and m = 3n to show the quadratic running time,
and (ii) the other with a fixed number of transitions, m = 16 · 103, and different
widths p = {400, 800, 1600, 3200} of the minimum DFAs to show the running
time with respect to p. Our experiments were run on a server with Intel(R)
Xeon(R) W-2245498 CPU @ 3.90GHz with 8 cores and 128 gigabytes of RAM
running Ubuntu 18.04 LTS 64-bit. As expected, our experimental results show
that the running time grows linearly in mp. It is worth noting that, on our input
instances in the first dataset, p is roughly similar to n, and we double n at each
step, the running time shows a quadratic growth (Fig. 1(a)). On the other hand,
when the number of transitions is fixed, the running time grows linearly to the
width p of the minimum DFA (Fig. 1(b)). This can be measured from the slopes
of the fitted lines on the log-log plots, which are 2.03 and 1.04, respectively.

5 A Matching Conditional Lower Bound

In this section, we show that an algorithm for WheelerLanguageDFA with
running time O(m2−η), yields an algorithm for the Orthogonal Vectors problem
(see Definition 2) with running time O(N2−η poly(d)), thus contradicting SETH.
This is our second main theorem (Theorem 2) formulated in the introduction.
We prove this theorem using Theorem 3 and the following proposition, which
reduces an instance of the OV problem with two sets of N d-dimensional vectors
each into an instance of our problem with a minimum DFA of size Θ(Nd).

Proposition 1. For an instance of the OV problem, we can in O(N(d+logN))
time construct a DFA A with m ∈ O(N(d + logN)) edges that is minimum for
its language L(A) such that the OV instance is a YES-instance if and only if A2

contains a cycle (u1, v1) → (u2, v2) → · · · → (uk, vk) → (u1, v1) such that, for
1 ≤ ∀i ≤ k, the following hold: (i) ui 	= vi and (ii) I(ui) ∩ I(vi) 	= ∅.
Once this proposition is established, we can take an OV instance with sets of
size N containing vectors of dimension d ∈ ω(logN) and construct the DFA A of
size Θ(m) = Θ(N(d+logN)) = Θ(Nd). Now assume that we can solve Wheel-
erLanguageDFA in O(m2−η) on A. Using Theorem 3 and Proposition 1, we
can thus solve the OV instance in O((Nd)2−η) = O(N2−η poly(d)) time, as the
OV instance is a YES instance if and only if the language recognized by A is not
Wheeler. This shows Theorem 2. The rest of this section is dedicated to illustrate
how we prove Proposition 1. The details can be found in the full version [3].

Construction of A. For a given instance A = {a1, . . . , aN} and B =
{b1, . . . , bN} of the OV problem, we build a DFA A = (Q,Σ, δ, s, F) with the
properties in Proposition 1 by adapting a technique of Equi et al. [9]. We first
notice that we can, w.l.o.g., make the following assumptions on the OV instance:
(1) The vectors in A are distinct, (2) N is a power of two, say N = 2�. We describe
the construction of A based on a small example, while the general description
can be found in the full version [3]. We let Σ = {0, 1,#}. Later we show how to
reduce the alphabet’s size to 2.

72 R. Becker et al.

Fig. 2. Illustration of the cycles generated for the bit vectors in the example A =
{110, 100, 111, 011} and B = {101, 101, 010, 111}. The two cycles CA

2 and CB
3 generate

a match, i.e., can read the same string, as the vectors a2 and b3 are orthogonal.

Let A = {110, 100, 111, 011} and B = {101, 101, 010, 111} be the given
instance of the OV problem. Thus N = 4 and = log2 N = 2. Notice that
the only pair of orthogonal vectors in A and B are a2 = 100 and b3 = 010. In
our DFA A we build (non-simple) cycles CA

i and CB
j for every vector ai and bj in

A and B respectively. As an example, for a2 we build the cycle CA
2 labeled with

100{0, 1}{0, 1}#, i.e. the bit string 100 of a2, followed by a sub-graph recognizing
any bit string of length = 2, followed by #. For b3 we build the (non-simple)
cycle CB

3 labeled with {0, 1}0{0, 1}10#, i.e., the bits 0 of b3 are converted to a
sub-graph recognizing both 0 and 1, and the bits 1 of b3 are converted to an edge
recognizing 0; this subgraph is followed by a path of length spelling 10, which
is the 3rd smallest among the length- binary strings (i.e. the identifier for CB

3 to
prevent it from any match with CB

j for j 	= 3 while allowing matches with CA
i ’s),

which is followed by an edge labeled with #. Notice that these two cycles indeed
generate a match (underlined characters indicate the match): 100{0, 1}{0, 1}#
and {0, 1}0{0, 1}10#. We can see CA

i and CB
j built in this way will match if and

only if the two corresponding vectors are orthogonal. Characters # are intro-
duced to synchronize the match (otherwise, other rotations of the cycles could
match). The subgraphs between the part corresponding to the input vectors and
the character # are introduced to avoid that two distinct cycles CB

i and CB
j

(i 	= j) generate a match. Note that, since we assume that A contains distinct
vectors, distinct cycles CA

i and CA
j (i 	= j) will never generate a match.

The remaining details of the reduction ensure that (1) the graph is a con-
nected DFA, (2) corresponding nodes (i.e. same distance from # in the cycles)
u, v in any pair of cycles CA

i and CB
j that correspond to orthogonal vectors ai

and bj , respectively, have a non-empty co-lexicographic intersection I(u)∩I(v),

Optimal Wheeler Language Recognition 73

Fig. 3. Illustration of our construction of A for an arbitrary instance A = {a1, . . . , aN}
and B = {b1, . . . , bN} of the OV problem. The cycles CA

1 , . . . , CA
N , CB

1 , . . . , CB
N are

expanded in Fig. 2 on a particular OV instance.

(3) the DFA is indeed minimum for its recognized language, and (4) the alphabet
can be reduced to {0, 1} by an opportune mapping.

An illustration of the overall construction for an arbitrary instance of the
OV problem can be found in Fig. 3. The complete proof can be found in the full
version [3]. We proceed with a sketch on how we achieve the above properties.
Property (1) is achieved by connecting the above described cycles (we call the
set of all cycles’ nodes C), to the source node s through a binary out-tree of
logarithmic depth (we call these nodes V out). Property (2) is achieved by con-
necting V out to C through the nodes in I that ensure that nodes u ∈ CA

i , v ∈ CB
j

in the same relative positions (i.e. same distance from #) in their cycles that
correspond to orthogonal vectors ai and bj are reached by strings of alternating
co-lexicographic order, i.e., for a suitable string τ , Iu contains two strings suf-
fixed by 00τ and 11τ , while Iv contains a string suffixed by 01τ . This implies
I(u) ∩ I(v) 	= ∅. Property (3) is instead achieved by connecting one node from
each cycle CA

i and CB
j (the one with out-edge #) with an edge labeled 0 to a com-

plete binary in-tree (we call these nodes V in) with root being the only accepting
state t. Observe that the reversed automaton (i.e. the automaton obtained by
reversing the direction of all the edges) is deterministic; this ensures that any two
nodes in the graph can reach t through a distinct binary string, witnessing that
A is indeed minimal (by the Myhill-Nerode characterization of the minimum
DFA [14]). Property (4) can be easily satisfied by transforming the instance as
follows. Edges labeled 0 (1) are replaced with a directed path labeled with 00
(11), while edges labeled # are replaced with a directed path labeled 101. The
pattern 101 then appears only on the paths that originally corresponded to #
and thus two transformed cycles match if and only if they used to match before
the transformation. We note that also forward- and reverse- determinism (thus

74 R. Becker et al.

minimality) are maintained under this transformation (the nodes â′
i and b̂′

j in I
are introduced for maintaining reverse-determinism).

References

1. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. Inf. Com-
put. 281, 104820 (2021). https://doi.org/10.1016/j.ic.2021.104820

2. Becker, R., et al.: Sorting Finite Automata via Partition Refinement (2023).
10.48550/arXiv. 2305.05129, to appear at ESA 2023

3. Becker, R., Cenzato, D., Kim, S.H., Kodric, B., Policriti, A., Prezza, N.: Optimal
wheeler language recognition (2023). https://doi.org/10.48550/arXiv.2306.04737

4. Conte, A., Cotumaccio, N., Gagie, T., Manzini, G., Prezza, N., Sciortino, M.:
Computing matching statistics on wheeler DFAs. In: Data Compression Conference
(DCC), pp. 150–159 (2023). https://doi.org/10.1109/DCC55655.2023.00023

5. Cotumaccio, N., D’Agostino, G., Policriti, A., Prezza, N.: Co-lexicographically
ordering automata and regular languages - part I. J. ACM 70, 1–73 (2023). https://
doi.org/10.1145/3607471, (online available)

6. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. In:
Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2585–2599 (2021). https://doi.org/10.1137/1.9781611976465.153

7. D’Agostino, G., Martincigh, D., Policriti, A.: Ordering regular languages and
automata: complexity. Theoret. Comput. Sci. 949, 113709 (2023). https://doi.org/
10.1016/j.tcs.2023.113709

8. Eizenga, J.M., et al.: Pangenome graphs. Ann. Rev. Genomics Hum. Genet. 21(1),
139–162 (2020). https://doi.org/10.1146/annurev-genom-120219-080406, pMID:
32453966

9. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string
matching for graphs. In: Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming (ICALP), pp. 55:1–55:15 (2019). https://
doi.org/10.4230/LIPIcs.ICALP.2019.55

10. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based data
structures. Theoret. Comput. Sci. 698, 67–78 (2017). https://doi.org/10.1016/j.
tcs.2017.06.016

11. Hopcroft, J.: An n logn algorithm for minimizing states in a finite automaton.
In: Proceedings of an International Symposium on the Theory of Machines and
Computations, pp. 189–196 (1971). https://doi.org/10.1016/B978-0-12-417750-5.
50022-1

12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

13. Kim, S.H., Olivares, F., Prezza, N.: Faster prefix-sorting algorithms for determin-
istic finite automata. In: Proceedings of the 34th Annual Symposium on Combina-
torial Pattern Matching (CPM), pp. 16:1–16:16 (2023). https://doi.org/10.4230/
LIPIcs.CPM.2023.16

14. Nerode, A.: Linear automaton transformations. In: Proceedings of the American
Mathematical Society, vol. 9, no. 4, pp. 541–544 (1958). https://doi.org/10.2307/
2033204

15. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2–3), 357–365 (2005). https://doi.org/10.1016/
j.tcs.2005.09.023

https://doi.org/10.1016/j.ic.2021.104820
https://doi.org/10.48550/arXiv.2306.04737
https://doi.org/10.1109/DCC55655.2023.00023
https://doi.org/10.1145/3607471
https://doi.org/10.1145/3607471
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.1016/j.tcs.2023.113709
https://doi.org/10.1016/j.tcs.2023.113709
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.CPM.2023.16
https://doi.org/10.4230/LIPIcs.CPM.2023.16
https://doi.org/10.2307/2033204
https://doi.org/10.2307/2033204
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023

Approximation and Fixed Parameter
Algorithms for the Approximate Cover

Problem

Guillaume Blin1 , Alexandru Popa2 , Mathieu Raffinot1 ,
and Raluca Uricaru1(B)

1 CNRS, Bordeaux INP, LaBRI, UMR 5800, Univ. Bordeaux, 33400 Talence, France
{guillaume.blin,mathieu.raffinot,raluca.uricaru}@u-bordeaux.fr

2 Faculty of Mathematics and Computer Science, University of Bucharest,
Bucharest, Romania

alexandru.popa@fmi.unibuc.ro

Abstract. Amir et al. (CPM 2017) introduce the approximate string
cover problem (ACP) motivated by applications including molecular
biology, coding, automata theory, formal language theory and combi-
natorics. A cover of a string T is a string C for which every letter of T
lies within some occurrence of C. The input of the ACP consists of a
string T and the goal is to find a string C of length less than the length of
T that covers a string T ′, which is as close to T as possible (under some
predefined distance). Amir et al. study this problem for the Hamming
distance and show that it is NP-hard.

In this paper we continue the work of Amir et al. and show the follow-
ing results for the cover length relaxation of the ACP. After observing
that the NP-hardness proof by Amir et al. (CPM 2017, TCS 2019) suf-
fers from several lapses, we propose an amendment to the proof. We then
introduce an approximation algorithm for a variant of the ACP, in which
we aim to maximize the length of the input string minus the distance to
the string covered by the approximate cover returned by the algorithm.
This problem is naturally as hard as the ACP. We prove an asymptotic
approximation ratio of O(

√|T |), where |T | is the size of the input string.
Finally, we present an FPT algorithm with respect to the alphabet size
and the size of the cover based on a dynamic programming framework.

Keywords: Approximate Cover · NP-hardness · Approximation
algorithm · FPT algorithm

1 Introduction

Motivation and Problem Definition. Redundancy is a common aspect of all
data and was intensively studied over the years [29,32]. Data, which can be

This work was supported by a grant of the Ministry of Research, Innovation and
Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-0253, within
PNCDI III. We also thank the PHC Brincusi project between Univ. of Bordeaux and
Univ. of Bucharest that facilitated the bilateral visits leading to this work.
M. Raffinot—Currently at Apple.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 75–88, 2023.
https://doi.org/10.1007/978-3-031-43980-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_7&domain=pdf
http://orcid.org/0000-0002-0708-0838
http://orcid.org/0000-0003-3364-1210
http://orcid.org/0009-0006-4621-2705
http://orcid.org/0000-0002-5730-6428
https://doi.org/10.1007/978-3-031-43980-3_7

76 G. Blin et al.

highly redundant or repetitive, usually comes with some key patterns or regu-
larities [34]. One type of redundancy is the periodicity, which is a crucial phe-
nomenon when analyzing physical data like an analog signal. Periodicity has
been thoroughly studied in various fields such as Signal Processing [33], Bioin-
formatics [15], Dynamical Systems [23] and Control Theory [10].

It is of importance to expand the study of redundancy to other types of
repeated patterns than periods, one common type of repeated pattern in strings
being a cover. Simply put, a cover of a string T is a string C such that every
letter of T lies within some occurrence of C in T . Note that the notion of cover
is a generalization of the one of period, as indeed every periodic string admits a
cover. However, the main difference between these two notions resides in the fact
that in the case of periods, occurrences do not overlap. A string may admit zero,
one or several covers. However, as for periods, one is interested in the shortest
cover. The problem of determining the shortest cover of a string, known as the
Minimal String Cover Problem, was shown to be solvable in linear time [9].

However, the notion of cover may still not be sufficiently general to capture
repetitive signal in strings like those coming from biological sequences, which
would benefit from considering approximate repeats. In this paper we elaborate
on the work of Amir et al. [1–5] who introduce and study approximate string
covers, which can be briefly defined as string covers in the presence of errors.
Intuitively, given an original string, the idea is to cover a second string at a
minimal distance from the original one. As in [1], here we will consider the
Hamming distance, which implies that the covered string has the same length as
the original one (i.e., errors come from mismatches only). Below we will refer to
the Hamming distance between two strings s1 and s2 of equal length as h(s1, s2).

Related Work. Our exposition of related results follows mainly [1–3,5]. Quasi-
periodicity was introduced by Ehrenfeucht in 1990 (according to [7]) in a Tech
Report for Purdue University, even though in was not published until 1993 [8].
The notion of quasi-periodicity is first considered by Apostolico, Farach and
Iliopoulos [9]. They define the quasi-period of a string to be the length of its
shortest cover and present a linear (time and space) algorithm for computing
it [9]. This notion attracted the attention of numerous researchers [12,13,28,30,
31]. The following surveys summarize the first decade of results: [7,25,26].

However, quasi-periodicity takes many forms, depending on the type of pat-
terns one wants to recover. Further work dealt with different variants such
as seeds [22,24], λ-seeds [20], the maximum quasi-periodic substring [14], k-
covers [17], λ-covers [21], enhanced covers [19], partial covers [25]. Another
variation point is the context, e.g. indeterminate strings [6,18] or weighted
sequences [11,16]. Also Landau and Schmidt study a weaker form of quasi-
periodicity and focus on approximate tandem repeats [27].

Our Results. In this paper we follow up on the work of Amir et al. [1,3] and present
several algorithmic results and structural properties of the Approximate Cover
Problem (ACP) and more precisely of one of its relaxations, namely the cover-
length relaxation. The remaining of the paper is organised as follows.

Algorithms for the Approximate Cover Problem 77

After giving the definitions and necessary notations in Sect. 2, we present an
amended proof of the NP-hardness of the ACP in Sect. 3. One should note that
while Amir et al. [3,4] have the result right (the problem is indeed NP-hard, as we
will prove), their proof was incorrect. Second, in Sect. 4, we present a polynomial
time, O(

√|T |)-approximation algorithm for the maximization version of the
cover-length relaxation of the ACP, Max Similarity ACP . The key idea is to
split the input instances into two groups according to the size of the cover with
respect to the size of T and then to design a cover for each group. Finally,
we propose an FPT algorithm for the minimization version of the cover length
relaxation of the ACP, based on a dynamic programming framework.

2 Preliminaries and Problem Definitions

In this section we give all notations and formal definitions necessary for the
approximate string cover related problems that are tackled in this paper.

String Cover. Let T and C be strings over an alphabet Σ, with n the length of
T , respectively m the length of C. We say that C is a cover of the text T if we
have m < n and if there is a succession of possibly overlapping occurrences of C
in T , such that every character of T belongs to at least one of these occurrences.

Let us take several examples of strings and their covers: in the case of a string
T = abcd, no cover exists; if we consider the string T = ababaaba we get the
cover aba; the string T = ababab admits a cover abab, and a shorter one ab (that
is also a period of T).

Tiling. Let T be a text of length n over alphabet Σ, and C a cover of this text
of length m (m < n). We call a tiling of C over T , a list of at least two strictly
ascending ordered indices L = [i1, . . . , il] with 0 ≤ ik ≤ n − m and for all ik ∈ L
there is an occurrence of C in T at position ik.

A tiling is said to be valid with respect to the text and the cover if i1 = 0,
il = n − m and ∀ik with k < l, we have ik+1 − ik ≤ m. For example, the list
[0, 2, 5] is a valid tiling for the text T = ababaaba and the cover aba.

Moreover, given a cover C of length m, there is an infinity of strings with
lengths superior to m that can be covered by C (meaning that each one of these
strings admits a valid tiling with respect to the cover C). However, for a fixed
n and a given tiling (that is correct with respect to C), there exists a unique
string covered by C and respecting the tiling.

Approximate String Cover. Let T be a string of length n over an alphabet
Σ. We call C ′ an approximate cover of T if and only if: (i) C ′ covers one of the
strings T ′ being at minimal distance from T (here the Hamming distance, hence
h(T, T ′) has to be minimal) among all strings of length n admitting a cover; (ii)
C ′ is of minimal length among the covers of strings T ′.

Note that, given the definition above, approximate covers are required to be
primitive, meaning that they cannot be covered by a shorter cover.

Approximate Cover Problem. The Approximate String Cover Problem
(ACP) takes a string T of length n as input and computes an approximate

78 G. Blin et al.

cover of T that is an exact cover for a string T ′, as well as the distance from T ′

to the original text T (here the Hamming distance).
Amir et al. deduce the NP-hardness of the ACP with respect to the Hamming

distance [3] by proving the NP-hardness of a relaxation of this problem called
the cover-length relaxation. In this variant of the ACP the size of the cover,
m, is fixed and specified in the input. The idea is to find an m-length cover of a
string T ′ (|T | = |T ′|) with the smallest h(T, T ′). Note that the algorithmic results
on the cover-length relaxation of the ACP naturally extend to the ACP. For
example, if we have a polynomial-time approximation algorithm with a c factor
for the cover-length relaxation, we can design an algorithm with the same factor
for the general ACP by simply calling the approximation algorithm with all the
possible cover length values and selecting the best solution.

Though the cover-length relaxation problem is defined as a minimization
problem (i.e., minimize h(T, T ′)), it can be tackled from the opposite point of
view, meaning as a maximization problem. This time the goal is to maximize the
number of positions on which T and T ′ match (i.e., maximize |T | − h(T, T ′)).
Here, we name this variant the Max Similarity ACP . It is straightforward that
from the complexity point of view, the two versions are equally hard.

Note that by abuse of notation, except when explicitly stated, when we write
ACP we refer to the cover-length relaxation of the ACP.

3 NP-Hardness of the ACP

As stated previously, the original hardness proof provided in [3,4] is, in the
current version, wrong. We will here provide some key elements to show the
current problem of the construction and a way of fixing it. In order to avoid
redundancy with the original proof, we will keep the presentation simple and let
the reader refer to the original proof for further details.

The proof is a reduction from 3-SAT: we are given a 3-CNF formula ϕ on
N variables, x1, . . . , xN , with l clauses such that, without loss of generality, the
literals in each clause are sorted by the index of their variables. Amir et al. define
a text T over an alphabet Σ = {xi, xi|i ∈ [1..N]}⋃{p, y1, y2, y3, y4} as follows1.

The text T is the result of the concatenation of two parts: a so-called header
(left part) and a body (right part). The header part is composed of β copies of
the following string B = pα y1 y2 xN . . . x1 y3 y4 pα y1 y2 xN . . . x1 y3 y4 pα

where pα is a run of α characters p. While the p-runs will be used as a padding
gadget, the characters {y1, y2, y3, y4} are additional dummy variables that will be
helpful in the specific case where a clause is satisfied by one of {x1, x1, xN , xN}
in a given truth assignment satisfying ϕ.

The body part of T is defined directly from the formula ϕ as
pγ L1

1 L1
2 L1

3 pγ L2
1 L2

2 L2
3 pγ . . . pγ Ll

1 Ll
2 Ll

3 pγ where for all 1 ≤ j ≤ l, Lj
i

is the ith literal of the jth clause. Finally, Amir et al. define the size of the cover
as m = 2α + N + 4. In the original construction, α = N + 7, β = l(N + 3) and
γ = 2N + 14.
1 In the original construction y4 = x0, y3 = x−1, y2 = xN+1 and y1 = xN+2.

Algorithms for the Approximate Cover Problem 79

For the sake of clarity, we provide a full example of T with α = 11, β = 21,
γ = 22, m = 30 for ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4):
[pαy1y2x4x3x2x1y3y4p

αy1y2x4x3x2x1y3y4p
α]βpγx1x2x3p

γx2x3x4p
γx1x3x4p

γ

Now, one has to prove the correctness of the reduction.

Lemma 1. For a given δ, ϕ is satisfiable if and only if T has an m-approximate
cover with at most δ errors

Proof. In the original proof, δ = l(N + 3)(N + 1). Let us first prove why the
original reduction does not hold and propose a tuning allowing the correctness
of this last.

Given a truth assignment A satisfying ϕ, let us build an m-length string C =
pα y1 y2 zN . . . z1 y3 y4 pα where for all 1 ≤ i ≤ N, zi = xi if xi belongs to A;
zi = xi otherwise. Considering our toy instance, let us take A = {x1, x2, x3, x4}
which is indeed satisfying ϕ. Now, one has to prove that T may indeed be covered
with C with at most δ errors. This should be straightforward and guaranteed by
the construction; which is not the case in the original proof. Let us have a closer
look to a possible cover of T using C. The key idea is that the runs of p characters
in C will allow us to cover from α to 2α characters in T depending on the overlap
of two consecutive occurrences of C in the corresponding tiling. The overall
shape of the corresponding tiling is illustrated afterwards as horizontal lines.
[pαy1y2x4x3x2x1y3y4p

αy1y2x4x3x2x1y3y4p
α]βpγx1x2x3p

γx2x3x4p
γx1x3x4p

γ

Clearly, the head part of T can be covered by 2β occurrences of C with an
overlap of α characters p between each occurrence for each B. Formally, the
first 2β indices of the corresponding valid tiling are {i|B| + 1, i|B| + m − (α −
1)|0 ≤ i < β}. As illustrated below, and stated in the original construction, the
corresponding cover of the head induces exactly N errors (enlighted in bold in
the following illustration) for each copy of B, leading to an overall of l(N + 3)N
errors.

[pαy1y2x4x3x2x1y3y4p
αy1y2x4x3x2x1y3y4p

α]β
[pαy1y2x4x3x2x1y3y4p

αy1y2x4x3x2x1y3y4p
α]β

As stated in the original proof, since the body part of T is constructed accord-
ing to ϕ, given the assignment A, at least one of the three literals of each clause
should be present in the cover C. Therefore, it should be possible to cover T
while not inducing an error for exactly one of the literals for each clause. Due
to the reverse order of the literals in C compared to the one in the body part,
only one literal can be a match per clause. All the other characters of C except
the p ones, will be aligned to characters of T inducing errors. To do so, in the
corresponding valid tiling, one will have to set precisely the overlapping of the
occurrences of C using the runs of p present as prefix and suffix of C. Considering
our toy instance, one would obtain the following approximate cover:

pγ x1x2x3pγ x2x3x4 pγ x1x3x4 pγ

︷ ︸︸ ︷
pα1y1y2x4x3x2 x1y3y4pα2y1y2x4

︷ ︸︸ ︷
x3x2x1y3y4p

α3 y1y2x4

︷ ︸︸ ︷
x3x2x1y3y4p

α

80 G. Blin et al.

Let us show that, in the current construction, this cover cannot be built.
Indeed, in order for the tiling to be valid, one need that α2 = γ, α3 +N +1 = γ,
γ ≤ α1 + N + 1 ≤ γ + α (by construction, there are α characters p on the left of
the body part coming from the head part in T) and α + N + 1 = γ. While the
first two conditions can be satisfied by setting α2 = 2α and α3 = γ − N − 1; the
two last conditions cannot be satisfied in the current setting. Indeed, considering
the head part, α1 should be defined between 0 (fully overlapping to the left) and
α (not overlapping at all). Then by definition, α1 +N +1 is at most γ. One way
to fix this first problem is to decrease the size of the first run of p in the body
part to α. Indeed, since there is already another run of α characters p at the end
of the header part, the third condition will hold. The last condition is harder to
fulfil since the size of the last run of characters p in the body part that will be
covered by C will depend on the literal satisfying the last clause. In order to fix
this second problem, one has to increase the size of the last run of characters p
in order to ensure that in every case, all the characters of T will be covered. In
order for the construction to keep the original property regarding the number of
allowed errors, one can move one occurrence of B from the head part to the end
of the body part.

Let us now consider that the body part starts with a run of α characters p
and ends by a run of α characters p followed by an occurrence of B that has
been removed from the head part. Then, considering our toy instance, one would
indeed by able to obtain the following approximate cover:

B pα x1x2x3p
γ x2x3x4 pγ x1x3x4 pα B

︷ ︸︸ ︷
pα1y1y2x4x3x2 x1y3y4p

α2y1y2x4

︷ ︸︸ ︷
x3x2x1y3y4pα3 y1y2x4

︷ ︸︸ ︷
x3x2x1y3y4pα4

Depending on the literal satisfying the last clause, α4 will be between α and
α +N +1 which can be satisfied since B starts with a run of α characters p. On
the whole, T has now the following shape:

Bβ−1 pα L1
1 L1

2 L1
3 p2α L2

1 L2
2 L2

3 p2α . . . p2α Ll
1 Ll

2 Ll
3 pα B

The key benefit of this modification is that the original proof is not changed
but is indeed valid now. ��

4 A Polynomial-Time Approximation Algorithm
for the ACP

In this section we present a polynomial-time approximation algorithm for the
Max Similarity variant of the ACP, where the goal is to maximize |T |−h (T, T ′).
Nevertheless, in order to define the algorithm and to prove its approximation
ratio we first give some definitions and show some lemmas. First we introduce a
new notion that measures the efficiency of a cover solution with respect to the
optimal approximate cover.

Definition 1 (Cover efficiency). Let T ∈ Σ∗ be a string that is the input of
the Max Similarity ACP. Let C∗ be the optimal approximate cover of length m
and let C ′ be a cover produced by an approximation algorithm. Respectively, let

Algorithms for the Approximate Cover Problem 81

T ′ be a string covered by C ′ and T ∗ by C∗, where T ′ and T ∗ have the same length
as T . Note that C∗ is optimal in the sense that the text T ∗ is at the smallest
Hamming distance from T among all n-length texts covered by m-length covers.
We define the cover efficiency of C ′ with respect to the optimal C∗ as follows:

η =
|T | − h (T, T ′)
|T | − h (T, T ∗)

Observe that η ∈]0, 1], with 1 corresponding to C ′ being optimal and η > 0
as a cover should match at least one character of T . An algorithm for the Max
Similarity ACP has an approximation ratio of f(|T |) if and only if the solution
produced by the algorithm is within a factor of f(|T |) of an optimal solution,
here 1

η ≤ f(|T |).
Before giving an approximation algorithm, we need to compute an upper

bound for the optimal solution. For the following, we denote by α the most fre-
quent character in T and by freqmax(T) its number of occurrences in T . Intu-
itively, the next observation is based on the fact that given that a cover of length
m has at most m different characters, in the best case the cover matches all the
occurrences of these m characters (each of them occurring at most freqmax(T)
times) and none more so.

Observation 1. An m-length optimal approximate cover of a text T cannot
match more than the m most frequent characters in T . Therefore,

|T | − h (T, T ∗) ≤ m · freqmax(T).

Next, we propose an approximation algorithm (Algorithm 1) and then, in
Theorem 1, we prove it to compute in polynomial time, an approximate cover giv-
ing a O(

√|T |)-approximation, i.e., referred to as O(
√|T |)-approximate cover.

Let us analyze Algorithm 1. First we tackle the case when m > 	|T |/3
.
Lemma 2. For m > 	|T |/3
 each approximate cover of T , of length m, admits
an optimal valid tiling of length ≤ 4. All longer tilings are necessarily redundant
of a tiling of length ≤ 4, i.e. all additional occurrences of the cover are redundant
as they cover positions already covered by other occurrences.

Proof. Note that as m > 	|T |/3
, it results that 	|T |/m
 < 3, and so an m-
length cover has at most 2 non-overlapping occurrences (that we will denote
as complete), and eventually 1 overlapping occurrence (denoted as incomplete).
Therefore, 3 occurrences are enough to cover the text with a m-length cover.
Moreover, for the case with 2 complete occurrences, i.e. 	|T |/m
 = 2, one may
build non-redundant 4-length tilings.

Here we show that in this case one cannot build non-redundant tilings longer
than 4, whatever the value of 	|T |/m
. For this, in the proof below we will
consider a valid 5-length tiling for a cover of length m and show that it is
necessarily redundant of a 4-length tiling.

82 G. Blin et al.

Algorithm 1: ACP Approximation algorithm
Input: T a text of length n and m the length of the cover
Output: C′ an approximate cover

1 if m > �|T |/3� then
2 for each tiling Lk of length ≤ 4 do
3 build a cover C′

k (with Lk valid) and its corresp. text T ′
k // with the

Histogram Greedy and the Primitivity Coercion Algos. [4]

4 return C′ covering a text T ′, such that h(T, T ′) is minimal

5 else if m >
√|T | then

6 return C′ = β . . . β
︸ ︷︷ ︸

�m/3�times

T�m/3� . . . Tm−�m/3�−1 β . . . β
︸ ︷︷ ︸

�m/3�times

// β ∈ Σ

7 and the corresp. tiling from Lemma 3

8 else
9 compute α // the most frequent character in T

10 return C′ = α�m/2�βαm−�m/2�−1 or α�m/2�+1βαm−�m/2�−2 with h(T, T ′)
minimal, and the corresp. tiling from Lemma 5

Let us take the following valid 5-length tiling [i0, i1, i2, i3, i4]. Note that this
tiling is valid for a cover of length m if i0 = 0, i4 = |T | − m, and the following
inequalities stand: ik+1 − ik ≤ m, for k from 0 to 3.

Now, for the tiling to be non-redundant, we need the i0 and the i2 occur-
rences to be non-adjacent and non-overlapping. Intuitively this leaves at least
one position to be exclusively covered by the i1 occurrence. Otherwise the i1
occurrence would necessarily be redundant.

Let us consider i1 to be the closest possible to i0, thus i1 = 1, and i2 to be
adjacent to i1, thus i2 = m+1. Therefore the i2 occurrence ends on position 2m
on T . As m > 	|T |/3
, the occurrence starting on i2 will inevitably overlap the
m last characters of T , thus the occurrence starting on i4 = |T | − m. Therefore
the occurrence starting on position i3 is necessarily redundant of the ones on
positions i2 and i4 (i.e., the positions covered by i3 are already covered by i2
and i4). It is straightforward that however we place i1, i2 and i3 we still get one
of the 3 occurrences as redundant. We therefore proved that a valid 5-length
tiling is necessarily redundant of a 4-length tiling. ��

We will now consider the cases where m ≤ 	|T |/3
, first with m >
√|T | and

finally m ≤ √|T |.
For the following we will denote 	 |T |

m
 as p and |T | − m ∗ p as r, with r < m.
Intuitively, r corresponds to the number of characters of the part of T ′ that
cannot be covered by p non-overlapping occurrences of the m-length cover C ′.
To be able to cover these remaining r characters with an additional occurrence,
we need tilings allowing a total of m−r overlaps. For this we will use the padding
composed of characters β that borders the cover C ′, thus making the number of
overlaps flexible.

Algorithms for the Approximate Cover Problem 83

Lemma 3. If m >
√|T | and m ≤ 	|T |/3
 then there exists a valid tiling such

that the cover C ′ = β . . . β
︸ ︷︷ ︸

�m/3� times

T�m/3�T�m/3�+1 . . . Tm−�m/3�−1 β . . . β
︸ ︷︷ ︸

�m/3� times

, with

|C ′| = m and β ∈ Σ, exactly covers a text T ′ with |T | = |T ′|.
Proof. From m ≤ 	|T |/3
, it directly follows that p ≥ 3. We will now proceed
with the analysis of three different cases with respect to r and show that a valid
tiling can be built for each of these cases:

1. For 2m/3� ≤ r < m there should be 0 < m − r ≤ m/3� characters overlap-
ping and therefore the following tiling

[0,m, 2m, . . . , (p − 1)m, (p − 1)m + r = |T | − m]

is valid. Indeed, the occurrence of C ′ starting at position n − m overlaps
the previous occurrence (starting at position (p − 1)m) on exactly m − r
characters, meaning β . . . β

︸ ︷︷ ︸
m−r times

. This is feasible for the given cover, given that

m − r ≤ m/3�.
2. In case of m/3� ≤ r < 2m/3�, the following valid tiling can be built:

[0, . . . , (p − 2)m, (p − 2)m + 2m/3�, |T | − m].

Indeed, the occurrence of C ′ starting at position (p − 2)m + 2m/3� overlaps
the previous one on exactly m/3� positions, and together with the overlap
of length m− r −m/3� between the last 2 occurrences, we get the necessary
overlap. As above, given that p ≥ 3 and that m/3� ≤ r < 2m/3�, this is
feasible for the given cover.

3. Given 0 < r < m/3�, a tiling with an overlap of m − m/3� < m − r < m
characters is needed. In this case we build the following tiling

[0, . . . , (p − 3)m, (p − 3)m + 2m/3�, (p − 2)m + m/3�, |T | − m].

Similarly to the previous cases we obtain the necessary number of overlapping
characters from the occurrence of C ′ starting at position (p−3)m that overlaps
the one at (p − 3)m + 2m/3� on m/3� characters, the same for (p − 3)m +
2m/3� and (p − 2)m + m/3�, and finally the last two occurrences that
overlap on m − r − 2m/3� characters. ��

Lemma 4. In the case where m >
√|T | and m ≤ 	|T |/3
 the cover

C ′ = β . . . β
︸ ︷︷ ︸

�m/3� times

T�m/3�T�m/3�+1 . . . Tm−�m/3�−1 β . . . β
︸ ︷︷ ︸

�m/3� times

with β �= T�m/3�, . . . , Tm−�m/3�−1 gives a 3
√|T |-approximate cover C ′ of T .

Proof. Given β �= T�m/3�, . . . , Tm−�m/3�−1, C ′ is clearly primitive. Moreover, C ′

covers at least m/3� characters of T (from position m/3� to m − m/3� − 1 in
T) and since m ≥ √|T |, thus m/3� ≥ √|T |/3�, we have:

84 G. Blin et al.

1
η

=
|T | − h (T, T ∗)
|T | − h (T, T ′)

≤ |T |
√|T |/3� = 3

√
|T |

��
Finally, we examine the case where m ≤ √|T |.

Lemma 5. If m ≤ √|T | then one of the strings α�m/2�βαm−�m/2�−1 or
α�m/2�+1βαm−�m/2�−2, with α the most frequent character in T and β �= α,
gives C ′ a O(

√|T |)-approximate cover of T .

Proof. Due to space limitations and given that the proof is similar to the one in
the previous case, below we give the intuition and not the complete proof.

First, observe that C ′ is primitive thanks to the character β �= α. Then,
intuitively and similarly to the previous case, as m is small (m ≤ √|T |) and
given the paddings, it can be proved that we will always be able to build a valid
tiling for C ′ (covering the remaining r characters as in Lemma 3). Now, observe
that C ′ covers a text T ′ such that |T | − h(T, T ′) ≥ freqmax(T)/2. This holds
given how the cover is being built: we take the best among two possible covers
composed of m− 1 characters α and a single β shifted by one position. Thus, all
α in T are exactly matched, except the ones covered by βs. In the worst case,
half of the αs in T are covered by β for the first possible cover, and half by the
second. Finally, with Observation 1 we get:

1
η

=
|T | − h (T, T ∗)
|T | − h (T, T ′)

≤ 2m · freqmax(T)
freqmax(T)

= 2m ≤ 2
√

|T |

��
From the previous results we obtain Theorem 1 for the ACP.

Theorem 1. Algorithm 1 computes a O(
√|T |)-approximation for the Max Sim-

ilarity ACP problem in polynomial time.

Proof. The following proof will consider the 3 cases in Algorithm 1.

1. From Lemma 2, we have that the optimal non-redundant tiling for a cover
of length m > 	|T |/3
 is necessarily of length less than 5. By brute force we
build all the tilings of length ≤ 4, which can be done in O(|T |2). Indeed as
the first and the last position of the tiling are fixed (0, respectively |T | − m),
there are at most 2 positions to fix in the tiling. For each such tiling, we look
for an approximate cover for which this tiling is valid. This can be done in
polynomial time with the algorithms described in [4] (the Histogram Greedy
followed by the Primitivity Coercion Algorithm). Thus, in this case, we can
build an optimal approximate cover in O(|T |2(|T | + m|Σ|)) time.

2. From Lemma 3 and Lemma 4 we obtain that in the case where m ≤ 	|T |/3
,
the cover

C ′ = β . . . β
︸ ︷︷ ︸

�m/3� times

T�m/3�T�m/3�+1 . . . Tm−�m/3�−1 β . . . β
︸ ︷︷ ︸

�m/3� times

Algorithms for the Approximate Cover Problem 85

is a O(
√|T |)-approximate cover of T . Given a tiling from Lemma 3 we can

compute in linear time the text T ′ approximately covered by C ′ as well as
the Hamming distance h(T, T ′).

3. Based on Lemma 5, if m ≤ √|T |, the string giving the best cover among
α�m/2�βαm−�m/2�−1 and α�m/2�+1βαm−�m/2�−2 is a O(

√|T |)-approximate
cover of T . Moreover, as α can be computed in linear time, then so can the
ACP solution. ��

5 An FPT Algorithm for the ACP

In this section we present an FPT algorithm for the cover-length relaxation of
the Approximate String Cover Problem. Note that, unlike the previous section,
here we consider the original minimization version of the ACP. Recall that m
is the length of the cover we are looking for. Our algorithm works as follows. We
build every candidate approximate cover of length m. For each candidate cover
C ∈ Σ∗, we determine the tiling L such that the text produced by the cover for
this tiling, denoted by L(C), minimizes h(L(C), T). This optimal tiling given
the cover C can be computed by dynamic programming as detailed below.

Given C a candidate approximate cover of T , let us define the function D(k),
with 0 ≤ k < |T |, as

D(k) = min
L a valid tiling for C

(h(L(C)0,...,k, T0,...,k)).

In other words, D(k) is the minimum Hamming distance that can be obtained
with a cover C up to the position k in T (i.e., for the string T0,...,k), among all
possible valid tilings covering the text up to this position. Note that such tiling
may not exist in the case where the cover C (i.e., its length and the way C
overlaps with itself) is not compatible with the length k +1 of the string T0,...,k.

We have the following recurrence equation for m − 1 ≤ k < |T |:

D(k) = min
k−m≤k′≤k−1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(k′) + h(Tk′+1,...,k, C) if k′ = k − m

D(k′) + h(Tk′+1,...,k, Cm−k+k′,...,m−1) if C0,...,m−k+k′−1

= Ck−k′,...,m−1

∞ otherwise,

where D(k) = ∞ for 0 ≤ k < m − 1 and D(−1) = 0. Note that by convention
the Hamming distance with respect to the empty string, here corresponding to
D(−1), is 0.

In the previous equation D(k′), from the window of size m preceding k, are
reused in order to compute D(k), provided that a tiling having i′ = k′−m+1 and
i = k−m+1 as consecutive indices is valid, i.e., the suffix and the prefix of length
m − (k − k′) of the cover C are equal. Therefore, computing the optimal tiling
given the cover builds upon overlapping subproblems, which suits the dynamic
programming framework. However, for the previous recurrence equation to hold

86 G. Blin et al.

and thus for the dynamic programming to be applicable, the problem should
exhibit optimal substructure. In Lemma 6, we show that this is true.

Lemma 6. Let us take k a position on the text with m − 1 ≤ k < |T |. Given
C a candidate cover, for all positions k′ with k − m ≤ k′ ≤ k − 1, let us denote
with Lk′ = [0, . . . , i′ = k′ − m + 1] an optimal valid tiling up to position k′ in T .
Then the tiling Lk = [0, . . . , i′min = k′

min − m + 1, i = k − m + 1] with

k′
min = arg min

k−m≤k′≤k−1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(k′) + h(Tk′+1,...,k, C) if k′ = k − m

D(k′) + h(Tk′+1,...,k, Cm−k+k′,...,m−1)) if C0,...,m−k+k′−1

= Ck−k′,...,m−1

∞ otherwise

is optimal among tilings up to position k in T .

Proof. Here we consider the case where there exists a valid tiling up to position
k in the text, otherwise the proof is straightforward. Suppose, for the purpose
of contradiction, that Lk = [0, . . . , i′min, i] is not optimal for position k. This
means that there exists another valid tiling up to k, and let us consider i∗ and
k∗ such that Lopt

k = [0, . . . , i∗ = k∗ − m + 1, i] is optimal among tilings ending
on position k in T with i − m ≤ i∗ ≤ i − 1 and i∗ �= i′min.

Given that Lopt
k is a valid tiling, we therefore have h(Lopt

k (C), T0,...,k) =
h(Lk∗(C), T0,...,k∗) + h(Tk−m+1,...,k, C). Now Lopt

k being optimal implies that
h(Lk∗(C), T0,...,k∗) is minimal up to position k−1 on the text, thus contradicting
the supposition that i∗ �= i′min. ��
Theorem 2. The ACP can be solved in O (|Σ|mm2|T |) time with the dynamic
programming strategy presented above.

Proof. First, building every candidate approximate cover of length m can be
done in |Σ|m time. Second, in order to compute the function D we have to
iterate over all m − 1 ≤ i < |T |, and for each i we have to iterate over all i′ with
i − m ≤ i′ ≤ i − 1, and for each i′ a Hamming distance between two substrings
of length at most m is computed. This takes O(m2|T |) time. Thus, the running
time of our algorithm follows. ��

6 Conclusions and Future Work

In this paper we continue the work of Amir et al. and present several results
regarding the cover length relaxation of the Approximate Cover Problem (ACP).

Nevertheless, several intriguing open questions remain. Perhaps the most
challenging question is to provide a better approximation algorithm for the prob-
lem, or to show the hardness of the approximation result. Also, we conjecture
that it is possible to find a fixed parameter algorithm only with respect to the
cover length, that is, independently of the size of the alphabet.

Algorithms for the Approximate Cover Problem 87

References

1. Amir, A., Levy, A., Lewenstein, M., Lubin, R., Porat, B.: Can we recover the
cover? In: 28th Annual Symposium on Combinatorial Pattern Matching, CPM
2017, Warsaw, Poland, 4–6 July 2017, pp. 25:1–25:15 (2017)

2. Amir, A., Levy, A., Lewenstein, M., Lubin, R., Porat, B.: Can we recover the cover?
Algorithmica 81 (2019)

3. Amir, A., Levy, A., Lubin, R., Porat, E.: Approximate cover of strings. In: 28th
Annual Symposium on Combinatorial Pattern Matching, CPM 2017, Warsaw,
Poland, 4–6 July 2017, pp. 26:1–26:14 (2017)

4. Amir, A., Levy, A., Lubin, R., Porat, E.: Approximate cover of strings. Theor.
Comput. Sci. 793, 59–69 (2019)

5. Amir, A., Levy, A., Porat, E.: Quasi-periodicity under mismatch errors. In: Annual
Symposium on Combinatorial Pattern Matching, CPM 2018, Qingdao, China, 2–4
July 2018, pp. 4:1–4:15 (2018)

6. Antoniou, P., Crochemore, M., Iliopoulos, C.S., Jayasekera, I., Landau, G.M.: Con-
servative string covering of indeterminate strings. In: Stringology, pp. 108–115
(2008)

7. Apostolico, A., Breslauer, D.: Of periods, quasiperiods, repetitions and covers. In:
Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer
Science. LNCS, vol. 1261, pp. 236–248. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63246-8 14

8. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theor. Comput. Sci. 119(2), 247–265 (1993)

9. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991)

10. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory.
Springer, Heidelberg (2006)

11. Barton, C., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Efficient index for
weighted sequences. In: 27th Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2016, Tel Aviv, Israel, 27–29 June 2016, pp. 4:1–4:13 (2016)

12. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992)

13. Breslauer, D.: Testing string superprimitivity in parallel. Inf. Process. Lett. 49(5),
235–241 (1994)

14. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings.
In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 397–411.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4 33

15. Brodzik, A.K.: Quaternionic periodicity transform: an algebraic solution to the
tandem repeat detection problem. Bioinformatics 23(6), 694–700 (2007)

16. Christodoulakis, M., Iliopoulos, C., Mouchard, L., Perdikuri, K., Tsakalidis, A.,
Tsichlas, K.: Computation of repetitions and regularities of biologically weighted
sequences. J. Comput. Biol. 13(6), 1214–1231 (2006)

17. Cole, R., Ilopoulos, C.S., Mohamed, M., Smyth, W.F., Yang, L.: The complexity
of the minimum k-cover problem. J. Autom. Lang. Comb. 10(5–6), 641–653 (2005)

18. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Radoszewski, J., Rytter, W.,
Walen, T.: Covering problems for partial words and for indeterminate strings.
Theor. Comput. Sci. 698, 25–39 (2017)

19. Flouri, T., et al.: Enhanced string covering. Theor. Comput. Sci. 506, 102–114
(2013)

https://doi.org/10.1007/3-540-63246-8_14
https://doi.org/10.1007/3-540-63246-8_14
https://doi.org/10.1007/3-540-45123-4_33

88 G. Blin et al.

20. Guo, Q., Zhang, H., Iliopoulos, C.S.: Computing the λ-seeds of a string. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 303–313. Springer,
Heidelberg (2006). https://doi.org/10.1007/11775096 28

21. Guo, Q., Zhang, H., Iliopoulos, C.S.: Computing the λ-covers of a string. Inf. Sci.
177(19), 3957–3967 (2007)

22. Iliopoulos, C.S., Moore, D.W., Park, K.: Covering a string. Algorithmica 16(3),
288–297 (1996)

23. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Sys-
tems, vol. 54. Cambridge University Press, Cambridge (1997)

24. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear-time
algorithm for seeds computation. ACM Trans. Algorithms 16(2) (2020)

25. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Fast algorithm
for partial covers in words. Algorithmica 73(1), 217–233 (2015)

26. Kolpakov, R., Kucherov, G.: Finding approximate repetitions under Hamming dis-
tance. Theor. Comput. Sci. 303(1), 135–156 (2003)

27. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem
repeats. J. Comput. Biol. 8(1), 1–18 (2001)

28. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002)

29. Ming, L., Vitányi, P.M.: Kolmogorov complexity and its applications. In: Algo-
rithms and Complexity, pp. 187–254. Elsevier (1990)

30. Moore, D., Smyth, W.F.: An optimal algorithm to compute all the covers of a
string. Inf. Process. Lett. 50(5), 239–246 (1994)

31. Moore, D., Smyth, W.F.: A correction to “An optimal algorithm to compute all
the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995)

32. Muchnik, A., Semenov, A., Ushakov, M.: Almost periodic sequences. Theor. Com-
put. Sci. 304(1–3), 1–33 (2003)

33. Sethares, W.A., Staley, T.W.: Periodicity transforms. IEEE Trans. Signal Process.
47(11), 2953–2964 (1999)

34. Timmermans, M., Heijmans, R., Daniels, H.: Cyclical patterns in risk indicators
based on financial market infrastructure transaction data. De Nederlandsche Bank
Working Paper (558) (2017)

https://doi.org/10.1007/11775096_28

Data Structures for SMEM-Finding
in the PBWT

Paola Bonizzoni1(B) , Christina Boucher2 , Davide Cozzi1 ,
Travis Gagie3 , Dominik Köppl4 , and Massimiliano Rossi2

1 University of Milano-Bicocca, Milano, Italy
paola.bonizzoni@unimib.it, d.cozzi@campus.unimib.it

2 University of Florida, Gainesville, FL, USA
{christinaboucher,rossi.m}@ufl.edu

3 Dalhousie University, Halifax, NS, Canada
travis.gagie@dal.ca

4 University of Muenster, Muenster, Germany
dominik.koeppl@uni-muenster.de

Abstract. The positional Burrows–Wheeler Transform (PBWT) was
presented as a means to find set-maximal exact matches (SMEMs) in
haplotype data via the computation of the divergence array. Although
run-length encoding the PBWT has been previously considered, storing
the divergence array along with the PBWT in a compressed manner
has not been as rigorously studied. We define two queries that can be
used in combination to compute SMEMs, allowing us to define smaller
data structures that support one or both of these queries. We combine
these data structures, enabling the PBWT and the divergence array to
be stored in a manner that allows for finding SMEMs. We estimate and
compare the memory usage of these data structures, leading to one data
structure that is most memory efficient. Lastly, we implement this data
structure and compare its performance to prior methods using various
datasets taken from the 1000 Genomes Project data.

1 Introduction

The positional Burrows–Wheeler Transform (PBWT) was defined by Durbin [5]
as a means for analyzing haplotype datasets. Hence, the input consists of h
sequences S = {S1, . . . , Sh} containing w biallelic sites corresponding to the
same loci. The main idea is that specific loci are sequenced and it is determined
if the position contains the major allele (denoted as 1) or has an alternate allele
(denoted as 0). We will represent S as a h×w binary matrix that is denoted as M.
The PBWT of M is another h × w binary matrix, denoted as PBWT[1..h][1..w],
where the first column is the same as the first column of M, and the j-th col-
umn of PBWT is obtained by stably sorting the rows of M[1..h][1..j − 1] in co-
lexicographic order (starting at column j−1) and then taking the final column of
the result. We can define this more formally by first defining the j-th prefix array
(PAj), which is the co-lexicographic ordering of the prefixes S1[1..j], . . . , Sh[1..j].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 89–101, 2023.
https://doi.org/10.1007/978-3-031-43980-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_8&domain=pdf
http://orcid.org/0000-0001-7289-4988
http://orcid.org/0000-0001-9509-9725
http://orcid.org/0000-0003-2439-0608
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0000-0002-8721-4444
http://orcid.org/0000-0002-3012-1394
https://doi.org/10.1007/978-3-031-43980-3_8

90 P. Bonizzoni et al.

It follows that an equivalent definition of the PBWT is col(PBWT)1 = col(M)1
and col(PBWT)j [i] = col(M)j [PAj−1[i]] for all i = 1..h and j = 2..w, where
col(PBWT)j denotes the j-th column of the PBWT. As noted by Durbin, the
PBWT is highly run-length compressible [5] when read in column-major order.

One of the main motivations for the invention of the PBWT is that it enables
set-maximal exact matches (SMEMs) to be found efficiently in haplotype data.
Given the input sequences S = {S1, . . . , Sh} and a pattern P [1..w], we define
P [i..j], where 1 ≤ i ≤ j ≤ w, to be a SMEM if it occurs in one of the sequences
in S and one of the following holds: i) i = 1 and j = w; ii) i = 1 and P [1..j + 1]
does not occur in S; iii) j = w and P [i−1..w] does not occur in S; iv) P [i−1..j]
and P [i..j + 1] does not occur in S. Given the PBWT, a pattern P [1..m], and a
starting column �, the PBWT allows us to efficiently find all the sequences in S
that contain P between columns � and � + m − 1. If there are no such sequences
then all the sequences that contain P [1..m′] between columns � and � + m′ − 1,
where P [1..m′] is the longest prefix of P that occurs in S, are returned. Durbin
demonstrated that SMEMs can be identified in O(hw)-time via the computation
of the divergence arrays. Here, the j-th divergence array (DA) stores, for each
i > 0, the length of the longest common suffix between the i-th and (i − 1)-st
rows of M when the rows of M are sorted according to the co-lexicographic order
of their prefixes up to the j-th column.

Although Durbin (and others, i.e., Li [10]) showed that run-length compress-
ing PBWT leads to significant space improvement, there are only a few methods
for storing the divergence array in a compressed manner. Cozzi et al. [3] provided
one such approach that is based on casting the problem of finding SMEMs to
computing matching statistics, and showing that computing matching statistics
can be accomplished via building a data structure that mirrors that of Rossi et
al. [13]. However, it is largely open how to store the PBWT alongside the auxiliary
data structures needed to efficiently find SMEMs. In this paper, we generalize
the approach of Cozzi et al. [3] by describing two queries (start and extend)
that can be used in combination to find SMEMs in the PBWT, and address
the prevailing gap in the literature by providing a comprehensive list of smaller
data structures that can be used to efficiently support start and/or extend.
We show that these data structures can be combined in various ways to create
data structures that store the PBWT in a manner that supports SMEM-finding.

We study the theoretical bounds of each data structure, and benchmark their
memory consumption under a practical setting. This benchmarking leads to a
solution that is deemed most performant. We fully implement this approach and
compare it to the methods of Cozzi et al. [3] and Durbin [5] by building the
data structure on increasingly larger haplotype datasets from the 1,000 genomes
project data. We compare both the construction time and space, and the time
and space to find SMEMs, allowing us to conclude about the practicality of the
methods.

Data Structures for SMEM-Finding in the PBWT 91

2 Preliminaries

String Definitions. We assume that all input strings are binary strings since
our application is biallelic haplotype data. Given a binary character b, we denote
the negation of b as ¬b = 1 − b. We denote the empty string as ε. We denote
the length of S by |S|. We denote the i-th prefix of S as S[1..i], the i-th suffix as
S[i..n], and the substring spanning position i through j as S[i..j], with S[i..j] = ε
if i > j. Given two strings S and T , we say that S is lexicographically smaller
than T if either S is a proper prefix of T or there exists an index i ≥ 1 such
that S[1..i] = T [1..i] and S[i + 1] occurs before T [i + 1]. Lastly, for a string S,
a binary character c, and an integer j, we define rank query S.rankc(j) as the
number of occurrences of c in S[1..j], and the select query S.selectc(j) as the
position of the j-th c in S.

RMQ, PSV, and NSV. Given an array A[1..n] of integers, a range minimum
query (RMQ) for two positions i ≤ j asks for the position k of the minimum in
A[i..j], i.e., k = argmink′∈[i..j]A[k′]. We denote this query by RMQA(i, j). Given
a position i in A, we define the previous-smaller-value (PSV) as PSVA(i) =
max({j : j < i,A[j] < A[i]} ∪ {0}). We define the next-smaller-value (NSV) as
NSVA(i) = min({j : j > i,A[j] < A[i]} ∪ {n + 1}).

LCP and LCE. Given two strings S and T , we denote the length of the longest
common prefix between S and T as lcp(S, T). Using this notation, we define the
longest common prefix array of an input string S of length n (given its Suffix
Array SAS) as LCP[1..n] where LCP[i] = lcp(S[SAS [i]..n], S[SAS [i − 1]..n]) for
all i > 1, and LCP[1] = 0. Given an input string S of length n and two integers
1 ≤ i ≤ n and 1 ≤ j ≤ n, the Longest Common Extension (LCE) is the longest
substring of S that starts at both i and j. Moreover, as we will discuss in this
work, there are multiple data structures that efficiently support LCE queries for
a string S.

SLPs. The concept of straight-line programs (SLPs) will be used in our work. An
SLP is a representation of the input as a context-free grammar whose language
is precisely the input string [11].

Matching Statistics in the PBWT. Cozzi et al. showed that the problem
of finding SMEMs in the PBWT can be cast into computing matching statistics
for P , which is a generalization of Bannai et al. [1]. Given a pattern P [1..w],
the matching statistics of P with respect to S is an array A[1..w] of (row, len)
pairs such that for each position 1 ≤ j ≤ w: (1) SA[j].row[j − A[j].len + 1..j] =
P [j−A[j].len+1..j], and (2) P [j−A[i].len..j] is not a suffix of S1[1..j], . . . , Sh[1..j].
Informally, for each position j of the pattern P , A[j].row is one row of the input
matrix M where a longest shared common suffix (of length A[j].len) ending in
position j in the pattern P and in SA[i].row occurs.

92 P. Bonizzoni et al.

Fig. 1. An illustration of our components and data structures. The components are
shown in colored boxes, and the data structures are shown in white boxes at the bottom.

3 Building Blocks for a PBWT Data Structure

In this section, we begin by defining two queries, called (start and extend),
that are used to compute matching statistics in the PBWT. Then we define
the smaller data structures, which we call components, that support start or
extend—and in one case (i.e., the Δ-encoded divergence array), can support
both start and extend. These components are used to build data structures for
SMEM finding in the PBWT. We show both the components and data structures
in Fig. 1. We note that we will frequently use n = h · w throughout this section
to bound the time and space.

3.1 Queries Needed to Support SMEM-Finding

We define two queries, referred to as start and extend, which can be used
in combination to compute matching statistics, and hence, find SMEMs. If
we let i, j ∈ [1..w] be two integers such that P [i..j] is a suffix of one of
S1[1..j], . . . , Sh[1..j] then the extend query returns that there exists the match
of P [i..j] to P [i..j + 1] if and only if j < w and P [i..j + 1] is a suffix of
one of S1[1..j + 1], . . . , Sh[1..j + 1]. The start query finds the smallest inte-
ger i′ ∈ [i..j] such that P [i′..j] is a suffix of one of S1[1..j], . . . , Sh[1..j]. Hence,
we compute the matching statistics as follows. We assume that we computed
the matching statistics up to position i ∈ [1..w], and use the start query
to find the smallest i′ ∈ [i..w] such that P [i′..i′ + A[i].len] is a suffix of one
of S1[1..i′ + A[i].len], . . . , Sh[1..i′ + A[i].len]. By minimality of i′, we can set
A[j].len = A[j − 1].len − 1 for all j ∈ [i + 1..i′ − 1]. Then we find the longest
prefix P [i′..k] that is also a suffix of one of S1[1..k], . . . , Sh[1..k] using the extend
query. We set A[i′].len = k − i′ + 1. Since i′ > i, we can proceed by induction to
compute the whole array of matching statistics.

Data Structures for SMEM-Finding in the PBWT 93

3.2 Top Level: Mapping Structure

All the data structures that we present require a component data structure,
which we call a mapping structure, that when given the position in PBWT of a
bit PBWT[i][j] can return:

– the position in col(PBWT)j+1 of the bit immediately to the right of
PBWT[i][j] in M;

– the position in col(PBWT)j of the last occurrence of ¬PBWT[i][j] above
PBWT[i][j] (if it exists);

– the position in col(PBWT)j of the first occurrence of ¬PBWT[i][j] below
PBWT[i][j] (if it exists).

The first query corresponds to LF-mapping in the BWT and allows us to step
from one column to the next one (to the right) in the PBWT, staying in the same
row in M. The second and third queries correspond to how Rossi et al. [13] jump
up or down, respectively, in the BWT when they find a mismatch. We imple-
mented the mapping structure as a run-length compressed bitvector, occupying
roughly O(r log(n/r)) bits and answering queries in O(log log n)-time, where r
is the total number of runs in the columns of the PBWT.

3.3 Second Level: Start Support

In this subsection, we provide a comprehensive discussion of all the data struc-
tures that support start queries.

Sampled Column Permutations. If we use a Cartesian tree but neither the
divergence array itself (encoded or unencoded) nor two instances of each compo-
nent data structure, then it seems we need a way to find at least one occurrence
of each SMEM in order to determine its length. We can use the sampled column
permutations together with an analogue of Policriti and Prezza’s [12] Toehold
Lemma: for the bits at either end of each run in a column in the PBWT, we
store which rows in the input matrix they came from, using a total of roughly
2r lg h bits; whenever we reach the right end of a SMEM and expand our search
interval, the expanded interval must contain the first or last bit in some run of
the bits we seek, and we learn from which row of the input matrix it came.

Cartesian Trees. If we store a representation of the shape of a Cartesian
tree built upon the divergence array, then we can support RMQ, PSV and NSV
queries on the divergence array. Yet, we note that these queries return only a posi-
tion, and cannot easily support random access. We consider three representations
of the tree shape: (1) an augmented balanced-parentheses (BP) representation
occupying roughly 2n+o(n) bits [6] and answering queries in constant time; (2) a
simple DAG-compressed representation (with each non-terminal storing the size
of its expansion) answering queries in time bounded by its height; and (3) an
interval-tree storing selected intervals corresponding to nodes in the Cartesian

94 P. Bonizzoni et al.

tree and answering queries in constant time. We do not include Gawrychowski et
al.’s compressed RMQ data structure [8] because we are not aware of an imple-
mentation and we see no easy way to estimate its space usage for the divergence
array.

The constructions of the BP representation and DAG-compressed represen-
tations are standard, but our interval-tree structure needs some explanation. We
query the Cartesian tree only while forward stepping through the PBWT and
when our search interval contains only 0’s and we want a 1, or when it contains
only 1’s and we want a 0. To proceed, we must ascend the tree and widen our
interval (like ascending a prefix tree, discarding the early bits of our pattern)
until it contains a copy of the bit we want. Notice our query interval corresponds
to a node v in the Cartesian tree, and the PBWT interval we seek corresponds to
the lowest ancestor u of v whose interval is not unary. It follows that we need to
store in our interval-tree only the PBWT intervals for nodes u in the Cartesian
tree such that the interval for at least one of u’s children is unary but u’s interval
is not unary.

Since our intervals can nest but not otherwise overlap, we can store our
interval-tree in a more space-efficient manner than usual: we write out a string
with open-parens, close-parens and 0 s, with each open-close pair indicating an
interval and the number of 0 s before, between and after them indicating its
starting point, length and ending point; we encode that string as one bitvector
with 0 s indicating 0 s and 1 s indicating parens, and another bitvector with 0 s
indicating open-parens and 1 s indicating close-parens (so the combination of
the bitvectors is a wavelet tree for the string); and we store a BP representation
of the tree structure of the stored intervals. If we store k intervals, then our
first bitvector has n + 2k bits and 2k copies of 1, our second bitvector has 2k
bits with k copies of 0 and k copies of 1, and the tree structure has k nodes
and so its BP representation takes 2k + o(k) bits. This means we use roughly
2k lg n+2k

2k + 2k + 2k + o(k) = 2k lg(n/k) + o(k lg(n/k)) bits, and can answer
queries in constant time. We note that, since even our query intervals can nest
but not contain or otherwise overlap any of our stored intervals, we can query
with a single endpoint instead of a whole interval.

3.4 Third Level: Extend Support

In this subsection, we discuss all components that can support extend queries.

Divergence Array. The simplest possible data structure to support finding the
length of each SMEM is to store the uncompressed divergence array, which was
proposed by Durbin. The shortcoming of this is the large space requirements—as
it would occupy space in bits roughly equal to the sum of the base-2 logarithms
of all entries (with 2 added to each entry).

Longest Common Extension. We consider the addition of an LCE data
structure. Suppose we have arrived at column j+1 and we know that the longest

Data Structures for SMEM-Finding in the PBWT 95

suffix of pattern P [1..j] that occurs in M ending at column j has an occurrence
immediately followed by PBWT[i][j + 1], and we know which row of M that bit
PBWT[i][j + 1] comes from. If P [j + 1] = PBWT[i][j + 1] then the longest suffix
of P [1..j + 1] that occurs in M ending at column j + 1 has an occurrence ending
with PBWT[i][j + 1]. Therefore, we assume P [j + 1] �= PBWT[i][j + 1]. By the
definition of the PBWT, there is an occurrence of the longest suffix of P [1..j +1]
that occurs in M ending at column j + 1, ending either at the last occurrence of
P [j + 1] = ¬PBWT[i][j + 1] above PBWT[i][j + 1] (if it exists), or at the first
occurrence of that bit below PBWT[i][j + 1] (if it exists). We recall that the
mapping structure allows us to quickly find these occurrences of that bit.

Forward-Backward. Suppose we use a Cartesian tree to maintain the invari-
ant that our search interval in the PBWT contains all the bits immediately
following occurrences of the longest suffix of the prefix of the pattern that we
have processed so far, that occur in the desired columns of the PBWT. If that
search interval contains a copy of the next bit of the pattern, then we proceed
by forward stepping, without consulting the Cartesisan trees. The only time we
query the Cartesian trees is when the search interval does not contain a copy of
the next bit of the pattern, meaning we have reached the right end of a SMEM.
It follows that, using the mapping structure and the Cartesian trees, we can find
the right endpoints of all the SMEMs. If we keep instances of all our compo-
nents for the reversed input matrix, we can also find all the left endpoints of the
SMEMs. Since SMEMs are maximal, they cannot nest, so we can easily pair up
the endpoints and obtain the SMEMs. This doubles the time and space.

Random Access. Lastly, the simplest possible component is a compressed data
structure of the original input that provides efficient random access to the input,
which can obviously be used to find the length of a given SMEM. Although the
total length of the SMEMs can be quadratic in the length of the pattern, the
fact they cannot nest implies we need only a linear number of random accesses.
In fact, if we combine a random access data structure with Cartesian trees then
the number of random accesses is equal to the number of SMEMs, and the
total length of the sequence that we extract from M is linear in the length of
the SMEMs. There are many data structures that support random access to
the input matrix M, two notable ones are (a) an SLP of M (read row-wise)
answering queries in O(log n) time, and (b) a plain representation of M (with 8
bits packed into each byte) occupying roughly n bits and allowing access to each
bit in constant time.

3.5 Δ-Encoded Divergence Array

The last component we discuss is Δ-encoded divergence array. As illustrated in
Fig. 1, we leave this component last since it can support both queries. To differ-
entially encode (Δ-encode) the divergence array, we store each entry of DA[i][j]
with i > 1 as the difference DA[i][j] − DA[i − 1][j]; for i = 0 we always have

96 P. Bonizzoni et al.

DA[i][j] = 0. If the PBWT is highly run-length compressible, read in column-
major order, then the Δ-encoded DA is small. To see why, consider that if
PBWT[i..i + � − 1][j] is a run of equal bits in the j-th column of the PBWT
and col(PBWT)j+1[i′..i′ + � − 1] are the bits immediately to their right in the
input matrix, then DA[i′+k][j+1] = DA[i+k][j]+1 for 1 ≤ k ≤ �−1. Therefore,

DA[i′ + k][j + 1] − DA[i′ + k − 1][j + 1] = DA[i + k][j] − DA[i + k − 1][j]

for 1 ≤ k ≤ �−1, so the Δ-encoded of DA[i′+1..i′+�−1][j+1] is the same as that
of DA[i + 1..i + � − 1][j]. It follows that, if there are r runs in the columns of the
PBWT, then the (linearized) Δ-encoded DA has a string attractor of size O(r)
and, thus, it can be represented as a straight-line program occupying O(r log2 n)
bits [9, Lemma 3.14].

Increasing the size of this SLP by a small constant factor, we can store at
each non-terminal the length, sum, and minimum prefix sum of its expansion,
and thus support random access, RMQ, PSV, and NSV queries on the divergence
array in O(log n)-time. This is similar to how Gagie et al. [7, Lemma 6.2] used
an SLP for their Δ-encoded LCP array.

4 Composite Data Structures for the PBWT

We already described two data structures that efficiently support finding SMEMs
in the previous section, namely, the “Mapping Structure + Cartesian Tree +
Forward-backward” and “Mapping Structure + Cartesian Tree + Sample Col-
umn Permutations + Random Access”. There are three other data structures
that will be evaluated (Table 1), namely: (1) Mapping Structure + Δ-Encoded
Divergence Array; (2) Mapping Structure + Cartesian Tree + Divergence Array;
and (3) Mapping Structure + LCE + Sampled Column permutations.

5 Experiments and Discussion

In this section, we provide experimental evaluations of our presented data struc-
tures. We begin by benchmarking the memory usage of our data structures.
Based on these experiments, we fully implement one of these data structures
and show the scalability of them on real data.

5.1 Comparison of Data Structures

Experimental Set-Up. We replicate the simulated dataset used by Durbin [5].
In particular, we run the Markovian coalescent simulator MaCS [2] with com-
mand line parameters 100000 2e7 -t 0.001 -r 0.001 to generate a haplo-
type matrix with 100,000 individuals and 360,000 sites. Next, we subsample the
dataset with a parameter ξ such that, given a column of length h having o
ones, we skip this column if o/h < ξ. We set ξ to be equal to 0.01, 0.03, 0.05,

Data Structures for SMEM-Finding in the PBWT 97

Table 1. The estimated size in bits of the combinations of component data structures
that support SMEM-finding in the PBWT. M denotes megabytes and G denotes giga-
bytes. In boldface the best performance. We do not list Forward-Backward here as
it is not a new data structure, only two instances of the Mapping Structure and the
Cartesian Tree.

Component Sample Parameter ξ

0.01 0.03 0.05 0.08 0.10

Mapping structure 57M 53M 52M 51M 51M

Δ-encoded divergence array 479M 452M 435M 426M 418M

Cartesian tree 472M 472M 458M 420M 402M

Longest common extension 96M 88M 88M 80M 80M

Sampled column permutations 80M 76M 76M 76M 76M

Divergence array 125G 92G 77G 64G 58G

Random access 96M 88M 88M 80M 80M

Data Structure

MAP + LCE + PERM 233M 217M 216M 207M 207M

MAP + DEDA 536M 505M 487M 477M 469M

MAP + CT + FWBW 1.1G 1.1G 1.0G 942M 906M

MAP + CT + DA 126G 93G 78G 64G 58G

MAP + CT + PERM + RA 705M 689M 674M 627M 609M

0.08, and 0.10, which results in the datasets having varying degrees of repeti-
tiveness. See Table 1 for the size of the datasets. The haplotype matrix is pub-
licly available at http://dolomit.cs.tu-dortmund.de/tudocomp/pbwt matrix.xz.
We ran all benchmarks on an Intel Core i3-9100 CPU (3.60 GHz) with 128 GB
RAM, running Debian 11.

Implementation. We implemented all methods in C/C++. The mapping struc-
ture was implemented using sparse bitvectors with a number of set bits equal to
the number of runs. The differentially-encoded divergence array and the Carte-
sian tree were implemented with grammar compression. Forward and backward
was implemented by building the data structures in both the forward and back-
ward directions of the mapping structure. The sampled column permutations
were obtained by sampling at run boundaries. The LCE data structure and the
random access were implemented with as an SLP that answers LCE queries. All
data structures are publicly available at https://github.com/koeppl/pbwt.

Results. We give the estimated sizes of the data structures that are compositions
of these components in Table 1. We witness that MAP+LCE+PERM was the most
performant, which was followed by MAP+DEDA. The performance of MAP+DEDA
was somewhat surprising since it is similar to a structure suggested by Gagie et
al. [7] that was but not implemented because it was thought to be impractical.
We note that as ξ increases the size of all the components and data structures

http://dolomit.cs.tu-dortmund.de/tudocomp/pbwt_matrix.xz
https://github.com/koeppl/pbwt

98 P. Bonizzoni et al.

decreases—this is intuitive since the datasets become less repetitive, resulting in
fewer columns being selected. Hence, we see that the compression suffers for all
the methods as ξ increases but MAP+LCE+PERM maintains a lead.

5.2 Comparison of Methods on 1000 Genomes Project Data

Experimental Set-Up. We implement and evaluate MAP+LCE+PERM on the 1000
Genomes Project data by downloading the VCF files for the 1000 genomes
project data and then converting these files to biallelic using bcftools view
-m2 -M2 -v snps [4]. We consider increasingly larger datasets by selecting the
panels for Chromosomes 22, 20, 18, 16 and 1 which have 5008 samples and a num-
ber of biallelic sites that range from ∼1 million to ∼6 millions. All datasets cor-
respond to 4,908 individuals. All data are available at https://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/. We ran all experiments in this subsection
on a machine with an Intel Xeon CPU E5-2640 v4 (2.40GHz) with 756 GB RAM
and 768 GB of swap, running Ubuntu 20.04.4 LTS.

Competing Methods. We compared against the PBWT implementation of Durbin
[5], which are available at https://github.com/richarddurbin/pbwt. In detail, we
ran both the matchIndexed and matchDynamic algorithms. We refer to these
methods as PBWT-index and PBWT-dynamic, respectively. In addition, we com-
pared against the methods of Cozzi et al. [3], which implements a mapping
structure with sampled column permutations with the Thresholds data struc-
ture of Rossi et al. [13]. The method is referred to as μ-PBWT. The computation
of the matching statistics is analogous to Rossi et al. with one slight modifica-
tion: the inverse of the mapping function is used to compute the lengths of the
matching statistics. We refer to Cozzi et al. [3] for these details.

Fig. 2. Memory (a) and time (b) to construct the data structures underlying all meth-
ods for increasingly larger number of biallelic sites. Memory is reported in GB and
time is reported in seconds.

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/richarddurbin/pbwt

Data Structures for SMEM-Finding in the PBWT 99

Results. We give the maximum memory usage and time for constructing all the
data structures in Fig. 2. We note that the construction for PBWT-index and
PBWT-dynamic is the same so it is reported once (as PBWT) in Fig. 2, and that
the constructed data structure is incomplete, meaning that additional indexes
are needed for SMEM finding. This explains why the memory required for con-
struction of the PBWT is small. We see that the method of μ-PBWT requires
more memory than the PBWT but less memory than MAP+LCE+PERM. In terms
of construction time, there was negligible difference between the performance of
MAP+LCE+PERM and μ-PBWT. PBWT had the most efficient construction time.

Next, we evaluated the performance of SMEMs-finding by first extracting
100 sequences from the input panels to be used query sequences. We illus-
trate the memory usage and the time required for SMEM-finding when all the
query strings were given as input at once, which is shown in Fig. 3(a) and (b).
Figure 3(c) shows mean of the time required when each is given as an individ-
ual query, i.e., executing 100 queries one at a time. The peak memory usage to
query all the sequences at once surpasses that of querying them individually.
We obtained the following average number of SMEMs per 100 queries: 1,184
SMEMs for chromosome 22 (1,055,454 sites), 1,416 SMEMs for chromosome
20 (1,739,315 sites), 1,708 SMEMs for chromosome 18 (2,171,378 sites), 2,281
SMEMs chromosome 16 (2,596,072 sites) and 4,953 SMEMs for chromosome 1
(6,196,151 sites). PBWT-dynamic used the least memory when querying the whole
set of queries but had opposing behavior doing one query at a time. It was fastest
when the queries were given at once but slowest when the queries were given
individually. Opposingly, PBWT-indexed required more memory than all other
competing methods, requiring up to 20 times more memory. PBWT-indexed was
the second slowest method when the queries were given at once but fastest
when the methods were given individually. We see that MAP+LCE+PERM used
less memory than PBWT-MatchIndexed and was at most 10 times slower than
PBWT-MatchIndexed when the queries were given individually but was slightly
slower than PBWT-MatchIndexed when the queries were given at all once. In
addition, MAP+LCE+PERM was faster than PBWT-MatchDynamic when the queries
were at once but slower than PBWT-MatchDynamic when queries were given indi-
vidually. With respect to μ-PBWT, MAP+LCE+PERM used slightly more memory
and query time than μ-PBWT. We note that MAP+LCE+PERM also has the advan-
tage not requiring two passes on the query string, which makes it appropriate
for online settings when the SMEMs can be found as the input is read in.

100 P. Bonizzoni et al.

Fig. 3. Memory (a), time (b) and mean time for one query at a time (c) to compute
SMEMs with 100 queries. In (c) the standard deviation values are very small so the
corresponding error bars are omitted.

6 Conclusions

We presented and benchmarked a number of data structures that support
SMEM-finding in the PBWT. Our experiments revealed that MAP+LCE+PERM was
the most memory-efficient out of all data structures we presented. After fully
implementing it, we showed that it is slightly slower and uses more memory
than the method of Cozzi et al. [3]; however, we note that it has the advantage
that it only requires one-pass over the query string, making it appropriate for
the calculation of SMEMs in an online format.

Acknowledgements. TR, MR, and CB were supported by NIH/NHGRI No.
R01HG011392, and NSF IIBR No. 2029552. TR was supported NSERC No. RGPIN-
07185-2020. CB was supported by NSF SCH No. 2013998. DK was supported by JSPS
KAKENHI with No. JP21K17701 and JP23H04378. PB and DC were supported by
Horizon 2020 with No. 872539.

References

1. Bannai, H., Gagie, T., Tomohiro, I.: Refining the R-index. Theor. Comput. Sci.
812, 96–108 (2020)

2. Chen, G.K., Marjoram, P., Wall, J.D.: Fast and flexible simulation of DNA
sequence data. Genome Res. 19(1), 136–142 (2009)

3. Cozzi, D., Rossi, M., Rubinacci, S., Köppl, D., Boucher, C., Bonizzoni, P.: μ-
PBWT: enabling the storage and use of UK biobank data on a commodity laptop.
bioRxiv, pp. 2023–02 (2023)

4. Danecek, P., et al.: Twelve years of SAMtools and BCFtools. GigaScience 10(2)
(2021)

5. Durbin, R.: Efficient haplotype matching and storage using the positional Burrows-
Wheeler transform (PBWT). Bioinformatics 30(9), 1266–1272 (2014)

6. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

Data Structures for SMEM-Finding in the PBWT 101

7. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020)

8. Gawrychowski, P., Jo, S., Mozes, S., Weimann, O.: Compressed range minimum
queries. Theor. Comput. Sci. 812, 39–48 (2020)

9. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: Proceedings of ACM SIGACT Symposium on Theory of Computing (STOC),
pp. 827–840 (2018)

10. Li, H.: BGT: efficient and flexible genotype query across many samples. Bioinfor-
matics 32(4), 590–592 (2016)

11. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups - Complex.
- Cryptol. 4(2), 241–299 (2012)

12. Policriti, A., Prezza, N.: LZ77 computation based on the run-length encoded BWT.
Algorithmica 80(7), 1986–2011 (2018)

13. Rossi, M., Oliva, M., Langmead, B., Gagie, T., Boucher, C.: MONI: a pangenomic
index for finding maximal exact matches. J. Comput. Biol. 29(2), 169–187 (2022)

Compressibility Measures
for Two-Dimensional Data

Lorenzo Carfagna(B) and Giovanni Manzini

University of Pisa, Pisa, Italy
lorenzo.carfagna@gmail.com, giovanni.manzini@unipi.it

Abstract. In this paper we extend to two-dimensional data two recently
introduced one-dimensional compressibility measures: the γ measure
defined in terms of the smallest string attractor, and the δ measure
defined in terms of the number of distinct substrings of the input string.
Concretely, we introduce the two-dimensional measures γ2D and δ2D as
natural generalizations of γ and δ and study some of their properties.
Among other things, we prove that δ2D is monotone and can be com-
puted in linear time, and we show that although it is still true that
δ2D ≤ γ2D the gap between the two measures can be Ω(

√
n) for families

of n × n matrices and therefore asymptotically larger than the gap in
one-dimension. Finally, we use the measures γ2D and δ2D to provide the
first analysis of the space usage of the two-dimensional block tree intro-
duced in [Brisaboa et al., Two-dimensional block trees, The computer
Journal, 2023].

Keywords: Data compression · Repetitivenes Measures · Block Tree

1 Introduction

Since the recent introduction of the notion of string attractor [6] different mea-
sures of string repetitiveness have been proposed or revisited [8,10]. It has been
shown that such measures are more appropriate than the classical statistical
entropy for measuring the compressibility of highly repetitive strings. In addi-
tion, these measures have been used to devise efficient compressed indices for
highly repetitive string collections [11] an important setting which is hard for
traditional entropy-based compressed indices.

In this paper we generalize the notion of attractor to two dimensional data,
i.e. (square) matrices of symbols, and we initiate the study of the properties
of the measure γ2D(M) defined as the size of the smallest attractor for the
matrix M (Definition 1). As in the one-dimensional case, we introduce also the
measure δ2D(M) defined in terms of the number of distinct square submatrices
(Definition 2) and we study the relationship between γ2D and δ2D. We prove
that some properties that hold for strings are still valid in the two-dimensional
case: for example computing γ2D is NP-complete while δ2D can be computed
in linear time, and for every matrix M it is δ2D(M) ≤ γ2D(M). However, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 102–113, 2023.
https://doi.org/10.1007/978-3-031-43980-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_9&domain=pdf
http://orcid.org/0009-0005-9591-057X
http://orcid.org/0000-0002-5047-0196
https://doi.org/10.1007/978-3-031-43980-3_9

Compressibility Measures for Two-Dimensional Data 103

gap between the two measures is larger than in one-dimension case since there
are families of n × n matrices with δ2D = O(1) and γ2D = Ω(

√
n), whereas for

strings it is always γ = O(δ log n
δ).

The study of the measures γ2D and δ2D is motivated by the fact that for
two-dimensional data there is no clear definition of “context” of a symbol and
therefore there is no universally accepted notion of statistical entropy. Therefore,
alternative compressibility measures based on combinatorial properties such as
γ2D and δ2D are worthwhile investigating. Indeed, in Sect. 3 we use the measures
γ2D and δ2D to provide the first analysis of the size of the two-dimensional
block tree introduced in [2]. In particular we show that the space used by a
two-dimensional block tree for an n × n matrix M with delta measure δ2D is
bounded by O((δ2D +

√
nδ2D) log n

δ2D
), and that this space is optimal within a

multiplicative factor O(log n).
For the rest of the paper, the RAM model of computation is assumed, with

word size w = Θ(log n) bits. Space is measured in words so when O(x) space is
indicated, the actual space occupancy in bits is O(x log n).

2 Two-Dimensional Compressibility Measures

We consider a square matrix M ∈ Σn×n of size n×n where each of the n2 symbols
M [i][j] of M are drawn from the alphabet Σ with |Σ| = σ. Every symbol in Σ
is assumed to appear in M otherwise Σ is properly restricted. A submatrix of
M with topmost left cell M [i, j] is said to start at position (i, j) of M . An a × b
submatrix of M starting at position (i, j) is written as M [i : i+a−1][j : j+b−1],
meaning that it includes any cell with row index in the range [i, i + a − 1] and
column index in [j, j + b−1]. In this section two new repetitiveness measures for
square matrices called γ2D and δ2D are proposed, as the generalisations of the
γ and δ measures for strings respectively introduced in [6] and [3,13].

Definition 1. An attractor Γ2D for a square matrix M ∈ Σn×n is a set of
positions of M : Γ2D ⊆ {1, ..., n} × {1, ..., n} such that any square submatrix has
an occurrence crossing (including) a position p = (i, j) ∈ Γ2D. The measure
γ2D(M) is defined as the cardinality of a smallest attractor for M .

We say that a position p = (i, j) ∈ Γ2D(M) covers a submatrix I of M if there
exists an occurrence of I which crosses p, and that a set of positions covers I if it
includes a position p which covers I; when clear from the context, the parameter
M is omitted from Γ2D(M) expression.

As a first result we show that, not surprisingly, the problem of finding the
size of a smallest attractor is NP-complete also in two dimensions. The NP-
completeness proof is done considering the decision problem “is there an attrac-
tor of size k for the given input?”.

Lemma 1. Given a string S ∈ Σn, let RS ∈ Σn×n be the square matrix where
each row is equal to the string S. Then there exists an (1-dim) attractor for S
of size k if and only if there exists a (2-dim) attractor of size k for RS.

104 L. Carfagna and G. Manzini

Proof. Given S and the corresponding RS , the following observations hold: 1)
any submatrix of RS has an occurrence starting at the same column but on
the first row of RS ; 2) any two 	 × 	 submatrices of RS are equal if and only
if the two respective substrings of S composing their rows are equal, formally:
RS [i : i + 	 − 1][j : j + 	 − 1] = RS [i′ : i′ + 	 − 1][j′ : j′ + 	 − 1] if and only
if S[j, j + 	 − 1] = S[j′, j′ + 	 − 1]. From 1) and 2) the lemma follows: given
a string attractor Γ (S) for S of size k, the set Γ2D = {(1, j) : j ∈ Γ (S)} of
size k is a two dimensional attractor for RS and, vice versa, a string attractor
Γ for S could be obtained from a matrix attractor Γ2D(RS) for RS projecting
each couple by column index, formally, Γ = {j : (i, j) ∈ Γ2D(RS)} is a one
dimensional attractor for S. Note that if Γ2D(RS) is a smallest attractor it does
not include two positions on the same column, because, any distinct submatrix
crossing one position has an occurrence (starting in the same column but at a
different row) which crosses the other, hence in this case the projection does not
generate any column index collision and |Γ | = |Γ2D(RS)| = k, otherwise, in case
of collision, Γ could be completed with any k − |Γ | positions not in Γ to reach
size k = |Γ2D(RS)|. ��

As an immediate consequence of the above lemma we have the following
result.

Theorem 1. Computing γ2D is NP complete. ��
It is easy to see that γ2D ≥ σ and γ2D is insensitive to transpositions but,

as for strings [9], γ2D is not monotone. We show this by providing a family of
matrices, built using the counterexample in [9] to disprove the monotonicity of
γ, containing a submatrix with smaller γ2D.

Lemma 2. γ2D is not monotone.

Proof. Let w be the string abbbanab with n > 0, having γ(w) = 3 minimal for
the subset of positions Γ (w) = {2, 4, n + 5} underlined in w. The string w · b =
abbbanabb obtained concatenating the letter b to w has a smaller compressibility
measure γ(w · b) = 2 corresponding to Γ (w · b) = {4, n + 5} [9], as the prefix
w[1, 3] = abb occurring as a suffix of w · b is already covered by position n + 5
in Γ (w · b). Consider Rw·b of size (n + 7) × (n + 7), from Lemma 1 follows that
γ2D(Rw·b) = γ(w · b) = 2, but the submatrix Rw·b[1 : n + 6][1 : n + 6] equal to
Rw has a greater γ2D(Rw) = γ(w) = 3. ��

2.1 The Measure δ2D

The measure δ(S) for a string S, formally defined in [3] and previously introduced
in [13] to approximate the output size of the Lempel-Ziv parsing, is the maximum
over k ∈ [1, |S|] of the expression dk(S)/k where dk(S) is the number of distinct
substrings of length k in S. We now show how to generalize this measure to two
dimensions, by introducing the measure δ2D which is defined in a similar way,
considering k × k submatrices instead of length-k substrings.

Compressibility Measures for Two-Dimensional Data 105

Definition 2. Given M ∈ Σn×n, let dk×k(M) be the number of distinct k × k
submatrices of M , then

δ2D(M) = max{dk×k(M)/k2 : k ∈ [1, n]}. (1)

The measure δ2D preserves some good properties of δ: δ2D is invariant
through transpositions and decreases or grows by at most 1 after a single cell
edit since any dk×k of the updated matrix could differ at most by k2 from the
initial one. δ2D is monotone: given a submatrix M ′ of M having size 	 × 	 with
	 ≤ n any submatrix of M ′ appears somewhere in M then dk×k(M ′) ≤ dk×k(M)
for any k ∈ [1,] ⊆ [1, n].

The next lemma shows that, as in the one-dimensional setting, δ2D is upper
bounded by γ2D.

Lemma 3. δ2D(M) ≤ γ2D(M) for any matrix M ∈ Σn×n.

Proof. Let Γ2D be a least size attractor for M i.e. |Γ2D| = γ2D. For any k ∈ [1, n]
an attractor position p ∈ Γ2D is included in at most k2 distinct k×k submatrices,
then we need at least dk×k(M)/k2 distinct positions in Γ2D to cover all k × k
submatrices of M , formally, |Γ2D| ≥ dk×k(M)/k2 holds for any k ∈ [1, n] in
particular for k∗ ∈ [1, n] such that δ2D = dk∗×k∗(M)/(k∗)2. ��

One of the main reasons for introducing δ was that it can be computed
efficiently: [3] describes a linear algorithm to compute δ(S) with a single visit
of the Suffix tree of S. We now show that an efficient algorithm for computing
δ2D can be derived in a similar way using the Isuffix tree introduced in [7] which
can be built in O(n2) time, which is linear in the size of the input. A somewhat
simpler algorithm can be obtained using the Lsuffix tree [4,5] but its construction
takes O(n2 log n) time.

The Isuffix tree IST (A) of a matrix A ∈ Σn×m generalises the Suffix Tree
to matrices: IST (A) is a compacted trie representing all square submatrices of
A. The Isuffix trees adopts a linear representation of a square matrix C ∈ Σq×q:
let IΣ =

⋃∞
i=1 Σi, each string in IΣ is considered as an atomic Icharacter, the

unique Istring associated to matrix C is IC ∈ IΣ2q−1 where IC [2i + 1] with
i ∈ [0, q) is the (i + 1)th column-type Icharacter C[1 : i+1][i+1] and IC [2i] with
i ∈ [1, q) is the ith row-type Icharacter C[i + 1][1 : i]. See Fig. 1 for an example.
The kth Iprefix of C is defined as the concatenation of the first k Icharacters
IC [1] · IC [2] · . . . · IC [k] = IC [1, k] of IC . Note that an Iprefix ending in an odd
position k is the Istring of the 	× 	 square submatrix with 	 = 	k/2
 starting at
C’s top-left corner, that is, C[1 :][1 :]. For the example in Fig. 1, the 3rd Iprefix
of C is the Istring “a a ba” which corresponds to the submatrix C[1 : 2][1 : 2].

Given A ∈ Σn×n, for 1 ≤ i, j ≤ n, the Isuffix IAij
of A is defined as the

Istring of the largest square submatrix Aij of A with upper left corner at posi-
tion (i, j). From the above definitions it is clear that the Istring of any square
submatrix of A, is an Iprefix (ending in a odd position) of some Isuffix IAij

. To
ensure that no Isuffix IAij

is Iprefixed by another Isuffix, A is completed with

106 L. Carfagna and G. Manzini

Fig. 1. A square matrix C on the left, and its Istring IC on the right (last two Ichar-
acters are omitted)

an additional bottom row and right column containing 2n+1 distinct new sym-
bols $1, . . . $2n+1. For simplicity in the following we refer as A the input matrix
already enlarged with $i symbols. See Fig. 2 for an example.

The Isuffix tree IST (A) is a compacted trie over the alphabet IΣ repre-
senting all the n2 distinct Isuffixes IAij

of A with, among others, the following
properties [7]: 1) each edge is labeled with a non empty Isubstring IAij

[1, 	2]
of an Isuffix IAij

, that label is represented in constant space as the quadruple
〈i, j, 	1, 	2〉, the Isubstrings on any two sibling edges start with different Ichar-
acters; 2) each internal node has at least two children and there are exactly n2

leaves representing all the Isuffixes of A: let L(u) be the Istring obtained con-
catenating the Isubstrings on the path from the root to a node u, for any leaf lij ,
the Istring L(lij) is equal to the linear representation IAij

of the unique suffix
Aij ; 3) The Isuffix tree satisfies the common prefix constraint: square submatri-
ces of A with a common Iprefix share the same initial path in the tree; 4) The
Isuffix tree satisfies the completeness constraint since all square submatrices of
A are represented in IST (A) as an Iprefix of some Isuffix of A.

Fig. 2. The submatrix A[2 : 5][1 : 4] = A21 with solid black border on the left and its
Istring IA21 on the right. The Istring of the submatrix A[2 : 3][1 : 2] (in red) is the
third Iprefix of IA21 . (Color figure online)

Compressibility Measures for Two-Dimensional Data 107

Theorem 2. δ2D can be calculated in optimal time and space O(n2).

Proof. Our algorithm is a generalization of the ideas used in [3] to compute the
measure δ in linear time using a suffix tree. Given A ∈ Σn×n, we build the array
d[1 : n] which stores at position k the number of distinct k × k submatrices of
A then we obtain δ2D as maxk d[k]/k2. Initially the Isuffix Tree IST (A) of A is
built in time O(n2) [7], then IST (A) is visited in depth first order. Let u be a
node such that the path from the root to u contains |L(u)| Icharacters. Let e
be an edge outgoing from u labeled with qe = 〈i, j, 	1, 	2〉 where 	1 = |L(u)| + 1.
The Istring of a distinct square submatrix is obtained whenever appending a
prefix of the Isubstring IAij

[1, 	2] labelling the edge e to L(u) yields an Istring
of odd length. Because the traversing of e may yield new square submatrices,
d[·] must be updated accordingly. Let s = 	 �1−1

2
 + 1 and t = 	 �2
2
. Every d[k]

with k ∈ [s, t] should be increased by one: to do this in constant time we set
d[s] = d[s]+1 and d[t+1] = d[t+1]−1 and we assume that each value stored in
an entry d[i] is implicitly propagated to positions i + 1, i + 2, . . . n: so the +1 is
propagated from s up to t and the propagation is canceled by the −1 added at
the position t + 1. At the end of the Isuffix tree visit, for each k ∈ [1, n − 1] we
set d[k + 1] = d[k + 1] + d[k] so that d[k] contains the number of distinct k × k
matrices encountered during the visit and we can compute δ2D as maxk d[k]/k2.

Note that when leaf lij is reached via the edge e with label qe = 〈i, j, 	1, 	2〉, all
the Iprefixes of IAij

[1, 	2] that have an Icharacter which includes some $x symbol
should not be counted. The range of well formed Iprefixes can be determined
in constant time since it suffices to access one symbol in each of the last two
trailing Icharacters of IAij

[1, 	2] to check whether these two contains any $x.
Since the Isuffix Tree can be constructed and visited in O(n2) time the overall
time and space complexity of the above algorithm is O(n2). ��

We now study how large can be the gap between the two measures γ2D

and δ2D, recalling that by Lemma 3 it is δ2D ≤ γ2D. In [8] Kociumaka et al.
establish a separation result between measures δ and γ by showing a family of
strings with δ = O(1) and γ = Ω(log n). This bound is tight since they also
prove that γ = O(δ log n

δ). The next theorem proves that the gap between the
two measures in two dimensions is much bigger: δ2D can be (asymptotically)
smaller than γ2D up to a

√
n factor.

Lemma 4. There exists a family of n×n matrices with δ2D = O(1) and γ2D =
Ω(

√
n).

Proof. Consider the matrix M of size n × n where the first row is the string
S composed by

√
n/2 consecutive blocks of size 2

√
n each. The ith block Si

with i = 1, . . . ,
√

n/2 is the string 1i0(2
√

n−i), so Si contains (from left to right)
i initial ones and the remaining positions are zeros. The remaining rows of the
matrix are all equals to #n. Note that for any size k all distinct submatrices start
in the first row or are equal to #(k×k). Let δk be dk×k/k2, so that δ2D can be
rewritten as max{δk | k ∈ [1, n]}. We compute δk for each possible k. For k = 1,
we have δ1 = |Σ| = 3. For k ≥ √

n it is δk = O(1) since k2 ≥ n and there at most

108 L. Carfagna and G. Manzini

(n−k+1)+1 ≤ n distinct k×k matrices. Now consider δk with k ∈ [2, . . . ,
√

n).
All distinct k × k submatrices (excluded the #(k×k) one) are those having as
first row a distinct substring of length k of S. All those substrings are included
in the language 0a1b0c with a ∈ [0, . . . , k], b ∈ [0, . . . , k − a], c ∈ [0, . . . , k − a − b]
such that a + b + c = k, to see this note that no substring of length k <

√
n

can contain any two non adjacent (and non empty) groups of ones since there
is a group of at least

√
n > k consecutive zeros between each of them in S.

Fixed k, to count the strings in 0a1b0c is enough to count the possible choices
for the starting/ending positions of the middle 1b block: which are O(k2), then
for k ∈ [2, . . . ,

√
n), δk = O(k2)

k2 = O(1). This proves that δ2D = O(1).
To estimate γ2D consider the ith block on the first row: Si = 1i0(2

√
n−i). Each

Si with i = 1, . . . ,
√

n/2 is a unique occurrence since the sequence 1i occurs only
inside blocks Sj with j ≥ i which begins with at least i ones, but inside Sj the
sequence 1i is followed by 2

√
n−j < 2

√
n−i zeros, so the copy of Si will intersect

the (j + 1)th block where no leading zeros are present. As a consequence each
submatrix Mi of size 2

√
n × 2

√
n having Si as first row is a unique occurrence

too. As each Mi does not overlap any other Mj with j = i at least
√

n/2 positions
are needed in Γ2D to cover them. This proves that γ2D = Ω(

√
n). ��

Given a set S, the worst-case entropy [8] of S defined as 	log2 |S|
 is the
minimum number of bits needed to encode all the elements in S. In the following
Lemma, we extend the construction of Lemma 4 to define a family F of matrices
with constant δ2D and worst-case entropy Ω(

√
n log n).

Lemma 5. There exists a family of square matrices on a constant size alphabet
Σ with common measure δ2D = O(1) and worst-case entropy Ω(

√
n log n).

Proof. Consider again the matrix M of Lemma 4. Each of the (
√

n/2)! matrices
obtained permuting the

√
n/2 blocks Si on the first row of M has still δ2D =

O(1). On the other hand, every encoding algorithm to distinguish among these
matrices needs at least log((

√
n/2)!) = Θ(

√
n log n) bits. ��

3 Space Bounds for Two-Dimensional Block Trees

Brisaboa et. al. [2] generalized the Block Tree concept [1] to two dimensional
data providing a compressed representation for discrete repetitive matrices that
offers direct access to any compressed submatrix in logarithmic time. Given a
matrix M ∈ Σn×n and an integer parameter k > 1, assuming for simplicity that
n is a power of k, i.e. n = kα, M is split into k2 non overlapping submatrices,
called blocks, each of size (n/k) × (n/k) = kα−1 × kα−1. Each of these blocks
corresponds to a node at level 	 = 1 in the 2D-BT and the root of the tree at
level 	 = 0 represents the whole matrix M . A tree is obtained by splitting (some
of) the blocks at level 	, which have size (n/k�)×(n/k�), into k2 non overlapping
blocks of size (n/k�+1) × (n/k�+1). At any level 	, nodes whose corresponding
submatrix intersects the first occurrence, in row major order, of a (n/k�)×(n/k�)
submatrix (including themselves) are internal nodes, referred in the following as

Compressibility Measures for Two-Dimensional Data 109

marked ones; all others nodes are the level-	 leaves of the 2D-BT , and referred
in the following as unmarked nodes. Only marked nodes are recursively split and
expanded at level 	 + 1; instead an unmarked node corresponding to a block X
points to the marked nodes in the same level corresponding to the level-	 blocks
overlapping the first (in row major order) occurrence O of X, and stores the
relative offset 〈Ox, Oy〉 of O inside the top left of such blocks (see Fig. 3). The
splitting process ends when explicitly storing blocks is more convenient than
storing pointers to marked blocks. The resulting tree-shaped data structure has
height h = O(logk n). In the following the block related to node u in the tree is
named Bu, and a block Bu is said to be marked (unmarked) if the corresponding
node u is marked (unmarked). Note that if X is unmarked, then the (up to) four
blocks intersecting the first occurrence O of X are marked by construction. If we
call D the (2n/k�) × (2n/k�) submatrix formed by these four blocks, we observe
that this is also a first occurrence (otherwise we would have another occurrence
of X preceding O) and therefore the up to four blocks at level 	−1 containing D
will be marked. Repeating this argument shows that an unmarked node points to
marked nodes which always exist in the same level since none of their ancestors
has been pruned in a previous level. Note that our marking scheme is slightly
different than the one in [2] in which if a submatrix is pruned at some level its
content is seen as all 0 s in the subsequent levels. This approach removes the
issue of possibly pointing to pruned nodes, but makes it difficult to estimate
the number of marked nodes in terms of the matrix content, which is our next
objective.

It has already been proved [8] that one-dimensional Block Trees are worst
case optimal in terms of δ in the following sense: a BT on a string S ∈ Σn

uses O(δ log n log σ
δ log n) space and there exist string families requiring that amount

of space to be stored. No space analysis of the 2D-BT was given in [2]. In
the following we show that a 2D-BT built on a matrix M ∈ Σn×n occupies
O((δ2D +

√
nδ2D) log n

δ2D
) space.

Lemma 6. The number of marked nodes in any level of a 2D block tree is
O(δ2D +

√
nδ2D).

Proof. Consider a generic tree level, and assume the blocks in this level have size
k� × k�. In the following the term block denotes a k� × k� submatrix of M whose
upper left corner is an entry of the form M [1 + λk�, 1 + μk�] with λ, μ integers.
For any distinct k� × k� submatrix in M , let O be the first occurrence of that
submatrix in row major order. O intersects m ∈ {1, 2, 4} blocks B1, . . . , Bm

that are therefore marked. Let D be a 2k� × 2k� submatrix built including all
the m blocks B1, . . . , Bm, and therefore containing O. We call D a superblock .
If m = 4, D is unique, otherwise 4 − m more blocks are chosen arbitrarily to
reach the desired size. Let u be the number of superblocks constructed in this
way; the number of marked blocks at this level is at most 4u, hence we proceed
bounding u. We partition the superblocks into 3 types: 1) those on a corner of
M , i.e. including one of the entries M [1, 1],M [1, n],M [n, 1] or M [n, n], these are
at most four; 2) those not on a corner but including an entry in the first/last

110 L. Carfagna and G. Manzini

Fig. 3. The four blocks inside region D are marked since they overlap the first occur-
rence O, in row major order, of X. For the argument in the proof of Lemma 6 D is a
type 3 superblock: by considering every entry in the red block above it as an upper left
corner we obtain k2� distinct 3k�×3k� matrices containing D. The type 2 superblock D′

borders the upper edge; by considering the k� entries in the first row marked in red we
obtain k� distinct 3k� × 3k� matrices containing D′. We also show a type 2 superblock
D′′ bordering the right edge; we obtain k� distinct 3k� × 3k� matrices containing D′′

by considering the 3k� × 3k� matrices with the upper right corner in the portion of the
last column marked in red. (Color figure online)

row/column; 3) those not including any entry in the first/last row/column. Let
ui be the number of superblocks of type i: clearly u = u1+u2+u3 = O(u2+u3).

Given a superblock D of the third type, we observe that D is included into k2�

distinct 3k� ×3k� submatrices starting at any position in the k� ×k� block touch-
ing the top left corner of D (see Fig. 3). Summing over all type 3 superblocks, we
have a total of u3k

2� submatrices of size 3k� × 3k� starting in distinct positions
inside M . These submatrices are distinct: each submatrix contains, by construc-
tion, the first occurrence of some block; if two of those matrices were equal we
would have two first occurrences of the same block starting in different positions
which is impossible. Since by definition the number of distinct submatrices of
size 3k� × 3k� is at most (3k�)2δ2D we have

u3k
2� ≤ 9k2�δ2D =⇒ u3 ≤ 9δ2D

Consider now a superblock D′ of the second type bordering the upper edge
of M (the other 3 cases are treated similarly, see superblock D′′ in Fig. 3). Any
3k�×3k� matrix which starts in the same row of D′, but, in any of the k� columns
preceding D′ is distinct by the same argument presented before (see again Fig. 3).
Reasoning as above we find u2k

� distinct 3k� × 3k� matrices which implies u2 ≤

Compressibility Measures for Two-Dimensional Data 111

9k�δ2D. Since it is also u2 ≤ n/k�, we have u2 ≤ min(9k�δ2D, n/k�) = O(
√

nδ2D).
We conclude that the number of marked blocks at any level is O(u) = O(u1 +
u2 + u3) = O(δ2D +

√
nδ2D). ��

Theorem 3. The 2D-BT takes O((δ2D +
√

nδ2D) log n
δ2D

) space. This space is
optimal within a multiplicative factor O(log n).

Proof. The 2D-BT as described at the beginning of the section has height logk n.
Such height can be reduced choosing a different size for the blocks at level
	 = 1. Assuming for simplicity n =

√
δ2Dkα, M is initially divided into δ2D

blocks of size kα × kα. In this way the height of the tree became O(logk
n

δ2D
),

using the bound of the Lemma 6, we get an overall number of marked nodes
O((δ2D +

√
nδ2D) logk

n
δ2D

). Each marked node produces at most k2 unmarked
nodes on the next level, hence the tree has at most O(k2(δ2D +

√
nδ2D) logk

n
δ2D

)
nodes which is O((δ2D +

√
nδ2D) log n

δ2D
) for k = O(1). To prove the worst-

case quasi-optimality: let F be the set of matrices having δ2D = O(1) from
Lemma 5, for any coder C : F → {0, 1}∗ representing all the matrices in F ,
there exist a matrix W such that |C(W)| = Ω(

√
n log n) bits while the 2D-BT

takes O(
√

n log2 n) bits of space for any matrix in F . ��
The following result shows that the bound in Lemma 6 cannot be substan-

tially improved at least when δ2D = O(1). Since the proof of Lemma 6 shows
that the number of marked blocks at the interior of the matrix is bounded by
O(δ2D), we consider a family of matrices that have a hard to compress first row.

Lemma 7. There exists an infinite family of matrices M ∈ Σn×n with δ2D =
O(1), such that 2D-BT for M has Ω(

√
n) marked nodes on a single level.

Proof. Let M ∈ Σn×n be the matrix of Lemma 4 with n = k2α so that n is both
a power of k and a perfect square. We have already proven that δ2D(M) = O(1).
Consider the 2D-BT built on M : note that for block size larger than 4

√
n×4

√
n

each block on the upper edge of M includes entirely in its first row at least one
of the strings Si of the form 1i0(2

√
n−i) composing S. Since each Si is unique,

any of those blocks is a first occurrence and hence marked. In particular, at level
	 = α − 	logk 4
, counting levels from the root (= 0) to the leaves, all Θ(

√
n)

blocks on M upper side are marked and the lemma follows. ��
In [12] the authors introduced a variant of the one-dimensional block tree,

called Γ -tree, in which, given a not necessarily minimum string attractor Γ , the
marked nodes at each level are those close to an attractor position. The Γ -tree is
then enriched with additional information that makes it a compressed full text
index using O(γ log(n/γ)) space where γ = |Γ | is the size of the string attractor.
Following the ideas from [12], we now show how to modify the construction of
the 2D-BT assuming we have available a, not necessarily minimum, 2D-attractor
Γ2D.

To simplify the explanation, again we assume that n = kα for some α > 0,
given a matrix M ∈ Σn×n and an attractor Γ2D = {(i, j)1, . . . , (i, j)γ} for M , the

112 L. Carfagna and G. Manzini

splitting process is unchanged but at level 	 we mark any node u corresponding
to a n/k� ×n/k� block Bu which includes a position p ∈ Γ2D and all (the at most
8) nodes of the blocks adjacent to Bu. Remaining nodes are unmarked and store
a pointer ptrB to the marked block B on the same level 	 where an occurrence O
of their corresponding submatrix that spans a position p ∈ Γ2D begins, as well
as the relative offset of O within B. The claimed occurrence O crossing p ∈ Γ2D

exists otherwise Γ2D would not be an attractor for M , and all the (at most) 4
blocks intersecting O are ensured to be marked as they contain p or are adjacent
to a block containing p. We also point out that overlapping between an unmarked
block B′ and the pointed occurrence O containing p ∈ Γ2D is impossible as if
this happens B′ would be adjacent to a block B with p ∈ B, hence B′ would be
marked as well.

If n is not a power of k, blocks on right and bottom edges of M won’t
be squared, but no special treatment is needed as all the previous essential
properties are still valid: consider a rectangular block B of size a×b on the edge,
if B is marked, B is recursively split into smaller blocks (some of those with
rectangular shape), if B is unmarked, the squared matrix B′ of size c × c with
c = max(a, b) including B is squared and will occur somewhere else crossing
an attractor position while spanning at most four marked blocks, then B would
occur as well. Note that B, contrary to B′, may not cross any attractor position
but will certainly point to marked blocks only, avoiding unmarked blocks point
to other unmarked ones.

Theorem 4. Given M ∈ Σn×n and an attractor Γ2D(M) = {(i, j)1, . . . , (i, j)γ}
of size γ, the 2D-BT built using Γ2D takes O(γ log n

γ) space.

Proof. Each position p ∈ Γ could mark at most 9 distinct blocks per level:
the block B including p and the (up to) eight blocks adjacent to B. Hence the
number of marked blocks per level is ≤ 9γ. Assuming again n =

√
γkα, dividing

initially M into blocks of size kα ×kα we get a shallower tree of height O(logk
n
γ)

with O(γ) nodes on the second level (= 1) and an overall number of marked
nodes O(γ logk

n
γ). Since any marked node produces at most k2 unmarked nodes

on the next level, for any k = O(1) the 2D-BT built using any attractor Γ2D of
size γ takes O(γ log n

γ) space. ��

Access to a single symbol M [i][j] is quite as in the one dimensional Γ -Tree:
assume the node u at level 	 is reached with a local offset 〈Ox, Oy〉, if u is a
marked node, the child c of u where the searched cell falls is determined, the
coordinates 〈Ox, Oy〉 are translated to local coordinates on c where the search
routine proceeds in the next level. If instead node u is unmarked, the marked
node v on the same level is reached via the pointer ptrv stored in u, the actual
offset inside the block Bv is determined using the offset 〈O′

x, O′
y〉 stored in u

and the access procedure continues on marked node v. The descending process
halts when a marked block on the deepest level is reached and the corresponding
explicit symbol is retrieved. Access procedure costs O(log n) as we visit at most
2 nodes on the same level before descend to next one.

Compressibility Measures for Two-Dimensional Data 113

Funding Information. This research was partially supported by MIUR-PRIN

project “Multicriteria Data Structures and Algorithms: from compressed to learned

indexes, and beyond” grant n. 2017WR7SHH, and by the PNRR ECS00000017 Tus-

cany Health Ecosystem, Spoke 6 “Precision medicine & personalized healthcare”, CUP

I53C22000780001, funded by the European Commission under the NextGeneration EU

programme.

References

1. Belazzougui, D., et al.: Block trees. J. Comput. Syst. Sci. 117, 1–22 (2021)
2. Brisaboa, N., Gagie, T., Gómez-Brandón, A., Navarro, G.: Two-dimensional block

trees. Comput. J. (2023, to appear)
3. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:

Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), 8:1–
8:39 (2021)

4. Giancarlo, R.: A generalization of the suffix tree to square matrices, with applica-
tions. SIAM J. Comput. 24(3), 520–562 (1995)

5. Giancarlo, R., Grossi, R.: On the construction of classes of suffix trees for square
matrices: algorithms and applications. Inf. Comput. 130(2), 151–182 (1996)

6. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors. In:
Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, 25–29 June 2018, pp. 827–840. ACM (2018)

7. Kim, D.K., Na, J.C., Sim, J.S., Park, K.: Linear-time construction of two-
dimensional suffix trees. Algorithmica 59(2), 269–297 (2011)

8. Kociumaka, T., Navarro, G., Prezza, N.: Toward a definitive compressibility mea-
sure for repetitive sequences. IEEE Trans. Inf. Theory 69(4), 2074–2092 (2023)

9. Mantaci, S., Restivo, A., Romana, G., Rosone, G., Sciortino, M.: A combinatorial
view on string attractors. Theor. Comput. Sci. 850, 236–248 (2021)

10. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness
measures. ACM Comput. Surv. 54(2), article 29 (2021)

11. Navarro, G.: Indexing highly repetitive string collections, part II: compressed
indexes. ACM Comput. Surv. 54(2), article 26 (2021)

12. Navarro, G., Prezza, N.: Universal compressed text indexing. Theoret. Comput.
Sci. 762, 41–50 (2019)

13. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65(3), 685–709 (2013)

From de Bruijn Graphs to Variation
Graphs – Relationships Between

Pangenome Models

Adam Cicherski and Norbert Dojer(B)

University of Warsaw, Warsaw, Poland
dojer@mimuw.edu.pl

Abstract. Pangenomes serve as a framework for joint analysis of
genomes of related organisms. Several pangenome models were proposed,
offering different functionalities, applications provided by available tools,
their efficiency etc. Among them, two graph-based models are particu-
larly widely used: variation graphs and de Bruijn graphs.

In the current paper we propose an axiomatization of the desirable
properties of a graph representation of a collection of strings. We show
the relationship between variation graphs satisfying these criteria and de
Bruijn graphs. This relationship can be used to efficiently build a vari-
ation graph representing a given set of genomes, transfer annotations
between both models or compare the results of analyzes based on each
model.

Keywords: pangenome · de Bruijn graphs · variation graphs

1 Introduction

The term pangenome was initially proposed as a single data structure for joint
analysis of a group of bacterial genes [25]. In the presence of a variety of whole
genome sequences available it has evolved and currently it refers to a model of
joint analysis of genomes of related organisms. Numerous pangenome models
were proposed, ranging from collections of unaligned sequences to sophisticated
models that require complex preprocessing of sequence data [1,4,8,20]. The mod-
els significantly differ in their properties, applications provided by available tools,
their efficiency, and even the level of precision of the definition of the optimal
graph representing given genomes.

De Bruijn graphs (dBG) have nodes uniquely labeled with k-mers and edges
representing their overlaps of length k − 1. Since the structure of a dBG for a
given set of genomes is strictly determined by the parameter k, its construction is
straightforward and may be performed in linear time. Applications of dBG-based
pangenome models include read mapping [12,17], variant calling [15], taxonomic
classification and quantification of metagenomic sequencing data [22] and even
pangenome-wide association studies [18].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 114–128, 2023.
https://doi.org/10.1007/978-3-031-43980-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_10&domain=pdf
http://orcid.org/0009-0007-5707-8967
http://orcid.org/0000-0001-5653-1167
https://doi.org/10.1007/978-3-031-43980-3_10

From de Bruijn Graphs to Variation Graphs 115

Variation graphs (VG) have nodes labeled with DNA sequences of arbitrary
length. Genomic sequences are represented in the graph by paths, for which the
concatenation of labels form the respective sequences. Such structure allows to
avoid the redundancy of the dBG representation, where a single residuum occurs
in labels of several nodes. Consequently, this model provides an intuitive common
coordinate system, making it convenient to annotate, which is crucial in many
applications. The basis for a wide spectrum of VG-based analyzes was provided
by indexing methods for efficient subsequence representation and searching [5,23,
24]. Then sequencing read mapping algorithms were proposed [10,21], opening
the door for variant calling and genotyping tools [6,7,13]. Moreover, variation
graphs were applied to the inference of precise haplotypes [2,3] and genome
graph-based peak calling [11].

The construction of VG models is more computationally resource-intensive
than the construction of dBGs. Given 100 human genomes, the respective dBG
can be built in a few hours [19,26], while the construction of the VG requires
several days [9,10,14,16]. Moreover, there are many possible variation graphs
that represent a particular collection of genomes. Two completely uninformative
extremes are: an empty graph with each node labeled with one of the genome
sequences, and a graph with 4 nodes labeled with single letters A, C, G, T.
Existing tools tend to strike a balance between these extremes, but to the best
of our knowledge, no strict definition of the desired properties of such a graph
(e.g. minimum requirements or optimization criteria) have been proposed.

The aim of the current paper is to fill this gap. We propose an axiomatization
of the desired properties of variation graphs. Moreover, we show the relationships
between VGs satisfying proposed criteria and related dBGs. Finally, we show how
these relationships may be used to transform de Bruijn graphs into variation
graphs.

2 Representing String Collections with Graphs

In this section we propose the concept of string graph – a common abstraction
of de Bruijn and variation graphs. Then we formalize the notion of a graph
representing given set of strings and define postulated properties of such rep-
resentations. Finally, we show that these properties are always satisfied in de
Bruijn graphs and impose strict constraints on the structure of variation graphs.

2.1 String Graphs

A string graph is a tuple G = 〈V,E, l〉, where:

– V is a set of vertices,
– E ⊆ V 2 is a set of directed edges,
– l : V → Σ+ is a function labeling vertices with non-empty strings over alpha-

bet Σ.

116 A. Cicherski and N. Dojer

A path in a string graph is a sequence of vertices 〈v1, . . . , vm〉 such that
〈vj , vj+1〉 ∈ E for every j ∈ {1, . . . , m − 1}. The set of all paths in G will
be denoted by P(G). Given path p = 〈v1, . . . , vm〉, the set of intervals of p is
defined by formula Int(p) = {〈j1, j2〉 | 1 ≤ j1 ≤ j2 ≤ m}. Given two intervals
〈j1, j2〉, 〈j′

1, j
′
2〉 ∈ Int(p), we say that 〈j1, j2〉 is a subinterval of 〈j′

1, j
′
2〉 if j1 ≥ j′

1

and j2 ≤ j′
2. A subpath of p defined on interval 〈j1, j2〉 is a path p[j1..j2] =

〈vj1 , . . . , vj2〉. We use similar terminology and notation for strings: given string
S, the set of its intervals is defined by Int(S) = {〈j1, j2〉 | 1 ≤ j1 ≤ j2 ≤ |S|},
where |S| is the length of S, and S[j1..j2] denotes the substring of S indicated
by interval 〈j1, j2〉.

In order to represent strings longer than labels of single vertices, the labeling
function l must be extendable to function l̂ defined on paths. The extension
should be subpath-compatible in the following sense: every path p should induce
an injective function Ψp : Int(p) → Int(l̂(p)) satisfying the condition

Ψp(j1, j2) = 〈j′
1, j

′
2〉 ⇒ l̂(p[j1..j2]) = l̂(p)[j′

1..j
′
2].

In the following subsection we use this concept to introduce the definition of a
graph representing a set of strings and formulate appropriate properties of such
representation. In subsequent subsections we describe two different implementa-
tions that are realized in de Bruijn graphs and variation graphs, respectively.

2.2 Representations of Collections of Strings

Given a set of strings S = {S1, . . . , Sn}, a string graph G with subpath-
compatible labeling extension l̂ and π : S → P(G), we say that 〈G, π〉 is a
representation of S iff the following conditions are satisfied:

– l̂(π(Si)) = Si for every i ∈ {1, . . . , n},
– every vertex in G occurs in some path π(Si),
– every edge in G joins two consecutive vertices in some path π(Si).

We define the set of positions in π as Pos(π) = {〈i, j〉 | 1 ≤ i ≤ n ∧ 1 ≤
j ≤ |π(Si)|}. The set of π-occurrences of a vertex v is defined as Occπ(v) =
{〈i, j〉 ∈ Pos(π)|π(Si)[j] = v}. The injections Ψπ(Si) : Int(π(Si)) → Int(Si) will
be denoted by Ψi for short.

Below we define two properties of a representation: k-completeness and k-
faithfulness. Intuitively, the representation is k-complete if every k-mer in S is
depicted by the same path in the graph, and is k-faithful if all multiple occur-
rences of vertices are essential to satisfy k-completeness (see Fig. 1). However, the
actual definitions are more elaborate because we don’t assume that the functions
Ψi are surjective, so not all S-substrings are depicted in the graph by paths.

Let Si, Si′ be two (not necessarily different) strings from S and assume that
Si[p..p + k − 1] = Si′ [p′..p′ + k − 1] is a common k-mer of Si and Si′ . We
say that this common k-mer is reflected by a common subpath π(Si)[q..q+m] =
π(Si′)[q′..q′+m] of π(Si) and π(Si′) iff 〈p, p+k−1〉 is a subinterval of Ψi(q, q+m)

From de Bruijn Graphs to Variation Graphs 117

Fig. 1. The set of strings {GTGT, TTGT,ATGG,ATGA,ACTGG,ACTGA} repre-
sented by a de Bruijn graph (left) and a variation graph (right). Different colors of
edges correspond to paths representing particular strings. Both representations are
3-complete (all common 3-mers are reflected in the graphs) and 3-faithful (the paths
representing strings share solely the vertices necessary to fulfill the previous condition).
For example, in the VG the common 3-mer CTG of strings ACTGG and ACTGA is
reflected by the common subpath 〈AC, TG〉 of the purple and black paths. Besides, the
common 2-mer TG from the strings ATGG, ATGA, ACTGG, and ACTGA is repre-
sented by a common vertex because the following pairs of its occurrences are directly
3-extendable: on the blue and red paths (extendable to the common 4-mer ACTG),
on the red and black paths (common 3-mer TGG), and on the blue and purple paths
(common 3-mer TGA). On the other hand, the occurrences of the same 2-mer TG in
the strings GTGT and TTGT cannot be represented by the same vertex because they
are not commonly extendable with any other occurrence.

and 〈p′, p′+k−1〉 is a subinterval of Ψi′(q′, q′+m). We say that 〈G, π〉 represents
S k-completely iff all common k-mers in S are reflected by respective subpaths.

We say the pair of π-occurrences 〈i, j〉, 〈i′, j′〉 of a vertex v is:

– directly k-extendable iff π(Si)[j − m..j + m′] = π(Si′)[j′ − m..j′ + m′] for
m,m′ ≥ 0 satisfying |l̂(π(Si)[j − m..j + m′])| ≥ k, i.e. these occurrences
extend to intervals of π(Si) and π(Si′), respectively, indicating their common
subpath labeled with a string of length ≥ k,

– k-extendable if there is a sequence of occurrences of v that starts from 〈i, j〉,
ends at 〈i′, j′〉 and each two consecutive occurrences in that sequence are
directly k-extendable.

We say that 〈G, π〉 represents S k-faithfully if every pair of occurrences of a
vertex is k-extendable.

2.3 De Bruijn Graphs

A de Bruijn graph of length k is a string graph satisfying the following conditions:

– |l(v)| = k for every v ∈ V ,
– l(v) = l(w) ⇒ v = w for all v, w ∈ V ,
– l(v)[2..k] = l(w)[1..k − 1] for every 〈v, w〉 ∈ E.

In other words: vertices are labeled with unique k-mers and edges may connect
vertices having labels overlapping with k − 1 characters.

118 A. Cicherski and N. Dojer

We define the extension l̂ of the de Bruijn graph labeling function in the
following way: the labeling of a path p = 〈v1, . . . , vm〉 is a concatenation of the
labels of its vertices with deduplicated overlaps, i.e. l̂(p) = l(v0) · l(v1)[k] · . . . ·
l(vm)[k].

Consider 〈j1, j2〉 ∈ Int(p). The label of the subpath of p indicated by 〈j1, j2〉
satisfies the equation l̂(p[j1..j2]) = l̂(p)[j1..j2+k−1], so the function Ψp(j1, j2) =
〈j1, j2 + k − 1〉 ensures subpath-compatibility.

Proposition 1. Given set of strings S = {S1, . . . , Sn} such that |Si| ≥ k for
every i ∈ {1, . . . , n}, there is a unique up to isomorphism representation of S by
a de Bruijn graph of length k. Moreover this representation is k-complete and
k-faithfull.

Proof. The set of vertices of a dBG of length k representing S is actually deter-
mined by the set of different k-mers in S. A mapping between the sets of ver-
tices of two such graphs that preserves the labels of those vertices, must be an
isomorphism. Uniqueness of vertex labels implies also k-completeness. Finally,
k-faithfulness is obvious from the fact that the graph has no vertices with labels
shorter than k.

2.4 Variation Graphs

In variation graphs vertices may be labeled with strings of any length. The
extension of the labeling function to paths is defined as the concatenation of the
labels of consecutive vertices, i.e. l̂(p) = l(v1) · . . . · l(vm) for p = 〈v1, . . . , vm〉.

Consider a path p = 〈v1, . . . , vm〉 and let sj =
∑j

i=1 |l(vi)| for j ∈ {0, . . . , m}.
The label of the subpath of p indicated by 〈j1, j2〉 ∈ Int(p) satisfies the equation
l̂(p[j1..j2]) = l̂(p)[sj1−1 + 1..sj2], so the function Ψp(j1, j2) = 〈sj1−1 + 1, sj2〉
ensures subpath-compatibility. When |l(v)| = 1 for every vertex v, the graph is
called singular. In this case Int(p) = Int(l̂(p)), sj = j for all j ∈ {0, . . . , m} and
the above formula simplifies to Ψp(j1, j2) = 〈j1, j2〉.

Two representations of the set of strings S are equivalent if they reflect exactly
the same m-mers for all m > 0. Note that equivalent singular graph represen-
tations must be isomorphic. Moreover, each variation graph representation is
equivalent to a singular graph representation obtained by replacing each vertex
with an unbranched path whose vertices are labeled with consecutive characters
of the original vertex label.

Below we show that k-completeness and k-faithfulness properties determine
the structure of the VG-representation up to equivalence.

Lemma 1. Assume that variation graph representations 〈G, π〉 and 〈G′, π′〉 of
a set of strings S = {S1, . . . , Sn} are k-complete. Let 〈i1, j1〉, 〈i2, j2〉 be a k-
extendable pair of π-occurrences of a vertex v. Then every vertex v′ of G′ having
such π′-occurrence 〈i1, j′

1〉 that Si1-intervals Ψπ′(Si1)
(j′

1, j
′
1) and Ψπ(Si1)

(j1, j1)
overlap, has also such π′-occurrence 〈i2, j′

2〉 that Si2-intervals Ψπ′(Si2)
(j′

2, j
′
2) and

Ψπ(Si2)
(j2, j2) overlap.

From de Bruijn Graphs to Variation Graphs 119

Proof. From the definition of k-extendability there exists a sequence of π-
occurrences of v, in which each two consecutive occurrences extend to inter-
vals indicating common subpath labeled with a string of length ≥ k. Every
such extension reflects a common k-mer in S. In the case of the first pair of
π-occurrences of v, the Si1 -interval indicating the occurrence of the k-mer over-
laps Ψπ′(Si1)

(j′
1, j

′
1). From k-completeness of 〈G′, π′〉, by induction, v′ has π′-

occurrences satisfying such condition for every π-occurrence of v in the sequence,
in particular for 〈i2, j2〉.
Theorem 1. Assume that variation graph representations 〈G, π〉 and 〈G′, π′〉
of a set of strings S = {S1, . . . , Sn} are k-complete and k-faithfull. Then 〈G, π〉
and 〈G′, π′〉 are equivalent.

Proof. Assume that the common m-mer Si1 [p..p + m − 1] = Si2 [p
′..p′ + m − 1]

of Si1 and Si2 is reflected in one of the representations, say 〈G, π〉. Thus there
exists a common subpath of π(Si1) and π(Si2) covering the considered occur-
rences of the m-mer. For each vertex on this subpath the pair of its occurrences
on π(Si1) and π(Si2) is k-extendable due to k-faithfulness of 〈G, π〉. For every
position 〈i1, j′〉 on the minimal subpath of π′(Si1) covering Si1 [p..p + m − 1],
Si1-interval Ψπ′(Si1)

(j′, j′) overlaps Ψπ(Si1)
(j, j), where 〈i1, j〉 is one of the posi-

tions on the π(Si1)-subpath covering the m-mer. Thus, due to Lemma 1, all
vertices on the minimal subpath of π′(Si1) covering Si1 [p..p + m − 1] have cor-
responding occurrences on π′(Si2), which, combined together, form a subpath
covering Si2 [p

′..p′ +m−1]. Therefore the considered common m-mer is reflected
in representation 〈G′, π′〉 too.

The above theorem shows that whenever a k-complete and k-faithful varia-
tion graph representation of a given set of strings exists, it is determined up to
equivalence. In the next section we complement this result by showing how such
variation graph can be built.

3 Graph Transformation

In this section we show how to transform a de Bruijn graph representing a given
set of strings into a corresponding variation graph. The transformation algorithm
consists of 3 steps (see Fig. 2):

1. Split – conversion of vertices of the de Bruijn graph to unbranched paths with
each vertex labeled with a single character.

2. Merge – a series of local modifications that merge incident edges inherited
from the de Bruijn graph.

3. Collapse – a series of local modifications that removes isolated edges inherited
from the de Bruijn graph.

Each modification of the graph is accompanied by a corresponding adjustment
of the associated representation functions.

120 A. Cicherski and N. Dojer

We begin this section by introducing transition graph – another type of string
graph that will be used in intermediate stages of the transformation. Then we
describe consecutive transformation steps and show that they preserve desirable
properties. Finally, we show that the whole transformation yields a singular
variation graph that is both k-complete and k-faithful.

3.1 Transition Graphs

A transition graph of length k over an alphabet Σ is a string graph G = 〈V,E, l〉,
in which l : V → Σ (i.e. every vertex is labeled with a single character) and E
is a disjoint union of two subsets:

Fig. 2. Steps of the graph transformation algorithm for the graph representation of
the set of strings S = {ACTGA,ACTGT,ACTT,CCTT,CCTA}. From top: input de
Bruijn graph for k = 3 and transition graphs resulting from Split, Merge and Collapse
transformations, respectively. Solid lines represent V -edges, dashed lines represent B-
edges.

– EV – the set of variation edges (or V -edges for short),
– EB – the set of de Bruijn edges (or B-edges for short),

From de Bruijn Graphs to Variation Graphs 121

A path is called V -path if all its edges are V -edges. Labeling function l is
extended to V -paths as in variation graphs, i.e. l̂(〈v1, . . . , vm〉) = l(v1) · . . . · l(vm)
for a V -paths 〈v1, . . . , vm〉.

Every path p with n B-edges can be split into a sequence of n + 1 maximal
sub-V -paths 〈p0, . . . , pn〉 such that for every i ∈ {1, . . . , n} the last vertex of pi−1

and the first vertex of pi are connected by a B-edge. When this decomposition
satisfies the following conditions:

– |p0| ≥ k − 1, |pn| ≥ k − 1 and |pi| ≥ k for i ∈ {1, . . . , n − 1},
– l̂(pi−1)[|pi−1| − k + 2..|pi−1|] = l̂(pi)[1..k − 1]) for i ∈ {1, . . . , n},

the extension of labeling function is defined by formula l̂(p) = l̂(p0) ·
l̂(p1)[k..|l̂(p1)|] · . . . · l̂(pn)[k..|l̂(pn)|]. If moreover |p0| ≥ k and |pn| ≥ k, we call p
a valid path. Interval 〈j1, j2〉 ∈ Int(p) is called valid iff p[j1..j2] is a valid path.
The set of all valid intervals of a valid path p will be denoted by V Int(p). Since
the labeling function is not defined on all possible paths, the notion of subpath-
compatibility is adapted accordingly: the domain of Ψp injection is restricted to
V Int(p).

Let p = 〈v1, . . . , vm〉 be a valid path and let S = l̂(p). Let bj denote the
number of B-edges in p preceding its j-th vertex. The function ψp : {1, . . . , m} →
{1, . . . , |S|} defined by the formula ψp(j) = j − (k − 1)bj indicates residues in S
corresponding to particular vertices in p, i.e. the residues for which the condition
S[ψp(j)] = l(vj) must be satisfied. Thus the function Ψp : V Int(p) → Int(S)
defined by formula Ψp(j1, j2) = 〈ψp(j1), ψp(j2)〉 ensures subpath-compatibility.

All the definitions from Sect. 2.2 apply to transition graphs with the only
restriction that strings can be represented by valid paths only.

Let Si, Si′ be two (not necessarily different) strings from S and assume that
their representations have a common B-edge π(Si)[j..j + 1] = π(Si′)[j′..j′ + 1].
We say that these B-edge occurrences are consistent iff they are extandable to
a common subpath π(Si)[j − k + 2..j + k − 1] = π(Si′)[j′ − k + 2..j′ + k − 1].
Representation 〈G, π〉 is consistent iff all common occurrences of B-edges are
consistent. When this condition holds for every pair of valid paths in G (i.e. not
necessarily representing S-sequences), we say that G is consistent.

3.2 Transformation 1: Split

The Split operation transforms a dBG representation 〈G, π〉 of a string collection
S = {S1, . . . , Sn} into a transition graph representation 〈G′, π′〉 by splitting
each vertex v of G into k vertices labeled with single characters. More formally,
G′ = 〈V ′, EB , EV , l′〉, where:

– V ′ =
⋃

v∈V

{v1, . . . , vk},

– EV =
⋃

v∈V

{〈v1, v2〉, . . . , 〈vk−1, vk〉},

– EB = {〈vk, w1〉 : 〈v, w〉 ∈ E},
– l′(vj) = l(v)[j] for all v ∈ V and j ∈ {1, . . . , k},

122 A. Cicherski and N. Dojer

and paths π′(Si) are constructed from π(Si) by replacing each vertex v with a
sequence v1, . . . , vk.

Lemma 2. G′ is a consistent transition graph of length k and 〈G′, π′〉 represents
S k-completely and k-faithfully.

Proof. Consistency follows from the fact that every B-edge 〈vk, w1〉 is preceded
and followed by unbranched V -paths 〈v1, . . . , vk〉 and 〈w1, . . . , wk〉, respectively.
Every common k-mer W in S was reflected in 〈G, π〉 by the unique vertex v ∈ V
such that l(v) = W , and thus is also reflected in 〈G′, π′〉 by the path 〈v1, . . . , vk〉,
which proves that the representation is k-complete. Finally, k-faithfullness is due
to the fact that every occurrence of a vertex vi in any valid path extends to the
same subpath 〈v1, . . . , vk〉.

3.3 Transformation 2: Merge

The second step of our algorithm consists of a series of local graph modifications
merging B-edges sharing either origin or target vertices. Below we describe the
first case, the other one is symmetric.

Let v be a vertex having m > 1 outgoing B-edges. From the consistency
condition each one is preceded by the same V -path 〈v2, . . . , vk−1, v〉 and followed
by another V -path of length k−1 and the same sequence of labels. Let us denote
the paths following the B-edge by 〈w1

1, . . . , w
1
k−1〉, . . . , 〈wm

1 , . . . , wm
k−1〉.

The Merge operation for each n ∈ {1, . . . , k − 1} merges all vertices
w1

n, . . . , wm
n into a single vertex wn (note that these vertices have the same label,

namely l(vn+1)). Edges incident with merged vertices are replaced with edges
joining respective new vertices. Consequently, all B-edges outgoing from v are
merged into a single B-edge 〈v, w1〉.

The transformed paths π′(Si) are obtained from π(Si) by replacing all occur-
rences of vertices w1

n, . . . , wm
n with wn.

Lemma 3. The Merge operation preserves the consistency of the graph, as well
as the k-completeness and k-faithfulness of the representation.

Proof. Consistency follows from the fact that merged B-edges are followed in a
new graph by a unique path 〈w1, . . . , wk−1〉.

If a common k-mer is reflected in 〈G, π〉 by a V -path p containing the vertex
wi

n, then after the merge, it is reflected in 〈G′, π′〉 by a path obtained from p by
replacing wi

n with wn. Therefore, the representation is still k-complete.
Let 〈i, j〉, 〈i′, j′〉 be two π′-occurrences of the same vertex u′ in paths π′(S),

i.e. u′ = π′(Si)[j] = π′(Si′)[j′]. If corresponding paths in π also have the
same vertex u on respective positions (i.e. u = π(Si)[j] = π(Si′)[j′]), the
sequence supporting the k-extendability of these π-occurrences of u supports
the k-extendability of the π′-occurrences of u′ too. The only case where the
π-paths have different vertices on these positions is when π(Si)[j] = wm

n and
π(Si′)[j′] = wm′

n for m �= m′.

From de Bruijn Graphs to Variation Graphs 123

If both π′(Si)[j] and π′(Si′)[j′] can be extended to the common subpaths
of the form 〈v, w1, w2, . . . , wk−1〉, we have v = π′(Si)[j − n] = π′(Si′)[j′ − n]
and this pair of π′-occurrences of v is k-extendable, because vertex v was
unaffected by the transformation. Thus there exists a sequence 〈i, j − n〉 =
〈i0, j0〉, 〈i1, j1〉, . . . , 〈il, jl〉 = 〈i′, j′ − n〉 of π′-occurrences of v supporting the
k-extendability of this pair. for some 1 < l′ < l, the occurrence 〈il′ , jl′〉 can
be skipped in this sequence, because in this case occurrences 〈il′−1, jl′−1〉 and
〈il′+1, jl′+1〉 must be directly k-extendable. Therefore we can assume without
loss of generality that jl′ < |π′(Sil′)| for all 1 ≤ l′ ≤ l. Thus all these occur-
rences of v are followed in paths π(Si1), . . . , π(Si1) by occurrences of vertices
w1, w2, . . . , wk−1. Consequently, the sequence 〈i0, j0+n〉, . . . , 〈il, jl+n〉 supports
the k-extendability of the pair of π′-occurrences 〈i, j〉, 〈i′, j′〉 of vertex wn.

The proof is concluded with the observation that each occurrence of wn

originating from wm
n (respectively wm′

n) is k-extendable with some occurrence
of this vertex belonging to a subpaths of the form 〈v, w1, w2, . . . , wk−1〉, and all
occurrences belonging to such subpath are k−extendable one with each other.

3.4 Transformation 3: Collapse

The third step of our transformation consists of a series of local modifications,
each of which removes one B-edge.

Consider a B-edge 〈vk−1, w1〉. Due to the consistency of the representation
all the occurrences of this edge in paths representing S extend to the same sub-
path 〈v1, . . . , vk−1, w1, . . . , wk−1〉 satisfying l(v1) = l(w1), . . . , l(vk−1) = l(wk−1).
Collapse operation on the edge 〈vk−1, w1〉 consists of:

– merging each pair of vertices vn, wn into a new vertex un,
– removing the B-edge 〈vk−1, w1〉,
– replacing other edges incident with merged vertices with new edges incident

with respective new vertices,
– replacing 〈v1, . . . , vk−1, w1, . . . , wk−1〉 with 〈u1, . . . , uk−1〉 in paths represent-

ing S,
– replacing other occurrences of vn and wn with un in paths representing S.

It may happen that a π-path traverses B-edge 〈vk−1, w1〉 several times such
that k − 1 vertices preceding and k − 1 vertices following this edge overlap, i.e.
v1 = wt+1, v2 = wt+2, . . . , vk−1−t = wk−1 for some 1 < t < k − 1 (see Fig. 3). In
this case:

– in addition, vertices un, ut+n, u2t+n, . . . for 1 ≤ n < t are merged (as a tran-
sitive consequence of merging vn = wt+n, vt+n = w2t+n, . . .),

– a subpath 〈v1, . . . , wk−1〉 in π(Si) traversing B-edge 〈vk−1, w1〉 m times in
this way is replaced in π′(Si) with subpath 〈u1, u2 . . . uk−1+(m−1)t〉, where
un+t = un.

We will denote by Un the set of all vertices in representation 〈G, π〉 that will
be merged into a single vertex un in representation 〈G′, π′〉 resulting from the
Collapse operation on a B-edge 〈vk−1, w1〉.

124 A. Cicherski and N. Dojer

It must contain vn and wn, but there can be more elements in this set. If
vn = vn+t (and thus path 〈v1, . . . vk−1〉 has a cycle), then also wn+t belongs
to Un and Un = Un+t. Similarly, if wn = wn+t then vn+t has to belong to
Un. Finally, if 〈v1, . . . , vk−1〉 and 〈w1, . . . , wk−1〉 share common vertices vn =
wm1 , vm1 = wm2 , vm2 = wm3 . . . , vmr−1 = wmr

for some positive integer r, then
vm1 , vm2 , . . . vmr

also belongs to Un and Un = Um1 = Um2 = . . . = Umr
.

Lemma 4. The Collapse operation preserves consistency, k-faithfulness and k-
completeness of the representation.

Fig. 3. Example of Collapse transformation applied to a B-edge, in which k−1 vertices
following this edge overlap with k − 1 vertices preceding it. S = {ACTGACTGACT},
k = 7, labels above edges indicate their order in the path. Top: B-edge 10 is followed
by k − 1 vertices connected by edges 11–15 and preceded by k − 1 vertices connected
by edges 5–9, the overlap forms a subpath with vertices A and C connected by edge
labeled with 5 before the B-edge and 15 after the B-edge. Bottom: after the Collapse
operation the overlapping subpath is merged with two other subpaths with vertices A
and C: preceding the B-edge and following it.

Proof. Consistency follows from the fact that Collapse does not modify the labels
of the vertices.

Similarly, k-completeness follows from the fact that if a common k-mer was
reflected in 〈G, π〉 by a valid V -path p, then it is also reflected in 〈G′, π′〉 by a
path obtained from p by replacing occurrences of vn (or wn, respectively) with
un.

In order to prove k-faithfulness, consider two occurrences 〈i, j〉 and 〈i′, j′〉
of the same vertex in representation 〈G′, π′〉 originating from transformation of
〈i, q〉 and 〈i′, q′〉 in representation 〈G, π〉. If before the modification of the graph
these paths had on respective positions the same vertex π(Si)[q] = π(Si′)[q′],
then their extensions are preserved and support the k-extendability of 〈i, j〉 and
〈i′, j′〉.

If paths in 〈G, π〉 had different vertices on respective positions, then both
these vertices belong to the set Un.

First, consider situation when one of them was vn and the other was wn.
We know that there is at least one path π(Si) that traverses the whole subpath
〈v1, . . . , vk−2vk−1, w1, w2, . . . , wk−1〉. Thus in π′(Si) we have an occurrence of
un that corresponds to occurrences of both vn and wn in π(Si) on positions

From de Bruijn Graphs to Variation Graphs 125

separated by k −2 vertices. Therefore this occurrence of un is k-extendable with
all other occurrences originating from vn, and also with all other occurrences
originating from wn.

For similar reasons all occurrences originating from vn+t have to be k-
extendable with the ones originating from wn+t. Thus if vn = vn+t, all occur-
rences originating from different vertices wn and wn+t are also k-extendable (and
symmetrically: all occurrences originating from different vertices vn and vn+t are
k-extendable if wn = wn+t).

The same argument applies to the case when vn = wm1 , vm1 = wm2 , vm2 =
wm3 , . . . , vmr−1 = wmr

: all occurrences of un originating from vn are k-
extendable with those originating from vm1 , since wm1 = vn. Because wm2 =
vm1 , these occurrences are k-extendable with those originating from vm2 . Apply-
ing this reasoning repeatedly, we conclude that all occurrences of un originating
from the vertex vn are k-extendable with those originating from any vertex vms

for s ∈ {1, . . . r}.
Thus we showed that all occurrences of vertex un in π′(Si) originating from

different vertices in π(Si) are always k-extendable one with each other.

3.5 Correctness of the Algorithm

We can now formulate the main result of this section.

Theorem 2. Given a de Bruijn graph of length k representing a collection
of strings S, the transformation algorithm always terminates resulting in a k-
complete and k-faithful variation graph representing S.
Proof. Algorithm terminates, because Split operation is applied only once for
each vertex and every execution of Merge or Collapse reduce the number of
B-edges in the graph.

The transformations ensure that the final transition graph has no B-edges,
so it is in fact a singular variation graph. Lemmas 2-4 guarantee k-completeness
and k-faithfulness.

Theorems 1 and 2 can be summarized by the following statement.

Corollary 1. Let S = {S1, . . . , Sn} be a set of strings such that |Si| ≥ k for
every i ∈ {1, . . . , n}, Then the k-complete and k-faithful variation graph repre-
sentation of S exists and is unique up to equivalence.

The algorithm builds a singular graph representation. One can additionally
join unbranched paths into single vertices with concatenated labels. Such post-
processing results in an equivalent graph of reduced size.

126 A. Cicherski and N. Dojer

4 Conclusion

In this article we proposed an axiomatization of the graph representation of a col-
lection of strings. Our axiomatization is based on two properties: k-completeness
and k-faithfulness that are always satisfied in de Bruijn graphs and determine
up to equivalence the structure of variation graphs. Furthermore, we showed
the relationship between variation graphs satisfying the above conditions and
de Bruijn graphs. This relationship can be used not only to build a variation
graph representing a given set of sequences, but also to provide a direct method
of transferring annotations between both pangenome models.

The proposed axiomatization may be further developed. For example, one
can formulate properties of a variation graph that express desirable differences
from the structure associated with the corresponding de Bruijn graph.

Acknowledgements. This research was funded in whole by National Science Centre,
Poland, grant no. 2022/47/B/ST6/03154.

References

1. Baaijens, J.A.: Computational graph pangenomics: a tutorial on data structures
and their applications. Nat. Comput. 21(1), 81–108 (2022). https://doi.org/10.
1007/s11047-022-09882-6

2. Baaijens, J.A., Van der Roest, B., Köster, J., Stougie, L., Schönhuth, A.: Full-
length de novo viral quasispecies assembly through variation graph construction.
Bioinformatics 35(24), 5086–5094 (2019). https://doi.org/10.1093/bioinformatics/
btz443

3. Baaijens, J.A., Stougie, L., Schönhuth, A.: Strain-aware assembly of genomes from
mixed samples using variation graphs. BioRxiv (2019). https://doi.org/10.1101/
645721. http://biorxiv.org/lookup/doi/10.1101/645721

4. C.P.G. Consortium: Computational pan-genomics: status, promises and challenges.
Brief Bioinform. 19(1), 118–135 (2018). https://doi.org/10.1093/bib/bbw089

5. Durbin, R.: Efficient haplotype matching and storage using the positional burrows-
wheeler transform (PBWT). Bioinformatics 30(9), 1266–1272 (2014). https://doi.
org/10.1093/bioinformatics/btu014

6. Eggertsson, H.P., et al.: Graphtyper enables population-scale genotyping using
pangenome graphs. Nat. Genet. 49(11), 1654–1660 (2017). https://doi.org/10.
1038/ng.3964

7. Eggertsson, H.P., et al.: GraphTyper2 enables population-scale genotyping of
structural variation using pangenome graphs. Nat. Commun. 10(1), 5402 (2019).
https://doi.org/10.1038/s41467-019-13341-9

8. Eizenga, J.M., et al.: Pangenome graphs. Annu. Rev. Genomics Hum. Genet. 21,
139–162 (2020). https://doi.org/10.1146/annurev-genom-120219-080406

9. Garrison, E., Guarracino, A.: Unbiased pangenome graphs. Bioinformatics 39(1)
(2023). https://doi.org/10.1093/bioinformatics/btac743

10. Garrison, E., Sirén, J., Novak, A.M., et al.: Variation graph toolkit improves
read mapping by representing genetic variation in the reference. Nat. Biotech-
nol. 36(9), 875–879 (2018). https://doi.org/10.1038/nbt.4227. http://www.nature.
com/doifinder/10.1038/nbt.4227

https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1101/645721
https://doi.org/10.1101/645721
http://biorxiv.org/lookup/doi/10.1101/645721
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1038/ng.3964
https://doi.org/10.1038/ng.3964
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1093/bioinformatics/btac743
https://doi.org/10.1038/nbt.4227
http://www.nature.com/doifinder/10.1038/nbt.4227
http://www.nature.com/doifinder/10.1038/nbt.4227

From de Bruijn Graphs to Variation Graphs 127

11. Grytten, I., Rand, K.D., Nederbragt, A.J., Storvik, G.O., Glad, I.K., Sandve,
G.K.: Graph peak caller: calling ChIP-seq peaks on graph-based reference genomes.
PLoS Comput. Biol. 15(2), e1006731 (2019). https://doi.org/10.1371/journal.pcbi.
1006731

12. Heydari, M., Miclotte, G., Van de Peer, Y., Fostier, J.: BrownieAligner: accurate
alignment of Illumina sequencing data to de Bruijn graphs. BMC Bioinform. 19(1),
311 (2018). https://doi.org/10.1186/s12859-018-2319-7

13. Hickey, G., et al.: Genotyping structural variants in pangenome graphs using the
vg toolkit. Genome Biol. 21(1), 35 (2020). https://doi.org/10.1186/s13059-020-
1941-7

14. Hickey, G., et al.: Pangenome graph construction from genome alignment with
minigraph-cactus. BioRxiv (2022). https://doi.org/10.1101/2022.10.06.511217.
http://biorxiv.org/lookup/doi/10.1101/2022.10.06.511217

15. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44(2), 226–232
(2012). https://doi.org/10.1038/ng.1028

16. Li, H., Feng, X., Chu, C.: The design and construction of reference pangenome
graphs with minigraph. Genome Biol. 21(1), 265 (2020). https://doi.org/10.1186/
s13059-020-02168-z. https://genomebiology.biomedcentral.com/articles/10.1186/
s13059-020-02168-z

17. Limasset, A., Cazaux, B., Rivals, E., Peterlongo, P.: Read mapping on de Bruijn
graphs. BMC Bioinform. 17(1), 237 (2016). https://doi.org/10.1186/s12859-016-
1103-9

18. Manuweera, B., Mudge, J., Kahanda, I., Mumey, B., Ramaraj, T., Cleary, A.:
Pangenome-wide association studies with frequented regions. In: Proceedings of
the 10th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics, pp. 627–632. ACM, New York, NY, USA (2019). https://
doi.org/10.1145/3307339.3343478

19. Minkin, I., Pham, S., Medvedev, P.: TwoPaCo: an efficient algorithm to build the
compacted de Bruijn graph from many complete genomes. Bioinformatics 33(24),
4024–4032 (2017). https://doi.org/10.1093/bioinformatics/btw609

20. Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E.: Genome graphs and the
evolution of genome inference. Genome Res. 27(5), 665–676 (2017). https://doi.
org/10.1101/gr.214155.116

21. Rautiainen, M., Marschall, T.: GraphAligner: rapid and versatile sequence-to-
graph alignment. Genome Biol. 21(1), 253 (2020). https://doi.org/10.1186/s13059-
020-02157-2. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-
020-02157-2

22. Schaeffer, L., Pimentel, H., Bray, N., Melsted, P., Pachter, L.: Pseudoalignment for
metagenomic read assignment. Bioinformatics 33(14), 2082–2088 (2017). https://
doi.org/10.1093/bioinformatics/btx106

23. Sirén, J.: Indexing variation graphs. In: Fekete, S., Ramachandran, V. (eds.) 2017
Proceedings of the Ninteenth Workshop on Algorithm Engineering and Exper-
iments (ALENEX), pp. 13–27. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA (2017). https://doi.org/10.1137/1.9781611974768.2. http://
epubs.siam.org/doi/10.1137/1.9781611974768.2

24. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with appli-
cations in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2),
375–388 (2014). https://doi.org/10.1109/TCBB.2013.2297101

https://doi.org/10.1371/journal.pcbi.1006731
https://doi.org/10.1371/journal.pcbi.1006731
https://doi.org/10.1186/s12859-018-2319-7
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1101/2022.10.06.511217
http://biorxiv.org/lookup/doi/10.1101/2022.10.06.511217
https://doi.org/10.1038/ng.1028
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02168-z
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s12859-016-1103-9
https://doi.org/10.1186/s12859-016-1103-9
https://doi.org/10.1145/3307339.3343478
https://doi.org/10.1145/3307339.3343478
https://doi.org/10.1093/bioinformatics/btw609
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1186/s13059-020-02157-2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02157-2
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02157-2
https://doi.org/10.1093/bioinformatics/btx106
https://doi.org/10.1093/bioinformatics/btx106
https://doi.org/10.1137/1.9781611974768.2
http://epubs.siam.org/doi/10.1137/1.9781611974768.2
http://epubs.siam.org/doi/10.1137/1.9781611974768.2
https://doi.org/10.1109/TCBB.2013.2297101

128 A. Cicherski and N. Dojer

25. Tettelin, H., et al.: Genome analysis of multiple pathogenic isolates of streptococcus
agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA
102(39), 13950–13955 (2005). https://doi.org/10.1073/pnas.0506758102

26. Yu, C., Mao, K., Zhao, Y., Chang, C., Wang, G.: Stliter: a novel algorithm to
iteratively build the compacted de Bruijn graph from many complete genomes.
IEEE/ACM Trans. Comput. Biol. Bioinform. 19(4), 2471–2483 (2022). https://
doi.org/10.1109/TCBB.2021.3062068

https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1109/TCBB.2021.3062068
https://doi.org/10.1109/TCBB.2021.3062068

CAGE: Cache-Aware Graphlet
Enumeration

Alessio Conte , Roberto Grossi , and Davide Rucci(B)

University of Pisa, Pisa, Italy
{alessio.conte,roberto.grossi}@unipi.it, davide.rucci@phd.unipi.it

Abstract. When information is (implicitly or explicitly) linked in its
own nature, and is modeled as a network, retrieving patterns can benefit
from this linked structure. In networks, “graphlets” (connected induced
subgraphs of a given size k) are the counterparts of textual n-grams, as
their frequency and shape can give powerful insights in the structure of a
network and the role of its nodes. Differently from n-grams, the number
of graphlets increases dramatically with their size k. We aim to push
the exact enumeration of graphlets as far as possible, as enumeration
(contrary to counting or approximation) gives the end-user the flexi-
bility of arbitrary queries and restrictions on the graphlets found. For
this, we exploit combinatorial and cache-efficient design strategies to cut
the computational cost. The resulting algorithm CAGE (Cache-Aware
Graphlet Enumeration) outperforms existing enumeration strategies by
at least an order of magnitude, exhibiting a low number of L1-L2-L3
cache misses in the CPU. It is also competitive with the fastest known
counting algorithms, without having their limitations on k.

Keywords: Graph algorithms · network analysis · graphlets ·
cache-aware algorithms · enumeration

1 Introduction

Information retrieval for textual documents can benefit from the discovery of pat-
terns underlying the text, e.g. using n-grams (also q-grams, contiguous sequences
of n items in a text) [25]. As most modern information is linked in nature, it can
be modeled as a network. Patterns themselves can inherit this linked structure,
and one of the fundamental tools are the so-called motifs, recurrent and sta-
tistically relevant patterns inside a network, i.e., frequent subgraphs: from the
seminal papers of Milo et al. [17] and Pržulj [21] these are generally encoded
in the form of k-graphlets (or, simply, graphlets), where k is usually kept small
(k ≤ 5). They are the natural candidates for having a role in network analysis,
such as n-grams do in text analysis. The frequency and shape of graphlets can
give powerful insights in the structure of a network and the role of its nodes.

Graphlets have found a remarkably wide range of applications; among many
are finding the important nodes of a graph [3], comparing large graphs [26],

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 129–142, 2023.
https://doi.org/10.1007/978-3-031-43980-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_11&domain=pdf
http://orcid.org/0000-0003-0770-2235
http://orcid.org/0000-0002-7985-4222
http://orcid.org/0000-0003-1273-2770
https://doi.org/10.1007/978-3-031-43980-3_11

130 A. Conte et al.

comparing temporal networks [2] or understanding the role of genes in pathways
and cancer mechanisms [32]. There is also increasing interest over graphlets in the
field of machine learning: one can extract information on the number of graphlets
involving a node, or where a node occurs in it (i.e., its orbit), to produce graph
kernels [26], or embeddings [6].

Formally, for a given undirected graph G = (V,E), each set S of k nodes
in G induces a subgraph G[S] = (S, {(x, y) ∈ E | x, y ∈ S}) by taking the
corresponding edges from G. A k-graphlet of G is a set S of k nodes that induces
a connected subgraph, namely, it satisfies the conditions S ⊆ V , |S| = k, and
G[S] is connected. A graphlet enumeration algorithm has G as input, and yields
all sets S of G that are k-graphlets as output. An output example is in Fig. 1a.

Fig. 1. (a) an example graph with its 3-graphlets below; (b) k-graphlet count in the
Brady network.

The key question addressed by this paper is “how far can we push graphlet
enumeration algorithms?”. The question addresses the purest version of graphlet
discovery, and its relevance is in building an efficient and general tool that can
be exploited in any graphlet-related application. We will show a hard limit faced
by current enumeration strategies, and how to overcome it.

The main challenge in this problem is the high computational cost involved.
Differently from n-grams, the number of graphlets increases dramatically with
the size k. Figure 1b shows how graphlets increase exponentially with k, even in
a small graph like the Brady network [14] (with 1,117 nodes and 1,330 edges).
Existing approaches deal with this problem by keeping k small [1,4,11,12,16,
19,20] (e.g., 3 or 4) if graphs are not very small, or by giving up exact results
in favor of estimation [5,7,26,29,30]. Indeed, according to a recent survey on
motifs [10], papers focused on estimation are becoming popular in recent years.
For more related approaches, we refer the reader to the in-depth survey in [22].

1.1 Results

In this paper we develop a practical output-sensitive graphlet enumeration algo-
rithm that is based on the classical binary partition scheme, a technique that

CAGE: Cache-Aware Graphlet Enumeration 131

induces a recursive tree, whose nodes are the recursive calls, and solutions are
output in the leaves. We refine this strategy to take full advantage of cache
memory, while also cutting down the size of the recursion tree beyond what is
possible with current enumeration algorithms. Our contributions are as follows:

1. We empirically observed that current enumeration methods cannot further
reduce their enumeration tree as the number of failure leaves, leaves which
do not report a graphlet, is negligible (9% or less) even with simple strategies.

2. Based on this, we aim to go beyond the already good performance of simple
enumerators: we achieve this by designing an algorithm that better exploits
cache memory in the CPU, as we show using the Intel VTune Profiler. Intel
CPUs have three cache levels (L1-L2-L3): L3 cache is faster but smaller
than RAM (and typically shared among the CPU cores); L2 and L1 are
even smaller and faster (typically one private L1-L2 per core). Our algorithm
exhibits zero or few L3 cache misses (compared to RAM loads and stores)
and L2-L3 cache-bound times have tiny values, in the range 0–5%.

3. Finally, we break through the hard limit on the number of recursive calls,
collapsing the three lowest levels of the recursion tree. As the tree grows expo-
nentially, this affects the largest levels. We also generate sets of solutions at
once, in a compressed – yet easy to access – format.

We call the resulting algorithm CAGE (Cache-Aware Graphlet Enumeration),
which constitutes an evolution of the reference enumeration algorithm [12], here-
after called KS-Simple (see Sect. 2), and outperforms it by over an order of
magnitude. We evaluate CAGE against the state of the art, namely, KS-Simple,
Kavosh [11], and FaSE [19], showing dramatically improved performance and
scalability. We also include fast counting approaches [1,20] that follow a more
analytical method, showing they are more competitive; however, by design they
cannot run for k > 5, whereas CAGE does not share this limitation.

In the rest of this paper, for an undirected graph G = (V,E), the neighbor-
hood of a node u is N(u) = {v ∈ V | (u, v) ∈ E}, the degree of u is |N(u)|,
and Δ is the maximum degree among all nodes. For a set of nodes S ⊆ V , we
define the neighborhood of S as N(S) = ∪u∈SN(u) \ S, the distance-2 neigh-
borhood as N2(S) = N(N(S)) \ (S ∪N(S)) and the distance-3 neighborhood as
N3(S) = N(N2(S)) \ (S ∪ N(S) ∪ N2(S)).

2 Baseline Algorithm

The classical approach to list all k-graphlets in a graph G = (V,E) is based
on binary partition. Intuitively, for a graph G = (V,E) and a node v ∈ V , we
initialize S = {v}, and enumerate the k-graphlets containing v by considering a
node u ∈ N(S) and two cases: the k-graphlets containing u, and those that do
not. In the first case, enumeration continues with S := S ∪ {u}, and k reduced
to k − 1; in the second, with the same S and the k-graphlets in G \ {u}.1 In

1 Here G \ {u} is G without u and its incident edges.

132 A. Conte et al.

particular, after setting an arbitrary scanning order for the nodes v ∈ V , each
graphlet is built by recursively adding a member of N(S) to S, after the initial
call with S = {v}. We get to a recursive leaf when we reach one of the following:

– (success leaf) when |S| = k;
– (failure leaf) when |S| < k and |N(S)| = 0.

One of the first algorithm able to enumerate all k-graphlets is ESU [31], while
the current state-of-the-art algorithm is that of Komusiewicz and Sommer [12],
hereafter called KS-Simple, that follows the above binary partition scheme, but
with a clever optimization summarized below in Property 1.

Property 1 ([12]). If a k-graphlet containing S does not exist in G after
taking u ∈ N(S) then no k-graphlet can exist in G \ {u} with the same S.

As an example, consider the graph in Fig. 1a while enumerating all 4-graphlets
containing vertex b in G\{a}. After the output of {b, c, d, e}, vertex e is removed
and no more 4-graphlets (in particular containing b) exist. Thanks to Property
1 we can stop the computation as soon as the next recursive call, which will
obviously fail. This property allows KS-Simple to have a running time of O(k2Δ)
per graphlet.

3 The CAGE Algorithm

In this section we present our main contribution, the CAGE algorithm. We give
the pseudocode and discuss its cache-awareness, carefully considering all the
scenarios that the algorithm may encounter during its execution, and show how
we can effectively compress the last three levels of its recursion tree.

3.1 Addressing a Hard Combinatorial Limit

Before describing our algorithm, we introduce the principles behind its design.
First, we opted for a data-driven design and empirically observed that – on

a dataset of over 150 graphs – the total number of failure leaves in the binary
partition scheme is in fact orders of magnitude smaller than the total number of
leaves, never surparssing 9%.

Second, we wanted to better exploit the cache in the CPU, the main moti-
vation for this paper. For example, if we need to check whether an edge (x, y)
exists and the adjacency list N(x) is already in cache, whereas we have no such
a guarantee for N(y), it is clearly more efficient to test membership y ∈ N(x)
rather than x ∈ N(y). Therefore, we carefully orchestrated the loading of graph
data during execution (see comments in the pseudocode).2

2 We are not directly controlling the cache, but rather allowing the algorithm to run
cache-friendly by making standard assumptions on the associative cache [8].

CAGE: Cache-Aware Graphlet Enumeration 133

Third, once some data is in the cache in the CPU, we would like to exploit it
at its best before it is released to load further data. As |S| < k and k is small, it is
reasonable to assume that both S and N(S) fit into the cache most of the times,
as |N(S)| < kΔ (exceptions may occur for large Δ). Based on this, we stop the
recursion when |S| = k − 3, and deduce all the possible extensions of S into
graphlets by adding three further nodes. This greatly truncates the recursion
tree, as each level of calls can be Δ times more populated than the previous one
(potentially reducing the total number of calls by a O(Δ3) factor).3 The last two
principles are intimately connected to each other, and give a speedup of at least
one order of magnitude in our experiments in Sect. 4.

3.2 Pseudocode

Algorithm 1 implements our principles stated above. It is called Cache-Aware
Graphlet Enumeration (CAGE), and is a non-trivial and cache-aware extension
of KS-Simple [12].

According to the first principle, we replaced the ENUM() function in KS-
Simple with the one in Algorithm 1. We decided to keep the for loop of KS-
Simple at lines 20–24, and fixed the scanning order of the vertices top-level loop
for efficient memory usage: as we only look for the graphlets in which v is the
smallest node of the order, we know all vertices smaller than v are in X, so
we do not need to store them explicitly. The second and third principles are
implemented at lines 2–19, as the base case. We observe that the base case is no
more |S| = k as in KS-Simple, but |S| = k − 3 as shown in Sect. 3.3. This is the
outcome of several iterative improvements over KS-Simple.

3.3 Exploiting What is Already Cached

Consider S of size |S| = k − 3, and let v be the smallest node in S according to
an arbitrary ordering (we use label ordering) of the vertices of G. As we have
to extend S in all possible ways with 3 nodes, we pick them from N(S), N2(S),
and N3(S), ignoring the nodes belonging to X (or only reachable from S via
X). Specifically, X is composed of the nodes v′ ∈ V such that v′ < v, and of the
nodes that have already been examined in the loop at lines 20–24 in the parent
call. We only need to store explicitly the latter nodes.

When picking the 3 nodes, we have to deal with 4 different cases. They are
discussed below with an accompanying drawing shown in Fig. 2.

Case 1: The 3 nodes come from N(S) \ X (see line 4).
Case 2: A node u is from N(S) \ X, and the other 2 nodes are chosen from

N2(S) \ X so that they are u’s neighbors (see lines 8 and 16).
Case 3: Distinct nodes u, v are from N(S) \ X, and the remaining node z is

chosen from N2(S) \ X, so that

• Case 3a: z is a common neighbor of both u and v (see lines 13 and 17), or
3 This idea can be generalized to k − 4, k − 5, and so on, but there is no payoff going

further than k − 3 in practice as there are too many cases to handle.

134 A. Conte et al.

Algorithm 1: CAGE: cache-efficient ENUM() algorithm, solutions is a
global variable.
1 Function ENUM(G,S,k,X)// Hp. k > 3 (case k = 3 is simpler)

// find all graphlets in G \ X containing all nodes in S
2 if |N(S) \ X| = 0 then return false // failure leaf

3 if |S| = k − 3 then // exploit the cache to complete S

4 localcount ← (|N(S)\X|
3

)
// (1) zero if |N(S) \ X| < 3

5 forall u ∈ N(S) \ X do // N(S) loaded in cache

6 udeg ← duplicated ← 0
7 forall z ∈ (N(u) \ (N(S) ∪ S)) \ X do // z ∈ N2(S) \ X

// N(u) and S loaded in cache

8 udeg ← udeg + 1 // needed for (2)

9 forall w ∈ (N(z) \ (N(S) ∪ S)) \ X do // (4) see Fig. 2

// N(S), N(u), S cached, and N(z) loaded

10 if w �∈ N(u) then localcount ← localcount + 1

11 forall v ∈ (N(S) \ {u, z}) \ X do // (3) N(S), N(z) cached

12 if v ∈ N(z) then // (3a) counted twice, from v and z
13 duplicated ← duplicated + 1
14 else // (3b)

15 localcount ← localcount + 1

16 localcount ← localcount +
(
udeg
2

)
// (2) see Section 3.4

17 localcount ← localcount + duplicated/2 // (3a) duplicates

counted once

18 solutions ← solutions + localcount
19 return (localcount > 0)

20 found ← false
21 forall u ∈ N(S) \ X do // here |S| < k − 3. Vertices sorted by label

22 if ENUM(G, S ∪ {u}, k, X) then found ← true else break
23 X ← X ∪ {u}
24 return found

• Case 3b: z is a neighbor of only u (symmetrically, only v) (see line 15).

Fig. 2. Cases 1–4

Case 4: A node u is from N(S)\X, a node z from
(N2(S) \ X) ∩ N(u), and the remaining node w
from N(z)\ (N(S)∪S ∪N(u))\X, which comes
either from N3(S) or N2(S)\N(u) (see line 10).
As a result, CAGE is actually pruning the leaves,
their parents, and their grandparents in the
recursion tree, each time reducing the total num-
ber of calls roughly by a factor of Δ.

CAGE: Cache-Aware Graphlet Enumeration 135

As each case involves the same or fewer steps than KS-Simple [12], CAGE
shares its worst-case running time guarantee:

Theorem 1. CAGE reports all k-graphlets including the nodes in S, but not
the nodes in X, in O(k2Δ) time per graphlet using O(min{kΔ, |V |}) space.

In order to make our implementation as cache-friendly as possible, we coupled
the pruning of the recursion tree with some cache-friendly data structures so that
S, N(S) \ X, and N(u) are stored as vectors, N(S) is stored as a cuckoo hash
table [18], and X is not explicitly stored due to vertex ordering. We have:

Lemma 1. Given an associative CPU cache [9], if its size is Ω(kΔ) words of
memory, then the base case |S| = k − 3 in CAGE loads S, N(S), N(u), and
N(z) once for distinct nodes u and z, and then keeps them in the cache when
they are accessed.

Comments in the pseudocode at lines 5–17 give indications when S, N(S), N(u),
and N(z) are loaded into cache, or already cached. This predicted behavior has
been carefully planned during our experimental study. Moreover, the cache words
used in practice are likely to be far less than the worst case O(kΔ), as real-world
networks are sparse, with most vertices having very small degree.

3.4 Remarks

We did not discuss the case k = 3 as CAGE is mainly aimed at larger values of k,
and it can be easily obtained as a simplification of the pseudocode. Moreover, for
simplicity, we only report the number of solutions found, and the graphlets are
not output. All algorithms in the experiments also do not make explicit output,
as is usual when comparing enumeration algorithms [24]. Furthermore, CAGE
can produce a compressed output, efficient to both read and write and a common
practice in enumeration (see, e.g., [27,28]): it suffices to output the k − 3 nodes
in S, as well as the sets from which to choose the completions, e.g., for case 1,
write the contents of S, followed by “plus any 3 elements from”, followed by the
contents of N(S) \ X. When dealing with case 3a, we can decide to output only
the choice u < v, to avoid the duplication when z is connected to both u and v.

4 Experimental Results

This section provides the details and results of our extensive experimental phase.

4.1 Environment and Dataset

Our experiments were carried on a dual-processor Intel Xeon Gold 5318Y Icelake
@ 2.10GHz machine, with 48 physical cores each and 1TB of shared RAM;
private cache L1 per core: 48K, private cache L2 per core: 1.25MB, shared cache
L3: 36MB, running Ubuntu Server 22.04 LTS, Intel C++ compiler icpx, version
2022.1.0, and cache analysis was done with Intel VTune profiler, version 2022.2.0.

136 A. Conte et al.

The dataset consists of 155 graphs taken from public repositories LASAGNE
[14], Network Repository [23], and SNAP [13]. These files range in size from very
small (hundreds of nodes and edges) to very large (millions of nodes and half a
billion edges). Table 1 shows a relevant subset of the dataset, and the 10 graphs
mentioned in this section can be downloaded from GitHub4, as well as the source
code of our algorithm and the re-implemented KS-Simple.

Table 1. A sample from our dataset, sorted by |E|

Graph Type |V | |E| Δ

Brady Biological 1,117 1,330 28

ca-GrQc Collaboration 5,242 14,484 81

cti Mesh 16,840 48,232 6

Wing Mesh 62,032 121,544 4

Roadnet-TX Road Network 1,379,917 1,921,660 12

Roadnet-CA Road Network 1,965,206 2,766,607 12

Auto Mesh 448,695 3,314,611 37

Hugetrace-00 DIMACS10 4,588,486 6,879,133 4

IMDB Movies 913,201 37,588,613 11,941

Arabic-2005 Web Crawl 22,744,080 553,903,073 575,628

4.2 CAGE Implementation and Comparison Methodology

We implemented CAGE in C++, compiled with the highest optimization flag
-O3. The cache-friendly nature discussed in Algorithm 1 is enhanced by the
likely and unlikely macros to help the compiler with branch prediction, and
we do not physically delete and restore nodes between recursive calls by reusing
the data structures mentioned in Sect. 3, e.g., traversing the vector for N(S)\X
so that deletion of nodes is modeled by a flexible starting index.

Below we adopt the notation CAGE-1, CAGE-2, and CAGE-3, with the
intent of distinguishing among the base cases |S| = k − 1, |S| = k − 2, and
|S| = k − 3, respectively. Indeed, CAGE-3 is actually CAGE, and the others can
be easily derived from by simplifying the pseudocode in Algorithm 1.

We compared our algorithms against several different algorithms from the
literature, including recent and well known approaches from [22, Table 2], i.e.,
PGD [1], Kavosh [11], FaSE [19] and Escape [20] (although we exclude the
matrix-based approach [16], unsuitable for large graphs), as well as the more
recent KS-Simple [12]. The aforementioned methods adopt different strategies
to exactly count the number of k-graphlets, but they all share an enumerative
core, either via implicit counting (i.e., PGD and Escape) or explicit construction
of the graphlets (the others). While we do not discuss their implementations for

4
https://github.com/DavideR95/CAGE.

https://github.com/DavideR95/CAGE

CAGE: Cache-Aware Graphlet Enumeration 137

lack of space, we refer to their papers for the available sources. Since the avail-
able code of KS-Simple [12] is in Python, we reimplemented it in C++ to avoid
penalizing it, following the same guidelines as for CAGE. We then conducted
the following experiments:

(i) Analysis of cache efficiency and hotspots in the code using VTune, setting
a timeout of 15 min on a subset of the dataset built to represent differently
sized graphs,

(ii) Analysis of the recursion tree of KS-Simple for k = 4, 5, 7, 9 on the entire
dataset with a time limit of 30 min, showing that the number of failure
leaves is typically less than 1% of the total number of leaves, and never
more than 9% (details omitted for space reasons),

(iii) A stress test for all the algorithms and competitors, for k ∈ [4, 10] with a
timeout of 12 h.

Table 2. VTune Profiler cache access statistics for our algorithms and competitors
with k = 7. †: execution stopped after 15min. ∗: execution stopped due to a memory
allocation problem.

Graph Algorithm Time
(s)

#Graphlets Found
(k = 7)

L3 Misses L1
Bound

L2
Bound

L3
Bound

Loads Stores

ca-GrQc KS-Simple † † 8,577,821,416 0 7.9% 0.7% 0% 3,531 E+9 1,394 E+9

Kavosh † 884,849,128 65,553,660 8.2% 0.3% 0.1% 3,075 E+9 1,782 E+9

FaSE † 2,448,373,561 5,429,820 10.2% 0.7% 0% 1,912 E+9 276E+9

CAGE-1 76 15,186,322,814 0 8.8% 0.6% 0% 303 E+9 117E+9

CAGE-2 39 15,186,322,814 0 11.3% 1.5% 0% 116 E+9 7E+9

CAGE-3 34 15,186,322,814 0 15.4% 2.8% 0% 95 E+9 2E+9

roadnet-TX KS-Simple 14 203,059,778 0 14.9% 0% 0% 43 E+9 23E+9

Kavosh ∗ – – – – – – –

FaSE 46 203,059,778 0 14.2% 0.5% 0% 128 E+9 37E+9

CAGE-1 5 203,059,778 0 16.2% 0% 0.6% 14 E+9 8E+9

CAGE-2 4 203,059,778 0 22.3% 0% 0% 6 E+9 2E+9

CAGE-3 3 203,059,778 0 28.2% 0% 1.3% 5 E+9 1E+9

auto KS-Simple † 4,775,173,331 0 14.2% 0.3% 0% 2,360 E+9 1,051 E+9

Kavosh ∗ – – – – – – –

FaSE † 3,032,335,810 27,202,000 12.5% 0.7% 0.1% 2,027 E+9 365E+9

CAGE-1 † 80,580,776,005 0 14.2% 0.3% 0% 2,176 E+9 1,014 E+9

CAGE-2 † 135,096,265,408 0 21.9% 0.5% 0.1% 1,480 E+9 138E+9

CAGE-3 † 152,621,021,219 0 21.1% 1.4% 0.1% 2,080 E+9 53E+9

arabic-2005 KS-Simple † 4,001,309,731 27,157,305 6% 0.7% 5.1% 3,626 E+9 593E+9

Kavosh ∗ – – – – – – –

FaSE ∗ – – – – – – –

CAGE-1 † 22,084,290,111,889 48,516,858 5.9% 0.8% 4.9% 2,976 E+9 552E+9

CAGE-2 † 27,208,214,120,342 21,697,928 7.8% 1% 4.2% 1,820 E+9 11E+9

CAGE-3 † 47,718,156,097,277 173,529,344 1% 0.3% 0.2% 3,329 E+9 23E+9

4.3 Cache Analysis

During our implementation of CAGE, we took our design decisions based upon
the performance metrics given by Intel VTune Profiler, tweaking the code accord-
ing to the statistics of cache accesses and misses. The results of the VTune anal-
ysis for the optimized versions of KS-Simple, CAGE-1, CAGE-2, and CAGE-3

138 A. Conte et al.

are summarized in Table 2, along with the same data for our competitors Kavosh
[11] and FaSE [19]. We chose not to include PGD [1] and ESCAPE [20] in this
analysis since they only work for k ≤ 5, while our focus is on larger values of
k, in order to show the performance scaling to larger working sets (i.e. larger S
and N(S)). The macro rows correspond to four graphs, whose names are given
in the first column. We report the cache performance by taking the best out of 5
non-consecutive executions of VTune, where the computation was stopped after
15 min for two large graphs5. The other columns report: the run time in seconds,
number of graphlets found for k = 7, number of L3 cache misses (i.e. accesses
to the RAM), how much L1, L2, L3 cache affected on the percentage of clock
ticks where the CPU was stalled waiting on that level of cache (the lower, the
better), and the total number of load and store operations.

From the results on our algorithms, it clearly emerges that L2 and L3 bounds
are very small, whereas L1 is larger for small graphs. This is a sign of good cache
usage, as the L2 and L3 cache misses are definitely more expensive than the L1
cache misses (both data and instructions). For the small graphs ca-GrQc and
roadnet-TX and mid-size graph auto, we have zero L3 misses (as they proba-
bly fit in the L3); for large graph arabic-2005, the number of L3 cache misses
increases going through the rows for KS-Simple, CAGE-1, CAGE-2, and CAGE-
3. This may not be obvious as there is a timeout of 15 min for this large graph:
consequently, KS-Simple produces very few solutions compared to the others,
and CAGE-3 more solutions (the apparent anomaly for CAGE-3 on arabic-2005
can be explained by dividing the numbers by 2 in its last row in the table, so that
we roughly get the same number of solutions as CAGE-1 and CAGE-2, we have
also similar numbers in the other columns, except for L3 misses, which we dis-
cuss in a while). The number of loads/stores follows a similar pattern to that for
L3 misses. The number of L3 cache misses is negligible with respect to the total
number of load and store instructions issued, allowing the percentage of L2- and
L3-bound to stay always within 5%. On the other hand, our competitors are able
to achieve similar results in terms of L1, L2, and L3 bound, but the number of
L3 misses is higher even on ca-GrQc. FaSE is able to compute all the solutions
with zero cache misses on roadnet-TX, but with a much higher time require-
ment compared to CAGE. Additionally, the Kavosh algorithm started having
bad memory allocation6 issues already with roadNet-TX, while FaSE fails later
on the largest graph.

We also evaluated the size of the data structures for N(S), N(u), and N(z),
examined during the for loop of Algorithm 1 along with the average degree of
the networks, as shown in Table 3, for k = 7. They clearly fit into the cache most
of the times, recalling that each node identifier is a 32-bit integer and that the
L2 cache in each core is 1.25MB on our machine. For arabic-2005, even if its
maximum degree Δ is large, its average degree is small, as well as the median

5 This timeout is due to the size of the data gathered by VTune, which grows quickly
over time.

6 i.e. the runtime raised a bad alloc exception or a segmentation fault while reading
the input graph.

CAGE: Cache-Aware Graphlet Enumeration 139

values for N(·). Lemma 1 indicates that CAGE-3 is cache-friendly under this
condition on the average.

Table 3. Median size of N(S), N(u) and
N(z) for a subset of the dataset (k = 7).

Graph Δ avg. degree N(S) N(u) N(z)

ca-GrQc 81 5.5 52 13 9

roadnet-TX 12 2.8 3 3 8

auto 37 14.7 35 15 15

arabic-2005 575,628 48.7 115 36 49

According to these results, we believe
that CAGE-3 is preferable to CAGE-
1 and CAGE-2 as it finds more solu-
tions for the given timeout, even
though in some cases CAGE-2 could
perform as well as CAGE-3.

Finally, we remark that CAGE-
4 (i.e., adopting |S| = k − 4 as
base case) might not be faster than

CAGE-3, as a recursive call needs to address 8 scenarios individually and explore
N4(S) instead of N3(S): this increases code complexity, requires extensive fine-
tuning and could reduce cache friendliness (adding nested for-loops and more
load operations); as such we leave this study for future work.

Fig. 3. Running time of our competitors vs. CAGE on four significant input graphs.
*: an execution issue occurred.

140 A. Conte et al.

4.4 Running Time Analysis

Armed with our fine-tuned implementation of CAGE (i.e. CAGE-3), we com-
pared it to the other methods mentioned in Sect. 4.2. We performed an extensive
validation phase, measuring both the running time and the number of graphlets
found, with a timeout of 12 h. Some methods could not terminate the execution
for some issues, e.g. they could not handle a graph so large, ran into memory
issues, or were killed by the operating system.

Figure 3 shows a summary of the results obtained in four graphs of increasing
size, Brady, roadNet-TX, auto, and Hugetrace-0000 (see Table 1 for their charac-
teristics). On the y-axis, we reported the running time in seconds, in logarithmic
scale; on the x-axis, we report increasing values of k ∈ [4, 10]. For each value of
k, each bar corresponds to an algorithm as specified in the legend, where lower
bars mean better performances. The executions that had the issues mentioned
above, have an asterisk ‘*’ in place of the corresponding bar. For graph auto,
the executions for k = 7, 8, 9, 10 were in timeout (indicated with a bar).

We can observe that KS-Simple and CAGE perform quite well, with CAGE
running faster than KS-Simple by roughly an order of magnitude (for k = 7 on
auto, KS-Simple was in timeout whereas CAGE was the only one to terminate
its execution). Both compare significantly better with the other methods, as the
latter ones are either too slow or cannot execute that instance of the graph. An
exception is the PGD algorithm [1], as it achieves faster runnning time than
CAGE on Brady and auto, but it does not scale well for the other two graphs;
moreover, PGD is explicitly designed to work only with k = 3, 4. These results,
combined with the code profiling statistics of Sect. 4.3, confirm the benefits of
our design principles for CAGE.

5 Conclusions

We presented CAGE, a cache-aware algorithm for k-graphlet enumeration that
is an evolution of the classical binary partition technique. CAGE builds upon our
empirical observation that binary partition produces only few failure leaves in
the computational recursion tree. We developed and analyzed several variants of
CAGE, iteratively cutting more recursion levels, that were fine-tuned during an
extensive experimental phase based on cache analysis and number of graphlets
reported. We believe CAGE can be used as the core for more sophisticated enu-
meration tasks, such as orbit enumeration or isomorphic graphlet classification
[15,21] as well as arbitrary user-defined queries, boosting analysis possibilities
for large networks. Future work will consider applying the analysis capabilities
of CAGE to graph analysis tasks, as well as attempting to increase the levels of
recursion-tree pruning beyond 3.

Acknowledgements. Work partially supported by MIUR project n. 20174LF3T8
Algorithms for Harnessing networked Data (AHeAD).

CAGE: Cache-Aware Graphlet Enumeration 141

References

1. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.: Efficient graphlet counting for
large networks. In: 2015 IEEE International Conference on Data Mining, pp. 1–10.
Atlantic City, NJ, USA, IEEE (2015)

2. Apaŕıcio, D., Ribeiro, P., Silva, F.: Graphlet-orbit transitions (GoT): a fingerprint
for temporal network comparison. PLoS ONE 13(10), e0205497 (2018)

3. Apaŕıcio, D., Ribeiro, P., Silva, F., Silva, J.: Finding dominant nodes using
graphlets. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.)
COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 77–89. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-36687-2 7

4. Bhuiyan, M.A., Rahman, M., Rahman, M., Al Hasan, M.: Guise: uniform sampling
of graphlets for large graph analysis. In: 2012 IEEE 12th International Conference
on Data Mining, pp. 91–100. IEEE (2012)

5. Bressan, M., Chierichetti, F., Kumar, R., Leucci, S., Panconesi, A.: Motif counting
beyond five nodes. ACM TKDD 12(4), 1–25 (2018)

6. Dutta, A., Riba, P., Lladós, J., Fornés, A.: Hierarchical stochastic graphlet embed-
ding for graph-based pattern recognition. Neural Comput. Appl. 32(15), 11579–
11596 (2020)

7. Elenberg, E.R., Shanmugam, K., Borokhovich, M., Dimakis, A.G.: Beyond trian-
gles: a distributed framework for estimating 3-profiles of large graphs. In: ACM
SIGKDD, pp. 229–238 (2015)

8. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. ACM Trans. Algorithms 8(1), 4:1–4:22 (2012)

9. Harris, S.L., Harris, D.: 8 - memory systems. In: Harris, S.L., Harris, D. (eds.) Dig-
ital Design and Computer Architecture, pp. 498–541. Morgan Kaufmann, Burling-
ton (2022)

10. Jazayeri, A., Yang, C.C.: Motif discovery algorithms in static and temporal net-
works: a survey. J. Complex Netw. 8(4), cnaa031 (2020)

11. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC
Bioinform. 10(1), 318 (2009)

12. Komusiewicz, C., Sommer, F.: Enumerating connected induced subgraphs:
improved delay and experimental comparison. Discret. Appl. Math. 303, 262–282
(2021)

13. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection
(2014). http://snap.stanford.edu/data

14. Marino, A. , Crescenzi, P.: LASAGNE Networks: Laboratory of Algorithms, mod-
elS, and Analysis of Graphs and NEtworks (2015). http://www.pilucrescenzi.it/
lasagne/content/networks.html

15. Melckenbeeck, I., Audenaert, P., Colle, D., Pickavet, M.: Efficiently counting all
orbits of graphlets of any order in a graph using autogenerated equations. Bioin-
formatics 34(8), 1372–1380 (2017)

16. Melckenbeeck, I., Audenaert, P., Van Parys, T., Van De Peer, Y., Colle, D., Pick-
avet, M.: Optimising orbit counting of arbitrary order by equation selection. BMC
Bioinform. 20(1), 1–13 (2019)

17. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

18. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)

https://doi.org/10.1007/978-3-030-36687-2_7
http://snap.stanford.edu/data
http://www.pilucrescenzi.it/lasagne/content/networks.html
http://www.pilucrescenzi.it/lasagne/content/networks.html

142 A. Conte et al.

19. Paredes, P., Ribeiro, P.: Towards a faster network-centric subgraph census. In:
IEEE/ACM ASONAM, pp. 264–271, New York, NY, USA, ACM (2013)

20. Pinar, A., Seshadhri, C., Vishal, V.: Escape: efficiently counting all 5-vertex sub-
graphs. In: The Web Conference (WWW), pp. 1431–1440 (2017)

21. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioin-
formatics 23(2), e177–e183 (2007)

22. Ribeiro, P., Paredes, P., Silva, M.E., Aparicio, D., Silva, F.: A survey on subgraph
counting: concepts, algorithms, and applications to network motifs and graphlets.
ACM Comput. Surv. 54(2), 1–36 (2021)

23. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics
and visualization. In: AAAI (2015)

24. Ruskey, F.: Combinatorial generation. Preliminary Working Draft, vol. 11, pp. 20.
University of Victoria, Victoria, BC, Canada (2003)

25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

26. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt, K.:
Efficient graphlet kernels for large graph comparison. In: van Dyk, D., Welling, M.
(eds.) AISTATS, vol. 5, pp. 488–495 (2009). PMLR 16–18

27. Shioura, A., Tamura, A., Uno, T.: An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM J. Comput. 26(3), 678–692 (1997)

28. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gener-
ating all maximal cliques and computational experiments. Theoret. Comput. Sci.
363(1), 28–42 (2006)

29. Wang, P., Lui, J.C., Ribeiro, B., Towsley, D., Zhao, J., Guan, X.: Efficiently esti-
mating motif statistics of large networks. ACM TKDD 9(2), 1–27 (2014)

30. Wang, P., et al.: Moss-5: a fast method of approximating counts of 5-node graphlets
in large graphs. IEEE TKDE 30(1), 73–86 (2017)

31. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput.
Biol. Bioinf. 3(4), 347–359 (2006)

32. Windels, S.F., Malod-Dognin, N., Pržulj, N.: Graphlet eigencentralities capture
novel central roles of genes in pathways. PLoS ONE 17(1), e0261676 (2022)

Space-Time Trade-Offs for the LCP Array
of Wheeler DFAs

Nicola Cotumaccio1,2(B) , Travis Gagie2 , Dominik Köppl3 ,
and Nicola Prezza4

1 GSSI, L’Aquila, Italy
nicola.cotumaccio@gssi.it

2 Dalhousie University, Halifax, Canada
{nicola.cotumaccio,travis.gagie}@dal.ca
3 University of Münster, Münster, Germany

dominik.koeppl@uni-muenster.de
4 University Ca’ Foscari, Venice, Italy

nicola.prezza@unive.it

Abstract. Recently, Conte et al. generalized the longest-common prefix
(LCP) array from strings to Wheeler DFAs, and they showed that it
can be used to efficiently determine matching statistics on a Wheeler
DFA [DCC 2023]. However, storing the LCP array requires O(n logn)
bits, n being the number of states, while the compact representation of
Wheeler DFAs often requires much less space. In particular, the BOSS
representation of a de Bruijn graph only requires a linear number of bits,
if the size of alphabet is constant.

In this paper, we propose a sampling technique that allows to access
an entry of the LCP array in logarithmic time by only storing a linear
number of bits. We use our technique to provide a space-time trade-
off to compute matching statistics on a Wheeler DFA. In addition, we
show that by augmenting the BOSS representation of a k-th order de
Bruijn graph with a linear number of bits we can navigate the underlying
variable-order de Bruijn graph in time logarithmic in k, thus improving
a previous bound by Boucher et al. which was linear in k [DCC 2015].

Keywords: Wheeler graphs · LCP array · de Bruijn graphs ·
Matching statistics · Variable-order de Bruijn graphs

1 Introduction

In 1973, Weiner invented the suffix tree of a string [28], a versatile data structure
which allows to efficiently handle a variety of problems, including solving pat-
tern matching queries, determining matching statistics, identifying combinatorial
properties of the string and computing its Lempel-Ziv decomposition. However,
the space consumption of a suffix tree can be too high for some applications
(including bioinformatics), so over the past 30 years a number of compressed
data structures simulating the behavior of a suffix tree have been designed, thus
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 143–156, 2023.
https://doi.org/10.1007/978-3-031-43980-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_12&domain=pdf
http://orcid.org/0000-0002-1402-5298
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0000-0002-8721-4444
http://orcid.org/0000-0003-3553-4953
https://doi.org/10.1007/978-3-031-43980-3_12

144 N. Cotumaccio et al.

leading to compressed suffix trees [26]. In many applications, one does not need
the full functionality of a suffix tree, so it may be sufficient to store only some of
these data structures. Among the most popular data structures, we have the suf-
fix array [21], the longest common prefix (LCP) array [21], the Burrows-Wheeler
transform (BWT) [6] and the FM-index [13].

In the past 20 years, the ideas behind the suffix array, the BWT and the FM-
index have been generalized to trees [12,14], de Bruijn graphs [5], Wheeler graphs
[1,17] and arbitrary graphs and automata [8,9]. Broadly speaking, Wheeler
graphs concisely capture the intuition behind these data structures in a graph
setting; thus, they can be regarded as a benchmark for extending suffix tree func-
tionality to graphs. In particular, the LCP array of a string remarkably extends
the functionality of the suffix array, and a recent paper [7] shows that the LCP
array can also be generalized to Wheeler DFAs, which represents a remarkable
step toward fully simulating suffix-tree functionality in a graph setting. However,
the solution in [7] is not space efficient: storing the LCP array of a Wheeler DFA
requires O(n log n) bits, n being the number of states. If the size σ of the alphabet
is small, this space can be considerably larger than the space required to store
the Wheeler DFA itself. As we will see, if σ log σ = o(log n) , then the space
required to store the Wheeler DFA is o(n log n), and if σ = O(1), then the space
required to store the Wheeler DFA is O(n). The latter case is especially relevant
in practice, because de Bruijn graphs are the prototypes of Wheeler graphs, and
in bioinformatics de Bruijn graphs are defined over the constant-size alphabet
Σ = {A,C,G, T}.

In this paper, we show that we can sample entries of the LCP array in such
a way that, by storing only a linear number of additional bits on top of the
Wheeler graph, we can compute each entry of the LCP array in logarithmic
time, thus providing a space-time trade-off. More precisely:

Theorem 1. We can augment the compact representation of a Wheeler DFA A
with O(n) bits (O(n log log σ) bits, respectively), where n is the number of states
and σ is the size of the alphabet, in such a way that we can compute each entry
of the LCP array of A in O(log n log log σ) time (O(log n) time, respectively).

We present two applications of our result: computing matching statistics on
Wheeler DFAs and navigating variable-order de Bruijn graphs.

Matching Statistics on Wheeler DFAs. The problem of computing match-
ing statistics on a Wheeler DFA is defined as follows: given a pattern of length
m and a Wheeler DFA with n states, determine the longest suffix of each prefix
of the pattern that occurs in the graph (that is, that can be read by following
some edges on the graph and concatenating the labels). This problem is a nat-
ural generalization of the problem of computing matching statistics on strings.
Conte et al. [7] proved the following result:

Theorem 2. We can augment the compact representation of a Wheeler DFA
A with O(n log n) bits, where n is the number of states and σ is the size of the

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 145

alphabet, in such a way that we can compute the matching statistics of a pattern
of length m with respect to the Wheeler DFA in O(m log n) time.

We will show that if we only want to use linear space, then we can use
Theorem 1 to obtain the following trade-off.

Theorem 3. We can augment the compact representation of a Wheeler DFA A
with O(n log log σ) bits, where n is the number of states and σ is the size of the
alphabet, in such a way that we can compute the matching statistics of a pattern
of length m with respect to the Wheeler DFA in O(m log2 n) time.

Variable-Order de Bruijn Graphs. Wheeler graphs are a generalization of
de Bruijn graphs; in particular, the compact representation of a Wheeler graph
is a generalization of the BOSS representation of a de Bruijn graph [5], and
our results on the LCP array also apply to a de Bruijn graph. Many assemblers
[3,19,24,27] consider all k-mers occurring in a set of reads and build a k-th
order de Bruijn graph (on the alphabet Σ = {A,C,G, T}) to perform Eulerian
sequence assembly [18,25]. However, the choice of the parameter k impacts the
assembly quality, so some assemblers try several choices for k [3,24], which slows
down the process because several de Bruijn graphs need to be built. In [4] it was
shown that the k-order de Bruijn graph of S can be used to implicitly store the
k′-th order de Bruijn graph of S for every k′ ≤ k, thus leading to a variable-order
de Bruijn graph. The challenge is to navigate this implicit representation (that
is, how to follow edges in a forward or backward fashion). In [4], it was shown
that the navigation is possible by storing or by simulating an array LCPG which
can be seen as a simplification of the LCP array of the Wheeler graph G. More
precisely, we have the following result (see [4]; we assume σ = O(1)).

Theorem 4. 1. We can augment the BOSS representation of a k-th order de
Bruijn graph with O(n log k) bits, where n is the number of nodes, so that the
underlying variable-order de Bruijn graph can be navigated in O(log k) time
per visited node.

2. We can augment the BOSS representation of a k-th order de Bruijn graph with
O(n) bits, where n is the number of nodes, so that the underlying variable-
order de Bruijn graph can be navigated in O(k log n) time per visited node.

Essentially, the first solution in Theorem 4 explicitly stores LCPG, while the
second solution in Theorem 4 computes the entries of LCPG by exploiting the
BOSS representation. In general, a big k (close to the size of the reads) allows
to retrieve the expressive power on an overlap graph [11], so in Theorem 4 we
cannot assume that k is small. On the one hand, the space required for the
first solution can be too large, because a de Bruijn graph can be stored by
using only O(n) bits. On the other hand, the time bound in the second solution
increases substantially. We can now improve the second solution by providing a
data structure that achieves the best of both worlds. As we did in Theorem 1,
we can conveniently sample some entries of LCPG. We will prove the following
result.

146 N. Cotumaccio et al.

Theorem 5. We can augment the BOSS representation of a k-th order de
Bruijn graph with O(n) bits, where n is the number of nodes, so that the under-
lying variable-order de Bruijn graph can be navigated in O(log k log n) time per
visited node.

2 Definitions

Sets and Relations. Let V be a set. A total order on V is a binary relation ≤
which is reflexive, antisymmetric and transitive. We say that U is a ≤-interval
(or simply an interval) if for all v1, v2, v3 ∈ V , if v1, v3 ∈ U and v1 < v2 < v3,
then v2 ∈ U . If u, v ∈ V , with u ≤ v, we denote by [u, v] the smallest interval
containing u and v, that is [u, v] = {z ∈ V | u ≤ z ≤ v }. In particular, if V
is the set of integers, then we assume that ≤ is the standard total order, hence
[u, v] = {u, u + 1, . . . , v − 1, v}.

Strings. Let Σ be a finite alphabet, with σ = |Σ|. Let Σ∗ be the set of all
finite strings on Σ and let Σω be the set of all (countably) infinite strings on Σ.
If α ∈ Σ∗, then αR is the reverse string of α. If α, β ∈ Σ∗ ∪ Σω, we denote by
lcp(α, β) the length of longest common prefix between α and β. In particular, if
α ∈ Σ∗, then lcp(α, β) ≤ |α| and if α, β ∈ Σω with α = β, then lcp(α, β) = ∞.
Let � be a fixed total order on Σ. We extend the total order � from Σ to
Σ∗ ∪ Σω lexicographically.

DFAs. Throughout the paper, let A = (Q,E, s0, F) be a deterministic finite
automaton (DFA), where Q is the set of states, E ⊆ Q × Q × Σ is the set of
labeled edges, s0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
The alphabet Σ is effective, that is, every c ∈ Σ labels some edge. Since A is
deterministic, for every u ∈ Q and for every a ∈ Σ there exists at most one edge
labeled a leaving u. Following [1], we assume that (i) s0 has no incoming edges,
(ii) every state is reachable from the initial state and (iii) all edges entering the
same state have the same label (input-consistency). For every u ∈ Q \ {s0},
let λ(u) ∈ Σ be the label of all edges entering u. We define λ(s0) = #, where
�∈ Σ is a special character such that # ≺ a for every a ∈ Σ (the character
plays the same role as the termination character $ in suffix arrays, suffix trees
and Burrows-Wheeler transforms). As a consequence, an edge (u′, u, a) can be
simply written as (u′, u), because it must be a = λ(u).

Compact Data Structures. Let A be an array of length n containing elements
from a finite totally-ordered set. A range minimum query on A is defined as
follows: given 1 ≤ i ≤ j ≤ n, return one of the indices k with 1 ≤ k ≤ n such
that (i) i ≤ k ≤ j and A[k] = min{A[i], A[i + 1], . . . , A[j − 1], A[j]}. We write
k = RMQA(i, j). Then, there exists a data structure of 2n + o(n) such that in
O(1) time we can compute RMQA(i, j) for every 1 ≤ i ≤ n, without the need to

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 147

access A [15,16]. This result is essentially optimal, because every data structure
solving range minimum queries on A requires at least 2n−Θ(log n) bits [16,20].

Let A be a bitvector of length n. Let rank(A, i) = |{j ∈ {1, 2, . . . , i −
1, i} | A[j] = 1}| be the number of 1’s among the first i bits of A. Then, there
exists a data structure of n + o(n) bits such that in O(1) time we can compute
rank(A, i) for 1 ≤ i ≤ n [23].

3 Wheeler DFAs

Let us recall the definition of Wheeler DFA [7].

Definition 1. Let A = (Q,E, s0, F) be a DFA. A Wheeler order on A is a total
order ≤ on Q such that s0 ≤ u for every u ∈ Q and:

1. (Axiom 1) If u, v ∈ Q and u < v, then λ(u) � λ(v).
2. (Axiom 2) If (u′, u), (v′, v) ∈ E, λ(u) = λ(v) and u < v, then u′ < v′.

A DFA A is Wheeler if it admits a Wheeler order.

Every DFA admits at most one Wheeler order [1], so the total order ≤ in
Definition 1 is the Wheeler order on A. In the following, we fix a Wheeler DFA
A = (Q,E, s0, F), with n = |Q| and e = |E|, and we write Q = {u1, . . . , un},
with u1 < u2 < · · · < un in the Wheeler order. In particular, u1 = s0. Following
[7], we assume that s0 has a self-loop labeled #, which is consistent with Axiom
1, because # ≺ a for every a ∈ Σ). This implies that every state has at least
one incoming edge, so for every state ui there exists at least one infinite string
α ∈ Σω that can be read starting from ui and following edges in a backward
fashion. We denote by Iui

the nonempty set of all such strings. Formally:

Definition 2. Let 1 ≤ i ≤ n. Define:

Iui
= {α ∈ Σω | there exist integers f1, f2, . . . in [1, n] such that (i)f1 = i,

(ii) (ufk+1 , ufk
) ∈ E for every k ≥ 1 and (iii)α = λ(uf1)λ(uf2) . . . }.

For every 1 ≤ i ≤ n, let pmin(i) be the smallest 1 ≤ i′ ≤ n such that
(ui′ , ui) ∈ E and let pmax(i) be the largest 1 ≤ i′′ ≤ n such that (ui′′ , ui) ∈ E.
Both pmin(i) and pmax(i) are well-defined because every state has at least one
incoming edge. For every 1 ≤ i ≤ n, define p1min(i) = pmin(i) and recursively, for
j ≥ 2, let pj

min(i) = pmin(p
j−1
min (i)). Then, λ(ui)λ(pmin(i))λ(p2min(i))λ(p3min(i)) . . .

is the lexicographically smallest string in Iui
, which we denote by mini [7].

Analogously, one can define the lexicographically largest string in Iui
by using

pmax. Moreover, in [7] it was shown that:

min1 � max1 � min2 � max2 � · · · � maxn−1 � minn � maxn.

Intuitively, the previous equation shows that the permutation of the set of
all states of A induced by the Wheeler order can be seen as a generalization

148 N. Cotumaccio et al.

of the permutation of positions induced by the prefix array of a string α (or
equivalently, the suffix array of the reverse string of αR). Indeed, a string α can
also be seen as a DFA A′ = (Q′, E′, s′

0, F
′), where Q′ = {q′

0, q
′
1 . . . , q′

|α|}, s′
0 = q′

0,
F ′ = {q′

|α|} (the set F plays no role here), λ(q′
i) is the i-th character of α for

1 ≤ i ≤ n and E′ = {(q′
i−1, q

′
i) | 1 ≤ i ≤ n} (every state is reached by exactly one

string so the minimum and the maximum string reaching each state are equal).
Let 1 ≤ r ≤ s ≤ n and let c ∈ Σ. Let Er,s,c be the set of all states that can

be reached from a state in [r, s] by following edges labeled c; formally, Er,s,c =
{1 ≤ j ≤ n | λ(uj) = c and (ui, uj) ∈ E for some i ∈ [r, s]}. Then, Er,s,c is again
an interval, that is, there exist 1 ≤ r′ ≤ s′ ≤ n such that Er,s,c = [r′, s′] [17].
This property enables a compression mechanism that generalizes the Burrows-
Wheeler transform [6] and the FM-index [13] to Wheeler DFAs. The Wheeler
DFA A can be stored by using only 2e + 4n + e log σ + σ log e bits (up to lower
order terms), including n bits to mark the set F of final states and n bits to mark
all 1 ≤ i ≤ n such that λ(ui) �= λ(ui−1), which allows us to retrieve each λ(ui) in
O(1) time by using a rank query [17] (recall that n is the number of states and
e is the number of edges). Since A is a DFA, we have e ≤ nσ, so the required
space is O(nσ log σ). If the alphabet is small — that is, if σ log σ = o(log n) —
then the number of required bits is o(n log n); if σ = O(1), then the number of
required bits is O(n). This compact representation supports efficient navigation
of the graph and it allows to solve pattern matching queries. More precisely,
by resorting to state-of-the art select queries [23] in O(log log σ) time (i) for
1 ≤ i ≤ n, we can compute pmin(i) and pmax(i) and (ii) given 1 ≤ r ≤ s ≤ n
and c ∈ Σ, we can compute [r′, s′] = Er,s,c [17]. In particular, query (ii) is
the so-called forward-search, which generalizes the analogous mechanism of the
FM-index, thus allowing to solve pattern matching queries on the graph.

The Wheeler order generalizes the notion of suffix array from strings to DFA.
It is also possible to generalize LCP-arrays from strings to graph [7].

Definition 3. The LCP-array of the Wheeler DFA A is the array LCPA =
LCPA[2, 2n] which contains the following 2n − 1 values in the following order:
lcp(min1,max1), lcp(max1,min2), lcp(min2,max2), . . . , lcp(maxn−1,minn),
lcp(minn,maxn). In other words, LCPA[2i] = lcp(mini,maxi) for 1 ≤ i ≤ n
and LCPA[2i − 1] = lcp(maxi−1,mini) for 2 ≤ i ≤ n.

It can be proved that for every 2 ≤ i ≤ n, if LCPA[i] is finite, then LCPA[i] <
3n [7]. As a consequence, LCPA can be stored by using O(n log n) bits.

4 A Space-Time Trade-Off for the LCP Array

By storing an LCP array on top of the compact representation of a Wheeler
graph, we have additional information that we can use to efficiently solve prob-
lems such as computing the matching statistics; however, we need to store
O(n log n) bits. As we have seen, O(n log n) dominates the number of bits
required to store A itself, if the alphabet is small. In this section, we show

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 149

Algorithm 1. Building V (h)
V (h) ← ∅
U ← ∅
while there exists v ∈ V such that (a) v(i) is defined for 0 ≤ i ≤ h − 1, (b) v(i) 	= v(j) for
0 ≤ j < i ≤ h − 1, (c) v(i) 	∈ U for 0 ≤ i ≤ h − 1 do

Pick such a v, add v(h − 1) to V (h) and add v(i) to U for every 0 ≤ i ≤ h − 1
end while

Algorithm 2. Input: h ∈ [2, 2n]. Output: LCPA[h].
procedure main function(h)

Initialize a global bit array D[2, 2n] to zero � D[2, 2n] marks the entries already considered
return lcp(h)

end procedure

procedure lcp(h)
D[h] ← 1
if C[h] = 1 then � The desired value has been sampled

return LCP∗
A[rank(C, h)]

else if h is odd then
i ←
h/2�
if λ(ui−1) 	= λ(ui) then

return 0
else

k ← pmax(i − 1)
k′ ← pmin(i)
j ← RMQLCPA (2k + 1, 2k′ − 1)

if D[j] = 1 then � We have already considered this entry before, so there is a cycle
return ∞

else
return 1 + lcp(j)

end if
end if

else
i ← h/2
k ← pmin(i)
k′ ← pmax(i)
j ← RMQLCPA (2k, 2k′)
if D[j] = 1 then � We have already considered this entry before, so there is a cycle

return ∞
else

return 1 + lcp(j)
end if

end if
end procedure

that we can store a data structure of only O(n log log σ) bits which allows to
compute every entry LCPA[i] in O(log n) time, thus proving Theorem 1. This
will be possible by sampling some entries of LCPA. The sampling mechanism
is obtained by conveniently defining an auxiliary graph from the entries of the
LCP array. We will immediately describe our technique, our sampling mechanism
being general-purpose.

Sampling. Let G = (V,H) be a finite (unlabeled) directed graph such that
every node has at most one incoming edge. For every v ∈ V and for every i ≥ 0,
there exists at most one node v′ ∈ V such that there exists a directed path from
v′ to v having i edges; if v′ exists, we denote it by v(i). Fix a parameter h ≥ 1.

150 N. Cotumaccio et al.

Let us prove that there exists V (h) ⊆ V such that (i) |V (h)| ≤ |V |
h and (ii) for

every v ∈ V there exists 0 ≤ i ≤ 2h − 2 such that v(i) is defined and either
v(i) ∈ V (h) or v(i) has no incoming edges or v(i) = v(j) for some 0 ≤ j < i.
We build V (h) incrementally following Algorithm 1. Let us prove that, at the
end of the algorithm, properties (i) and (ii) are true. For every v ∈ V (h), define
Sv = {v, v(1), v(2), . . . , v(h − 1)}, which is possible because by construction if
v ∈ V (h), then v(i) is defined for every 0 ≤ i ≤ h − 1. It must be v(i) �= v(j) for
0 ≤ i < j ≤ h−1, so |Sv| = h. If v, v′ ∈ V (h) and v �= v′, then by construction Sv

and Sv′ are disjoint. As a consequence, |V | ≥ ∑
v∈V (h) |Sv| =

∑
v∈V (h) h = h|Vh|

and so |Vh| ≤ |V |
h , which proves property (i). Let us prove property (ii). Pick

v ∈ V ; we must prove that there exists 0 ≤ i ≤ 2h − 2 such that v(i) is defined
and either v(i) ∈ V (h) or v(i) has no incoming edges or v(i) = v(j) for some
0 ≤ j < i. We distinguish three cases:

1. there exists i with 1 ≤ i ≤ h − 1 such that v(i − 1) is defined but v(i) is not
defined. Then, v(i − 1) has no incoming edges.

2. there exist i, j with 0 ≤ j < i ≤ h− 1 such that v(j) and v(i) are defined and
v(i) = v(j). In this case, the conclusion is immediate.

3. v(i) is defined for every 0 ≤ i ≤ h and v(i) �= v(j) for 0 ≤ j < i ≤ h − 1.
Since Algorithm 1 has terminated, then there exists 0 ≤ j ≤ h − 1 such
that v(j) ∈ U . The construction of U implies that there exists v′ ∈ V and
0 ≤ j′ ≤ h−1 such that v(j) = v′(j′) and v′(h−1) ∈ V (h). As a consequence
v(h − 1 + j − j′) = v(j)(h − 1 − j′) = (v′(j′))(h − 1 − j′) = v′(h − 1) ∈ V (h).
Since j ≤ h − 1 and j′ ≥ 0, we conclude h − 1 + j − j′ ≤ 2h − 2 and we are
done.

Computing the LCP Array Using a Linear Number of Bits. First, let us
store a data structure of O(n) bits which in O(1) time determines RMQLCPA(i, j)
for every 2 ≤ i ≤ j ≤ 2n.

Notice that LCPA[2i] ≥ 1 for 1 ≤ i ≤ n because the first character of mini and
the first character of maxi are equal to λ(ui). Moreover, we have LCPA[2i−1] ≥ 1
if and only if λ(ui−1) = λ(ui), for 2 ≤ i ≤ n.

Consider the entry LCPA[2i − 1] = lcp(maxi−1,mini), for 2 ≤ i ≤ n, and
assume that LCPA[2i − 1] ≥ 1. Let k = pmax(i − 1) and k′ = pmin(i). Since
LCPA[2i − 1] ≥ 1, then there exists a ∈ Σ such that maxi−1 = amaxk

and mini−1 = amink′ . In particular, (uk, ui−1, a) ∈ E and (uk′ , ui, a) ∈ E,
so from Axiom 2 we obtain k < k′. Moreover, we have LCPA[2i − 1] =
lcp(maxi−1,mini) = lcp(amaxk, amink′) = 1 + lcp(maxk,mink′). Notice that:

lcp(maxk,mink′) = min{lcp(maxk,mink+1), lcp(mink+1,maxk+1), . . . ,
= lcp(mink′−1,maxk′−1), lcp(maxk′−1,mink′)} =
= min{LCPA[2k + 1], LCPA[2k + 2], . . . , LCPA[2k′ − 2], LCPA[2k′ − 1]}.

Let j = RMQLCPA(2k + 1, 2k′ − 1). Then, LCPA[j] = min{LCPA[2k +
1], LCPA[2k+2], . . . , LCPA[2k′−2], LCPA[2k′−1]}, so LCPA[2i−1] = 1+LCPA[j]

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 151

Fig. 1. (a) A Wheeler DFA. States are numbered according to the Wheeler order. (b)
The array LCPA, and the values needed to compute G = (V,H). We assume that
a range minimum query returns the largest position of a minimum value. (c) The
graph G = (V,H), with V (�logn�) = V (4) = {v24, v32} (yellow states). (d) The data
structures that we store.

152 N. Cotumaccio et al.

(we assume t + ∞ = ∞ for every t ≥ 0), and we have reduced the problem of
computing LCPA[2i− 1] to the problem of computing LCPA[j]. In the following,
let R(2i−1) = j. Given 2 ≤ i ≤ n, we can compute j = R(2i−1) in O(log log σ)
time, because we can compute k = pmax(i − 1) and k′ = pmin(i) in O(log log σ)
time and we can compute j in O(1) time by means of a range minimum query.

We proceed analogously with the entries LCPA[2i] = lcp(mini,maxi), for
1 ≤ i ≤ n (it must necessarily be LCPA[2i] ≥ 1). Let k = pmin(i) and k′ =
pmax(i); by the definitions of pmin and pmax it must be k ≤ k′. Hence, LCPA[2i] =
1+lcp(mink,maxk′) and similarly lcp(mink,maxk′) = min{LCPA[2k], LCPA[2k+
1], . . . , LCPA[2k′ − 1], LCPA[2k′]}. Let j = RMQLCPA(2k, 2k′). In the following,
let R(2i) = j. Given 1 ≤ i ≤ n, we can compute j = R(2i) in O(log log σ) time.
See Fig. 1 for an example.

Now, consider the (unlabeled) directed graph G = (V,H) defined as follows.
Let V be a set of 2n−1 nodes v2, v3, . . . , v2n. Moreover, vi ∈ V has no incoming
edge in G if R(i) is not defined, which happens if LCPA[i] = 0 (and so i is odd
and λ(ui−1) �= λ(ui)); vi ∈ V has exactly one incoming edge if R(i) is defined,
namely, (vR(i), vi). Note that v2i has an incoming edge for every 1 ≤ i ≤ n.
Let h ≥ 1 be a parameter. We know that there exists V (h) ⊆ V such that
(i) |V (h)| ≤ |V |

h and (ii) for every vi ∈ V there exists 0 ≤ k ≤ 2h − 2 such
that vi(k) is defined and either vi(k) ∈ V (h) or vi(k) has no incoming edges or
vi(k) = vi(l) for some 0 ≤ l < k. Notice that if vi(k) = vi(l) for some 0 ≤ l < k,
then LCPA[i] = ∞ (because there is a cycle and so vi(k′) is defined for every
k′ ≥ 0). Let n′ = |V (h)|, and let LCP∗

A[1, n′] an array storing the value LCPA[i]
for each vi ∈ V (h), sorted by increasing i. Since n′ ≤ |V |

h = 2n−1
h , storing

LCP∗
A[1, n′] takes n′O(log n) = O(n log n

h) bits. We store a bitvector C[2, 2n] such
that C[i] = 1 if and only if vi ∈ V (h) for every 2 ≤ i ≤ 2n; we augment C with
o(n) bits so that it supports rank queries in O(1) time. For every 2 ≤ i ≤ 2n, in
O(1) time we can check whether LCPA[i] has been stored in LCP∗

A by checking
whether C[i] = 1, and if C[i] = 1 it must be LCPA[i] = LCP∗

A[rank(C, i)].
From our discussion, it follows that Algorithm 2 correctly computes LCPA[i]

for every 2 ≤ i ≤ n. Property (ii) ensures that the function lcp is called at
most h times. Every call requires O(log log σ) time, so the running time of our
algorithm is O(h log log σ) (the initialization of D[2, 2n] in Algorithm 2 can be
simulated in O(1) time [22]). We conclude that we store O(n + n log n

h) bits, and
in O(h log log σ) time we can compute LCPA[i] for every 2 ≤ i ≤ n.

By choosing h = � log n
log log σ �, we conclude that our data structure can be stored

using O(n log log σ) bits and it allows to compute LCPA[i] for every 2 ≤ i ≤ n in
O(log n) time. By choosing h = �log n� we conclude that our data structure can
be stored using O(n) bits and it allows to compute LCPA[i] for every 2 ≤ i ≤ n
in O(log n log log σ) time.

5 Applications

Matching Statistics. Let us recall how the bounds in Theorem 2 are obtained.
The space bound is O(n log n) bits because we need to store LCPA. We also store

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 153

a data structure to solve range minimum queries on LCPA, which only takes
O(n) bits. The time bound O(m log n) follows from performing O(m) steps to
compute all matching statistics. In each of these O(m) steps, we may need to
perform a binary search on LCPA. In each step of the binary search, we need
to solve a range minimum query once and we need to access LCPA once, so
the binary search takes O(log n) time per step. By Theorem 1, if we store only
O(n log log σ) bits, we can access LCPA in O(log n) time, so the time for the
binary search becomes O(log2 n) per step and Theorem 3 follows.

Fig. 2. The 3-rd order de Bruijn graph for the set S =
{CGAC,GACG,GACT, TACG,GTCG,ACGA,ACGT, TCGA,CGTC} from [4]. We
proceed like in Fig. 1 (now we only consider odd entries of LCPG, and h = �log k� = 2).

Variable-Order de Bruijn Graphs. Let k ≥ 0 be a parameter, and let S
be a set of strings on the alphabet Σ = {A,C,G, T} (in this application we
always assume σ = O(1)). The k-th order de Bruijn graph of S is defined as
follows. The set of nodes is the set of all strings of Σ of length k that occur
as a substring of some string in S. There is an edge from node α to node β
labeled c ∈ Σ if and only if (i) the suffix of α of length k − 1 is equal to the
prefix of β of length k − 1 and (ii) the last character of β is c. If some node

154 N. Cotumaccio et al.

α has no incoming edges, then we add nodes $iαk−i for 1 ≤ i ≤ k, where αj

is the prefix of α of length j and $ is a special character, and we add edges as
above; see Fig. 2 for an example. Wheeler DFAs are a generalization of de Bruijn
graphs (we do not need to define an initial state and a set of final states, because
here we are not interested in studying the applications of de Bruijn graphs and
Wheeler automata to automata theory [2,10]); the Wheeler order is the one such
that node α comes before node β if and only if the string αR is lexicographically
smaller than the string βR [17].

Notice that, in a k-th order de Bruijn graph G, all strings that can be read
from node α by following edges in a backward fashion start with αR (as usual,
we assume that node $$$ has a self-loop labeled $). As a consequence, it holds
LCPG[2i] ≥ k for every 1 ≤ i ≤ n and LCPG[2i − 1] ≤ k − 1 for every 2 ≤ i ≤ n
(so any value in an odd entry is smaller than any value in an even entry).

As we saw in the introduction, in [4] it was shown that the k-order de Bruijn
graph of S can be used to implicitly store the k′-th order de Bruijn graph of S for
every k′ ≤ k, thus leading to a variable-order de Bruijn graph. The navigation
of a variable-order de Bruijn graph is possible by storing or by simulating the
values in the odd entries of the LCP array. Formally, in order to avoid confusion,
we define LCPG[i] = LCPG[2i − 1] for every 2 ≤ i ≤ n; see Fig. 2. Note that
LCPG[i] ≤ k − 1 for every 2 ≤ i ≤ n, so LCPG can be stored by using O(n log k)
bits. Notice that Theorem 1 also applies to LCPG[i] (we do not need to store
values in the even entries because a value in an odd entry is smaller than a value
in an even entry, so even entries are never selected in the sampling process when
answering a range minimum query on LCPG). However, we can now choose a
better parameter h ≥ 1 in our sampling process. Indeed, each entry of LCPG can
be stored by using O(log k) bits (not O(log n) bits), so if we choose h = �log k�,
we conclude that we can augment the BOSS representation of a de Bruijn graph
with O(n) bits such that for every 2 ≤ i ≤ n we can compute LCPG[i] in O(log k)
time.

The first solution in Theorem 4 consists in storing a wavelet tree on LCPG,
which requires O(n log k) bits and allows to navigate the graph in O(log k) time
per visited node. The second solution in Theorem 4 does not store LCPG at all;
whenever needed, an entry of LCPG is computed in O(k) time by exploiting the
BOSS representation of the de Bruijn graph. The second solution only stores a
data structures of O(n) bits to solve range minimum queries. The details can
be found in [4]. Essentially, the time bound O(k log n) comes from performing
binary searches on LCPG while explicitly computing an entry of LCPG at each
step in O(k) time. However, we have seen that, while staying within the O(n)
space bound, we can augment the BOSS representation so that we can compute
the entries of LCPG in O(log k) time, so the time bound O(k log n) becomes
O(log k log n), which implies Theorem 5.

Acknowledgements. Travis Gagie: funded by National Institutes of Health (NIH)
NIAID (grant no. HG011392), the National Science Foundation NSF IIBR (grant no.
2029552) and a Natural Science and Engineering Research Council (NSERC) Discovery
Grant (grant no. RGPIN-07185-2020). Dominik Köppl : supported by JSPS KAKENHI

Space-Time Trade-Offs for the LCP Array of Wheeler DFAs 155

with No. JP21K17701 and JP23H04378. Nicola Prezza: funded by the European Union
(ERC, REGINDEX, 101039208). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

References

1. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet prefix
sorting. In: Proceedings of the 31st Symposium on Discrete Algorithms, (SODA
2020), pp. 911–930. SIAM (2020). https://doi.org/10.1137/1.9781611975994.55

2. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. Inf. Com-
put. 281, 104820 (2021)

3. Bankevich, A., et al.: SPAdes: a new genome assembly algorithm and its applica-
tions to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012). https://
doi.org/10.1089/cmb.2012.0021, pMID: 22506599

4. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de
Bruijn graphs. In: 2015 Data Compression Conference, pp. 383–392 (2015). https://
doi.org/10.1109/DCC.2015.70

5. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

6. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

7. Conte, A., Cotumaccio, N., Gagie, T., Manzini, G., Prezza, N., Sciortino, M.: Com-
puting matching statistics on Wheeler DFAs. In: 2023 Data Compression Confer-
ence (DCC), pp. 150–159 (2023). https://doi.org/10.1109/DCC55655.2023.00023

8. Cotumaccio, N.: Graphs can be succinctly indexed for pattern matching in O(|E|2+
|V |5/2) time. In: 2022 Data Compression Conference (DCC), pp. 272–281 (2022).
https://doi.org/10.1109/DCC52660.2022.00035

9. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. In:
Proceedings of the 32nd Symposium on Discrete Algorithms, (SODA 2021), pp.
2585–2599. SIAM (2021). https://doi.org/10.1137/1.9781611976465.153

10. Cotumaccio, N., D’Agostino, G., Policriti, A., Prezza, N.: Co-lexicographically
ordering automata and regular languages - part I. J. ACM 70, 1–73 (2023). https://
doi.org/10.1145/3607471

11. Dı́az-Domı́nguez, D., Gagie, T., Navarro, G.: Simulating the DNA overlap graph
in succinct space. In: Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on
Combinatorial Pattern Matching (CPM 2019). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 128, pp. 26:1–26:20. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.CPM.
2019.26, http://drops.dagstuhl.de/opus/volltexte/2019/10497

12. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled
trees for optimal succinctness, and beyond. In: proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 184–193
(2005). https://doi.org/10.1109/SFCS.2005.69

13. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS 2000), pp. 390–398 (2000). https://doi.org/10.1109/SFCS.2000.892127

https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1109/DCC.2015.70
https://doi.org/10.1109/DCC.2015.70
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1109/DCC55655.2023.00023
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.1145/3607471
https://doi.org/10.1145/3607471
https://doi.org/10.4230/LIPIcs.CPM.2019.26
https://doi.org/10.4230/LIPIcs.CPM.2019.26
http://drops.dagstuhl.de/opus/volltexte/2019/10497
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2000.892127

156 N. Cotumaccio et al.

14. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1) (2009). https://doi.org/10.1145/
1613676.1613680

15. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12200-2 16

16. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011). https://doi.
org/10.1137/090779759

17. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-
based data structures. Theor. Comput. Sci. 698, 67–78 (2017). https://doi.
org/10.1016/j.tcs.2017.06.016, https://www.sciencedirect.com/science/article/pii/
S0304397517305285, algorithms, Strings and Theoretical Approaches in the Big
Data Era (In Honor of the 60th Birthday of Professor Raffaele Giancarlo)

18. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. J.
Comput. Biol. 2(2), 291–306 (1995)

19. Li, R., et al.: De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res. 20, 265–72 (2009). https://doi.org/10.1101/gr.
097261.109

20. Liu, M., Yu, H.: Lower bound for succinct range minimum query. In: Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 1402–
1415. STOC 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3357713.3384260

21. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

22. Navarro, G.: Spaces, trees, and colors: the algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4) (2014). https://doi.org/10.1145/
2535933

23. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge
University Press (2016). http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-
g/compact-data-structures-practical-approach?format=HB

24. Peng, Yu., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – a practical iterative
de bruijn graph de novo assembler. In: Berger, B. (ed.) RECOMB 2010. LNCS,
vol. 6044, pp. 426–440. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12683-3 28

25. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Nat. Acad. Sci. 98(17), 9748–9753 (2001). https://doi.
org/10.1073/pnas.171285098

26. Sadakane, K.: Compressed suffix trees with full functionality. Theor. Comp. Sys.
41(4), 589–607 (2007). https://doi.org/10.1007/s00224-006-1198-x

27. Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., Birol, I.: ABySS: a
parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).
https://doi.org/10.1101/gr.089532.108

28. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th IEEE
Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973). https://
doi.org/10.1109/SWAT.1973.13

https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1007/978-3-642-12200-2_16
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://www.sciencedirect.com/science/article/pii/S0304397517305285
https://www.sciencedirect.com/science/article/pii/S0304397517305285
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1145/3357713.3384260
https://doi.org/10.1137/0222058
https://doi.org/10.1145/2535933
https://doi.org/10.1145/2535933
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1007/978-3-642-12683-3_28
https://doi.org/10.1007/978-3-642-12683-3_28
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

Computing All-vs-All MEMs
in Grammar-Compressed Text

Diego Dı́az-Domı́nguez(B) and Leena Salmela

Department of Computer Science, University of Helsinki, Helsinki, Finland
{diego.diaz,leena.salmela}@helsinki.fi

Abstract. We describe a compression-aware method to find all-vs-all
maximal exact matches (MEM) among strings of a repetitive collection
T . The key concept in our work is the construction of a fully-balanced
grammar G from T that meets a property that we call fix-free: the expan-
sions of the nonterminals that have the same height in the parse tree form
a fix-free set (i.e., prefix-free and suffix-free). The fix-free property allows
us to compute the MEMs of T incrementally over G using a standard
suffix-tree-based MEM algorithm, which runs on a subset of grammar
rules at a time and does not decompress nonterminals. By modifying
the locally-consistent grammar of Christiansen et al. [7], we show how
we can build G from T in linear time and space. We also demonstrate
that our MEM algorithm runs on top of G in O(G + occ) time and uses
O((G + occ) logG) bits, where G is the grammar size, and occ is the
number of MEMs in T . In the conclusions, we discuss how to modify our
idea to perform approximate pattern matching in compressed space.

Keywords: MEMs · Text Compression · Context-free grammars

1 Introduction

A maximal exact match (MEM) between two strings is a match that cannot
be extended without introducing mismatches or reaching an end in one of the
strings. This notion plays an important role in biological sequence analyses [18,
20,21] as they simplify finding long stretches of identical sequences. However,
with the rapid development of DNA sequencing technologies, genomic collections
have grown to hundreds of GBs or even TBs in size, and computing MEMs in
such volumes of data has become impractical using state-of-the-art techniques.

Seed-and-extend heuristics is a popular solution to scale the problem of
approximate pattern matching in large collections [2,16,20–22]. The efficiency
of these heuristics largely depends on the seeding mechanism they employ. In
this regard, using MEMs to seed alignments of near-identical sequences, such as
genomes or proteins, offers two important benefits. Firstly, it improves alignment

Supported by Academy of Finland (Grants 323233 and 339070), and by Basal Funds
FB0001, Chile (first author).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 157–170, 2023.
https://doi.org/10.1007/978-3-031-43980-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-43980-3_13

158 D. Dı́az-Domı́nguez and L. Salmela

accuracy and reduces the cost of the heuristic’s extension phase as approximate
alignments of highly-similar strings often consist of long MEMs separated by
small edits. Secondly, computing MEMs takes linear time [25,34], and in small
collections, it does not impose a substantial overhead. The problem, as men-
tioned before, is that genomic data have grown to a point where fitting the
necessary data structures to detect MEMs into main memory is difficult.

State-of-the-art methods [4,26,29–32] find MEMs in large inputs using
compressed text indexes [9,13] and matching statistics [5]. These approaches
have demonstrated that compression greatly reduces the overhead of comput-
ing MEMs in repetitive collections, but they are limited to situations where
one needs to compare one string against many. This setting falls short for
computationally-expensive genomic tasks such as genome assembly or multi-
ple genome alignment that require all-vs-all approximate alignments of multiple
strings. By extending the use of compression to find all-vs-all MEMs in collec-
tions, we could scale the execution of these genomic applications to TBs of data,
which in turn could have important implications for Bioinformatics.

Our Contribution. We present a method to compute all-vs-all MEMs in a
collection T of repetitive strings. Our idea consists of building a context-free
grammar G from T , from which we compute the MEMs. Our grammar algorithm
ensures a property that we call fix-free, which means that the expansions of
nonterminals with the same height form a set that is prefix-free and suffix-free.
This idea enables the fast computation of MEMs by incrementally indexing parts
of the grammar with simple data structures. Section 5 shows how we can build a
fix-free grammar in linear time and space using a variant of the locally-consistent
grammar of Christiansen et al. [7]. In Sect. 6, we describe how to compute a list
L of primary MEMs (the precursors of the real MEMs) from G in O(G+|L|) time
and O((G+ |L|) log G) bits of space, where G is the grammar size. In Sect. 6, we
show how to enumerate all the occ all-vs-all MEMs from L and G, yielding thus
an algorithm that runs in O(G + occ) time and uses O((G + occ) log G) bits.

2 Preliminaries

String Data Structures. Consider a string T [1..n] over the alphabet Σ whose
smallest symbol $ ∈ Σ is a sentinel that only occurs at T [n]. The suffix array [24]
of T is a permutation SA[1..n] that enumerates the suffixes of T in increasing
lexicographic order, T [SA[j]..n] < T [SA[j + 1]..n], for j ∈ [1..n − 1]. The longest
common prefix array LCP [1..n] [24] stores in LCP [j] the longest common prefix
between T [SA[j − 1]..n] and T [SA[j]..n]. Given an array V [1..n] of integers, a
range minimum query rmq(V, j, j′), with j < j′, returns the minimum value in
the range V [j..j′]. By augmenting LCP with support for rmq [12], one can obtain
the length of the longest prefix shared by two arbitrary suffixes T [SA[j]..n] and
T [SA[j′]..n] by performing rmq(LCP, j, j′).

Locally-Consistent Parsing. Parsing consists in breaking a text T [1..n] into
a sequence of phrases. The parsing is locally-consistent [10] if, for any pattern P ,

Computing All-vs-All MEMs in Grammar-Compressed Text 159

its occurrences in T are largely partitioned in the same way. There is more than
one way to make a parsing locally consistent (see [3,7,33] for more details), but
this work focuses on those using local minima. A position j is a local minimum
if T [j − 1] > T [j] < T [j + 1]. A method that uses this idea scans T , and for
each pair of consecutive local minima j and j′, it defines the phrase T [j..j′ −
1]. The procedure to compare adjacent positions in T can vary. For instance,
Christiansen et al. [7] first create a new string T̂ where they replace equal-
symbol runs by metasymbols. Then, they define a random permutation π for the
alphabet of T̂ , and compute the breaks as π(T̂ [j − 1]) > π(T̂ [i]) < π(T̂ [i + 1]).
On the other hand, Nogueira et al. [28] compare consecutive suffixes rather than
positions. Concretely, j is a local minimum if the suffix T [j..n] is lexicographically
smaller than the suffixes T [j − 1..n] and T [j + 1..n]. Nong et al. [27] proposed
this suffix-based local minimum in their suffix array algorithm SAIS. They refer
to it as an LMS-type position and to the phrases covering consecutive LMS-type
positions as LMS-substrings.

Grammar Compression. Grammar compression [6,17] is a form of lossless
compression that encodes a string T [1..n] as a context-free grammar G that
generates only T . Formally, G = {Σ,V,R, S} is a tuple of four elements, where
Σ is the set of terminals, V is the set of nonterminals, R is a set of derivation
rules in the form X → F , with X ∈ V being a nonterminal and F ∈ (Σ ∪ V)∗

being its replacement, and S ∈ V is the start symbol. In grammar compression,
each nonterminal X ∈ V appears only once on the left-hand sides of R, which
ensures the unambiguous decompression of T .

The graphical sequence of derivations that transforms S into T is called the
parse tree. The root of this tree is labelled S and has |A| children, with S → A.
The root’s children are labelled from left to right according to A’s sequence.
The subtrees for the root’s children are recursively defined in the same way.
The height of a nonterminal X is the longest path in the parse subtree induced
by X’s recursive expansion. The grammar is said to be fully-balanced if, for
each nonterminal X ∈ V at height i, the symbols in the right-hand side of
X → A1A2· · ·Ax ∈ R are at height i − 1.

The grammar tree is a pruned version of the parse tree that, for each X ∈ V ,
keeps only the leftmost internal node labelled X ∈ V . The remaining internal
nodes labelled X are transformed into leaves. The leaves of the grammar tree
induce a partition over T : for each grammar tree leaf u, its corresponding phrase
is the substring in T mapping the terminal symbols under the parse tree node
from which u was originated. One can classify the occurrences in T of a pattern
P ∈ Σ∗ into primary and secondary. A primary occurrence of P crosses two or
more phrases in the partition induced by the grammar tree. On the other hand,
a secondary occurrence of P is fully contained within a phrase.

Locally-Consistent Grammar. A grammar G generating T [1..n] is locally
consistent if the occurrences of the same pattern are largely compressed in the
same way [7,14]. A mechanism to build G is by transforming T in successive

160 D. Dı́az-Domı́nguez and L. Salmela

rounds of locally-consistent parsing [7,11,28]. In every round i, the construction
algorithm receives as input a string T i[1..ni] over an alphabet Σi, which repre-
sents a partially-compressed version of T (when i = 1, T 1 = T and Σ1 = Σ).
Then, it breaks T i using its local minima and creates a set Si with the distinct
phrases of the parsing. For every phrase F ∈ Si, the algorithm defines a new
metasymbol X and appends the new rule X → F into R. The value of X is the
number of symbols in Σ ∪V before the parsing round i plus the rank of F in an
arbitrary order of Si. After creating the new rules, the algorithm replaces the
phrases in T i with their corresponding metasymbols to produce another string
T i+1[1..ni+1], which is the input for the next round i+1. Notice that the alpha-
bet Σi+1 ⊂ V for T i+1 is the subset of metasymbols that the algorithm assigned
to the phrases in T i. When T i+1 does not have local minima, the algorithm cre-
ates the final rule S → T i+1 for the start symbol S of G and finishes. The whole
process runs in O(n) time and produces a fully-balanced grammar. Christiansen
at al. [7] showed that it is possible to obtain a locally-consistent grammar of size
O(γ log n/γ) in O(n) expected time, where γ is the size of the smallest string
attractor for T [15].

3 Definitions

Let us consider a collection T = {T1, T2, . . . , Tm} of m strings over the alphabet
Σ. We start by defining the concept of MEM between elements of T .

Definition 1. MEM: let Tx[1..nx] and Ty[1..ny] be two strings in T . A maximal
exact match Tx[a..b] = Ty[a′..b′] of length � = b − a + 1 = b′ − a′ + 1, denoted
M(x, y, a, a′, �), has the following properties: (i) a = 1 or a′ = 1, or a, a′ > 1
and Tx[a − 1] �= Ty[a′ − 1]. (ii) b = nx or b′ = ny, or b < nx, b′ < ny, and
Tx[b + 1] �= Ty[b′ + 1].

Now we formulate the problem we address in this work as follows:

AvAMem
Input: a string collection T = {T1, T2, . . . , Tm} and an input integer τ .
Output: every possible M(x, y, a, a′, �) with Tx, Ty ∈ T and � ≥ τ .

We will refer to the parsing of Sect. 2 as LCPar, and the grammar algorithm
of Sect. 2 that relies on this technique as LCGram. Let G = (Σ,V,R, S) be the
fully-balanced grammar constructed by LCGram from T in h rounds of parsing.
We assume for the moment that the definition of local minima is arbitrary, but
sequence-based. We denote the sum of the right-hand side lengths of R as G and
the number of nonterminals as g = |V |. Additionally, we consider the partition
V = {V 1, . . . , V h} such that every V i, with i ∈ [1..h], has the nonterminals
generated during the parsing round i. Similarly, the partition R = {R1, . . . , Rh}
groups in Ri the rules generated during the parsing round i. We denote as Gi

the sum of the right-hand side lengths of Ri and gi = |V i|. We will refer to
the sequence [1..h] as the levels of the grammar, which is read bottom-up in the
parse tree. T is at level 0.

Computing All-vs-All MEMs in Grammar-Compressed Text 161

We assume LCGram compresses the strings of T independently but collapses
all the rules in one single grammar G. Thus, the rule S → A1..Am′ encodes the
compressed strings of T concatenated in the string A1 . . . Am′ .

The operator exp(X) returns the string in Σ∗ resulting from the recursive
expansion of X ∈ V . The function exp can also receive as input a sequence
X1· · ·Xb ∈ V ∗, in which case it returns the concatenation exp(X1)· · ·exp(Xb).
The operation lcpi(X,Y) receives two nonterminals (X,Y) ∈ V i and returns
the longest common prefix between exp(X) and exp(Y). Similarly, the operator
lcsi(X,Y) returns the longest common suffix between exp(X) and exp(Y).

Definition 2. A set S of strings is fix-free iff, for any pair F,Q ∈ S, the string
F is not a suffix nor a prefix of Q, and vice-versa.

Definition 3. A grammar G is fix-free iff it is fully balanced, and for any level
i, the set Si = {exp(X1), . . . , exp(Xgi)}, with X1, . . . , Xgi ∈ V i, is fix-free.

Definition 4. Primary MEM (prMEM): let M(x, y, a, a′, �), with Tx, Ty ∈ T ,
be a MEM. M(x, y, a, a′, �) is primary if both Tx[a..a+�−1] and Ty[a′..a′ +�−1]
are primary occurrences of the pattern Tx[a..a + � − 1] = Ty[a′..a′ + � − 1].

4 Overview of Our Algorithm

We solve AvAMem(T , τ) in three steps: (i) we build a fix-free grammar from T
using a variant of LCGram, (ii) we compute a list L storing the prMEMs of T ,
and (iii) we use L and G to report the positions in T of all the MEMs.

The advantage of G being fix-free is that we can use the following lemma:

Lemma 1. Let G be a fix-free grammar. Two rules X → AZB, Y → CZD ∈
Ri, with Z ∈ V i−1∗ and A,B,C,D ∈ V i−1 yield a prMEM if � = lcsi−1(A,C)+
|exp(Z)| + lcpi−1(B,D) ≥ τ .

Proof. Both exp(X) and exp(Y) contain exp(Z) as a substring as the rules for X
and Y have occurrences of Z, and there is only one string exp(Z) the grammar
can produce. Still, the strings exp(A) and exp(C) (respectively, exp(B) and
exp(D)) could share a suffix (respectively, a prefix), meaning that the prMEM
extends to the left of Z (respectively, the right of Z). The fix-free property
guarantees that the left boundary of the prMEM lies at some index in the right-
to-left comparison of exp(A) and exp(C), and that the right boundary lies at
some position within the left-to-right comparison of exp(B) and exp(D).

Lemma 1 offers a simple solution to detect prMEMs as we do not have to look
into other parts of G’s parse tree to check the boundaries of the prMEM in (X,Y).
The only remaining aspects to consider are, first, how to get a fix-free grammar,
and then, how to compute lcs(A,C), lcp(B,D), and |exp(Z)| efficiently. Once we
solve these problems, finding prMEMs reduces to run a suffix-tree-based MEM
algorithm over the right-hand sides of each Ri. On the other hand, getting the
positions in T of the MEMs (step three of in the overview) requires traversing
the rules of G, but it is not necessary to perform any string comparison.

162 D. Dı́az-Domı́nguez and L. Salmela

5 Building the Fix-Free Grammar

We first describe the parsing we will use in our variant of LCGram. We refer to
this procedure as FFPar. The input is a string collection T ′ over the alphabet
Σ′ = {$}∪Σ ∪{#}, where each string Tx = T# ∈ T ′ is flanked by the symbols
{$, #} /∈ Σ that do not occur in the internal substring T ∈ Σ∗.

We choose a function h : Σ′ → [0..p + 1] that maps symbols in Σ to integers
in the range [1..p] uniformly at random, where p > |Σ| is a large prime number.
When c ∈ Σ, the function returns h(c) = (ac + b) mod p, where a, b ∈ [1..p] are
chosen uniformly at random. If c = $ /∈ Σ, h(c) = 0, and if c = #, h(c) = p + 1.

We use h to define the local minima in T ′. The idea is to combine h with a
scheme to classify symbols similar to that of SAIS [27]. Let Tx[1..nx] be a string
in T ′. A position j ∈ [2..nx − 1] has three possible classifications:

– L-type : h(Tx[j]) > h(Tx[j + 1]) or Tx[j] = Tx[j + 1] and Tx[j + 1] is L-type.
– S-type : h(Tx[j]) < h(Tx[j + 1]) or Tx[j] = Tx[j + 1] and Tx[j + 1] is S-type.
– LMS-type : Tx[j] is S-type and Tx[j − 1] is L-type.

The LMS-type positions are the local minima of T ′. Randomising the local
minimum definition aims to protect us against adversarial inputs. Notice that h
is not a random permutation π like Christiansen et al. [7], but it still defines a
total order over Σ as it does not assign the same random value to two symbols,
which is enough for our purposes.

Lemma 2. FFPar: let Tx[1..nx] ∈ T ′ be a string. For each pair of consecutive
local minima 1 < j < j′ < nx, we create the phrase Tx[j − 1..j′ + 1]. For the
leftmost local minimum j in Tx, we create Tx[1..j +1], and for its rightmost local
minimum j′, we create Tx[j′ − 1..nx]. The set of parsing phrases is fix-free.

Proof. Let us first consider the set S created by LCPar. We will say that a
phrase Tx[j..j′ − 1] in LCPar is an instance of F ∈ S if Tx[j..j′ − 1] = F . When
F occurs in T ′ as a proper suffix or prefix of another phrase in S, it is not an
instance, only an occurrence of F .

Let W ⊂ S be a subset of phrases and let F ∈ S\W be a phrase occurring as a
proper prefix in each element of W. Consider any pair of instances F = Tx[j..j′−
1] and Q = Ty[l..l′−1] ∈ W such that Tx, Ty ∈ T ′, and (l, l′) (respectively, (j, j′))
are consecutive local minima. The substring Tx[j′..j′ + 1] following F ’s instance
cannot be equal to the substring Ty[l + |F |..l + |F | + 1] following F ’s occurrence
within Q because j′ is a local minimum while l + |F | is not. We know that
Ty[l + |F |] is within Q because Ty[l..l + |F | − 1] is an occurrence of F that is a
proper prefix of Q. Therefore, if l + |F | were a local minimum, Q would also be
an instance of F . In conclusion, running FFPar will right-extend every instance
of F in T ′ such that none of the resulting phrases is a proper prefix in the
right-extended phrases of W.

We now develop a similar argument for the left extension. Suppose, in this
case, F ∈ S \ W is a proper suffix in W ⊂ S. As before, we assume S was built
using LCPar and that F = Tx[j..j′ − 1] and Q = Ty[l..l′ − 1] ∈ W are phrase

Computing All-vs-All MEMs in Grammar-Compressed Text 163

Fig. 1. Execution of FFGram on $gtaatagtagtacc$#. The left side shows the parse
tree up to level 2, and the right side shows the corresponding rules for those levels. The
underlined symbols are local minima.

instances. The symbol Tx[j − 1] preceding F ’s instance differs from the symbol
Ty[l′ − |F | − 1] preceding the occurrence F = Ty[l′ − |F |..l′ − 1] within Q. The
reason is because the position j in F [1] = Tx[j] is a local minimum, while the
position l′ − |F | of Q[|Q| − |F | + 1] = Ty[l′ − |F |] = F [1] is not. Hence, FFPar
left-extends each occurrence of F such that none of the resulting phrases is a
proper suffix in the left-extended elements of W.

The FFGram Algorithm. FFGram is our LCGram variant that builds a
fix-free grammar by applying successive rounds of FFPar (Definition 2). The
input of FFGram is the collection T 1 built from T by adding the special flanking
symbols Tx# in every Tx ∈ T . The alphabet of T 1 is Σ1 = {$} ∪ Σ ∪ {#}.

In every round i, we create a random hash function hi : Σi → [0..p+1], with
p > |Σi|, to define the local minima of T i. Then, we run FFPar using hi and
sort the resulting set Si of phrases in lexicographical order starting from the
leftmost proper suffix of each string. The relative order of strings of Si differing
only in the leftmost symbol is arbitrary. Let c be the number of symbols in
Σ ∪ V before parsing round i and let r the rank of F ∈ Si in the ordering we
just defined. We assign the metasymbol X = c+r ∈ V i to F and append the new
rule X → F ∈ Ri. The last step in the round is to create the collection T i+1

by replacing the phrases with their corresponding metasymbols. Additionally,
we define two special new symbols {$,#}, which we append at the ends of the
strings in T i+1. Thus, the alphabet of T i becomes Σi = {$} ∪ V i ∪ {#}. We
assume the occurrences of the special symbols #, $ in the right-hand sides of R
expand to the empty string. FFGram stops after h parsing rounds, when the
input T i does not have local minima. Figure 1 shows an example.

Lemma 3. The grammar G resulting from running FFGram over T is fix-free.

Proof. Consider the execution of FFPar over T 1 in the first round of FFGram.
The output set S1 is over the alphabet {$}∪Σ∪{#} and is, by Lemma 2, fix-free.
Thus, the symbols of V 1 meet the fix-free property of Definition 3. Now consider
the parsing rounds i − 1 with i ≥ 2. Assume without loss of generality that the
nonterminals in V i−1 meet Definition 3. The recursive definition of FFGram
implies that the phrases in Si are over the alphabet V i−1. Thus, for any pair
of different strings F,Q ∈ Si sharing a prefix F [1..q] = Q[1..q], the symbols
F [q + 1] �= Q[q + 1] expand to different sequences exp(F [q + 1]) �= exp(Q[q + 1])
that are not prefix one of the other as F [q+1], Q[q+1] belong to V i−1. Therefore,

164 D. Dı́az-Domı́nguez and L. Salmela

exp(F) and exp(Q) do not prefix one to the other either. The same argument
applies when F and Q share a suffix. We conclude then that the metasymbols
of V i also meet the fix-free property of Definition 3.

Overlaps in the Fix-Free Grammar. A relevant feature of FFGram is
that consecutive nonterminals in the right-hand sides of R cover overlapping
substrings of T . This property allows us to compute prMEMs as described in
Lemma 1. The downside, however, is that expanding substrings of T from G
is now more difficult. However, the number of symbols overlapping in every
grammar level is constant (one to the left and two to the right). Depending
on the situation, we might want to decompress nonterminals considering (or
not) skipping overlaps. Thus, we define the operations efexp(X), lexp(X), and
rexp(X) that return different types of nonterminal expansions. These functions
only differ in the edges they skip in X’s subtree during the decompression.

– efexp(X): recursively skips the leftmost and two rightmost edges.
– lexp(X): recursively skips the two rightmost edges, and the leftmost edges

when the parent node does not belong to the leftmost branch.
– rexp(X) recursively skips the leftmost edges, and the two rightmost edges

when the parent node does not belong to the rightmost branch.

Figure 2 shows examples of efexp(X), lexp(X) and rexp(X). We also modify
the functions lcsi and lcpi described in Definitions 3. Let X,Y ∈ V i be two
nonterminals at level i. The function lcsi(X,Y) now returns the longest common
suffix between lexp(X) and lexp(Y); and lcpi(X,Y) returns the longest common
prefix between rexp(X) and rexp(Y).

We remark that efexp, lexp, rexp, lcsi, and lcpi are virtual as our algorithm
to find prMEMs never calls them directly. Instead, it incrementally produces
satellite data structures with precomputed answers to solve them in O(1) time.

6 Computing prMEMs in the Fix-Free Grammar

Our MEM algorithm uses the grammar G = {Σ,V,R, S} resulted from running
FFGram with T ′, and produces the list L of prMEMs in T . We consider a set
O of g = |R| rules storing the cumulative lengths of the efexp expansions for
the right-hand sides of R. We also define a logical partition for O according to
the grammar levels. Let X → A1A2· · ·Ax ∈ Ri be a rule at level i. The rule
X → c1 · · · cx ∈ Oi stores in cj , with j ∈ [3..x − 1], the value cj = efexp(A2) +
· · · + efexp(Aj−1). To avoid recursive overlaps, we set c1 = 0, c2 = 0, and
cx−1 = cx−2, cx = cx−2. The leftmost tree of Fig. 2 shows an example of a rule
in O. We assume FFGram already constructed O.

Computing All-vs-All MEMs in Grammar-Compressed Text 165

Fig. 2. Expansions for nonterminal 6 of Fig. 1. Dashed lines are skipped branches. The
sequence of numbers below efexp(6) corresponds to the rule 6 → 0 0 3 6 6 ∈ O.

prMEM Encoding. Every element of L is a tuple (X,Y, oX , oY , �) of five elements.
X and Y are the nonterminals labelling the lowest nodes in G’s grammar tree
that encode the primary occurrences for the MEM’s sequence. The fields oX and
oY are the number of terminal symbols preceding the prMEM within efexp(X)
and efexp(Y) (respectively), and � is the length of the prMEM.

Grammar Encoding. We encode every subset Ri ⊂ R as an individual string
collection concatenated in one single array Ri[1..Gi]. We create an equivalent
array Oi for the rules of Oi ⊂ O. We also consider a function map(X) = j that
indicates that the right-hand side F = Ri[a..a′] of X → F ∈ Ri is the jth string
of Ri from left to right. Additionally, we define the function parent(b) = X
that returns X for each position b ∈ [a..a′]. We assume map and parent are
implemented in O(1) time and Gi + o(Gi) bits using bit vectors.

Our prMEM algorithm is an iterative process that, each step i, searches for
prMEMs in the rules of the grammar level i. Still, there is a slight difference
between the iteration i = 1 and the others i > 1, so we explain them separately.

First Iteration. The first step in iteration i = 1 is to create a sparse suffix
array SA for Ri that discards each position SA[j] meeting one of the following
conditions: (i) Ri[SA[j]] is the start of a phrase, (ii) Ri[SA[j] + 1] is the end
of a phrase, or (iii) Ri[SA[j]] is the end of a phrase. We refer to the resulting
sparse suffix array as A. The next step is to produce the LCP array for A,
which we name GLCP for convenience. We then run the suffix-tree-based MEM
algorithm [34] using A and GLCP . We implement this step by simulating with
GLCP a traversal over the compact trie induced by the suffixes of Ri in A
(see [1,19] for the traversal). Every time the MEM algorithm reports a triplet
(A[u], A[u′], l) for a MEM Ri[A[u]..A[u] + l − 1] = Ri[A[u′]..A[u′] + l − 1], we
append the tuple (X = parent(A[u]), Y = parent(A[u′]), oX = Oi[A[u]], oY =
Oi[A[u′]], � = l) into L. Once we finish running the MEM algorithm, we obtain
satellite data structures for the next iteration i + 1:

– A vector P 1[1..g1] encoding the permutation of R1 resulted from sorting the
lexp expansions of the strings in colexicographical order.

– A vector LCS1[1..g1] storing LCS (longest common suffix) values between
the lexp expansions of strings in Ri that are consecutive in the permuta-
tion P 1. We encode LCS1 with support for range minimum queries in O(1)

166 D. Dı́az-Domı́nguez and L. Salmela

time. Thus, given two nonterminals X,Y ∈ V 1, we implement lcs1(X,Y) as
rmq(LCS1, P 1[map(X)], P 1[map(Y)]).

– A vector LCP 1[1..g1] storing LCP values between the rexp expansions of
consecutive strings of R1. LCP 1 also supports O(1)-time rmq queries so we
implement lcs1(X,Y) as rmq(LCP 1,X, Y).

Next Iterations. For i > 1, we receive as input the tuple (Ri, Oi) and the
vectors P i−1, LCSi−1, LCP i−1. We assume LCSi−1 and LCP i−1 support rmq
queries in O(1) time so we can implement lcsi−1 and lcpi−1 in O(1) time as well.

We compute A and GLCP for Ri as in Sect. 6. However, we transform GLCP
to store the LCP values of the rexp expansions of the suffixes of Ri in A. Let
Ri[A[j]..|Ri|] and Ri[A[j+1]..|Ri|] be two consecutive suffixes of Ri in A sharing
a prefix of length GLCP [j + 1] = l. We update this value to GLCP [j + 1] =
Oi[A[j + 1] + l] + lcpi−1(Ri[A[j] + l]), Ri[A[j + 1] + l]).

We use GLCP and A to simulate a traversal over the compact trie induced by
the rexp expansions of the Ri suffixes in A. The purpose of the traversal is, again,
to run the suffix-tree-based MEM algorithm. Every time this procedure reports
a triplet (A[u], A[u′], l) as a MEM, we compute o = lcs(Ri[u − 1], Ri[u′ − 1]),
and insert the tuple (X = parent(A[u]), Y = parent(A[u′])), oX = Oi[A[u]] −
o + 1, oY = Oi[A[u′]] − o + 1, � = o + l) into L. The final step in the iteration is
to produce the satellite data structures:

– P i[1..gi]: we sort the strings in Ri colexicographically using P i−1. We define
the relative order of any pair of strings F,Q ∈ Ri by comparing their
sequences P i−1[F [1]]· · ·P i−1[F [|F | − 2]] and P i−1[Q[1]]· · ·P i−1[Q[|Q| − 2]]
from right to left. The resulting permutation P i has the following property:
let X,X ′ ∈ V i be two nonterminals. If P i[map(X)] < P i[map(X ′)], it means
lexp(X) is colexicographically equal or smaller than lexp(X ′).

– LCSi[1..gi]: we scan the strings of Ri in P i order. Let Ri[a..a′] and Ri[b..b′] be
two consecutive strings in the permutation of P i. That is, X = parent(a) and
X ′ = parent(b) such that P i[map(X)] = j and P i[map(X ′)] = j +1. Assume
their prefixes Ri[a..a′ − 2] and Ri[b..b′ − 2] share a suffix of length l ≥ 0. We
set LCSi[j + 1] = Oi[a′] − Oi[a′ − l − 1] + lcsi−1(Ri[a′ − l − 2], Ri[b′ − l − 2]).

– LCP i[1..gi]: we scan the strings of Ri from left to right. Let Ri[a..a′] and
Ri[b..b′] be two strings in Ri with X = parent(a) and X ′ = parent(b) = X+1.
Assume their suffixes Ri[a + 1..a′] and Ri[b + 1..b′] share a prefix of length
l ≥ 0. We set LCSi[map(X ′)] = Oi[b+l+1]+lcpi−1(Ri[a+1+l], Ri[b+1+l]).

Theorem 1. Let G = {Σ,V,R, S} be a fix-free grammar of size G built with
FFGram using the collection T = {T1, . . . , Tu}. It is possible to obtain from G
the list L with the prMEMs of T in O(G+ |L|) time and O((G+ |L|) log G) bits.

Proof. In iteration i = 1, constructing A and GLCP takes O(G1) time and
O(G1 log G1) bits [19,27]. Then, we implement the suffix-tree-based algorithm to
report MEMs in Ri by combining the method of Abouelhoda et al. [1], that visits
the nodes of the compact trie induced by GLCP in O(Gi) time, with Lemma

Computing All-vs-All MEMs in Grammar-Compressed Text 167

11.4 of Mäkinen et al. [23], which reports the MEMs of every internal node.
These ideas combined take O(G1 + e1) time and O((G1 + e1) log G1) bits, where
e1 is the number of prMEMs in the grammar level 1. The final step is to build
LCP 1, LCS1, and P 1. FFGram sorted the strings of R1 in lexicographical order
according to their rexp expansions, so building LCP 1 reduces to scan R1 from
left to right and compute LCP values between consecutive elements. This process
takes O(G1) time and O(G1 log G1) bits. Then, we obtain P 1 by running SAIS
in the reversed strings of R1, which also takes O(G1) time. We use the reversed
strings to build LCS1 as we did with LCP 1. Finally, giving rmq support to
LCP 1 and LCP 1 takes O(G1) time and O(G1 log G1) bits if we use the data
structure of Johannes Fischer [12]. Summing up, the iteration i runs in O(G1+e1)
time and uses O((G1 + e1) log G1) bits. Each iteration i > 1 performs the same
operations, but it also updates GLCP , LCP i, and LCSi. These updates require
linear scans of the arrays as processing each position performs O(1) access to Oi

and O(1) calls to lcsi−1 or lcpi−1, which we implement in O(1) time. Thus, the
cost of iteration i is O(Gi + ei) time and O((Gi + ei) log Gi) bits, where ei is the
number prMEMs in the grammar level i. Combining the h grammar levels, the
cost to compute L is O(G + |L|) time and O((G + |L|) log G) bits.

7 Positioning MEMs in the Text

The last aspect we cover to solve AvAMEM(T , τ) is computing from (L,G)
the positions in T of the MEMs. We assume that the collections {R1, . . . , Rh}
of Sect. 6 are concatenated in one single array R[1..G], and that the collections
{O1, . . . , Oh} are concatenated in another array O[1..G]. We define the function
stringid, which takes as input an index u within R with S = parent(u) (start
symbol in G), and returns the identifier of the string of T where R[u] lies.

We first simplify G to remove the unary paths in its parse tree This extra
step is not strictly necessary, but it is convenient to avoid redundant work. After
the simplification, we create an array N [1..G], which we divide into g buckets.
Each bucket b ∈ [1..g] stores in an arbitrary order the positions in R for the
occurrences of b ∈ Σ ∪ V . Additionally, we create a vector C[1..g] that stores in
C[b] the position in N where the bucket for b ∈ Σ ∪ V starts.

We report MEMs as follows: we insert the tuples of L into a stack. Then,
we extract the tuple (X,Y, oY , oX , �) from the top of the stack and compute
sX = C[X], eX = C[X +1]−1 and sY = C[Y], eY = C[Y +1]−1. For every pair
of indexes (u, u′) ∈ [sX , eX]× [sY , eY], we get X ′ = parent(N [u]), and if X ′ = S,
we set X ′ = stringid(N [u]). We do the same with N [u′] and store the result in
a variable Y ′. Now we produce the new tuple (X ′, Y ′, oX′ = O[N [u]]+oX , oY ′ =
O[N [u′]] + oY , �). If both X ′ and Y ′ are strings identifiers, we report the tuple
M(X ′, Y ′, oX′ , oY ′ , �) as an output of AvAMEM, otherwise we insert the new
tuple into the stack. If X ′ or Y ′ is a string identifier rather than a nonterminal,
we flag the tuple to indicate that one of the elements is a string. Thus, when
we visit the tuple again, we avoid recomputing its values. The report of MEMs
ends when the stack becomes empty.

168 D. Dı́az-Domı́nguez and L. Salmela

Theorem 2. Let G be a fix-free grammar of size G constructed with FFGram
using the collection T = {T1, . . . , Tu}, and let L be the list of prMEMs in G with
length > τ , where τ is an input parameter. Given the simplified version of G and
L, it is possible to report the positions in T of the occ MEMs of length > τ in
O(G + occ) time and O((G + occ) log G) bits.

Proof. The G term in the time complexity comes from the grammar simplifica-
tion and the construction of N and C. Let (X,Y, oX , oY , �) ∈ L be a prMEM
whose sequence in T is L, with |L| = �. Let us assume aLb is the primary occur-
rence of L under X and xLz is the primary occurrence under Y . In our algorithm,
the access pattern in N simulates a bottom-up traversal of G’s grammar tree that
visits every node labelled X ′ such that exp(X ′) has aLb, and every node labelled
Y ′ such that exp(Y ′) has xLz. Our idea is similar to reporting secondary occur-
rences in the grammar self-index of Claude and Navarro [8]. They showed that
the cost of traversing the grammar to enumerate the occP occurrences of a pat-
tern P amortizes to O(occP) time. The argument is that, in a simplified G, each
node we visit in the grammar tree yields at least one occurrence in T . However,
our traversal processes two patterns simultaneously (aLb and yLz), pairing each
occurrence of one with each occurrence of the other. Thus, our amortized time
to process a prMEM tuple is O(occX × occY), where occX and occY are the
numbers of occurrences in T for aLb and yLz, respectively. Summing up, the
cost of processing all the tuples in L is O(occ) time.

Corollary 1. Let T be a string collection of n symbols containing occ MEMs of
length ≥ τ , τ being a parameter. We can solve AvAMEM(T , τ) by building a fix-
free grammar G of size G in O(n) time and O(G log G) bits, and then computing
the occ MEMs of T over G in O(G + occ) time and O((G + occ) log G) bits.

8 Concluding Remarks

We have presented a method to compute all-vs-all MEMs that rely on grammar
compression to reduce memory overhead and save redundant calculations. In
particular, given a collection T of n symbols and occ MEMs, we can get a
grammar G of size G in O(n) time and O(G log G) bits of space, and find the
MEMs of T on top of G in O(G + occ) time and using O((G + occ) log G) bits.
We believe our framework is of practical interest as it uses mostly plain data
structures that store satellite data about the grammar. Besides, we can choose
to compute the MEMs at the same time we construct the grammar or do it
later. However, it remains open to check how far is G from O(γ log n

γ). The
comparison is reasonable as FFGram, our grammar algorithm, resembles the
locally-consistent grammar of Christiansen et al. [7], which achieves that bound.
Still, it is unclear to us how the overlap produced by FFGram affects the bound.
Overlapping phrases has an exponential effect on the grammar size but also
affects how the text is parsed. An interesting idea would be to find a way to
chain prMEMs as approximate matches and then report those in the last step
of our algorithm instead of the MEMs. An efficient implementation of such a
procedure could significantly reduce the cost of biological sequence analyses in
massive collections.

Computing All-vs-All MEMs in Grammar-Compressed Text 169

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

3. Batu, T., Ergun, F., Sahinalp, C.: Oblivious string embeddings and edit distance
approximations. In: Proceedings of the 17th Symposium on Discrete Algorithms
(SODA), pp. 792–801 (2006)

4. Boucher, C., et al.: PHONI: streamed matching statistics with multi-genome ref-
erences. In: Proceedings of the 21st Data Compression Conference (DCC), pp.
193–202 (2021)

5. Chang, W.I., Lawler, E.L.: Sublinear approximate string matching and biological
applications. Algorithmica 12(4), 327–344 (1994)

6. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

7. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), 1–
39 (2020)

8. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34109-0 19

9. Claude, F., Navarro, G., Pacheco, A.: Grammar-compressed indexes with logarith-
mic search time. J. Comput. Syst. Sci. 118, 53–74 (2021)

10. Cole, R., Vishkin, U.: Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In: Proceedings of the 18th
Annual Symposium on Theory of Computing (STOC), pp. 206–219 (1986)

11. Dı́az-Domı́nguez, D., Navarro, G.: A grammar compressor for collections of reads
with applications to the construction of the BWT. In: Proceedings of the 31st Data
Compression Conference (DCC), pp. 83–92 (2021)

12. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12200-2 16

13. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1) (2020). Article 2

14. Jeż, A.: Approximation of grammar-based compression via recompression. Theor.
Comput. Sci. 592, 115–134 (2015)

15. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC), pp. 827–840 (2018)

16. Kent, W.J.: BLAT-the BLAST-like alignment tool. Genome Res. 12(4), 656–664
(2002)

17. Kieffer, J., Yang, E.-H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

18. Kurtz, S., et al.: Versatile and open software for comparing large genomes. Genome
Biol. 5, 1–9 (2004)

19. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X 17

https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-12200-2_16
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17

170 D. Dı́az-Domı́nguez and L. Salmela

20. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

21. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv preprint arXiv:1303.3997 (2013)

22. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094–3100 (2018)

23. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design. Cambridge University Press, Cambridge (2015)

24. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

25. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
23(2), 262–272 (1976)

26. Navarro, G.: Computing MEMs on repetitive text collections. In: Proceedings of the
34th Annual Symposium on Combinatorial Pattern Matching (CPM), pp. article
22 (2023)

27. Nong, G., Zhang, S., Chan, W.H.; Linear suffix array construction by almost pure
induced-sorting. In; Proceedings of the 19th Data Compression Conference (DCC),
pp. 193–202 (2009)

28. Nunes, D.S.N., Louza, F., Gog, S., Ayala-Rincón, M., Navarro, G.: A grammar
compression algorithm based on induced suffix sorting. In: Proceedings of the 28th
Data Compression Conference (DCC), pp. 42–51 (2018)

29. Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Chavez, E., Lonardi, S. (eds.)
SPIRE 2010. LNCS, vol. 6393, pp. 322–333. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16321-0 34

30. Rossi, M., Oliva, M., Bonizzoni, P., Langmead, B., Gagie, T., Boucher, C.: Finding
maximal exact matches using the r-index. J. Comput. Biol. 29(2), 188–194 (2022)

31. Rossi, M., Oliva, M., Langmead, B., Gagie, T., Boucher, C.: MONI: a pangenomic
index for finding maximal exact matches. J. Comput. Biol. 29(2), 169–187 (2022)

32. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

33. Sahinalp, S.C., Vishkin, U.: On a parallel-algorithms method for string matching
problems (overview). In: Bonuccelli, M., Crescenzi, P., Petreschi, R. (eds.) CIAC
1994. LNCS, vol. 778, pp. 22–32. Springer, Heidelberg (1994). https://doi.org/10.
1007/3-540-57811-0 3

34. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (SWAT), pp. 1–11 (1973)

http://arxiv.org/abs/1303.3997
https://doi.org/10.1007/978-3-642-16321-0_34
https://doi.org/10.1007/978-3-642-16321-0_34
https://doi.org/10.1007/3-540-57811-0_3
https://doi.org/10.1007/3-540-57811-0_3

Sublinear Time Lempel-Ziv (LZ77)
Factorization

Jonas Ellert(B)

Technical University of Dortmund, Dortmund, Germany

jonas.ellert@tu-dortmund.de

Abstract. The Lempel-Ziv (LZ77) factorization of a string is a widely-
used algorithmic tool that plays a central role in data compression
and indexing. For a length-n string over integer alphabet [0, σ) with
σ = nO(1), and on a word RAM of width w = Θ(log n), it can be com-
puted in O(n) time. However, the packed representation of the string
occupies only Θ(n log σ) bits or equivalently Θ(n/ logσ n) words of space,
and hence we can hope for algorithms that run in O(n/ logσ n) time and
words of space. Kempa showed how to compute the LZ77 factorization
with overlaps in O(n/ logσ n+z log11 n) time and O(n/ logσ n+z log10 n)
words of space, where z is the number of phrases in the LZ77 factor-
ization (SODA 2019). We significantly improve this result by achiev-
ing O(n/ logσ n + z log3+ε z) time with overlaps, and O(n/ logσ n +
z log23/5+ε z) without overlaps (for any constant ε ∈ R

+). In both cases,
we require only O(n/ logσ n) words of space. One ingredient of the solu-
tion is a novel approximation algorithm that computes an LZ-like parsing
of at most 3z phrases in O(n/ logσ n) time and words of space. All algo-
rithms are deterministic.

Keywords: Lempel-Ziv · LZ77 · LZ-like · lossless compression ·
word-packing · sublinear time · string algorithms · approximation
algorithms

1 Introduction

The Lempel-Ziv (LZ) factorization [45] of a string decomposes it into a series
of phrases. Each phrase is either the leftmost occurrence of a symbol (a literal
phrase), or the longest substring that can be read at an earlier position in the
string (a referencing phrase). Each referencing phrase can be replaced by an
integer pair consisting of the length of the phrase and the (absolute or relative)
position of an earlier occurrence of the phrase. This way, one can store the string
in O(z log n) bits of space, where n is the length of the string and z is the number
of phrases. Further compression can be achieved by encoding the integers, e.g.,
by applying a universal code. In an LZ-like factorization, referencing phrases do
not need to be of maximal length.

Background and Related Work. The LZ factorization was first introduced in
1976, when Lempel and Ziv proposed the number z of phrases in the factorization

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 171–187, 2023.
https://doi.org/10.1007/978-3-031-43980-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_14&domain=pdf
http://orcid.org/0000-0003-3305-6185
https://doi.org/10.1007/978-3-031-43980-3_14

172 J. Ellert

as a complexity measure for strings (aimed at evaluating the “randomness” of a
string) [45]. Over 45 years later, it is still a standard measure for dictionary-based
compression (see, e.g., [24]). This is because z can be computed in linear time
[56], and because it lower-bounds other measures like the size of the smallest
grammar that generates the string [9,57]. Many compressibility measures are
within polylogarithmic factors of z, e.g., the size of the smallest bidirectional
macro scheme [24], the number of runs in the BWT [34], the size of the smallest
string attractor [35], and the normalized substring complexity [36,55].

Apart from introducing z as a measure, Ziv and Lempel also used their fac-
torization to derive the compression scheme now commonly known as LZ77 [67].
(Nowadays, the LZ factorization – despite being introduced in 1976 – is often
referred to as the LZ77 factorization.) Since then, the LZ factorization has become
a cornerstone of practical compression; LZ-based techniques are a crucial ingre-
dient of the most commonly used compressors (e.g., gzip, 7zip, rar, brotli) and
compressed formats (e.g., PDF, PNG). There has been extensive work aimed
at computing (versions of) the LZ factorization (we list only a few examples).
This includes parallel algorithms [13,15,48,59,60], online and streaming algo-
rithms [5,53,54,61,66], external memory algorithms [3,43], and approximation
algorithms [18,40]. Another line of research improves the compression rate by opti-
mizing the encoding of phrases [1,4,10,12,14,17,38,44]. There are several text
indices that rely on LZ compression [6,7,16,22,23,31,42,50,63,64]. Despite this
plethora of results, the ever-increasing relevance of compression still drives the
development of new ways to compute LZ(-like) factorizations [21,28,37,51,58,65].

In this work, we consider sequential algorithms on a word RAM of word-
width Θ(log n). The string is over integer alphabet {0, . . . , σ − 1}, such that a
symbol can be stored in �log2 σ� bits. Hence the string occupies n �log2 σ� bits or
Θ(n/ logσ n) words of memory. This makes Ω(n/ logσ n) a natural lower bound
for the time and words of space needed to compute the LZ factorization. Many
algorithms take O(n) time (see, e.g., [19,25,26,30]) or O(n/ logσ n) words of
working space (see, e.g., [4,29,39,41,52,53,61,66]), and at least one algorithm
achieves both [20]. Kempa [32] introduced an algorithm that takes O(n/ logσ n+
r log9 n + z log9 n) time and O(n/ logσ n + r log8 n) words of space, where r =
O(z log2 n) [34] is the number of BWT runs. However, it appears that there is
no algorithm with both space (in words) and time in O(n/ logσ n).

Contributions. We propose new deterministic algorithms for computing LZ(-like)
factorizations, summarized by the theorems below. The space asymptotically
matches the space needed for storing the string. The time for the exact factor-
ization is optimal if z = O(n log σ/ log4+ε n), i.e., for compressible strings. We
adapt Theorem 2 to the non-overlapping version of LZ in Sect. 5.

Theorem 1. Let T ∈ [0, σ)n be a string, and let z be the number of phrases in
the LZ factorization of T . An LZ-like factorization of T that consists of at most
3z phrases can be computed in O(n/ logσ n) time and O(n log σ) bits of space.

Theorem 2. Let T ∈ [0, σ)n be a string, and let ε ∈ R
+ be an arbitrarily

small positive constant. The LZ factorization T = f1 . . . fz can be computed in
O(n/ logσ n + z log3+ε z) time and O(n log σ) bits of space.

Sublinear Time Lempel-Ziv (LZ77) Factorization 173

2 Preliminaries

Strings and Computational Model. For i, j ∈ Z, we write [i, j] = [i, j +1) instead
of {k ∈ Z | i ≤ k ≤ j}. Let n ∈ N and σ ∈ [1, n]. A string T ∈ [0, σ)n of length
|T | = n is a sequence T = T [1]T [2] . . . T [n] of symbols from alphabet [0, σ). For
i, j ∈ [1, n], substring T [i..j] = T [i..j + 1) is the sequence T [i]T [i + 1] . . . T [j] (or
the empty string ε if j < i). A substring shorter than T is proper. Substrings
T [1..i] and T [i..n] are respectively called prefix and suffix of T . The reversal of T
is rev(T) = T [n]T [n − 1] . . . T [1]. Two (sub-)strings S1 and S2 are equal, written
S1 = S2, if |S1| = |S2| and ∀i ∈ [1, |S1|] : S1[i] = S2[i]. We write S1 ≺ S2 and
say that S1 is lexicographically smaller than S2 if and only if either S1 equals
a proper prefix of S2, or ∃� ∈ [1,min(|S1| , |S2|)] such that S1[1..�) = S2[1..�)
and S1[�] < S2[�]. We write S2 	 S1 instead of ¬(S1 ≺ S2). We say that S1

is co-lexicographically smaller than S2 if and only if rev(S1) ≺ rev(S2). The
concatenation of S1 and S2 is denoted by S1 · S2 or S1S2.

All algorithms, lemmas, and intermediate results assume the following model
of computation. String T ∈ [0, σ)n is processed on a word RAM (see, e.g., [27])
of word-width w ≥ log n. Each symbol is stored in �log2 σ� bits, and the entire
string occupies n �log2 σ� bits (or O(n/ logσ n) words) of consecutive memory.

Lempel-Ziv and Longest Common Extensions. The uniquely defined Lempel-Ziv
(LZ) factorization of a string T decomposes it into a series of z phrases T =
f1f2 . . . fz. Each phrase fi′ = T [i..i + |fi′ |) with i′ ∈ [1, z] and i = 1 +

∑i′−1
k=1 |fk|

is either a single symbol T [i] that does not occur in T [1..i) (a literal phrase), or
otherwise it is the longest prefix of T [i..n] that has a previous occurrence T [j..j+
|fi′ |) = fi′ with j ∈ [1, i) (a referencing phrase). Position i is the destination
of fi′ . If fi′ is a referencing phrase, then j is a source of fi′ . This is Storer
and Szymanski’s version of the factorization [62]. All presented algorithms can
be trivially modified to compute Lempel and Ziv’s original version instead, in
which each phrase is a combination of a lengthwise maximal (possibly empty)
reference and a literal symbol. It holds z = O(n/ logσ n) [45, Theorem 2]. An
LZ-like factorization is defined exactly like the LZ factorization, but without the
requirement that referencing phrases are of maximal length.

Given i, j ∈ [1, n] with i ≤ j, their longest common extension (LCE) is
lce(i, j) = lce(j, i) = max({� ∈ [0, n − j + 1] | T [i..i + �) = T [j..j + �)}).
This is closely related to LZ because a referencing phrase fi′ with source j and
destination i is of length |fi′ | = lce(i, j) = maxj′∈[1,i)(lce(i, j′)). LCEs also
reveal the lexicographical order of substrings. For any substrings T [i..i+ �i) and
T [i′..i′+�i′), it holds T [i..i+�i) ≺ T [i′..i′+�i′) if and only if either lce(i, i′) ≥ �i

and �i < �i′ , or lce(i, i′) < min(�i, �i′) and T [i+lce(i, i′)] < T [i′ +lce(i, i′)]. A
data structure by Kempa and Kociumaka provides constant time LCE queries,
and thus also constant time lexicographical order testing of substrings.

Lemma 1 ([33, Theorem 5.4]). For a string T ∈ [0, σ)n, a data structure that
supports constant time LCE queries (given i, j ∈ [1, n], output lce(i, j)) and
lexicographical order testing (given i, j ∈ [1, n], output if T [i..n] ≺ T [j..n]) can
be computed in O(n/ logσ n) time and O(n log σ) bits of working space.

174 J. Ellert

3 Algorithm for 3-Approximate LZ-Like Factorization

We accelerate the computation with precomputed lookup tables. We access the
tables with short substrings of T . A (sub-)string P ∈ [0, σ)m is a bitstring of
length m·�log2 σ�. Hence we can interpret P as an integer int(P) ∈ [1, 2m·�log2 σ�].
If m ≤ log2 n/ �log2 σ�, then P fits in a word of memory and can be extracted
from T in constant time. We can then obtain int(P) and use it to access a lookup
table in constant time. As a warm-up result (and for later usage), we describe a
lookup table that detects periodicities (Lemma 2) and a set of tables for leftmost
pattern matching queries (Lemma 3). A string P is of period p ∈ N

+ if and only
if P [1.. |P |−p] = P [1+p.. |P |] (or equivalently if ∀i ∈ [1, |P |−p] : P [i] = P [i+p]).
We say that p is the period of P , if it is the minimal period of P .

Lemma 2. Let n ∈ [1, 2w]. There is a data structure that, given pattern P ∈
[0, σ)m with m ≤ log2 n/(2 �log2 σ�), outputs the shortest period of P in constant
time. It can be computed in O(

√
n polylog(n)) time and words of space.

Proof. Let P ∈ [0, σ)m, then int(P) ∈ [1, n′] with n′ ≤ 2log2 n/2 = O(
√

n). For
each P ∈ [0, σ)m, we naively compute its period in O(m2) ⊆ O(log2 n) time,
and store it in entry Qm[int(P)] of a lookup table Qm. There are O(log n) tables
(one per possible value of m), and each table has O(n′) entries. Hence the total
time and words of space are bounded by O(n′ log3 n) = O(

√
n polylog(n)). �

Lemma 3. Let T ∈ [0, σ)n. Let ε ∈ R
+ be constant. There is a data structure

that, given a query pattern P ∈ [0, σ)m with m ≤ log2 n/((2 + ε) �log2 σ�), out-
puts the leftmost occurrence of P in T in constant time. It can be computed in
O(n/ logσ n) time and o(n/ log n) bits of space.

Proof. Let k = �log2 n/((2 + ε) �log2 σ�)� be the maximal allowed pattern
length. Let S ∈ [0, σ)2k, then int(S) ∈ [1, n′] with n′ ∈ O(n1−ε̂), where
ε̂ = ε/(2 + ε) > 0. In a table M [1..n′], we compute for every S ∈ [0, σ)2k

the value M [int(S)] = ik + 1, where i ∈ [0, n
k − 2] is the minimal value with

S = T [ik + 1..ik + 2k + 1). If no such i exists, we store M [int(S)] = n + 1. Com-
puting the table takes O(n/ logσ n) time. We simply iterate over the O(n/ logσ n)
possible values of ik + 1 in decreasing order. For each of them, we take constant
time to assign M [int(T [ik + 1..ik + 2k + 1))] = ik + 1.

Now we use M to compute the leftmost occurrence of each possible pattern
of length at most k. We create k lookup tables L1, L2, . . . , Lk. For P ∈ [0, σ)m,
entry Lm[int(P)] will contain the leftmost occurrence of P in T . We compute
Lm as follows. Initially, all entries are set to n + 1. Now we consider each
string S ∈ [0, σ)2k. For every j ∈ [0, 2k − m], we let P = S[1 + j..1 + j + m)
and assign Lm[int(P)] = min(Lm[int(P)],M [int(S)] + j). The leftmost occur-
rence of any length-m pattern is fully contained in a length-2k substring at
some position ik + 1. Hence the computed values are correct. For each of
the n′ possible S ∈ [0, σ)2k, we have to consider O(k2) substrings, and for
each of them we spend constant time to update some table Lm. The time is
O(n′ · k2) ⊂ O(n1−ε̂ polylog(n)). There are k + 1 lookup tables, and each has

Sublinear Time Lempel-Ziv (LZ77) Factorization 175

at most n′ entries. Hence O(n1−ε̂ polylog(n)) ⊂ o(n/ log n) bits of space are
sufficient. �
String Synchronizing Sets. We will work with a small subset of sample positions
that has convenient synchronizing properties.

Definition 1 ([33]). Let T ∈ [0, σ)n and τ ∈ [1,
⌊

n
2

⌋
]. A set S ⊆ [1, n − 2τ + 1]

is τ -synchronizing (with respect to T) if and only if the following conditions hold.

– Synchronizing condition: For any i, j ∈ [1, n − 2τ + 1] with T [i..i + 2τ) =
T [j..j + 2τ), it holds i ∈ S if and only if j ∈ S.

– Density condition: For any i ∈ [1, n− 3τ +2], it holds S ∩ [i, i+ τ) = ∅ if and
only if the period of T [i..i + 3τ − 2] is at most τ

3 .

Lemma 4 ([33, Theorems 4.3 and 8.11]). Let T ∈ [0, σ)n. There is a
�log2 n/(8 �log2 σ�)�-synchronizing set of size O(n/ logσ n). It takes O(n/ logσ n)
time and O(n log σ) bits of working space to compute the set, and to lexicograph-
ically sort all the suffixes that start at positions in the set.

3.1 Computing Longest Previous Factors of Sample Positions

Let τ = �log2 n/(8 �log2 σ�)�. We use a τ -synchronizing set of sample positions.
We start by computing for each sample position the longest referencing phrase
that could hypothetically start at that position. This is similar to computing
longest previous factors [11] in the sequential setting without word-packing.

We obtain a τ -synchronizing set {d1, d2, . . . , dN} with ∀x ∈ [1, N) :
dx < dx+1 and N = O(n

τ) = O(n/ logσ n). We lexicographically sort the suf-
fixes at synchronizing positions and obtain their sparse suffix array, which is the
unique permutation suf of [1, N] with ∀x ∈ [1, N) : T [dsuf[x]..n] ≺ T [dsuf[x+1]..n].
This takes O(n/ logσ n) time with Lemma 4. Next, we compute an array
LPF[1..N] (for longest previous factor), where entry LPF[x] is a position from
[1, dx) that maximizes lce(dx, LPF[x]) (this position may not be unique, and it
is not necessarily a sample position). We first use Lemma 3 to find the minimal j
with T [j..j+2τ) = T [dx..dx+2τ) in constant time. If j = dx, then T [dx..dx+2τ)
has no previous occurrence. In this case, we issue at most O(τ) queries to Lemma
3 and find the maximal � ∈ [0, 2τ) such that T [dx..dx + �) has a previous occur-
rence. This also reveals LPF[x] (we can choose any position from [1, dx) if � = 0),
but it takes O(τ) time. However, this can only happen once per distinct length-2τ
substring, which limits the total time to O(22τ ·�log2 σ�τ) ⊂ O(n/ log n). If j < dx,
then T [dx..dx + 2τ) has a previous occurrence, and the synchronizing property
of Definition 1 guarantees that all previous occurrences of T [dx..dx + 2τ) start
at sample positions. Thus, we can compute LPF in the same way as it is usually
done for the entire suffix array. A detailed description can be found, e.g., in [11],
and we only give a brief summary. (Our LPF corresponds to PrevOcc in [11].)
For each entry suf[x], we find

prev[x] = max({y ∈ [1, x) | suf[y] < suf[x]}) and
next[x] = min({y ∈ [x + 1,m] | suf[y] < suf[x]}),

176 J. Ellert

which takes O(N) time with an algorithm for nearest smaller values (see, e.g., [2,
Lemma 1]). We then use Lemma 1 to compute �1 = lce(dsuf[x], dsuf[prev[x]]) and
�2 = lce(dsuf[x], dsuf[next[x]]), which are the respective maximal phrase lengths
at destination dsuf[x] that can be achieved with a lexicographically smaller
and a lexicographically larger suffix starting at an earlier sample position. If
max(�1, �2) < 2τ , then we have already assigned LPF[suf[x]] with Lemma 3 as
described above. Otherwise, if �1 > �2, then we assign LPF[suf[x]] = suf[prev[x]].
If, however, �2 ≥ �1, then we assign LPF[suf[x]] = suf[next[x]]. (It is possible that
prev[x] and/or next[x] are undefined, but treating this is trivial.) The correct-
ness follows from the synchronizing property and the correctness of the same
technique for the full suffix array [11]. The total time and space in words are
O(N) = O(n/ logσ n).

3.2 Computing a Gapped Factorization

Now we compute a gapped LZ factorization T = f1g1r1f2g2r2 . . . fz′gz′rz′ , where:

– Each fi′ is a perfect phrase at destination i = 1 +
∑i′−1

h=1 |fhghrh| defined just
like in the exact factorization. It is either the leftmost occurrence of a symbol
(a literal phrase), or the longest prefix of T [i..n] with an earlier occurrence
T [j..j + |fi′ |) = fi′ at some source j ∈ [1, i) (a referencing phrase).

– Each gi′ is a (possibly empty) gap at destination i = 1+|fi′ |+∑i′−1
h=1 |fhghrh|.

A gap can be any string and does not necessarily have a previous occurrence.
– Each ri′ is a reference at destination i = 1 + |fi′gi′ | +

∑i′−1
h=1 |fhghrh|, which

is either empty or it has an earlier occurrence T [j..j + |ri′ |) = ri′ at source
j ∈ [1, i) (with no requirement of maximal length).

Lemma 5. Any gapped LZ factorization T = f1g1r1f2g2r2 . . . fz′gz′rz′ satisfies
z′ ≤ z, where z is the number of phrases in the exact LZ factorization of T .

Proof. A suffix T [j..i + �) of an exact LZ phrase T [i..i + �) at destination i has
an earlier occurrence. Hence, if j is the destination of a perfect phrase fj′ in the
gapped factorization, then this phrase is of length at least �−j. This means that
a phrase of the exact LZ factorization contains the destination of at most one
perfect phrase of the gapped LZ factorization, which implies z′ ≤ z. �

Computing any gapped factorization is trivial (e.g., T = fgr with f = T [1],
g = [T2..n], r = ε is a gapped factorization). We will compute a gapped fac-
torization with the additional property that none of the gaps contain a position
from the synchronizing set, which makes it easy to eliminate the gaps in a post-
processing. We compute the factorization from left to right using LPF.

The first perfect phrase is literal phrase f1 = T [1]. After creating some perfect
phrase fi′ at destination i, we iterate over the upcoming sample positions until
we reach the first dx ≥ i + |fi′ |. The next gap is gi′ = T [i + |fi′ | ..dx), and the
next reference ri′ is empty. The next perfect phrase fi′+1 at destination dx is a
literal phrase if lce(dx, LPF[x]) = 0. Otherwise, it is a referencing phrase with

Sublinear Time Lempel-Ziv (LZ77) Factorization 177

source LPF[x] and length lce(dx, LPF[x]). As soon as we create a perfect phrase
fi′ at destination i with i + |fi′ | > dN , we complete the factorization with gap
gi′ = T [i + |fi′ | ..n] and empty reference ri′ . We spend constant time per sample
position, and hence the time is O(N) = O(n/ logσ n).

Eliminating Long Gaps. Now we eliminate the gaps by replacing them with
references. We distinguish between short gaps of length at most 3τ , and long
gaps of length more than 3τ . A long gap gi′ at destination i is of length more
than 3τ , and due to our method of computing the factorization it does not
contain any of the synchronizing positions. By the density condition of Definition
1, gi′ has period p ≤ τ/3. The reference ri′ is empty (because all references in
the initial gapped factorization are empty, and we only replace them with non-
empty references when eliminating long gaps). We replace gi′ri′ with g′

i′r′
i′ , where

g′
i′ = gi′ [1..3τ] and r′

i′ = gi′ [3τ+1.. |gi′ |). Since gi′ has period p, the new reference
r′
i′ at destination i+3τ has an earlier occurrence at source j = i+3τ −p. Hence

the replacement retains the properties of a gapped factorization.
If p ≤ τ

3 is the shortest period of gi′ of length at least 3τ , then it is easy to
see that also gi′ [1..3τ] has shortest period p (because gi′ [1..3τ] contains all the
length 2p substrings of gi′ , and thus a shorter period would directly translate to
the entire gi′). Hence we can simply use Lemma 2 with query pattern gi′ [1..3τ]
to lookup p in constant time. This way, replacing a long gap takes constant time,
and the total time needed for all long gaps is O(z) = O(n/ logσ n).

Eliminating Short Gaps and Finalizing the Factorization. We have eliminated
all long gaps, and from now on we simply say gap rather than short gap. A
non-empty gap gi′ at destination i is referencing if there is some j < i with
T [j..j + |gi′ |) = gi′ (we could replace the gap with a reference). We first identify
all the non-referencing non-empty gaps. For each non-empty gap, we use Lemma
3 to find the minimal j with T [j..j + |gi′ |) = gi′ in constant time. If and only if
j = i, then gi′ is non-referencing. The total time needed is O(z) ⊆ O(n/ logσ n).

We process each non-referencing non-empty gap gi′ separately. We find the
maximal � ∈ [0, |gi′ |) such that the prefix T [i..i + �) of gi′ has a previous occur-
rence. We do so by issuing O(|gi′ |) queries to Lemma 3, which takes O(τ) time.
This also reveals the source position j ∈ [1, i) of the previous occurrence. We
adjust the gapped factorization by re-factorizing the gap as gi′ = grfg′, where g
is a new empty gap, r is a new empty reference, f = T [i..i + max(1, �)) is a new
perfect phrase (with source j if � > 0), and g′ = T [i+�..i+ |gi′ |) is the remainder
of the gap. Note that this replacement retains the properties of a gapped fac-
torization, and by Lemma 5 there are still at most z factors of each type. If the
new gap g′ is still non-empty and non-referencing (we check this in the same way
as before), then we replace g′ by applying the same re-factorization procedure
again, and we keep doing so until the remainder of the gap is either empty or
referencing. Each application takes O(τ) time and decreases the length of the
remainder. Hence the total time for processing gi′ is O(τ2).

A non-referencing gap gi′ at destination i implies that T [i..i + |gi′ |) is the
leftmost occurrence of a substring of length at most 3τ . There are fewer than

178 J. Ellert

23τ ·�log2 σ� · 3τ distinct substrings of this length, and hence re-factorizing all the
non-referencing gaps takes O(23τ ·�log2 σ� · τ3) ⊆ O(n3/8 log3 n) time.

Now all non-empty gaps are referencing. We obtain an LZ-like parsing by
discarding all empty factors. This leaves at most z perfect phrases and 2z refer-
encing phrases. The total time is O(n/ logσ n). Lemmas 1 to 4 require O(n log σ)
bits of memory. Apart from that, we only use arrays of size N , which also require
O(N log n) = O(n log σ) bits of memory. Hence we have shown Theorem 1. It
is easy to see that, instead of first computing a gapped factorization and then
closing the gaps, we could just as well directly compute the approximate factor-
ization from left to right. This may result in a faster practical implementation.

4 Algorithm for Exact LZ Factorization

In the approximate algorithm, we create perfect phrases for which both source
and destination are samples. For the exact LZ factorization, we have to admit
arbitrary sources and destinations. We will define a new set of sample positions
such that, if a phrase fi′ has source j, there will be at least one sample position
j′ ∈ [j, j + min(δ, |fi′ |)) for some parameter δ. We can conceptually divide the
phrase into a head T [j..j′] and a tail T [j′..j + |fi′ |). Computing a phrase means
finding a sample position with matching head, and with tail of maximal length.
If we co-lexicographically sort the prefixes that end at sample positions, then we
group together samples that admit the same head. Similarly, if we lexicograph-
ically sort the suffixes that start at sample positions, then we group together
samples that admit the same tail. This motivates a geometric interpretation of
sample positions, in which each sample is represented by the lexicographical
rank of its suffix and the co-lexicographical rank of its prefix. (This technique is
similar to what was done in [4, Section 6.2].) Ultimately, we use geometric data
structures for insertion-only orthogonal range one-reporting to handle most of
the computational effort. (We could also use static data structures with an extra
dimension or weighted points; however, there are few such data structures with
known construction times.)

Definition 2. Let N ∈ [1, 2w] and let π be a permutation of [1, N]. The task
of insertion-only orthogonal range one-reporting is to maintain a set of points
P ⊆ {(i, π(i)) | i ∈ [1, N]} (initially empty) with the following operations:
– insert p ∈ {(i, π(i)) | i ∈ [1, N]} into P
– given Q = [a1, a2]× [b1, b2], output any point from Q∩P, or report Q∩P = ∅
Now we show how to find previous occurrences of substrings by using orthogonal
range reporting and an arbitrary set of sample positions.

Lemma 6. Let T ∈ [0, σ)n be a string, and let A[1..N] be an array of N dis-
tinct samples from [1, n] in increasing order. Let uA and qA be respectively the
insertion and query time of a data structure for insertion-only orthogonal range
one-reporting, and let sA be the maximum number of words occupied by this data
structure after N insertions. After an O(n/ logσ n+N log N) time preprocessing,
and in O(n/ logσ n+N +sA) words of space, a subset X of sample positions can
be maintained with the following operations.

Sublinear Time Lempel-Ziv (LZ77) Factorization 179

– given h ∈ [1, N], insert A[h] into X in O(uA) time
– given i ∈ [1, n] and k ∈ [0, n − i], find the (possibly not unique) x ∈ X ∩ (k, n]

with T [x − k..x] = T [i..i + k] and maximal � = lce(x, i + k) in O(log � ·
(log N + qA)) time, or report that j does not exist in O(log N + qA) time

Proof. We start by preprocessing the sample positions. Let suf be the unique
permutation of [1, N] that lexicographically sorts the suffixes of T that start at
sample positions, i.e., ∀h ∈ [1, N) : T [A[suf[h]]..n] ≺ T [A[suf[h + 1]]..n] (a sparse
suffix array). We use comparison sorting with Lemma 1 for constant time lexico-
graphical suffix comparisons and obtain suf in O(n/ logσ n + N log N) time and
O(n/ logσ n+N) words of space. Analogously, we obtain the unique permutation
pref of [1, N] that co-lexicographically sorts the prefixes of T that end at sample
positions, i.e., ∀h ∈ [1, N) : rev(T [1..A[pref[h]]]) ≺ rev(T [1..A[pref[h + 1]]]). We
compute rev(T) in O(n/ logσ n) time and words of space with universal lookup
tables (see, e.g., [4, Section 6.2]). By comparison sorting with the data structure
from Lemma 1 constructed for rev(T), we obtain pref in O(n/ logσ n + N log N)
time and O(n/ logσ n+N) words of space. It is trivial to compute the respective
inverse permutations suf-rank and pref-rank of suf and pref in O(N) time and
words of space. This concludes the preprocessing.

Insertions. In order to insert A[h] into X , we insert the two-dimensional point
(suf-rank(h), pref-rank(h)) into the geometric data structure for orthogonal range
reporting, which leads to the claimed insertion time and space complexity.

Queries. We first show a fast way to answer a slightly simpler type of query.
Given suffix T [i..n], offset k, and length estimate �, we want to find some
A[h] ∈ X such that T [A[h] − k..A[h] + �) = T [i..i + k + �) (if it exists). The
lexicographical order groups together suffixes of T that share a long prefix.
Thus, there is an interval suf[a1..a2] that contains exactly the h ∈ [1, N] with
T [A[h]..A[h] + �) = T [i + k..i + k + �). We compute a1 by binary searching in
suf for the lexicographically minimal suffix that starts at a sample position and
has prefix T [i + k..i + k + �). This works similarly to pattern matching with the
suffix array [46]. If suf[h′] is the center of the search interval, then we compute
�′ = lce(A[suf[h′]], i + k). If �′ ≥ �, or if T [i + k..n] 	 T [A[suf[h′]]..n], then we
proceed in the left half of the search interval (including suf[h′]). Otherwise, it
holds �′ < � and T [i+k..n] � T [A[suf[h′]]..n], and we continue in the right half of
the interval (excluding suf[h]). Computing LCEs and performing lexicographical
comparisons takes constant time with Lemma 1, and hence the binary search
takes O(log N) time. Analogously, we compute a2 in O(log N) time. The co-
lexicographical order groups together prefixes that share a long suffix. There is an
interval pref[b1..b2] that contains exactly the h ∈ [1, N] with T [A[h] − k..A[h]] =
T [i..i + k], and we can compute the interval borders in O(log N) time (analo-
gously to the computation of a1 and a2, but with the LCE data structure for
rev(T)). A sample A[h] satisfies T [A[h] − k..A[h] + �) = T [i..i + k + �) if and
only if (suf-rank(h), pref-rank(h)) ∈ [a1, a2] × [b1, b2]. If we have already inserted
a sample position that satisfies this condition, then a query to the geometric
data structure returns a matching point (suf-rank(h), pref-rank(h)) in qA time.

180 J. Ellert

Obtaining A[h] from the point takes constant time due to h = suf(suf-rank(h)).
Otherwise, the data structure returns that the point does not exist. Thus, we
can find some A[h] ∈ X such that T [A[h] − k..A[h] + �) = T [i..i + k + �), or
report that such a sample does not exist, in O(log N + qA) time.

Finally, in order to answer a query of the type stated in the lemma, we
use exponential search to find the maximal � ∈ N

+ such that there is some
A[h] ∈ X with T [A[h]−k..A[h]+�) = T [i..i+k+�). This way, we obtain A[h] in
O(log � · (log N + qA)) time (or the first query with � = 1 to the geometric data
structure comes back negative, and we report that no matching sample position
exists in O(log N + qA) time). �

4.1 Computing the Exact LZ Factorization

Now we show how to compute the LZ factorization T = f1f2 . . . fz. We distin-
guish between short phrases of length less than δ and long phrases of length at
least δ, where δ ∈ [1, n] is a parameter to be fixed later (it will be polylogarith-
mic in n). We compute the factorization one phrase at a time and in left-to-right
order. When computing fi′ at destination i ∈ [1, δ), we compute lce(j, i) for
each j ∈ [1, i) with Lemma 1, which reveals the length and source of the phrase
in O(δ) time (or all LCEs are zero and fi′ is a literal phrase). When computing
a phrase fi′ at destination i ≥ δ, we use three different methods depending on
the leftmost source j of fi′ . We do not know j in advance, and thus we try each
of the methods and then choose the result that yields the longest phrase.

Method 1: Close Sources. If j ∈ [i−δ, i), then we obtain the phrase by computing
lce(j′, i) for each j′ ∈ [i − δ, i) and keeping track of the longest LCE.

Methods 2 and 3: Far Sources. If j ∈ [1, i − δ), then we use two instances of
the data structure from Lemma 6. The first one maintains a subset X of evenly
spaced samples from an array A[1..N] with N =

⌊
n
δ

⌋
and ∀h ∈ [1, N] : A[h] = hδ.

The second one maintains a subset Y of samples from an array B[1..M] of size
M = O(z) that is sorted in increasing order. The samples are chosen such that,
if T [j′..j′ + �) is the leftmost occurrence of any substring (e.g., the leftmost
source occurrence of an LZ phrase), then [j′, j′ + �) contains at least one sample
position. This is achieved with the LZ-like factorization from Theorem 1, which
we explain later. The space usage is O(n/ logσ n + N + M + sA + sB), and the
preprocessing time is O(n/ logσ n + N log N + M log M). For both instances, we
maintain the following invariant. At the time at which we compute phrase fi′

at destination i, we have inserted exactly the samples that satisfy A[h] < i into
X , and the samples that satisfy B[h] < i into Y. Since we compute the phrases
from left to right, we also insert the samples of each array in left to right order.
Thus, there is no time overhead for finding the next sample to insert. The total
insertion time is O(N · uA + M · uB). Now we use X and Y to compute phrases.

Method 2: Long Phrases. If |fi′ | ≥ δ, then [j, j + δ) contains the sample position
A[h] = hδ < j + δ < i with h = �j/δ� (where j + δ < i due to the assumption

Sublinear Time Lempel-Ziv (LZ77) Factorization 181

that j ∈ [1, i− δ)). By the invariant on X , we have already inserted A[h] into X .
Let k = A[h]−j ∈ [0, δ), then it holds T [j..j+k] = T [A[h]−k..A[h]] = T [i..i+k].
Thus, if we query X with position i and offset k, then we obtain either A[h] or
another sample position A[h′] < i with lce(A[h′] − k, i) = lce(A[h] − k, i) =
lce(j, i) = |fi′ |. This way, we find both a source and the length of fi′ . Since we
do not know k in advance, we issue one query for each possible value of k and
keep track of the maximal LCE, which takes O(δ · (log N + qA) · log |fi′ |) time.

Method 3: Short Phrases. This works analogously to the method for long phrases
(but with Y instead of X). If |fi′ | < δ, then [j, j + |fi′ |) contains at least one
sample position B[h] < j+|fi′ | < j+δ < i (where j+δ < i due to the assumption
that j ∈ [1, i − δ), and a sample position is present because T [j..j + |fi′ |) is the
leftmost occurrence of a substring). By the invariant on Y, we have already
inserted B[h] into Y. Let k = B[h] − j ∈ [0, |fi′ |), then it holds T [j..j + k] =
T [B[h] − k..B[h]] = T [i..i + k]. Thus, if we query Y with position T [i..n] and
offset k, we obtain either B[h] or another sample position B[h′] < i for which it
holds lce(B[h′] − k, i) = lce(B[h] − k, i) = lce(j, i) = |fi′ |. This way, we find
both a source and the length of fi′ . Since we do not know k in advance, we issue
one query for each possible value of k and keep track of the maximal LCE, which
takes O(δ · (log N + qB) · log |fi′ |) time.

Analyzing the Procedure. Each method requires that j and possibly |fi′ |
satisfies some condition. It is easy to see that every scenario is covered by one of
the conditions. Thus, there is always at least one method that computes a phrase
of maximal length. If we run any of the methods even though the respective
condition is not satisfied, then the result is still an LCE between i and a smaller
position. Thus, we will never overestimate |fi′ |, and it is indeed correct to always
run all three methods and produce the longest phrase admitted by any of them.

Now we analyze time and space complexity. We use δ = Θ(log2 n) and two
different geometric data structures (with amortized time bounds). The first one
[8,47] has space complexity sA = O(N log N) ⊆ O(n/ log n) and performs inser-
tions and queries in uA = O(log n) and qA = O(log n) time (the precise bounds
are better, but we do not need them for our purposes). The second one [49]
uses linear space sB = O(M) = O(z) ⊆ O(n/ logσ n) and performs insertions
and queries in uB = O(log3+ε n) and qB = O(log n) time (where ε ∈ R

+ is an
arbitrarily small constant). The total space usage is O(n/ logσ n) words.

The preprocessing time is O(n/ logσ n+N log N +M log M) ⊆ O(n/ logσ n+
z log z), and the total time for insertions is O(N log n + M log3+ε n) ⊆
O(n/ log n + z log3+ε n). The time for applying all three methods is
O(log3 n · log |fi′ |) for phrase fi′ . If |fi′ | = Ω(log5 n), then the time amortizes to
O(1/ log n) per symbol in fi′ , which results in O(n/ log n) time in total. If |fi′ | =
O(log5 n), then the time is O(log3 n · log log n), or O(z log3+ε n) for all phrases.
Thus, the overall time is O(n/ logσ n+ z log3+ε n), and the space is O(n/ logσ n)
words or O(n log σ) bits. For a purely cosmetic improvement, assume that
(z log3+ε n) > (n/ logσ n). Then z > (n/ log5 n) and log z = Ω(log n). Thus,

182 J. Ellert

the time bound is equivalent to O(n/ logσ n + z log3+ε z), and the complexities
match the ones in Theorem 2.

Computing B. We conclude the proof of Theorem 2 by showing how to compute
B in O(n/ logσ n) time and words of space. We compute an LZ-like factorization
T = f ′

1f
′
2 . . . f ′

M of M = Θ(z) ⊆ O(n/ logσ n) phrases with Theorem 1. Now
it is easy to obtain B[1..M] with ∀h ∈ [1,M] =

∑h
i′=1 |f ′

i′ | (the end positions
of all phrases). Every leftmost occurrence of a symbol is a literal phrase in
any LZ-like parsing. Thus, the leftmost occurrence of any symbol is a sample
position. Now assume that T [j′..j′ + �) with � > 1 is the leftmost occurrence of
a substring. If [j′, j′ + �) contains no sample position, then T [j′..j′ + �) is fully
contained within a referencing LZ-like phrase. However, every such phrase has a
previous occurrence, which contradicts the fact that T [j′..j′ + �) has no previous
occurrence. Thus B functions as required by the algorithm.

5 Computing the Non-overlapping LZ Factorization

A common variation of the LZ factorization (also proposed by Storer and Szy-
manski [62]) requires that the leftmost source j of a referencing phrase fi′ at
destination i satisfies j + |fi′ | ≤ i. Theorem 2 can be adapted to compute this
non-overlapping factorization. When using the first method, we avoid overlaps
by simply truncating each LCE to min(lce(j, i), i − j).

For the second method, we repeatedly use the geometric data structure to
decide if, for position i, offset k, and length estimate �, there is any A[h] ∈ X
with T [A[h] − k..A[h] + �) = T [i..i + k + �). To avoid overlaps, we have to
ensure A[h] ≤ i − �. We add a dimension and represent each A[h] as a point
(suf-rank(h), pref-rank(h),A[h]). The query interval becomes a three-dimensional
hyper-rectangle [a1, a2] × [b1, b2] × [1, i − �]. There is a three-dimensional geo-
metric data structure with amortized times uA = O(log8/5+ε N) and qA =
O((log N/ log log N)2) [8]. Its space complexity is sA = O(N log8/5+ε N) words.
To accommodate for the more expensive update time and higher space com-
plexity, we use a larger δ = Θ(logσ n · log8/5+ε n). This increases the time for
computing a phrase to O(log23/5+ε n · log |fi′ | / log σ), and the total time to
O(n/ logσ n + z log23/5+2ε z/ log σ). The space remains O(n/ logσ n) words.

For avoiding overlaps in the third method, we adjust the first method such
that it considers leftmost sources in [i − 2δ, i) rather than [i − δ, i) (which does
not increase the complexity). Now we can change the invariant for Y such that,
at the time at which we compute fi′ , we have inserted exactly the samples with
B[h] < i − δ into Y. We do not miss any sources this way due to our previous
adjustment of the first method. Now any source reported by the third method
is from [1, i − δ). The third method is only used for phrases of length less than
δ, and thus an overlap is impossible. (If the third method reports a phrase of
length at least δ, then we simply ignore it; it will be computed by the second
method already.) The increased value of δ increases the number of queries for
the third method, but the time is still dominated by O(z log23/5+ε z/ log σ).

Sublinear Time Lempel-Ziv (LZ77) Factorization 183

Corollary 1. Let T ∈ [0, σ)n be a string, and let ε ∈ R
+ be an arbitrarily small

constant. The non-overlapping LZ factorization T = f1 . . . fz can be computed
in O(n/ logσ n + z log23/5+ε z/ log σ) time and O(n log σ) bits of working space.

References

1. Amir, A., Landau, G.M., Ukkonen, E.: Online timestamped text indexing. Inf. Pro-
cess. Lett. 82(5), 253–259 (2002). https://doi.org/10.1016/S0020-0190(01)00275-7

2. Barbay, J., Fischer, J., Navarro, G.: LRM-trees: compressed indices, adaptive sort-
ing, and compressed permutations. In: Giancarlo, R., Manzini, G. (eds.) CPM
2011. LNCS, vol. 6661, pp. 285–298. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21458-5 25

3. Belazzougui, D., Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv decoding
in external memory. In: Goldberg, A.V., Kulikov, A.S. (eds.) SEA 2016. LNCS,
vol. 9685, pp. 63–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
38851-9 5

4. Belazzougui, D., Puglisi, S.J.: Range predecessor and Lempel-Ziv parsing. In:
Proceedings of the 27th Annual Symposium on Discrete Algorithms (SODA
2016), Arlington, VA, USA, pp. 2053–2071 (2016). https://doi.org/10.1137/1.
9781611974331.ch143

5. Bille, P., Cording, P.H., Fischer, J., Gørtz, I.L.: Lempel-Ziv compression in a sliding
window. In: Proceedings of the 28th Annual Symposium on Combinatorial Pattern
Matching (CPM 2017), Warsaw, Poland, pp. 15:1–15:11 (2017). https://doi.org/
10.4230/LIPIcs.CPM.2017.15

6. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for
Lempel-Ziv compressed indexing. Theor. Comput. Sci. 713, 66–77 (2018). https://
doi.org/10.1016/j.tcs.2017.12.021

7. Bille, P., Gørtz, I.L., Steiner, T.A.: String indexing with compressed patterns. In:
Proceedings of the 37th International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2020), Montpellier, France, pp. 10:1–10:13 (2020). https://
doi.org/10.4230/LIPIcs.STACS.2020.10

8. Chan, T.M., Tsakalidis, K.: Dynamic orthogonal range searching on the ram, revis-
ited. J. Comput. Geom. 9(2), 45–66 (2018). https://doi.org/10.20382/jocg.v9i2a5

9. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005). https://doi.org/10.1109/TIT.2005.850116

10. Crochemore, M., Giambruno, L., Langiu, A., Mignosi, F., Restivo, A.: Dictionary-
symbolwise flexible parsing. J. Discret. Algorithms 14, 74–90 (2012). https://doi.
org/10.1016/j.jda.2011.12.021

11. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Inf. Process. Lett. 106(2), 75–80 (2008). https://doi.org/10.1016/j.
ipl.2007.10.006

12. Crochemore, M., Langiu, A., Mignosi, F.: The rightmost equal-cost position prob-
lem. In: Proceedings of the 2013 Data Compression Conference (DCC 2013), Snow-
bird, UT, USA, pp. 421–430 (2013). https://doi.org/10.1109/DCC.2013.50

13. Crochemore, M., Rytter, W.: Efficient parallel algorithms to test square-freeness
and factorize strings. Inf. Process. Lett. 38(2), 57–60 (1991). https://doi.org/10.
1016/0020-0190(91)90223-5

14. Ellert, J., Fischer, J., Pedersen, M.R.: New advances in rightmost Lempel-Ziv.
In: Proceedings of the 30th International Symposium on String Processing and
Information Retrieval (SPIRE 2023), Pisa, Italy (2023)

https://doi.org/10.1016/S0020-0190(01)00275-7
https://doi.org/10.1007/978-3-642-21458-5_25
https://doi.org/10.1007/978-3-642-21458-5_25
https://doi.org/10.1007/978-3-319-38851-9_5
https://doi.org/10.1007/978-3-319-38851-9_5
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.4230/LIPIcs.CPM.2017.15
https://doi.org/10.4230/LIPIcs.CPM.2017.15
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.4230/LIPIcs.STACS.2020.10
https://doi.org/10.4230/LIPIcs.STACS.2020.10
https://doi.org/10.20382/jocg.v9i2a5
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1016/j.jda.2011.12.021
https://doi.org/10.1016/j.jda.2011.12.021
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1109/DCC.2013.50
https://doi.org/10.1016/0020-0190(91)90223-5
https://doi.org/10.1016/0020-0190(91)90223-5

184 J. Ellert

15. Farach, M., Muthukrishnan, S.: Optimal parallel dictionary matching and com-
pression (extended abstract). In: Proceedings of the 7th Annual Symposium on
Parallel Algorithms and Architectures (SPAA 1995), Santa Barbara, CA, USA,
pp. 244–253 (1995). https://doi.org/10.1145/215399.215451

16. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive
datasets. Philos. Trans. R. Soc. A 372(2016) (2014). https://doi.org/10.1098/rsta.
2013.0137

17. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel-Ziv com-
pression. SIAM J. Comput. 42(4), 1521–1541 (2013). https://doi.org/10.1137/
120869511

18. Fischer, J., Gagie, T., Gawrychowski, P., Kociumaka, T.: Approximating LZ77
via small-space multiple-pattern matching. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, vol. 9294, pp. 533–544. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48350-3 45

19. Fischer, J., I, T., Köppl, D.: Lempel Ziv computation in small space (LZ-CISS).
In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp.
172–184. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0 15

20. Fischer, J., I, T., Köppl, D., Sadakane, K.: Lempel–Ziv factorization powered by
space efficient suffix trees. Algorithmica 80(7), 2048–2081 (2017). https://doi.org/
10.1007/s00453-017-0333-1

21. Gagie, T.: Space-efficient RLZ-to-LZ77 conversion. CoRR abs/2211.13254 (2022).
https://doi.org/10.48550/arXiv.2211.13254

22. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54423-1 63

23. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Approximate pattern matching in LZ77-
compressed texts. J. Discret. Algorithms 32, 64–68 (2015). https://doi.org/10.
1016/j.jda.2014.10.003

24. Gagie, T., Navarro, G., Prezza, N.: On the approximation ratio of Lempel-Ziv
parsing. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018.
LNCS, vol. 10807, pp. 490–503. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77404-6 36

25. Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proceedings
of the 2013 Data Compression Conference (DCC 2013), Snowbird, UT, USA, pp.
133–142 (2013). https://doi.org/10.1109/DCC.2013.21

26. Goto, K., Bannai, H.: Space efficient linear time Lempel-Ziv factorization for small
alphabets. In: Proceedings of the 2014 Data Compression Conference (DCC 2014),
Snowbird, UT, USA, pp. 163–172 (2014). https://doi.org/10.1109/DCC.2014.62

27. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

28. Hong, A., Rossi, M., Boucher, C.: LZ77 via prefix-free parsing. In: Proceedings
of the Symposium on Algorithm Engineering and Experiments (ALENEX 2023),
Florence, Italy, pp. 123–134 (2023). https://doi.org/10.1137/1.9781611977561.ch11

29. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Boni-
faci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol.
7933, pp. 139–150. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38527-8 14

https://doi.org/10.1145/215399.215451
https://doi.org/10.1098/rsta.2013.0137
https://doi.org/10.1098/rsta.2013.0137
https://doi.org/10.1137/120869511
https://doi.org/10.1137/120869511
https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1007/978-3-319-19929-0_15
https://doi.org/10.1007/s00453-017-0333-1
https://doi.org/10.1007/s00453-017-0333-1
https://doi.org/10.48550/arXiv.2211.13254
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1016/j.jda.2014.10.003
https://doi.org/10.1016/j.jda.2014.10.003
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1109/DCC.2013.21
https://doi.org/10.1109/DCC.2014.62
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1137/1.9781611977561.ch11
https://doi.org/10.1007/978-3-642-38527-8_14
https://doi.org/10.1007/978-3-642-38527-8_14

Sublinear Time Lempel-Ziv (LZ77) Factorization 185

30. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization:
simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 19

31. Kärkkäinen, J., Sutinen, E.: Lempel-Ziv index for q-grams. Algorithmica 21(1),
137–154 (1998). https://doi.org/10.1007/PL00009205

32. Kempa, D.: Optimal construction of compressed indexes for highly repetitive texts.
In: Proceedings of the 30th Annual Symposium on Discrete Algorithms (SODA
2019), San Diego, CA, USA, pp. 1344–1357 (2019). https://doi.org/10.1137/1.
9781611975482.82

33. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: Proceedings of the 51st Annual
Symposium on Theory of Computing (STOC 2019), Phoenix, AZ, USA, pp. 756–
767 (2019). https://doi.org/10.1145/3313276.3316368

34. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. Commun. ACM 65(6), 91–98 (2022). https://doi.org/10.1145/3531445

35. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attrac-
tors. In: Proceedings of the 50th Annual Symposium on Theory of Computing
(STOC 2018), Los Angeles, CA, USA, pp. 827–840 (2018). https://doi.org/10.
1145/3188745.3188814

36. Kociumaka, T., Navarro, G., Prezza, N.: Towards a definitive measure of repet-
itiveness. In: Kohayakawa, Y., Miyazawa, F.K. (eds.) LATIN 2021. LNCS, vol.
12118, pp. 207–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61792-9 17

37. Köppl, D.: Non-overlapping LZ77 factorization and LZ78 substring compression
queries with suffix trees. Algorithms 14(2), 44 (2021). https://doi.org/10.3390/
a14020044

38. Köppl, D., Navarro, G., Prezza, N.: HOLZ: high-order entropy encoding of Lempel-
Ziv factor distances. In: Proceedings of the 2022 Data Compression Conference
(DCC 2022), Snowbird, UT, USA, pp. 83–92 (2022). https://doi.org/10.1109/
DCC52660.2022.00016

39. Kosolobov, D.: Faster lightweight Lempel-Ziv parsing. In: Italiano, G.F., Pighizzini,
G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 432–444. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0 36

40. Kosolobov, D., Valenzuela, D., Navarro, G., Puglisi, S.J.: Lempel–Ziv-like parsing
in small space. Algorithmica 82(11), 3195–3215 (2020). https://doi.org/10.1007/
s00453-020-00722-6

41. Köppl, D., Sadakane, K.: Lempel-Ziv computation in compressed space (LZ-CICS).
In: Proceedings of the 2016 Data Compression Conference (DCC 2016), Snowbird,
UT, USA, pp. 3–12 (2016). https://doi.org/10.1109/DCC.2016.38

42. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013). https://doi.org/10.1016/j.tcs.2012.02.006

43. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.
In: Proceedings of the 2014 Data Compression Conference (DCC 2014), Snowbird,
UT, USA, pp. 153–162 (2014). https://doi.org/10.1109/DCC.2014.78

44. Larsson, N.J.: Most recent match queries in on-line suffix trees. In: Kulikov, A.S.,
Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 252–261.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2 26

45. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976). https://doi.org/10.1109/TIT.1976.1055501

https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/PL00009205
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3531445
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.3390/a14020044
https://doi.org/10.3390/a14020044
https://doi.org/10.1109/DCC52660.2022.00016
https://doi.org/10.1109/DCC52660.2022.00016
https://doi.org/10.1007/978-3-662-48054-0_36
https://doi.org/10.1007/s00453-020-00722-6
https://doi.org/10.1007/s00453-020-00722-6
https://doi.org/10.1109/DCC.2016.38
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1109/DCC.2014.78
https://doi.org/10.1007/978-3-319-07566-2_26
https://doi.org/10.1109/TIT.1976.1055501

186 J. Ellert

46. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

47. Mortensen, C.W.: Fully dynamic orthogonal range reporting on RAM. SIAM J.
Comput. 35(6), 1494–1525 (2006). https://doi.org/10.1137/S0097539703436722

48. Naor, M.: String matching with preprocessing of text and pattern. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 739–750.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7 179

49. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput.
Geom. 42(4), 342–351 (2009). https://doi.org/10.1016/j.comgeo.2008.09.001

50. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index and
LZ factorization in compressed space. Discret. Appl. Math. 274, 116–129 (2020).
https://doi.org/10.1016/j.dam.2019.01.014

51. Nishimoto, T., Tabei, Y.: LZRR: LZ77 parsing with right reference. Inf. Comput.
285 (2022). https://doi.org/10.1016/j.ic.2021.104859

52. Ohlebusch, E., Gog, S.: Lempel-Ziv factorization revisited. In: Giancarlo, R.,
Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 15–26. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21458-5 4

53. Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous
factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
696–707. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87744-
8 58

54. Policriti, A., Prezza, N.: Fast online Lempel-Ziv factorization in compressed space.
In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
13–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 2

55. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65, 685–709 (2013). https://
doi.org/10.1007/s00453-012-9618-6

56. Rodeh, M., Pratt, V.R., Even, S.: Linear algorithm for data compression via string
matching. J. ACM 28(1), 16–24 (1981). https://doi.org/10.1145/322234.322237

57. Rytter, W.: Application of Lempel-Ziv factorization to the approximation
of grammar-based compression. Theor. Comput. Sci. 302(1), 211–222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

58. Shigekuni, M., I, T.: Converting RLBWT to LZ77 in smaller space. In: Proceedings
of the 2022 Data Compression Conference (DCC 2022), Snowbird, UT, USA, pp.
242–251 (2022). https://doi.org/10.1109/DCC52660.2022.00032

59. Shun, J.: Parallel Lempel-Ziv Factorization, chap. 13. Association for Comput-
ing Machinery and Morgan & Claypool (2018). https://doi.org/10.1145/3018787.
3018801

60. Shun, J., Zhao, F.: Practical parallel Lempel-Ziv factorization. In: Proceedings of
the 2013 Data Compression Conference (DCC 2013), Snowbird, UT, USA, pp.
123–132 (2013). https://doi.org/10.1109/DCC.2013.20

61. Starikovskaya, T.: Computing Lempel-Ziv factorization online. In: Rovan, B., Sas-
sone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2 68

62. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982). https://doi.org/10.1145/322344.322346

63. Sun, X., Wu, D., Mo, D., Cui, J., Zhong, H.: Accelerating Knuth-Morris-Pratt
string matching over LZ77 compressed text. In: Proceedings of the 2021 Data
Compression Conference (DCC 2021), Snowbird, UT, USA, p. 372 (2021). https://
doi.org/10.1109/DCC50243.2021.00070

https://doi.org/10.1137/0222058
https://doi.org/10.1137/S0097539703436722
https://doi.org/10.1007/3-540-54233-7_179
https://doi.org/10.1016/j.comgeo.2008.09.001
https://doi.org/10.1016/j.dam.2019.01.014
https://doi.org/10.1016/j.ic.2021.104859
https://doi.org/10.1007/978-3-642-21458-5_4
https://doi.org/10.1007/978-3-540-87744-8_58
https://doi.org/10.1007/978-3-540-87744-8_58
https://doi.org/10.1007/978-3-319-23826-5_2
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1145/322234.322237
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1109/DCC52660.2022.00032
https://doi.org/10.1145/3018787.3018801
https://doi.org/10.1145/3018787.3018801
https://doi.org/10.1109/DCC.2013.20
https://doi.org/10.1007/978-3-642-32589-2_68
https://doi.org/10.1145/322344.322346
https://doi.org/10.1109/DCC50243.2021.00070
https://doi.org/10.1109/DCC50243.2021.00070

Sublinear Time Lempel-Ziv (LZ77) Factorization 187

64. Valenzuela, D.: CHICO: a compressed hybrid index for repetitive collections. In:
Goldberg, A.V., Kulikov, A.S. (eds.) SEA 2016. LNCS, vol. 9685, pp. 326–338.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38851-9 22

65. Wu, C.Y.: Improved LZ77 compression. In: Proceedings of the 2021 Data Com-
pression Conference (DCC 2021), Snowbird, UT, USA, p. 377 (2021). https://doi.
org/10.1109/DCC50243.2021.00066

66. Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line
Lempel-Ziv factorization. In: Proceedings of the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), Lyon, France, pp. 675–
686 (2014). https://doi.org/10.4230/LIPIcs.STACS.2014.675

67. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory 23(3), 337–343 (1977). https://doi.org/10.1109/TIT.
1977.1055714

https://doi.org/10.1007/978-3-319-38851-9_22
https://doi.org/10.1109/DCC50243.2021.00066
https://doi.org/10.1109/DCC50243.2021.00066
https://doi.org/10.4230/LIPIcs.STACS.2014.675
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714

New Advances in Rightmost Lempel-Ziv

Jonas Ellert1(B) , Johannes Fischer1 , and Max Rishøj Pedersen2

1 Technical University of Dortmund, Dortmund, Germany
jonas.ellert@tu-dortmund.de, johannes.fischer@cs.tu-dortmund.de
2 Technical University of Denmark, DTU Compute, Lyngby, Denmark

mhrpe@dtu.dk

Abstract. The Lempel-Ziv (LZ) 77 factorization of a string is a widely-
used algorithmic tool that plays a central role in compression and
indexing. For a length-n string over a linearly-sortable alphabet, e.g.,
Σ = {1, . . . , σ} with σ = nO(1), it can be computed in O(n) time. It
is unknown whether this time can be achieved for the rightmost LZ
parsing, where each referencing phrase points to its rightmost previous
occurrence. The currently best solution takes O(n(1 + log σ/

√
logn))

time (Belazzougui & Puglisi SODA2016). We show that this problem
is much easier to solve for the LZ-End factorization (Kreft & Navarro
DCC2010), where the rightmost factorization can be obtained in O(n)
time for the greedy parsing (with phrases of maximal length), and in
O(n+ z

√
log z) time for any LZ-End parsing of z phrases. We also make

advances towards a linear time solution for the general case. We show
how to solve multiple non-trivial subsets of the phrases of any LZ-like
parsing in O(n) time. As a prime example, we can find the rightmost
occurrence of all phrases of length Ω(log6.66 n/ log2 σ) in O(n/ logσ n)
time and space.

Keywords: Lempel-Ziv · LZ77 · rightmost LZ · LZ-End · lossless
compression · string algorithms · linear time algorithms · word-packing

1 Introduction

The Lempel-Ziv (LZ) 77 factorization [28] of a string S decomposes it into a
series of phrases S = f1f2 . . . fz. Each phrase is either the leftmost occurrence
of an alphabet symbol (a literal phrase), or the longest substring that can be
read at an earlier position in the string (a referencing phrase). Compression can
be achieved by replacing each referencing phrase with an integer pair consisting
of the length and the distance to an earlier occurrence of the phrase. Further
compression is possible by encoding the integers, e.g., by applying a universal
code. Variable length codes often assign longer codewords to larger integers, and
thus it is beneficial if every referencing phrase knows not only any of its previous
occurrences, but the rightmost one (at the smallest distance).

In an LZ-like factorization, referencing phrases do not need to be of maximal
length. The encoding works in the same way as for the exact LZ factorization.

Supported by Danish Research Council grant DFF-8021-002498.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 188–202, 2023.
https://doi.org/10.1007/978-3-031-43980-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_15&domain=pdf
http://orcid.org/0000-0003-3305-6185
http://orcid.org/0000-0002-3384-597X
http://orcid.org/0000-0002-8850-6422
https://doi.org/10.1007/978-3-031-43980-3_15

New Advances in Rightmost Lempel-Ziv 189

Related Work. LZ(-like) parsings are well-studied, and there are fast factorization
algorithms in multiple settings (we only list a few examples for each) including
parallel [7,9,30,34,35], online [33,36,39] and external memory algorithms [25].
In the sequential setting, there are several linear-time solutions [11,14,15,18],
and some that compute the parsing in small space [3,8,17,22,26,32,33,36,39],
with the overall best using only O(n log σ) bits and running in O(n) time [12]
for a string of length n over integer alphabet [0, σ).

LZ-End, introduced by Kreft and Navarro [23,24], is a family of LZ-like
parsings where each referencing phrase must have a previous occurrence aligned
with the end of a phrase, i.e., for fk there must be k′ < k such that fk is a suffix
of f1f2 . . . fk′ . This has beneficial properties that lead to efficient compressed
text indices (e.g., [21]). The uniquely defined greedy LZ-End parsing, in which
each referencing phrase is of maximal length, can be computed in linear time
[20], and the number of phrases is within an O(log2 n) factor of the exact LZ
factorization [21]. Bannai et al. [2] proved that computing the optimal LZ-End
parsing (with minimal number of phrases) is NP-hard and gave a lower bound
of 2 for the approximation ratio of optimal LZ-End to greedy LZ-End.

The first theoretical result on computing the rightmost LZ parsing is by
Amir et al. [1] and uses O(n log n) time and working space. Larsson et al. [27]
presented an online algorithm in the same time and space. Crochemore et al. [6]
gave the first approximation algorithm, which runs in O(n log n) time and O(n)
space and finds the rightmost equal-cost position for each phrase, meaning it
takes the same number of bits to encode as the rightmost position. Later,
Bille et al. [4] gave an (1 + ε)-approximation algorithm of the rightmost pars-
ing in O(n(log z + log log n)) time and linear working space. The first exact
algorithm to achieve o(n log n) time is by Ferragina et al. [10] and runs in
O(n(1 + log σ/ log log n)) time and O(n) words of space. This was improved
by Belazzougui and Puglisi [3] with an algorithm using only O(n log σ) bits
of space and achieving O(n(log log σ + log σ/

√
log n)) deterministic time or

O(n(1 + log σ/
√
log n)) time with randomization, which is the current state of

the art.

Our Contributions. We present time-efficient deterministic algorithms for right-
most LZ parsings, summarized by Theorems 1 and 2 below.

Theorem 1. Let S ∈ [0, σ)n. Given an LZ-End factorization S = f1 . . . fz, we
can compute its rightmost LZ-End parsing in O(n + z

√
log z) time and O(n)

words of space. For the greedy LZ-End factorization, we achieve O(n) time.

Theorem 2. Let S ∈ [0, σ)n. Unless explicitly stated otherwise, the space com-
plexity is O(n) words. Given any LZ-like factorization S = f1 . . . fz, we can
compute the rightmost previous occurrence of all referencing phrases

(a) of length Ω(log6.66 n/ log2 σ) in O(n/ logσ n) time and words of space
(b) fk with k ∈ F ⊆ [1, z] in O(n+ |F | dε) time, where d = |{fk′ | k′ ∈ F}| ≤ |F |
(c) fk with |{k′ ∈ [1, z] | fk′ = fk}| = O(log n) in O(n) time
(d) with rightmost previous occurrence at distance O(log n) in O(n) time

190 J. Ellert et al.

We provide the solution for rightmost parsings of LZ-End factorizations (The-
orem 1) in Sect. 3. The algorithms for subsolutions of general rightmost LZ-like
parsings (Theorem 2) are presented in Sect. 4.

2 Preliminaries

Strings and Model of Computation. For i, j ∈ N, we write [i, j] = [i, j + 1)
rather than {k ∈ N

+ | i ≤ k ≤ j}. A string S = S[1..n] = S[1]S[2] . . . S[n] of
length |S| = n is a sequence of n symbols from an alphabet Σ. For i, j ∈ [1, n],
the substring S[i..j] = S[i..j + 1) is the sequence S[i]S[i + 1] . . . S[j] (or the
empty string ε if j < i). A substring shorter than S is proper. Substrings S[1..i]
and S[i..n] are respectively called prefix and suffix of S. The reversal of S is
rev(S) = S[n]S[n − 1] . . . S[1]. The concatenation of two string S1 and S2 is
S1S2. We only consider alphabets Σ that are totally ordered, which induces
a lexicographical order over the set of all strings in the usual way. We write
S1 ≺ S2 to denote that S1 is lexicographically smaller than S2. We say that S1

is co-lexicographically smaller than S2 if rev(S1) ≺ rev(S2). For strings S and P ,
an occurrence of P in S is a position i such that P is a prefix of S[i.. |S|]. For the
occurrence i of substring S[i..i+ �) in S, a previous occurrence is an occurrence
j of S[i..i+ �) in S with j < i. We assume that the string S[1..n] is over integer
alphabet [0, σ) with σ = nO(1), and we use a word RAM of width w = Θ(log n)
bits (see, e.g., [16]). Each symbol is stored in �log σ� bits, and thus the string
occupies O(n/ logσ n) words of space. From now on, space complexities are given
in number of words.

We assume that the reader is familiar with tries [13]. The suffix tree [38] of S is
the compact trie of all suffixes of S$, where $ = −∞ is smaller than all symbols
from the alphabet. Each leaf corresponds to a suffix of S and is labeled with
the start position of this suffix. The outgoing edges of each node are arranged
in increasing order of the first symbol of the respective edge label. Hence the
leaves are ordered from left to right in lexicographical order of suffixes. In the
present model of computation, the suffix tree can be computed in O(n) time
and space [29]. The suffix array SA of S is the unique permutation of [1, n] that
lexicographically sorts the suffixes, i.e., ∀i ∈ [1, n) : S[SA[i]..n] ≺ S[SA[i+1]..n].
Equivalently, it consists of the leaf-labels of the suffix tree in left-to-right order
and can therefore be constructed from the suffix tree in linear time.

Lempel-Ziv Parsings. The unique LZ (77) factorization S = f1f2 . . . fz decom-
poses S into z substrings called phrases. Each phrase fk at destination i =
1 +

∑k−1
j=1 |fj | is either the leftmost occurrence of S[i] (a literal phrase), or the

longest prefix of S[i..n] that has a previous occurrence (a referencing phrase).
A previous occurrence j ∈ [1, i) of a referencing phrase fk is called a source of
fk. (This is Storer and Szymanski’s version of the factorization [37].) An LZ-like
factorization is defined exactly like the LZ factorization, but without the require-
ment that referencing phrases are of maximal length. The rightmost parsing of
an LZ(-like) factorization annotates each referencing phrase with its rightmost

New Advances in Rightmost Lempel-Ziv 191

source, i.e., fk at destination i is annotated with the maximal j ∈ [1, i) such that
fk is a prefix of S[j..n].

A source j of some phrase fk in an LZ-like factorization is LZ-End aligned
if S[1..j + |fk|) = f1f2 . . . fk′ for some k′ ∈ [1, k) (i.e., fk equals the suffix of
f1f2 . . . fk′ that starts at position j). An LZ-End factorization is an LZ-like fac-
torization in which all referencing phrases have an LZ-End aligned source. (This
is slightly different from [23] and leads to a simpler description; the presented
results can be easily modified to work for the original definition.) The greedy
LZ-End factorization is the unique LZ-End factorization in which each fk at
destination i is the longest prefix of S[i..n] that is a suffix of f1f2 . . . fk′ for some
k′ ∈ [1, k). We could define the rightmost parsing for LZ-End in the same way as
for arbitrary LZ-like factorizations (i.e., annotate each phrase with its rightmost
source), but this is undesirable because the rightmost source might not be LZ-
End aligned. Hence the rightmost parsing of an LZ-End factorization annotates
each referencing phrase with its rightmost LZ-End aligned source.

From now on, we use z (commonly used to denote the number of phrases in
the exact LZ 77 factorization) to denote the number of phrases in the factoriza-
tion at hand, even if it is an LZ-like or LZ-End factorization. Instead of saying
that we compute the rightmost source of fk, we simply say that we resolve fk.

3 Computing Rightmost LZ-End Parsings

In this section, we provide the solutions for Theorem 1. We exploit the fact
that an LZ-End phrase only has to choose from less than z sources, while a
general LZ-like phrase has to consider up to Ω(n) possible sources. This makes
the computation significantly easier for LZ-End factorizations.

Rightmost Greedy LZ-End Parsing. We start by computing an arbitrary
LZ-End aligned source for each referencing phrase fk. We build the suffix array
of the reversed text rev(S), and use filtering and rank reduction to obtain
in O(n) time the unique permutation co of [1, z] that satisfies ∀k′ ∈ [1, z) :
rev(f1f2 . . . fco(k′)) ≺ rev(f1f2 . . . fco(k′+1)). (This permutation rearranges the
prefixes that end at phrase boundaries in co-lexicographical order.) We also
compute its inverse permutation co−1. Any referencing phrase fk has a previous
occurrence as a suffix of f1f2 . . . fk′ , where k′ and k are neighbors in co (because
the co-lexicographical order groups together prefixes that share a long suffix).
More precisely, if co−1(k) = 1 then k′ = co(2). If co−1(k) = z then k′ = co(z−1).
Otherwise, k′ ∈ {k−, k+} with k− = co(co−1(k)−1) and k+ = co(co−1(k)+1). In
the latter case, we naively check if fk is a suffix of f1f2 . . . fk− . If this is the case,
then we use k′ = k−. Otherwise, we use k′ = k+. Hence we can compute a suit-
able k′ for each referencing phrase fk in total time O(n+z+

∑z
j=1 |fj |) = O(n).

We then report |f1f2 . . . fk′ | − |fk| + 1 as an LZ-End aligned source of fk.
The computed sources are already rightmost for all phrases that only have a

single LZ-End aligned source. It remains to correct the sources of phrases that
have multiple LZ-End aligned sources, for which we observe the following.

192 J. Ellert et al.

Proposition 1. Let fk be a referencing phrase in the greedy LZ-End factor-
ization, and let k′, k′′ ∈ [1, k) with k′′ < k′ be such that fk is a suffix of both
f1f2 . . . fk′ and f1f2 . . . fk′′ . Then fk is a suffix of fk′−1fk′ .

Proof. If fk is a suffix of f1f2 . . . fk′ but not of fk′−1fk′ , then fk′−1fk′ is a suffix
of fk. Since fk is a suffix of f1f2 . . . fk′′ , this implies that fk′−1fk′ is a suffix of
f1f2 . . . fk′′ . Hence fk′−1fk′ has a previous occurrence that satisfies the LZ-End
property. Thus, fk′−1 is not of maximal length, which contradicts the definition
of the greedy LZ-End factorization. ��

We compute a compacted trie that contains for each k′ ∈ [2, z] the string
rev(fk′−1fk′). Note that the total length of the strings is less than 2n. We make
the respective nodes that spell rev(fk′) and rev(fk′−1fk′) explicit (if they are
not explicit already), and store pointers to these nodes. We will not need fast
navigation on the trie; in fact, we only need the parent operation. Hence we
can construct the trie in O(n) deterministic time using standard techniques
(e.g., from the suffix array of rev(f1f2#f2f3# . . . #fz−1fz) where # is a special
separator symbol). Now we process the phrase pairs fk′−1fk′ with k′ ∈ [2, z]
from right to left. Whenever we finish processing a pair, we annotate the node
that spells rev(fk′) with k′ (indicating that the rightmost LZ-End aligned source
of fk′ has not been found yet). Before adding this annotation, we first check if
fk′−1fk′ resolves other phrases. For this purpose, we traverse the path from the
leaf that spells rev(fk′−1fk′) to the root of the trie. For each node on the path, we
check if it has been annotated with some value k. If we find such an annotation,
then the corresponding node spells rev(fk), and fk is a suffix of fk′−1fk′ . Hence
we store |f1f2 . . . fk′ | − |fk| + 1 as the maximal LZ-End aligned source of fk,
and remove the annotation of the node. By Proposition 1 and the right-to-left
order of processing, we correctly find the rightmost LZ-End aligned source of
any phrase that has multiple LZ-End aligned sources.

A node might spell the reversal of a phrase that has multiple occurrences in
the parsing. Nevertheless, each node has at most one annotation at any given
point in time. This is because we annotate the node that spells rev(fk′) only after
we finish processing pair fk′−1fk′ . If the node is already annotated with some
k > k′ (because fk = fk′), then we also find the source |f1f2 . . . fk′ | − |fk| + 1
of fk while processing pair fk′−1fk′ , and hence we remove annotation k before
adding annotation k′.

We need O(n) time for computing the trie. Processing a pair fk′−1fk′ takes
time linear in the depth of the node that spells rev(fk′−1fk′). This is limited by
O(|fk′−1fk′ |), which sums to O(n) over all phrase pairs. The space for the trie
is O(n). Hence we have shown Theorem 1 for the greedy LZ-End factorization.

Rightmost (Arbitrary) LZ-End Parsing. If the given LZ-End factoriza-
tion does not satisfy the greedy property, then Proposition 1 no longer holds.
However, each referencing phrase fk is still a suffix of some f1f2 . . . fk′ with
k′ ∈ [1, k), which limits the number of possible sources. We will again exploit
properties of the co-lexicographical order of prefixes.

New Advances in Rightmost Lempel-Ziv 193

We compute a compacted trie that contains for each k′ ∈ [1, z] the reversed
prefix rev(f1f2 . . . fk′) of the text. We make the respective nodes that spell
rev(fk′) and rev(f1f2 . . . fk′) explicit (if they are not explicit already), and store
pointers to these nodes. We annotate the node that spells rev(f1f2 . . . fk′) with
its co-lexicographical rank co−1(k′) (defined as before). Additionally, we anno-
tate the node that spells rev(fk′) with its co-lexicographical range, which is given
by the respectively smallest and largest co-lexicographical ranks cmin

k′ and cmax
k′

that were used to annotate any of its descendants (or itself). Again, we do not
need fast navigation on the trie; for writing the annotations, it suffices if we can
perform a preorder traversal in linear time. Hence we can construct the trie and
its annotations in O(n) deterministic time using standard techniques (e.g., from
the suffix array of rev(S)).

Now we show how to find the rightmost LZ-End aligned source of refer-
encing phrase fk. We have annotated the node that spells rev(fk) with the
co-lexicographical range [cmin

k , cmax
k]. We store the permutation co (defined as

before) in an array. Note that, by design of the trie, the range co[cmin
k , cmax

k] con-
tains exactly all the k′ for which fk is a suffix of f1f2 . . . fk′ . Hence finding the
rightmost LZ-End aligned source of fk is equivalent to answering the following
so-called range predecessor query. Given the range [cmin

k , cmax
k] ⊆ [1, z] and the

threshold k, find the largest value k′ < k in co[cmin, cmax]. Then, the rightmost
LZ-End aligned source of fk is |f1f2 . . . fk′ | − |fk| + 1.

Belazzougui and Puglisi show how to compute a data structure in O(z
√
log z)

time and O(z) space that answers range predecessor queries on a permutation of
[1, z] in O(logε z) time (for any constant 0 < ε < 1). We issue less than z queries,
and thus the total construction and query time is O(z

√
log z). The total time

for computing the rightmost parsing (including the construction of the trie) is
O(n + z

√
log z), and the total space is O(n). Hence we have shown Theorem 1

for an arbitrary LZ-End factorization.

4 Partially Solving Rightmost LZ-Like Parsings

In this section, we show how to efficiently compute the rightmost sources for
some subsets of the phrases of an LZ-like factorization (Theorem 2).

4.1 Long Phrases

Belazzougui and Puglisi [3] find the rightmost sources of all phrases of length
Ω(log5 n) in O(n) time and O(n/ logσ n) space. We show a similar result for
resolving all phrases of length Ω(log33/5+ε n/ log2 σ) in O(n/ logσ n) time and
space. The main contribution here is that we achieve sublinear time. The solution
works for an arbitrary LZ-like factorization S = f1f2 . . . fz.

Let δ = Ω(log2 n/ log σ) be a parameter to be fixed later. We start by
performing a preprocessing as follows. In O(n/ logσ n) time, we compute the
reversed text rev(S) as described in [3, Section 6.2] (essentially, we use a pre-
computed lookup table to reverse the text one half-word rather than one sym-
bol at a time). We consider a set D = {d ∈ [1, n] | d ≡ 0 (mod δ)} of

194 J. Ellert et al.

m = |D| = O(n
δ) regularly sampled positions. We construct the respectively

unique permutations pref and suf of [1,m] such that for every h ∈ [1,m) it holds
S[suf(h)δ..n] ≺ S[suf(h+1)δ..n] and rev(S[1..pref(h)δ]) ≺ rev(S[1..pref(h + 1)δ])
(these are sparse suffix arrays of the string and its reversal). We use compar-
ison sorting and obtain the permutations with O(m logm) ⊆ O(n

δ log n) ⊂
O(n/ logσ n) lexicographical comparisons between suffixes of either S or rev(S).
With an LCE data structure by Kempa and Kociumaka [19] (constructed for
both S and rev(S)), each lexicographical comparison takes constant time. The
data structure can be constructed in O(n/ logσ n) time and space. We use
O(m logm) ⊆ O(n

δ log n) ⊂ O(n log σ) bits of space to store pref, suf, and their
respective inverse permutations pref-rank and suf-rank.

A long phrase is of length at least γ > δ, where γ is another parameter. When
resolving a long phrase fk with rightmost source j and destination i, we will use
the fact that j+q with q = (δ−(j mod δ)) ∈ [1, δ] is a sample position. For now,
assume that we know the value of q in advance (we will later simply try all the
possible values of q). Finding the rightmost source of fk means that we have to
find the rightmost sample position hδ < i+ q with S[hδ − q..hδ] = S[i..i+ q] and
S[hδ..hδ − q + |fk|) = S[i + q..i + |fk|). Note that the co-lexicographical order
groups together prefixes that share a long suffix, and hence all the values of h
for which S[i..i+q] is a suffix of S[1....hδ] form a consecutive interval pref[p1..p2]
(we treat the permutations like arrays). We can find the boundaries p1 and
p2 by binary searching in pref for the respectively co-lexicographically minimal
and maximal prefixes of S that have suffix S[i..i + q]. This takes O(logm) time
because we can perform each LCE computation and lexicographical comparison
in constant time using the same LCE data structure as before. Similarly, it takes
O(logm) time to compute the interval suf[s1..s2] that contains exactly the values
of h for which S[i + q..i + |fk|) is a prefix of S[hδ..n].

We associate a three-dimensional point (pref-rank(h), suf-rank(h), h) with
each sample position. For resolving the phrase, we have to find the point (p, s, ĥ)
with p ∈ [p1, p2], s ∈ [s1, s2], and maximal value ĥδ < i + q (or equivalently
h < i+q

δ). Given this point, it is easy to compute the rightmost source ĥδ − q of
fk. For solving the geometric query, we use a data structure for three-dimensional
orthogonal range searching [5, Theorem 4]. For our m points from [1,m]3, it can
be constructed in O(m log8/5+ε m) time and space (for any constant ε ∈ R

+).
Given a three-dimensional six-sided orthogonal query range, it returns a point
in the range or reports that it is empty in O(log2 m) time (the precise bound
is slightly better, but not needed for our purposes). For our queries, we have to
find the point with maximal coordinate in the third dimension. Thus, we binary
search for this point with O(log n) queries to the geometric data structure, which
increases the query time to O(log3 n). Note that this dominates the O(logm)
time needed to compute the query range. Finally, we do not actually know the
value of q in advance. Hence we try all the possible q ∈ [1, δ]. For each of them,
we compute the query range and find the rightmost admitted source in O(log3 n)
time. Thus, the time needed per phrase is O(δ · log3 n).

New Advances in Rightmost Lempel-Ziv 195

We need O(n/ logσ n) time for computing the (co-)lexicographically sorted
permutations of samples, O(n

δ log8/5+ε n) time for computing the geometric data
structure, and O(nδ

γ · log3 n) time for actually resolving the phrases. We want
δ to be small in order to minimize the time for resolving phrases. On the other
hand, the time needed for computing the geometric data structure should become
O(n/ logσ n). Hence we use δ = Θ(log13/5+ε n/ log σ), which achieves the desired
construction time and implies that we take O(n

γ · log28/5+ε n/ log σ) time for
resolving phrases. Thus, in order to achieve O(n/ logσ n) time, long phrases
have to be of length at least γ = Ω(log33/5+ε n/ log2 σ) ⊂ Ω(log6.66 n/ log2 σ).
For all steps (including the geometric data structure), the space is linear in the
time spent, and hence it is O(n/ logσ n). This concludes the proof of Theorem
2(a).

4.2 Arbitrary Subsets of Phrases

Now we show how to solve an arbitrary subset of phrases of any LZ-like factoriza-
tion S = f1f2 . . . fz. The subset is given by F ⊆ [1, z], and the time complexity
depends on d = |{fk | k ∈ F}| ≤ F , i.e., on the number of distinct phrases in the
subset. In a slight abuse of terminology, we will say that fk is a phrase from F
if k ∈ F . We show how to resolve all phrases from F in O(n

ε + |F | dε) time and
O(n

ε) space for arbitrary ε ∈ R
+ with ε ≤ 1

2 , or O(n + |F | dε) time and O(n)
space for constant ε. If the string is highly compressible, say, z = O(n1−ε), then
the time is O(n). The idea is to use range maximum data structures to find the
rightmost sources. We note that this solution is very similar to [10], and mostly
differs in the choice of the range maximum data structure.

We start with the following preprocessing. We arrange the distinct phrases
of F into a tree of d + 1 nodes, and we start using the terms node and phrase
interchangeably (even though multiple phrases may refer to the same node). The
parent of phrase fk is the longest phrase fk′ from F that is a proper prefix of
fk (or the artificial root node ε if fk′ does not exist), and we call this tree the
phrase trie. This is a slight abuse of terminology, since the tree is only similar
to a trie. An example is provided in Fig. 1. We annotate fk with its preorder
number pk, which is the rank of fk in a preorder traversal of the phrase trie, as
well as the maximal preorder number qk of a descendant of fk. We also annotate
each text position i with the preorder number of the longest phrase from F that
is a prefix of S[i..n], if any. This concludes the preprocessing.

In order to resolve the phrases, we traverse S from left to right and track in
an array A[1..d] the last position at which we encountered each preorder number
as an annotation. When we reach the destination i of some phrase fk from F , the
rightmost previous occurrence will be at position maxp∈[pk,qk] A[p] (the solution
of a range maximum query), as any occurrence of fk is annotated with either
pk or the preorder number pk′ of a phrase fk′ that is a descendant of fk in the
phrase trie. Hence, if we have a dynamic data structure for range maximum
queries, then we can compute each rightmost occurrence with one query.

196 J. Ellert et al.

Fig. 1. The phrase trie for the LZ factorization a|b|b|a|ab|ababab|bab|c|abba|baa
where F is all the distinct phrases. Below each node is the preorder number.

The phrase trie can be obtained as follows. We compute the suffix tree for
the string S′ = S#0f1#1f2#2 . . . #z−1fz#z, where each #k is a unique seperator
symbol. This takes O(n) time. For any fk from F , the parent of the leaf that
spells suffix fk#k . . . is exactly the node that spells fk. Thus, we can mark the d
nodes that spell phrases from F in O(|F |) time. It is then easy to compute the
nearest marked ancestor of each node in O(n) time. The phrase trie is obtained
by creating a new tree that contains only the marked nodes and an artificial root.
The new parent of a marked node is its nearest marked ancestor (or the artificial
root node if it does not exist). Finally, we compute the preorder numbers in the
phrase trie, and also annotate the corresponding marked nodes in the suffix tree
with these numbers. Then, the annotation of text position i is the annotation
of the nearest marked ancestor of the leaf that corresponds to text position i in
the suffix tree. Hence we obtain the annotations in O(n) time.

Finally, we solve dynamic range maximum queries (RMQ) for A. The updates
are incremental in the sense that every update is the new global maximum
(i.e., the rightmost text position processed so far). Therefore, we can maintain
a dynamic RMQ data structure for A with O(1ε) time updates and O(dε) time
queries using the standard technique of square-root decomposition, generalized
to arbitrary ε. For ε = 1

2 , we split A into blocks of size Θ(
√

d) and maintain
the maximum of each block, which we can update in constant time whenever
we update an entry of A. To answer queries we need to scan at most O(

√
d)

elements in A that are in blocks that are only partially overlapped by the query
range. Then, we also scan the O(

√
d) maxima of blocks that are fully contained

in the query range. Thus, we take O(
√

d) time. This generalizes to smaller ε by
recursively subdividing the blocks into 1

ε layers, leading to O(1ε) update time and
O(dε) query time. Each phrase in F incurs a range query and each text position
an update. We perform |F | range queries and n updates in O(n

ε + |F | dε) time.
This concludes the proof of Theorem 2(b).

4.3 Infrequent Phrases

Given an LZ-like parsing S = f1 . . . fz, we say that a phrase fk is infrequent if
|{k′ ∈ [1, z] | fk′ = fk}| = O(log n), i.e., if it occurs at most O(log n) times in
the parsing. We now show how to resolve all infrequent phrases in O(n) time,
and we begin by establishing a data structure that is crucial for our solution.

New Advances in Rightmost Lempel-Ziv 197

Lemma 1. Let m,n ∈ [1, 2w]. For a tree of m nodes, labeled with preorder
numbers from [1,m], after an O(m)+o(n) time preprocessing, and in O(m)+o(n)
space, we can maintain a data structure for nearest marked ancestor queries with
the following operations.

– mark/unmark a node i ∈ [1,m] with di descendants in O(1 + di/ log n) time
– check if a node i ∈ [1,m] is marked in O(1) time
– check if a node i ∈ [1,m] has a marked ancestor in O(1) time
– output the nearest marked ancestor j of a node i ∈ [1,m] in O(1 + dj/ log n)

time, where dj is the number of descendants of j.

Proof. We compute the balanced parenthesis sequence [31, Chapter 7] (BPS)
B[1..2m] of the tree by re-running the traversal used to obtain preorder numbers
(with an artificial parent edge for the root to start the traversal). When we walk
down the edge to node i, we append i’s opening parenthesis to B, when we walk
up the edge from node i we append its closing one. The ith opening parenthesis
(in left to right order) belongs to node i, and between i’s opening and closing
parentheses there are exactly all the parentheses corresponding to descendants
of i. We preprocess B such that given node i ∈ [1,m] we can lookup the positions
open(i) and close(i) of its respective opening and closing parentheses in B in
constant time. This is possible with a simply linear scan in O(m) time and
space. For open, we also compute the inverse mapping prenum(open(i)) = i.

We use two additional bitvectors A[1..2m] and R[1..2m], both initialized with
zeroes. When asked to mark node i, we set the bits A[open(i)] and A[close(i)]
(marking the respective parentheses in B as active), and additionally we set the
entire range R[open(i) + 1..close(i)] one word at a time (indicating that nodes
whose opening parentheses lie in this region have a marked ancestor). If i has di

descendants, then it holds close(i) − open(i) = 1 + 2di, and thus the procedure
takes O(1 + di/w) time. A node i is marked if and only if A[open(i)] is set, and
it has a marked ancestor if and only if R[open(i)] is set (we do not consider a
node to be its own ancestor). Both can be tested in constant time. Finding the
nearest marked ancestor of i is more involved, and we explain it later.

When unmarking a node i, we unset the bits A[open(i)] and A[close(i)]. If
i currently has a marked ancestor, then there is no need to unset the range
in R associated with i. Otherwise, we cannot simply unset the entire range
R[open(i) + 1..close(i)] because it may have also been set by descendants of i.
Hence we have to leave segments corresponding to marked nodes untouched.
Starting at position k = open(i)+1, we scan A[k..close(i)] from left to right and
keep track of the excess of opening active parentheses, which is initially e = 0.
We perform the scan in blocks of size w′ = �log n/7�. Processing A[k..k + w′)
works as follows. We scan the block from left to right. For each position A[j]
in the block, we first check if currently e = 0. If yes, then we unset bit R[j].
Afterwards, if A[j] = 1, we increment e if B[j] is an opening parenthesis, and
decrement e otherwise. Once we reach the end of the block, we increase k by w′

and continue with the next block, until we reach position close(i). This way, we
avoid unsetting parts of R that have to remain active. However, the procedure
takes O(di) time, or O(w′) time per block.

198 J. Ellert et al.

The processing of block A[k..k +w′) depends only on A[k..k +w′), B[k..k +
w′), R[k..k + w′) and min(e, w′) (if e > w′, then the excess cannot reach 0
while processing the block). Thus it depends on 3w′ + logw′ ≤ log n/2 bits
of information, and in principle there are fewer than 2log n/2 =

√
n distinct

instances of the procedure. In a lookup table, we precompute for each possible
A[k..k+w′), B[k..k+w′), R[k..k+w′), and min(e, w′) the result of the procedure,
i.e., the total increment or decrement that we have to apply to e, and the new
value of R[k..k + w′). The lookup table has O(

√
n) entries, and each of them

can be computed naively in O(polylog(n)) time. Using the table, an entire block
A[k..k + w′) can be processed in constant time (and handling the last block
that is possibly shorter than w′ can be solved with additional lookup tables for
each shorter block length). Thus, we can unmark a node in O(1 + di/w′) =
O(1 + di/ log n) time.

We have already shown how to check if i has a marked ancestor in constant
time. If we also want to output the nearest marked ancestor, then we start at
position o = open(i). Similarly to the technique for unmarking nodes, we now
scan A[1..o] and B[1..o] from right to left and keep track of the excess of active
closing parentheses. As soon as the excess becomes negative, we have found
the opening parenthesis of the nearest marked ancestor. If this parenthesis is
at position o′, then the ancestor is j = prenum(o′). We can implement this
procedure with lookup tables (similar to unmarking nodes), and thus it takes
O(1 + dj/ log n) time, where dj is the number of descendants of j. ��

Resolving the Phrases. Now we are ready to resolve the infrequent phrases. We
first build the phrase trie including only the infrequent phrases, and compute the
mapping from phrases to preorder numbers. We also annotate each text position
i with the preorder number corresponding to the longest infrequent phrase that
is a prefix of S[i..n] (this works just like in Sect. 4.2). We prepare the phrase trie
for nearest marked ancestor queries with Lemma 1.

Now we scan S from right to left. For each text position i, we first try to
resolve phrases, which we explain in a moment. After that, if i is the destina-
tion of a phrase fk with preorder number pk, we mark node pk in the phrase
trie (indicating that the phrase needs to be resolved). We also store P [pk] = k
in an array of size at most z. This is necessary because the preorder numbers
correspond to the distinct infrequent phrases, and thus the mapping from pre-
order numbers to phrases is not necessarily injective. Later, we resolve fk by
discovering that node pk is marked, and we will then need to be able to lookup
k = P [pk]. Note that we never try to resolve two phrases with the same preorder
number at the same time, since the one further to the left would have already
resolved the other one.

For every text position i, if its annotation is qi, we check if qi has a marked
ancestor. If this is the case, then we obtain the nearest marked ancestor p of qi,
which corresponds to phrase fP [p]. By the construction of the phrase trie and
the annotations of text positions, fP [p] is a prefix of T [i..n]. Since we have not
unmarked the node yet, and due to the right-to-left processing order, it follows
that i is the rightmost source of fP [p]. We unmark node p.

New Advances in Rightmost Lempel-Ziv 199

Analyzing the Complexity. The preprocessing for the nearest marked ancestor
structure takes O(z) + o(n) time and space. For each text position, annotated
with qi, we check if qi has a marked ancestor in overall O(n) time. Whenever
this is the case, we also find its nearest marked ancestor. However, we will then
also immediately unmark the nearest marked ancestor, and thus the total time
for finding marked ancestors is the same as the time for unmarking nodes, which
is bounded by the time for marking them.

Now we analyze the total time for marking nodes. Let m be the number
of nodes in the phrase trie (or equivalently the number of distinct infrequent
phrases). We mark nodes O(z) times, and thus the total time is O(z) plus the
sum of all the O(di/ log n) terms. For now, we assume that each node gets marked
exactly once. Then the time is O(1

log n · ∑m
i=1 di). Let ai denote the number of

ancestors of a node i, and observe that
∑m

i=1 di =
∑m

i=1 ai (because in both sums
each combination of descendant and ancestor contributes value 1 to the sum). If
node i corresponds to a phrase fk, then the number of ancestors of i is bounded
by ai < |fk|, since each ancestor represents a phrase that is a proper prefix of
fk. Hence the time is O(1

log n · ∑z
i=1 |fk|) = O(n/ log n). We assumed that each

node gets marked exactly once. Since we only consider infrequent phrases, each
node gets marked O(log n) times, and thus the time is O(n). This concludes the
proof of Theorem 2(c).

4.4 Close Phrases

Given an LZ-like parsing S = f1 . . . fz, we say that a phrase fk with destination
i is close if its rightmost source is j and i − j = O(log n). We now show how to
resolve all close phrases in O(n) time. Let γ = Θ(log n). If a phrase at destination
i is of length at least γ, then we can afford O(log n) time to resolve it. We consider
each j ∈ [i−r, i) with r = O(log n) as a potential source. Checking if j is a source
of i takes constant time with an LCE data structure (e.g., [19]). Thus we can
resolve all close phrases of length at least γ in O(n) time.

For the phrases of length less than γ, we extract copies of overlapping seg-
ments s0, . . . , s�n/2γ� where ∀i ∈ [1, �n/2γ�] : si = S[1 + 2(i − 1)γ . . .min(2(i +
1)γ, n)]. We modify each segment si by rank-reducing the alphabet of si to
(a subset of) [1, 4γ], which takes O(n) total time by radix sorting all seg-
ments in batch. Then, we offset the alphabets such that si is over alphabet
[1 + 4(i − 1)γ, 4iγ]. We concatenate all segments si into S′ = s0s1 . . . s�n/2γ�.

Each phrase of length less than γ is fully contained in the right half of at
least one segment (apart from possible phrases with destination in the first 2γ
position of S, which we solve with the LCE data structure in O(polylog(n))
time). We map each phrase of length less than γ to a corresponding destination
in S′ such that if the destination is within some segment sj then the phrase
is fully contained in the right half of sj . This results in a subset of an LZ-like
factorization of S′. Since the segments have disjoint alphabets, all phrases in the
subset are infrequent an can be solved with Theorem 2(c). We only have to map
the sources back to original text positions, which is easily done in linear time.
Hence we have shown Theorem 2(d).

200 J. Ellert et al.

References

1. Amir, A., Landau, G.M., Ukkonen, E.: Online timestamped text indexing. Inf. Pro-
cess. Lett. 82(5), 253–259 (2002). https://doi.org/10.1016/S0020-0190(01)00275-
7

2. Bannai, H., Funakoshi, M., Kurita, K., Nakashima, Y., Seto, K., Uno, T.: Optimal
LZ-end parsing is hard. In: Proceedings of the 34th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2023) (2023). https://doi.org/10.4230/LIPIcs.
CPM.2023.3

3. Belazzougui, D., Puglisi, S.J.: Range predecessor and Lempel-Ziv parsing. In: Pro-
ceedings of the 27th Annual Symposium on Discrete Algorithms (SODA 2016), pp.
2053–2071. Arlington, VA, USA (2016). https://doi.org/10.1137/1.9781611974331.
ch143

4. Bille, P., Cording, P.H., Fischer, J., Gørtz, I.L.: Lempel-Ziv compression in a sliding
window. In: Proceedings of the 28th Annual Symposium on Combinatorial Pattern
Matching (CPM 2017), pp. 15:1–15:11. Warsaw, Poland (2017). https://doi.org/
10.4230/LIPIcs.CPM.2017.15

5. Chan, T.M., Tsakalidis, K.: Dynamic orthogonal range searching on the ram, revis-
ited. J. Comput. Geom. 9(2), 45–66 (2018). https://doi.org/10.20382/jocg.v9i2a5

6. Crochemore, M., Langiu, A., Mignosi, F.: The rightmost equal-cost position prob-
lem. In: Proceedings of the 2013 Data Compression Conference (DCC 2013), pp.
421–430. Snowbird, UT, USA (2013). https://doi.org/10.1109/DCC.2013.50

7. Crochemore, M., Rytter, W.: Efficient parallel algorithms to test square-freeness
and factorize strings. Inf. Process. Lett. 38(2), 57–60 (1991). https://doi.org/10.
1016/0020-0190(91)90223-5

8. Ellert, J.: Sublinear time Lempel-Ziv (LZ77) factorization. In: Proceedings of the
30th International Symposium on String Processing and Information Retrieval
(SPIRE 2023). Pisa, Italy (2023)

9. Farach, M., Muthukrishnan, S.: Optimal parallel dictionary matching and com-
pression (extended abstract). In: Proceedings of the 7th Annual Symposium on
Parallel Algorithms and Architectures (SPAA 1995), pp. 244–253. Santa Barbara,
California, USA (1995). https://doi.org/10.1145/215399.215451

10. Ferragina, P., Nitto, I., Venturini, R.: On the bit-complexity of Lempel-Ziv com-
pression. SIAM J. Comput. 42(4), 1521–1541 (2013). https://doi.org/10.1137/
120869511

11. Fischer, J., I, T., Köppl, D.: Lempel Ziv computation in small space (LZ-CISS).
In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp.
172–184. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_15

12. Fischer, J., Tomohiro, I., Köppl, D., Sadakane, K.: Lempel-Ziv factorization pow-
ered by space efficient suffix trees. Algorithmica 80(7), 2048–2081 (2018). https://
doi.org/10.1007/s00453-017-0333-1

13. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960). https://doi.org/
10.1145/367390.367400

14. Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proceedings
of the 2013 Data Compression Conference (DCC 2013), pp. 133–142. Snowbird,
UT, USA (2013). https://doi.org/10.1109/DCC.2013.21

15. Goto, K., Bannai, H.: Space efficient linear time Lempel-Ziv factorization for small
alphabets. In: Proceedings of the 2014 Data Compression Conference (DCC 2014),
pp. 163–172. Snowbird, UT, USA (2014). https://doi.org/10.1109/DCC.2014.62

https://doi.org/10.1016/S0020-0190(01)00275-7
https://doi.org/10.1016/S0020-0190(01)00275-7
https://doi.org/10.4230/LIPIcs.CPM.2023.3
https://doi.org/10.4230/LIPIcs.CPM.2023.3
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.1137/1.9781611974331.ch143
https://doi.org/10.4230/LIPIcs.CPM.2017.15
https://doi.org/10.4230/LIPIcs.CPM.2017.15
https://doi.org/10.20382/jocg.v9i2a5
https://doi.org/10.1109/DCC.2013.50
https://doi.org/10.1016/0020-0190(91)90223-5
https://doi.org/10.1016/0020-0190(91)90223-5
https://doi.org/10.1145/215399.215451
https://doi.org/10.1137/120869511
https://doi.org/10.1137/120869511
https://doi.org/10.1007/978-3-319-19929-0_15
https://doi.org/10.1007/s00453-017-0333-1
https://doi.org/10.1007/s00453-017-0333-1
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1109/DCC.2013.21
https://doi.org/10.1109/DCC.2014.62

New Advances in Rightmost Lempel-Ziv 201

16. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

17. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Boni-
faci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol.
7933, pp. 139–150. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38527-8_14

18. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization:
simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4_19

19. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: Proceedings of the 51st Annual
Symposium on Theory of Computing (STOC 2019), pp. 756–767. Phoenix, AZ,
USA (2019). https://doi.org/10.1145/3313276.3316368

20. Kempa, D., Kosolobov, D.: LZ-end parsing in linear time. In: Proceedings of the
25th Annual European Symposium on Algorithms (ESA 2017), pp. 53:1–53:14.
Vienna, Austria (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.53

21. Kempa, D., Saha, B.: An upper bound and linear-space queries on the LZ-end
parsing. In: Proceedings of the 33rd Annual Symposium on Discrete Algorithms
(SODA 2022), pp. 2847–2866. Alexandria, VA, USA (Virtual Conference) (2022).
https://doi.org/10.1137/1.9781611977073.111

22. Kosolobov, D.: Faster lightweight Lempel-Ziv parsing. In: Italiano, G.F., Pighizzini,
G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 432–444. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_36

23. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Pro-
ceedings of the 2010 Data Compression Conference (DCC 2010), pp. 239–248.
Snowbird, UT, USA (2010). https://doi.org/10.1109/DCC.2010.29

24. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013). https://doi.org/10.1016/j.tcs.2012.02.006

25. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.
In: Proceedings of the 2014 Data Compression Conference (DCC 2014), pp. 153–
162. Snowbird, UT, USA (2014). https://doi.org/10.1109/DCC.2014.78

26. Köppl, D., Sadakane, K.: Lempel-Ziv computation in compressed space (LZ-CICS).
In: Proceedings of the 2016 Data Compression Conference (DCC 2016), pp. 3–12.
Snowbird, UT, USA (2016). https://doi.org/10.1109/DCC.2016.38

27. Larsson, N.J.: Most recent match queries in on-line suffix trees. In: Kulikov, A.S.,
Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 252–261.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2_26

28. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976). https://doi.org/10.1109/TIT.1976.1055501

29. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

30. Naor, M.: String matching with preprocessing of text and pattern. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 739–750.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7_179

31. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316588284

32. Ohlebusch, E., Gog, S.: Lempel-Ziv factorization revisited. In: Giancarlo, R.,
Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 15–26. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21458-5_4

https://doi.org/10.1007/BFb0028575
https://doi.org/10.1007/978-3-642-38527-8_14
https://doi.org/10.1007/978-3-642-38527-8_14
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.4230/LIPIcs.ESA.2017.53
https://doi.org/10.1137/1.9781611977073.111
https://doi.org/10.1007/978-3-662-48054-0_36
https://doi.org/10.1109/DCC.2010.29
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1109/DCC.2014.78
https://doi.org/10.1109/DCC.2016.38
https://doi.org/10.1007/978-3-319-07566-2_26
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1137/0222058
https://doi.org/10.1007/3-540-54233-7_179
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1007/978-3-642-21458-5_4

202 J. Ellert et al.

33. Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous
factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 696–
707. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87744-8_58

34. Shun, J.: Parallel Lempel-Ziv factorization, chap. 13. Association for Comput-
ing Machinery and Morgan & Claypool (2018). https://doi.org/10.1145/3018787.
3018801

35. Shun, J., Zhao, F.: Practical parallel Lempel-Ziv factorization. In: Proceedings of
the 2013 Data Compression Conference (DCC 2013). pp. 123–132. Snowbird, UT,
USA (2013). https://doi.org/10.1109/DCC.2013.20

36. Starikovskaya, T.: Computing Lempel-Ziv factorization online. In: Rovan, B., Sas-
sone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_68

37. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982). https://doi.org/10.1145/322344.322346

38. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (SWAT 1973), pp. 1–11. Iowa City,
IA, USA (1973). https://doi.org/10.1109/SWAT.1973.13

39. Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line
Lempel-Ziv factorization. In: Proceedings of the 31st International Symposium
on Theoretical Aspects of Computer Science (STACS 2014), pp. 675–686. Lyon,
France (2014). https://doi.org/10.4230/LIPIcs.STACS.2014.675

https://doi.org/10.1007/978-3-540-87744-8_58
https://doi.org/10.1145/3018787.3018801
https://doi.org/10.1145/3018787.3018801
https://doi.org/10.1109/DCC.2013.20
https://doi.org/10.1007/978-3-642-32589-2_68
https://doi.org/10.1145/322344.322346
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.4230/LIPIcs.STACS.2014.675

Engineering a Textbook Approach
to Index Massive String Dictionaries

Paolo Ferragina , Mariagiovanna Rotundo , and Giorgio Vinciguerra(B)

Department of Computer Science, University of Pisa, Pisa, Italy
{paolo.ferragina,giorgio.vinciguerra}@unipi.it,

m.rotundo1@studenti.unipi.it

Abstract. We study the problem of engineering space-time efficient
indexes that support membership and lexicographic (rank) queries on
very large static dictionaries of strings.

Our solution is based on a very simple approach that consists of decou-
pling string storage and string indexing by means of a blockwise compres-
sion of the sorted dictionary strings (to be stored in external memory)
and a succinct implementation of a Patricia trie (to be stored in internal
memory) built on the first string of each block.

Our experimental evaluation on two new datasets, which are at least
one order of magnitude larger than the ones used in the literature, shows
that (i) the state-of-the-art compressed string dictionaries (such as FST,
PDT, CoCo-trie) do not provide significant benefits if used in an indexing
setting compared to Patricia tries, and (ii) our two-level approach enables
the indexing of 3.5 billion strings taking 273 GB in less than 200 MB of
internal memory, which is available on any commodity machine, while
still guaranteeing comparable or faster query performance than those
offered by array-based solutions used in modern storage systems, such
as RocksDB, thus possibly influencing their future designs.

Keywords: String dictionary problem · Trie data structure · String
compression · Algorithm engineering · Key-value store

1 Introduction

The string dictionary problem is a classic one in the string-matching field. It is
defined on a set S of n strings of variable length, drawn from an alphabet Σ. The
goal is to build an indexing data structure on S that efficiently answers a mem-
bership query on any query string q ∈ Σ+, namely: “does q ∈ S ?” Sometimes,
the data structure is required to answer a more powerful query, which finds the
lexicographic position of q within the sorted set S (aka the rank of q in S). The
attention to this operation is motivated by the fact that the implementation
of several other operations on S—such as the prefix search, which finds all the
strings in S prefixed by q, and the range search, which finds all the strings in S
that fall in a given query range—boil down to solving it.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 203–217, 2023.
https://doi.org/10.1007/978-3-031-43980-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_16&domain=pdf
http://orcid.org/0000-0003-1353-360X
http://orcid.org/0009-0001-1671-7407
http://orcid.org/0000-0003-0328-7791
https://doi.org/10.1007/978-3-031-43980-3_16

204 P. Ferragina et al.

In this paper, we assume that S is static, and thus it cannot be updated, but
its total length N and number n of strings is so large that it has to be stored in
slow storage, such as HDDs or SSDs. In fact, the recent explosion in the avail-
ability of massive string dictionaries in several applications—such as databases
[33,43], bioinformatic tools [11], search engines [28], code repositories [13], and
string embeddings (see e.g. [27,44]), just to name a few—has revitalised the
interest in solving the problem in efficient time and space by taking into account
the hierarchy of memory levels that are involved in their processing.

To solve the string dictionary problem, different approaches were proposed
over the years in the literature. A trivial one consists of using an array of string
pointers and deploying a binary search to answer queries, which causes random
memory accesses and possibly I/Os. The classic one is the trie [22], a multiway
tree that stores each string in S as a root-to-leaf path, and whose edges are
labelled with either one character from Σ (the so-called uncompacted trie) or
a substring from the strings in S (the so-called compacted trie). This histori-
cal solution has undergone over the years many significant developments that
improved its query or space efficiency (see also [6] and refs therein) such as
compacting subtries [6,40], using adaptive representations for its nodes [2,4,31],
succinct representations of its topology [25,43], cache-aware or disk-based lay-
outs [18,21], and even replacing it with learned models [16].

Among the most recent and performing variants of tries, which are perti-
nent to our discussion, we mention: ART [31], CART [42], Path Decomposed
Trie (PDT) [24], Fast Succinct Trie (FST) [43], ctrie++ [40], and CoCo-trie
[6]. According to the experimental results published in [6], we know that ART,
CART, and ctrie++ are space inefficient and offer query times on par with the
other data structures, which is a strong limitation in the massive-dictionary con-
text we consider in this paper. The other three proposals—namely, FST, PDT,
and CoCo-trie—stand out as the most interesting ones because they offer the
best space-time trade-offs. Nevertheless, they incur three main “limitations”:
they are very complex to be implemented; their code is highly engineered, and
thus difficult to be maintained or adapted to different scenarios (e.g., rank oper-
ations, adding satellite information); and, finally, they are designed to compress
and index the string dictionary entirely in internal memory. In this paper, we
ask ourselves whether this “sophistication” is really needed in practice to achieve
efficient time and space performance on massive string dictionaries.

Inspired by the theoretical proposals of [12,17,19,21], our solution consists of
decoupling string indexing and string storage, via a two-level approach [15]. The
on-disk storage level compresses the sorted strings in S via rear coding [18] and
partitions them into blocks of fixed size. The indexing level exploits a succinctly-
encoded Patricia trie built on the first string of each block, so that it plays
the role of a router for determining the block that possibly contains the query
string q. Then, that block is fetched from the storage level and eventually scanned
to search for the (lexicographic position of the) string q. Now, as long as the
indexing level is small enough to fit in internal memory, we can solve the query
in at most two disk I/Os without resorting to more complicated solutions [17,

Engineering a Textbook Approach to Index Massive String Dictionaries 205

21]. Additionally, as for LSM-trees [33,38], decoupling indexing from storage
allows us to support some dictionary updates, thus making our proposed solution
suitable to manage datasets with high insertion rates too.

To perform our massive-scale experiments, we first notice that datasets from
previous evaluations [6,24,43] are inadequate because their size is at most about
7 GB and the number of strings is at most 114 million. We, therefore, increase
these sizes by at least an order of magnitude via two new datasets, one consisting
of URLs from various Web crawls (272 GB, 3.5 billion strings) [8], the other
consisting of filenames of source code files from the Software Heritage initiative
(69 GB, 2 billion strings) [32].

Our first experimental finding is that sophisticated compressed string dictio-
naries (i.e., FST, PDT, CoCo-trie) are too complex for the indexing level, and
they do not provide substantial space-time performance advantage compared to
our well-engineered succinct Patricia trie, which is also much faster to construct.

Then, we show that our overall two-level approach based on succinct Patricia
tries enables the indexing of the largest dataset with only at most 195 MB of
internal memory (at least ≈ 1400× smaller than the dataset size). This small
memory footprint allows dedicating much more memory to caching disk pages
and this, in turn, determines a query efficiency that is comparable to or faster
than the one offered by array-based solutions (which however take 5.2× more
internal memory).

For these reasons, our two-level approach is a robust candidate for indexing
massive string dictionaries, and it paves the way for further investigations and
engineering, as we elaborate upon in the conclusions.

2 Background

A Patricia trie (PT) [36] for a string set S is derived from the trie of S by
compacting each unary path into a single edge labelled with its first character,
and by storing at each node the length of the (uncompacted) root-to-node path.
Figure 1 shows an example of a PT built on a set of 8 strings.

Even if the PT strips out some information from the compacted trie, it is
still able to support the search for the lexicographic position of a pattern P [1, p]
among a sorted sequence of strings, with the significant advantage (discussed
below) that this search needs to access only one single string, and hence execute
typically 1 I/O instead of the p I/Os potentially incurred by the traversal of the
compacted trie due to accessing its (possibly long) edge labels. This algorithm
is called blind search in the literature [15,17]. It is a little bit more complicated
than prefix searching in classic tries, because of the presence of only one character
per edge label. Technically speaking, blind search consists of three stages.

Stage 1: Downward traversal. Trace a downward path in the PT to locate a
leaf l which points to one of the indexed strings sharing the longest common
prefix (LCP) with P (see [17] for the proof). The traversal compares the
characters of P with the single characters which label the traversed edges

206 P. Ferragina et al.

until either a leaf is reached or no further branching is possible. In this last
case, we can choose l as any descendant leaf from the last traversed node; in
our implementation, we will take the leftmost one.

Stage 2: LCP computation. Compare P against the string s pointed to by
leaf l, in order to determine their LCP � ≥ 0.

Stage 3: Upward traversal. Traverse upward the PT from l to determine the
edge e = (u, v) where the mismatched character s[� + 1] lies. If s[� + 1] is a
branching character (and recall that s[� + 1] �= P [� + 1]), then we determine
the lexicographic position of P [� + 1] among the branching characters of u.
Say this is the ith child of u, the lexicographic position of P is therefore to
the immediate left of the subtree descending from this ith child. Otherwise,
the character s[�+1] lies within the edge e and after its first character, so the
lexicographic position of P is to the immediate right of the subtree descending
from edge e, if P [�+1] > s[�+1], otherwise it is to the immediate left of that
subtree.

The topology of the PT can be represented in several different ways, like, for
example, using pointers or succinct encodings. Since we aim for space savings,
we will use the latter and, in particular, the Level-Order Unary Degree Sequence
(LOUDS) [25] and the Depth-First Unary Degree Sequence (DFUDS) [5]. Both
encode the trie topology with a bitvector in which a node of degree d is repre-
sented by the binary string 1d0. The difference is the order in which the nodes
are visited and the corresponding binary strings are written in the bitvector: in
level-wise left-to-right for LOUDS, and in preorder for DFUDS. For our imple-
mentation of DFUDS, we follow [37] and prepend 110 to the representation. For
our implementation of LOUDS, we follow [43] and prepend no bits. See Fig. 1
for an example of LOUDS and DFUDS representation.

Regarding compressing a lexicographically-sorted set of strings, two simple
techniques are front coding [15,18] and rear coding [18]. Front coding repre-
sents each string with two values: an integer denoting the length of the LCP
between the considered string and the previous one, and the remaining suffix of
the considered string obtained by removing that LCP. If the string has not a
predecessor, the LCP length is set to 0. In rear coding, the suffix is obtained in
the same way as in front coding, but the integer represents the number of char-
acters to remove from the previous string to obtain the longest common prefix.
Rear coding may be more efficient than front coding since it does not encode
the length of repeated prefixes [18,21].

3 Our Two-Level Approach

As anticipated in the Introduction, our string dictionary consists of two levels: a
storage level (residing on disk), which consists of a sequence of fixed-size blocks
where strings are stored in lexicographic order and compressed; and an index-
ing level (residing in internal memory), which consists of a succinctly-encoded
Patricia trie (PT) that indexes the first string of every block.

Engineering a Textbook Approach to Index Massive String Dictionaries 207

3.1 Storage Level

For the on-disk storage level, let us consider the sequence of lexicographically-
sorted strings, and disk blocks of size 4, 8, 16, and 32 KiB. The first string of
each block is stored explicitly (i.e., not compressed), whereas the subsequent
strings are compressed with rear coding until the block is (almost) full, that is,
it cannot host the subsequent rear-coded string s. In this case, the current block
is padded with zeroes, and a new block is started by setting its first string to s.
The lengths in rear coding are stored with a variable-byte encoder to keep byte
alignment, and thus speed up string decompression.

Since the blocks are of fixed size, the indexing level just needs to return the
rank of the block containing the query string, which is then multiplied by the
block size to get the byte offset of that block on disk.

To efficiently compute the rank of the query string q in S, we store for each
block b an integer indicating how many dictionary strings appear before it in
the lexicographic order, denoted with c(b). This way, let b̂ be the disk block
containing the lexicographic position of the query string q: the rank of q is then
computed by summing c(b̂) with the relative rank of q among the strings in b̂.
The latter value is obtained via a linear scan and decompression of the block b̂,
which takes advantage of rear coding and LCP length information to possibly
skip some characters, as detailed in [34, §6]. For simplicity, we store the integers
c(b) in an in-memory packed array that allocates a number of bits per element
sufficient to contain the largest one. It goes without saying that, since these
integers are increasing, one could save some further space by using a randomly-
accessible compressed integer dictionary (see e.g. [7,20] and references therein),
but this is deferred to subsequent studies.

Clearly, one can apply other compression techniques on top of or in place
of rear coding, such as entropy coding, grammar compression, and dictionary
compression. These techniques have been shown to be useful to reduce the space
of in-memory string dictionaries [3,9,10,30,34], but since we are dealing with
strings kept in (the much cheaper, but slower) secondary storage, we opt for
the simplicity of rear coding, which is shown next to be already very effective
in our context. In fact, even for datasets of billions of strings, the number of
created blocks (and thus “first strings” to be indexed in memory) is sufficiently
small that the indexing level (i.e., the succinct PT) fits in a few MBs (e.g., up
to 195 MB for a dictionary of 273 GB, see Sect. 4). We finally mention that,
compared to the approach of creating variable-sized blocks with a fixed number
of (front- or rear-coded) strings [30,34], our use of fixed-size blocks allows for
better compression because it may take more advantage of runs of consecutive
strings sharing long common prefixes, which thus result highly compressible in
one single block.

The storage level is accessed by memory-mapping the corresponding file (via
the mmap system call), which compared to explicit reads of disk blocks allows a
simpler implementation and often faster performance [39].

208 P. Ferragina et al.

3.2 Indexing Level

We succinctly encode the Patricia Trie (PT), forming the indexing level, by
considering one of two succinct representations of its topology, i.e. LOUDS
or DFUDS, and using two additional sequences: one for the single characters
labelling the edges of the PT, and the other for the root-to-node path lengths.
Both sequences are stored as packed arrays whose elements are ordered accord-
ing to the topology representation, thus in level-wise order for LOUDS and in
preorder for DFUDS. To reduce the number of bits needed to store the lengths,
we consider the length of the edge that leads to a node and not the one of the
whole root-to-node path, which can be easily recovered by summing the lengths
of the visited nodes during the downward traversal (see Sect. 2).

If LOUDS is used, we need one more sequence that maps each leaf in the
level-wise ordering to the lexicographic rank of the corresponding string, which
we need to jump to the corresponding block in the storage level. If DFUDS is
used, such a sequence is not needed since the leaves are ordered according to
the lexicographic rank of the corresponding strings. Figure 1 shows an example
of the sequences created for the encoding of a PT.

Downward Traversal with LOUDS. To downward traverse the PT encoded
with LOUDS, rank and select primitives are used: rank b(i) counts the number
of bits equal to b up to position i, while selectb(i) finds the position of the
ith bit equal to b. Assuming that the nodes, their children, and the bits of the
binary sequences are counted starting from 0, it is well known [25,37,43] that
we can traverse the trie downwards by computing the position of the kth child

Fig. 1. At the top, the Patricia Trie on the strings {abduct, algebra, algorithm, ant,
anxiety, machine, three, typo} corresponding to the leaves s0, . . . , s7. Outside each
node, we denote its position in the LOUDS order, in the DFUDS order, and its degree
in unary, respectively. At the bottom, the corresponding succinct representations.

Engineering a Textbook Approach to Index Massive String Dictionaries 209

of the node that starts at position p with the formula select0(rank1(p + k)) + 1.
Actually, it is not hard to show that we do not need rank1, because its result can
be computed with proper arithmetic operations during the traversal. This fact
allows in practice to save space, because we discard the auxiliary data structure
needed for constant-time rank1 operations, and to save time, because several
CPU cycles and possibly cache misses are needed for rank1.

Fact 1. The downward traversal of a Patricia trie encoded with LOUDS can be
executed with just select0 operations.

When a leaf is reached, we compute its rank in the leaf sequence by counting
how many leaves appear before its position x in the LOUDS representation of the
PT. This rank is given by rank0(x) − rank10(x), where the first value denotes
the number of nodes (internal and leaves) that appear in LOUDS before the
considered one, and the second value denotes the number of internal nodes (not
leaves) that appear before position x. Now we notice that the value rank0(x) =
x − rank1(x) + 1 can be computed by substituting rank1(x) with the value
returned by the arithmetic operations executed during the downward traversal.

Thus, we build overall just the select0 and rank10 data structures on the
LOUDS sequence (due to their time efficiency [29], we use the sux library [41]
for the former, and the sdsl library [23] for the latter).

Downward Traversal with DFUDS. To downward traverse the PT encoded
with DFUDS, we compute the position of the kth child of the node whose encod-
ing starts at position p with the formula close(succ0(p)− (k +1))+1 [37]. Here,
succ0(p) returns the position of the first 0 that follows p in the DFUDS sequence,
and it is implemented by using a linear scan starting from the position p until a
0 is found. Since DFUDS can be seen as a sequence of balanced parenthesis, we
have that if i is the position of an open parenthesis, close(i) returns the position
of the corresponding close one. For close we adopt the sdsl::bp support sada
implementation of balanced parenthesis.

When a leaf is reached, we compute its rank among the leaves with a rank1

and rank10 operation. By knowing the position where the leaf starts, the rank1

allows us to derive the number of nodes that appear in the sequence before it,
while the rank10, as for LOUDS above, allows us to compute how many of these
nodes are internal nodes, thus by exploiting the results of these operations we
get the rank of the leaf. Therefore, in our implementation of DFUDS, we exploit
data structures that allow us to execute in constant time operations of rank10,
close, and rank1 (these last two ones are included in sdsl::bp support sada).

Upward Traversal in LOUDS and DFUDS. For the upward traversal of a
PT (either encoded with LOUDS or DFUDS), we need to scan back the nodes
accessed during the downward traversal. But, instead of executing any of the
bit-operations above (as typically done for the upward traversal of trees [25]),
we adopt a much simpler and time-efficient approach that pushes in a stack the
LOUDS/DFUDS positions of the nodes visited during the downward traversal,
and then it pops them from the stack during the upward traversal.

210 P. Ferragina et al.

4 Experiments

Experimental Setting. We use a machine with a KIOXIA KPM61RUG960G
SSD and two NUMA nodes, each with a 1.80 GHz Intel Xeon E5-2650L v3
CPU and 30 GB local DDR4 RAM. The machine runs Ubuntu 20.04.4 LTS
with Linux 5.4.0, and the compiler is GCC 9.4.0. We schedule experiments
on a single node via numactl. For the mmap in the storage level, we tested
both the MAP SHARED and MAP PRIVATE flags and noticed no significant per-
formance difference (indeed, the storage level is read-only), so we choose the
former. The MAP POPULATE flag too did not impact the query performance, so
we do not set it. We alternate datasets given to mmap to try to prevent caching
by the operating system. Our source code is available at https://github.com/
MariagiovannaRotundo/Two-level-indexing.

Datasets. Datasets used in previous experimental evaluations of state-of-the-art
solutions (i.e., FST [43], PDT [24], and CoCo-trie [6]) are quite small. Their size
is indeed no more than 0.5 GB and 25M strings for FST, 2.7 GB and 40.5M
strings for the CoCo-trie, and 7.1 GB and 114.3M strings for PDT.

Since we want to evaluate our solution on big datasets, we introduce two new
ones. The first, URLs, combines web page addresses from various crawls [8], has a
size of 272.7 GB, and contains 3.7 billion strings. The second, Filenames, consists
of the name of source code files collected by Software Heritage [1,13,14,32], has
a size of around 68.9 GB, and contains 2.3 billion strings. So our datasets are
larger than the ones used in previous evaluations by up to 32.0× in number of
strings and up to 38.4× in size. Also, we point out that our datasets are up to one
order of magnitude larger than the internal memory of our machine, described
above.

About the features of the new datasets, we briefly report that URLs contains
long strings (avg. 73.6, max. 2083) with long LCPs among them (avg. 53.7), on
a medium-size alphabet (88 characters); whereas Filenames offers the opposite
features, namely shorter string (avg. 29.1, max. 16051) with even shorter LCPs
among them (15.4), on a large alphabet (241 characters).

Competitors. For the indexing level, we consider the set S′, composed of the
first string of every block truncated at its minimum distinguishing prefix, to
construct an in-memory index, and then we discard S′. As the index, other
than our PT-LOUDS and PT-DFUDS implementations, we consider FST [43],
PDT [24], CoCo-trie [6], and a simple and commonly-used solution [34,35]—that
we name Array—which stores S′ contiguously in an array and binary searches on
it via an auxiliary packed array of offsets to the beginning of the strings. Notice
that, for all solutions, the truncation of strings in S′ saves space in the resulting
index and still allows identifying the correct block in the storage level (actually,
upon accessing the first string of a block we might find that the sought string is
in the preceding block, which nonetheless is likely to be loaded quickly thanks
to disk prefetching). On the other hand, PT does not store the distinguishing
prefixes but only Θ(|S′|) characters/edges/nodes, thus occupying a space that is

https://github.com/MariagiovannaRotundo/Two-level-indexing
https://github.com/MariagiovannaRotundo/Two-level-indexing

Engineering a Textbook Approach to Index Massive String Dictionaries 211

independent of the string lengths. We also anticipate that all these implementa-
tions of the indexing level allow us to fit it in the internal memory of our machine
and thus solve a query with at most two random I/Os to the storage level.

In what follows, we first evaluate in Sect. 4.1 the different data structures for
the indexing level in isolation, i.e. without considering the access to the storage
level that concludes the query. Then, in Sect. 4.2 we evaluate the performance
of the overall two-level approach.

4.1 Indexing Level Evaluation

Construction Time. Figure 2 shows the time to construct the various data struc-
tures from the set S′ loaded in memory. CoCo-trie is constructed only on URLs
because the current implementation [6] supports only ASCII alphabets. More-
over, we point out that its construction time for blocks of 4 and 8 KiB is not
shown due to its high-memory consumption that required a machine with a much
larger internal memory and thus different performance (still, we constructed
these CoCo-tries because we test their search time in Fig. 3).

Unsurprisingly, Array has the fastest construction because it involves just
strings and offsets storage. Our PT-LOUDS and PT-DFUDS implementations
have the second-fastest construction, which is based on scanning prefixes at
increasing lengths of (ranges) of strings, determining sub-ranges corresponding
to deeper levels of the PT, and handling these sub-ranges recursively in LOUDS
order or DFUDS order. Finally, we notice that FST, PDT, and CoCo-trie are
significantly slower to construct than our PT, up to 7×, 5×, 42×, respectively.

Fig. 2. Times needed to construct each data structure in the indexing level.

Space-Time Performance. Figure 3 shows the performance of data structures
for the indexing level. The query time refers to the average time needed to
perform a membership query on a sample of 10% strings drawn from the set of
distinguishing prefixes S′, without any access to the storage level. In particular,

212 P. Ferragina et al.

Fig. 3. Space and average query time of different data structures for the indexing level.

for PT, since such access is needed for Stage 2 of the blind search (cf. Sect. 2),
the time is evaluated by executing a downward and an upward traversal.

The results show that Array is the fastest but also the most space-hungry
solution. FST is competitive only for the Filenames dataset due to its shorter
strings. Our PT approaches, despite their simplicity, are very competitive and
on the Pareto space-time frontier of both experimented datasets. In particular,
PT-LOUDS is the second-fastest data structure with a space occupancy that
is competitive with that of the most sophisticated solutions such as CoCo and
PDT. We notice in fact that the difference in space with those data structures is
no more than 35 MB, which is not much significant given the size of the indexed
dictionaries. On the other hand, our PT-DFUDS is the most space efficient but
also it is the slowest solution due to the more complex bit-operations needed to
traverse the PT structure (hence, we leave as an open issue their engineering).

4.2 Two-Level Approach Evaluation

Given the results of the previous section, we restrict our evaluation of the overall
solution (involving the indexing level in memory and the storage level on disk)
just to Array and PT-LOUDS, since the other data structures are either not
competitive or too much complex for this indexing setting (as detailed above),
or their current implementations do not return the rank of the query string
among the indexed ones, being this a crucial information to jump to the correct
disk block. We mention here that returning the rank of the query string in the
LOUDS-based FST requires adding an integer for each leaf (as we did with our
PT-LOUDS, cf. Fig. 1), thus increasing the space of FST, or it requires switching
to the much slower DFUDS representation, thus increasing the query time. On
the other hand, returning the rank of a query string in PDT requires more
complex trie traversals thus increasing the query time. So Fig. 3 underestimates
the space-time performance of FST or PDT when they are used in the two-level

Engineering a Textbook Approach to Index Massive String Dictionaries 213

setting, which justifies our choice of experimenting below just with Array and
PT-LOUDS (henceforth referred to simply as PT).

The following paragraphs discuss the experimental results reported in Fig. 4.
Note that, as stated in Sect. 3.1, we need to keep in memory the array of integers
c(b) to answer rank queries on the indexed strings (which is why the index space
in Fig. 4 is larger than the one reported in Fig. 3).

Storage Level Size. We begin by reporting that our storage level with blocks of
size 4–32 KiB compresses the URLs dataset to 80.5–82.2 GB, and the Filenames
dataset to 35.9–36.1 GB. Therefore, our approach to the blocked-compressed
storage of dictionary strings achieves a compression factor of up to 3.4× on
URLs, and up to 1.9× on Filenames, which is an interesting achievement given
the simplicity of rear coding.

Fig. 4. Space and average query time of our two-level approach.

Space-Time Performance. Figure 4 shows that the PT and Array configurations
with 8 KiB blocks are the fastest solutions overall. In particular, PT is faster on
URLs and Array on Filenames (although PT is very close), but PT takes 5.2×
less memory than Array on URLs, and 2.3× less on Filenames.

For increasing block sizes from 8 to 32 KiB, both solutions with PT and Array
get from 1.3× to 3.7× slower, because of the larger block to scan and decompress,
but more space efficient. Notably, as the block size halves, PT scales better in
memory consumption compared to Array, because its space does not depend on
the length of the strings but just on their number (as already observed above).

Interestingly enough, the PT and Array configurations with 4 KiB blocks are
dominated by the corresponding ones with 8 KiB blocks. This occurs because
the indexing level takes more space and thus there is less memory available for
caching disk pages, hence making page faults more frequent, as we have verified
with the mincore system call. The more space available for caching explains also

214 P. Ferragina et al.

why PT is not slowed down by the execution of one more random I/O compared
to Array because of Stage 2 of the blind search (c.f. Sect. 2).

5 Conclusions and Future Work

Our two-level approach based on a succinct Patricia trie is a robust candidate for
indexing massive string dictionaries. As we showed above, it enables indexing up
to 272.7 GB with less than 195 MB of internal memory (a space at least 1396.3×
smaller than the dictionary’s size). This small memory footprint allows dedicat-
ing much more memory to caching disk pages and this, in turn, determines a
query efficiency that is comparable to or faster than the one offered by Array-
based solutions (which take 5.2× more memory). We believe these findings are
significant not only for static dictionaries but also for dynamic ones that occur
in the design of modern storage systems. As an example, RocksDB [35] is based
on (static) runs of strings with in-memory Array-based indexes.

As future work, other than investigating the impact of our findings on these
storage systems we suggest: for the indexing level, combining Patricia tries with
dynamic succinct tree representations [26] or proper compressors for node fan-
outs (similarly to FST and CoCo-trie); and, for the storage level, designing
solutions that take into account the query distribution to reduce the average
time for block decompression/scan, or that use more sophisticated techniques
on top of rear coding (such as dictionary and grammar compression) to improve
block compression thus further reducing the internal-memory footprint of Patri-
cia tries.

Acknowledgements. We thank Antonio Boffa for executing some tests on the CoCo-
trie, and the Green Data Centre at the University of Pisa for machines and technical
support. We also thank Roberto Di Cosmo, Valentin Lorentz, Stefano Zacchiroli, and
the Software Heritage team for providing us with the Filenames dataset. This work
was made possible by Software Heritage, the great library of source code: https://
www.softwareheritage.org.

This work has been supported by the European Union – Horizon 2020 Program
under the scheme “INFRAIA-01-2018-2019 – Integrating Activities for Advanced Com-
munities”, Grant Agreement n. 871042, “SoBigData++: European Integrated Infras-
tructure for Social Mining and Big Data Analytics” http://www.sobigdata.eu, by
the NextGenerationEU – National Recovery and Resilience Plan (Piano Nazionale di
Ripresa e Resilienza, PNRR) – Project: “SoBigData.it - Strengthening the Italian RI
for Social Mining and Big Data Analytics” – Prot. IR0000013 – Avviso n. 3264 del
28/12/2021, by the spoke “FutureHPC & BigData” of the ICSC – Centro Nazionale di
Ricerca in High-Performance Computing, Big Data and Quantum Computing funded
by European Union – NextGenerationEU – PNRR, by the Italian Ministry of Univer-
sity and Research “Progetti di Rilevante Interesse Nazionale” project: “Multicriteria
data structures and algorithms” (grant n. 2017WR7SHH).

https://www.softwareheritage.org
https://www.softwareheritage.org
http://www.sobigdata.eu

Engineering a Textbook Approach to Index Massive String Dictionaries 215

References

1. Abramatic, J., Di Cosmo, R., Zacchiroli, S.: Building the universal archive of source
code. Commun. ACM 61(10), 29–31 (2018). https://doi.org/10.1145/3183558

2. Acharya, A., Zhu, H., Shen, K.: Adaptive algorithms for cache-efficient trie search.
In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp.
300–315. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48518-X 18

3. Arz, J., Fischer, J.: LZ-compressed string dictionaries. In: Proceedings of the 24th
Data Compression Conference (DCC), pp. 322–331 (2014). https://doi.org/10.
1109/DCC.2014.36

4. Baskins, D.: A 10-minute description of how Judy arrays work and why they are
so fast (2002). http://judy.sourceforge.net/doc/10minutes.htm

5. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Rep-
resenting trees of higher degree. Algorithmica 43(4), 275–292 (2005). https://doi.
org/10.1007/s00453-004-1146-6

6. Boffa, A., Ferragina, P., Tosoni, F., Vinciguerra, G.: Compressed string dictionaries
via data-aware subtrie compaction. In: Arroyuelo, D., Poblete, B. (eds.) SPIRE
2022. LNCS, vol. 13617, pp. 233–249. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-20643-6 17. Implementation available at https://github.com/
aboffa/CoCo-trie

7. Boffa, A., Ferragina, P., Vinciguerra, G.: A learned approach to design compressed
rank/select data structures. ACM Trans. Algorithms 18(3) (2022). https://doi.
org/10.1145/3524060

8. Boldi, P., Marino, A., Santini, M., Vigna, S.: BUbiNG: massive crawling for
the masses. ACM Trans. Web 12(2), 12:1–12:26 (2018). https://doi.org/10.1145/
3160017. Datasets of URLs available at https://law.di.unimi.it/datasets.php

9. Boncz, P., Neumann, T., Leis, V.: FSST: fast random access string compression.
PVLDB 13(12), 2649–2661 (2020). https://doi.org/10.14778/3407790.3407851

10. Brisaboa, N.R., Cerdeira-Pena, A., de Bernardo, G., Navarro, G.: Improved com-
pressed string dictionaries. In: Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management (CIKM), pp. 29–38 (2019).
https://doi.org/10.1145/3357384.3357972

11. Chikhi, R., Holub, J., Medvedev, P.: Data structures to represent a set of k-
long DNA sequences. ACM Comput. Surv. 54(1) (2021). https://doi.org/10.1145/
3445967

12. Clark, J.L.: PATRICIA-II. Two-level overlaid indexes for large libraries. Int. J.
Parallel Program. 2(4), 269–292 (1973). https://doi.org/10.1007/BF00985662

13. Di Cosmo, R.: Should we preserve the world’s software history, and can we? In:
Silvello, G., et al. (eds.) TPDL 2022. LNCS, vol. 13541, pp. 3–7. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-16802-4 1

14. Di Cosmo, R., Zacchiroli, S.: Software Heritage: why and how to preserve soft-
ware source code. In: Proceedings of the 14th International Conference on Digital
Preservation (iPRES) (2017). https://hdl.handle.net/11353/10.931064

15. Ferragina, P.: Pearls of Algorithm Engineering. Cambridge University Press (2023).
https://doi.org/10.1017/9781009128933

16. Ferragina, P., Frasca, M., Marinò, G.C., Vinciguerra, G.: On nonlinear learned
string indexing. IEEE Access 11, 74021–74034 (2023). https://doi.org/10.1109/
ACCESS.2023.3295434

17. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search
in external memory and its applications. J. ACM 46(2), 236–280 (1999). https://
doi.org/10.1145/301970.301973

https://doi.org/10.1145/3183558
https://doi.org/10.1007/3-540-48518-X_18
https://doi.org/10.1109/DCC.2014.36
https://doi.org/10.1109/DCC.2014.36
http://judy.sourceforge.net/doc/10minutes.htm
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1007/978-3-031-20643-6_17
https://doi.org/10.1007/978-3-031-20643-6_17
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3160017
https://doi.org/10.1145/3160017
https://law.di.unimi.it/datasets.php
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.1145/3357384.3357972
https://doi.org/10.1145/3445967
https://doi.org/10.1145/3445967
https://doi.org/10.1007/BF00985662
https://doi.org/10.1007/978-3-031-16802-4_1
https://hdl.handle.net/11353/10.931064
https://doi.org/10.1017/9781009128933
https://doi.org/10.1109/ACCESS.2023.3295434
https://doi.org/10.1109/ACCESS.2023.3295434
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/301970.301973

216 P. Ferragina et al.

18. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On searching com-
pressed string collections cache-obliviously. In: Proceedings of the 27th ACM Sym-
posium on Principles of Database Systems (PODS), pp. 181–190 (2008). https://
doi.org/10.1145/1376916.1376943

19. Ferragina, P., Luccio, F.: String search in coarse-grained parallel computers. Algo-
rithmica 24(3–4), 177–194 (1999). https://doi.org/10.1007/PL00008259

20. Ferragina, P., Manzini, G., Vinciguerra, G.: Compressing and querying integer dic-
tionaries under linearities and repetitions. IEEE Access 10, 118831–118848 (2022).
https://doi.org/10.1109/ACCESS.2022.3221520

21. Ferragina, P., Venturini, R.: Compressed cache-oblivious string B-tree. ACM Trans.
Algorithms 12(4), 52:1–52:17 (2016). https://doi.org/10.1145/2903141

22. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960). https://doi.org/
10.1145/367390.367400

23. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

24. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions.
ACM J. Exp. Algorithmics 19 (2015). https://doi.org/10.1145/2656332. Imple-
mentation available at https://github.com/ot/path decomposed tries

25. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 549–554
(1989). https://doi.org/10.1109/SFCS.1989.63533

26. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30850-5 20

27. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text.zip: compressing text classification models. CoRR abs/1612.03651 (2016).
http://arxiv.org/abs/1612.03651

28. Krishnan, U., Moffat, A., Zobel, J.: A taxonomy of query auto completion
modes. In: Proceedings of the 22nd Australasian Document Computing Sympo-
sium (ADCS) (2017). https://doi.org/10.1145/3166072.3166081

29. Kurpicz, F.: Engineering compact data structures for rank and select queries on bit
vectors. In: Arroyuelo, D., Poblete, B. (eds.) SPIRE 2022. LNCS, vol. 13617, pp.
257–272. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20643-6 19

30. Lasch, R., Oukid, I., Dementiev, R., May, N., Demirsoy, S.S., Sattler, K.: Fast &
strong: the case of compressed string dictionaries on modern CPUs. In: Proceed-
ings of the 15th International Workshop on Data Management on New Hardware
(DaMoN), pp. 4:1–4:10 (2019). https://doi.org/10.1145/3329785.3329924

31. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing
for main-memory databases. In: Proceedings of the 29th IEEE International Con-
ference on Data Engineering (ICDE), pp. 38–49 (2013). https://doi.org/10.1109/
ICDE.2013.6544812

32. Lorentz, V., Di Cosmo, R., Zacchiroli, S.: The popular content filenames dataset:
deriving most likely filenames from the Software Heritage archive. Technical report
(2023). https://inria.hal.science/hal-04171177, preprint

33. Luo, C., Carey, M.J.: LSM-based storage techniques: a survey. VLDB J. 29(1),
393–418 (2019). https://doi.org/10.1007/s00778-019-00555-y

34. Mart́ınez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Inf. Syst. 56, 73–108 (2016). https://doi.org/
10.1016/j.is.2015.08.008

https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1007/PL00008259
https://doi.org/10.1109/ACCESS.2022.3221520
https://doi.org/10.1145/2903141
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1145/2656332
https://github.com/ot/path_decomposed_tries
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-642-30850-5_20
http://arxiv.org/abs/1612.03651
https://doi.org/10.1145/3166072.3166081
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1145/3329785.3329924
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://inria.hal.science/hal-04171177
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1016/j.is.2015.08.008

Engineering a Textbook Approach to Index Massive String Dictionaries 217

35. Meta Platforms Inc.: RocksDB. https://rocksdb.org/
36. Morrison, D.R.: PATRICIA—practical algorithm to retrieve information coded

in alphanumeric. J. ACM 15(4), 514–534 (1968). https://doi.org/10.1145/321479.
321481

37. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press (2016). https://doi.org/10.1017/CBO9781316588284

38. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-
tree (LSM-tree). Acta Informatica 33(4), 351–385 (1996). https://doi.org/10.1007/
s002360050048

39. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 10th edn.
Wiley, Hoboken (2018)

40. Tsuruta, K., et al.: C-trie++: a dynamic trie tailored for fast prefix searches. Inf.
Comput. 285, 104794 (2022). https://doi.org/10.1016/j.ic.2021.104794

41. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68552-4 12

42. Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L., Shen, R.: Reduc-
ing the storage overhead of main-memory OLTP databases with hybrid indexes.
In: Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pp. 1567–1581 (2016). https://doi.org/10.1145/2882903.2915222

43. Zhang, H., et al.: Succinct range filters. ACM Trans. Database Syst. 45(2) (2020).
https://doi.org/10.1145/3375660. Fork of the implementation available at https://
github.com/kampersanda/fast succinct trie

44. Zhang, W., et al.: TernaryBERT: distillation-aware ultra-low bit BERT. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 509–521 (2020). https://doi.org/10.18653/v1/2020.emnlp-
main.37

https://rocksdb.org/
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
https://doi.org/10.1017/CBO9781316588284
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1016/j.ic.2021.104794
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1145/2882903.2915222
https://doi.org/10.1145/3375660
https://github.com/kampersanda/fast_succinct_trie
https://github.com/kampersanda/fast_succinct_trie
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://doi.org/10.18653/v1/2020.emnlp-main.37

Count-Min Sketch with Variable Number
of Hash Functions: An Experimental Study

Éric Fusy and Gregory Kucherov(B)

LIGM, CNRS, Univ. Gustave Eiffel, Marne-la-Vallée, France
{Eric.Fusy,Gregory.Kucherov}@univ-eiffel.fr

Abstract. Conservative Count-Min, a stronger version of the popu-
lar Count-Min sketch [Cormode, Muthukrishnan 2005], is an online-
maintained hashing-based sketch summarizing element frequency infor-
mation of a stream. Although several works attempted to analyze the
error of conservative Count-Min, its behavior remains poorly understood.
In [Fusy, Kucherov 2022], we demonstrated that under the uniform dis-
tribution of input elements, the error of conservative Count-Min follows
two distinct regimes depending on its load factor.

In this work, we present a series of results providing new insights into
the behavior of conservative Count-Min. Our contribution is twofold.
On one hand, we provide a detailed experimental analysis of Count-Min
sketch in different regimes and under several representative probabil-
ity distributions of input elements. On the other hand, we demonstrate
improvements that can be made by assigning a variable number of hash
functions to different elements. This includes, in particular, reduced space
of the data structure while still supporting a small error.

1 Introduction

In most general terms, Count-Min sketch is a data structure for representing
an associative array of numbers indexed by elements (keys) drawn from a large
universe, where the array is provided through a stream of (key, value) updates
so that the current value associated to a key is the sum of all previous updates
of this key. Perhaps the most common setting for applying Count-Min, that we
focus on in this paper, is the counting setting where all update values are +1.
In this case, the value of a key is its count telling how many times this key has
appeared in the stream. In other words, Count-Min can be seen as representing
a multiset, that is a mapping of a subset of keys to non-negative integers. With
this latter interpretation in mind, each update will be called insertion. The main
supported query of Count-Min is retrieving the count of a given key, and the
returned estimate may not be exact, but can only overestimate the true count.

The counting version of Count-Min is applied to different practical problems
related to data stream mining and data summarization. One example is tracking
frequent items (heavy hitters) in streams [7,11,23]. It occurs in network traffic
monitoring [17], optimization of cache usage [16]. It also occurs in non-streaming
big data applications, e.g. in bioinformatics [1,25,29].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 218–232, 2023.
https://doi.org/10.1007/978-3-031-43980-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_17&domain=pdf
http://orcid.org/0000-0001-5899-5424
https://doi.org/10.1007/978-3-031-43980-3_17

Count-Min Sketch with Variable Number of Hash Functions 219

Count-Min relies on hash functions but, unlike classic hash tables, does not
store elements but only count information (hence the term sketch). It was pro-
posed in [12], however a very similar data structure was proposed earlier in [9]
under the name Spectral Bloom filter. The latter, in turn, is closely related to
Counting Bloom filters [19]. In this work, we adopt the definition of [9] but still
call it Count-Min to be consistent with the name commonly adopted in the
literature. A survey on Count-Min can be found e.g. in [10].

In this paper, we study a stronger version of Count-Min called conservative.
This modification of Count-Min was introduced in [17] under the name con-
servative update, see [10]. It was also discussed in [9] under the name minimal
increase. Conservative Count-Min provides strictly tighter count estimates using
the same memory and thus strictly outperforms the original version. The price
to pay is the impossibility to deal with deletions (negative updates), whereas the
original Count-Min can handle deletions as well, provided that the cumulative
counts remain non-negative (condition known as strict turnstile model [23]).

Analysis of error of conservative Count-Min is a difficult problem having
direct consequences on practical applications. Below in Sect. 2.2 we survey known
related results in more details. In our previous work [21], we approached this
problem through the relationship with random hypergraphs. We proved, in par-
ticular, that if the elements represented in the data structure are uniformly
distributed in the input, the error follows two different regimes depending on
the peelability property of the underlying hash hypergraph. While properties of
random hypergraphs have been known to be crucially related to some data struc-
tures (see Sect. 2.3), this had not been known for Count-Min.

Starting out from these results, in this paper we extend and strengthen this
analysis in several ways, providing experimental demonstrations in support of our
claims. Our first goal is to provide a fine analysis of the “anatomy” of conservative
Count-Min, describing its behavior in different regimes. Our main novel contri-
bution is the demonstration that assigning different number of hash functions
to different elements can significantly improve the error, and, as a consequence,
lead to memory saving. Another major extension concerns the probability dis-
tribution of input elements: here we study non-uniform distributions as well, in
particular step distribution and Zipf’s distribution, and analyze the behavior of
Count-Min for these distributions. This analysis is important not only because
non-uniform distributions commonly occur in practice, but also because this
provides important insights for the heavy hitters problem [7,11,23]). In partic-
ular, we consider the “small memory regime” (supercritical, in our terminology)
when the number of distinct represented elements is considerably larger than
the size of the data structure, and analyse conditions under which most frequent
elements are evaluated with negligible error. This has direct applications to the
frequent elements problem.

220 É. Fusy and G. Kucherov

2 Background and Related Work

2.1 Conservative Count-Min: Definitions

A Count-Min sketch is a counter array A of size n together with a set of hash
functions mapping elements (keys) of a given universe U to [1..n]. In this work,
each element e ∈ U can in general be assigned a different number ke of hash
functions. Hash functions are assumed fully random, therefore we assume w.l.o.g.
that an element e is assigned hash functions h1, . . . , hke

.
At initialization, counters A[i] are set to 0. When processing an insertion

of an input element e, basic Count-Min increments by 1 each counter A[hi(e)],
1 ≤ i ≤ ke. The conservative version of Count-Min increments by 1 only the
smallest of all A[hi(e)]. That is, A[hi(e)] is incremented by 1 if and only if
A[hi(e)] = min1≤j≤ke

{A[hj(e)]} and is left unchanged otherwise.
In both versions, the estimate of the number of occurrences of a queried

element e is computed by c(e) = min1≤i≤ke
{A[hi(e)]}. It is easily seen that for

any input sequence of elements, the estimate computed by original Count-Min
is greater than or equal to the one computed by the conservative version.

In this work, we study the conservative version of Count-Min. Let H denote
a selection of hash functions H = {h1, h2, . . .}. Consider an input sequence I of
N insertions and let E be the set of distinct elements in I. The relative error of
an element e is defined by err(e) = (c(e) − occ(e))/occ(e), where occ(e) is the
number of occurrences of e in the input. The combined error is an average error
over all elements in I weighted by the number of occurrences, i.e.

err =
1
N

∑

e∈E

occ(e) · err(e) = 1
N

∑

e∈E

(c(e) − occ(e)).

We assume that I is an i.i.d. random sequence drawn from a probability
distribution on a set of elements E ⊆ U . A key parameter is the size of E
relative to the size n of A. By analogy to hash tables, λ = |E|/n is called the
load factor, or simply the load.

2.2 Analysis of Conservative Count-Min: Prior Works

Motivated by applications to traffic monitoring, [5] was probably the first work
devoted to the analysis of conservative Count-Min in the counting setting. Their
model assumed that all

(
n
k

)
counter combinations are equally likely, where k hash

functions are applied to each element. This implies the regime when |E| � n.
The focus of [5] was on the analysis of the growth rate of counters, i.e. the
average number of counter increments per insertion, using a technique based
on Markov chains and differential equations. Another approach proposed in [16]
simulates a conservative Count-Min sketch by a hierarchy of ordinary Bloom
filters. Obtained error bounds are expressed via a recursive relation based on
false positive rates of corresponding Bloom filters.

Count-Min Sketch with Variable Number of Hash Functions 221

Recent works [2,3] propose an analytical approach for computing error
bounds depending on element probabilities assumed independent but not neces-
sarily uniform, in particular leading to improved precision bounds for detecting
heavy hitters. However the efficiency of this technique is more limited when all
element probabilities are small. In particular, if the input distribution is uniform,
their approach does not bring out any improvement over the general bounds
known for original Count-Min.

In our recent work [21], we proposed an analysis of conservative Count-Min
based on its relationship with random hypergraphs. We summarize the main
results of this work below in Sect. 2.4.

2.3 Hash Hypergraph

Many hashing-based data structures are naturally associated with hash hyper-
graphs so that hypergraph properties are directly related to the proper function-
ing of the data structure. This is the case with Cuckoo hashing [27] and Cuckoo
filters [18], Minimal Perfect Hash Functions and Static Functions [24], Invertible
Bloom Lookup Tables [22], and some others. [30] provides an extended study of
relationships between hash hypergraphs and some of those data structures.

A Count-Min sketch is associated with a hash hypergraph H = (V,E) where
V = {1..n} and E = {{h1(e), ...hke

(e)}} over all distinct input elements e. We
use notation Hn,m for hypergraphs with n vertices and m edges, and Hk

n,m for
k-uniform such hypergraphs, where all edges have cardinality k. In the latter
case, since our hash functions are assumed fully random, a hash hypergraph is
a k-uniform Erdős-Rényi random hypergraph.

As inserted elements are assumed to be drawn from a random distribution,
it is convenient to look at the functioning of a Count-Min sketch as a stochastic
process on the associated hash hypergraph [21]. Each vertex holds a counter
initially set to zero, and therefore each edge is associated with a set of counters
held by corresponding vertices. Inserting an element consists in incrementing the
minimal counters of the corresponding edge, and retrieving the estimate of an
element returns the minimum value among the counters of the corresponding
edge. From now on in our presentation, we will interchangeably speak of distinct
elements and edges of the associated hash hypergraph, as well as of counters
and vertices. Thus, we will call the vertex value the value of the corresponding
counter, and the edge value the estimate of the corresponding element. Also, we
will speak about the load of a hypergraph understood as the density |E|/|V |.

2.4 Hypergraph Peelability and Phase Transition of Error

A hypergraph H = (V,E) is called peelable if iterating the following step start-
ing from H results in the empty graph: if the graph has a vertex of degree 1
or 0, delete this vertex together with the incident edge (if any). As many other
properties of random hypergraphs, peelability undergoes a phase transition. Con-
sider the Erdős-Rényi k-uniform hypergraph model where graphs are drawn from
Hk

n,m uniformly at random. It is shown in [26] that a phase transition occurs at a

222 É. Fusy and G. Kucherov

(computable) peelability threshold λk: a random graph from Hk
n,λn is with high

probability (w.h.p.) peelable if λ < λk, and w.h.p. non-peelable if λ > λk. The
first values are λ2 = 0.5, λ3 ≈ 0.818, λ4 ≈ 0.772, etc., λ3 being the largest. Note
that the case k = 2 makes an exception to peelability: for λ < λ2, a negligible
fraction of vertices remain after peeling.

Peelability is known to be directly relevant to certain constructions of Mini-
mal Perfect Hash Functions [24] as well as to the proper functioning of Invertible
Bloom filters [22]. In [21], we proved that it is relevant to Count-Min as well.

Theorem 1 ([21]). Consider a conservative Count-Min where each element is
hashed using k random hash functions. Assume that the input I of length N is
drawn from a uniform distribution on a set E ⊆ U of elements and let λ = |E|/n,
where n is the number of counters. If λ < λk, then for a randomly chosen element
e, the relative error err(e) is o(1) w.h.p. when both n and N/n grow.

In the complementary regime λ > λk, we showed in [21], under some additional
assumptions, that err is Θ(1). Thus, the peelability threshold for random hash
hypergraphs corresponds to phase transition in the error produced by conserva-
tive Count-Min for uniform distribution of input. We call regimes λ < λk and
λ > λk subcritical and supercritical, respectively.

2.5 Variable Number of Hash Functions: Mixed Hypergraphs

The best peelability threshold λ3 ≈ 0.818 can be improved in at least two dif-
ferent ways. One way is to use a carefully defined class of hash functions which
replace uniform sampling of k-edges by a specific non-uniform sampling. Thus,
[15] showed that the peelability threshold can be increased to ≈0.918 for k = 3
and up to ≈0.999 for larger k’s if a special class of hypergraphs is used.

Another somewhat surprising idea, that we apply in this paper, is to apply a
different number of hash functions to differents elements, that is to consider non-
uniform hypergraphs. Following [14], [28] showed that non-uniform hypergraphs
may have a larger peelability threshold than uniform ones. More precisely, [28]
showed that mixed hypergraphs with two types of edges of different cardinalities,
each constituting a constant fraction of all edges, may have a larger peelability
threshold: for example, hypergraphs with a fraction of ≈0.887 of edges of cardi-
nality 3 and the remaining edges of cardinality 21 have the peelability threshold
≈0.920, larger than the best threshold 0.818 achieved by uniform hypergraphs.
We adopt the notation of [28] for mixed hypergraphs: by writing k = (k1, k2)
we express that the hypergraph contains edges of cardinality k1 and k2, and
k = (k1, k2;α) specifies in addition that the fraction of k1-edges is α.

The idea of using different number of hash functions for different elements
has also appeared in data structures design. [6] proposed weighted Bloom filters
which apply a different number of hash functions depending on the frequency
with which elements are queried and on probabilities for elements to belong to
the set. It is shown that this leads to a reduced false positive probability, where
the latter is defined to be weighted by query frequencies. This idea was further
refined in [31], and then further in [4], under the name Daisy Bloom filter.

Count-Min Sketch with Variable Number of Hash Functions 223

3 Results

3.1 Uniform Distribution

We start with the case where input elements are uniformly distributed, i.e. edges
of the associated hash hypergraph have equal probabilities to be processed for
updates.

Subcritical Regime. Theorem 1 in conjunction with the results of Sect. 2.5
leads to the assumption that using a different number of hash functions for
different elements one could “extend” the regime of o(1) error of Count-Min
sketch, which can be made into a rigorous statement (for simplicity we only give
it with two different edge cardinalities).

Theorem 2. Consider a conservative Count-Min with n counters. Assume that
the input of length N is drawn from a uniform distribution on E ⊆ U and let
λ < λk. Assume further that elements of E are hashed according to a mixed
hypergraph model k = (k1, k2;α). Let ck be the peelability ratio associated to k.
Then, when λ < ck, the relative error err(e) of a randomly chosen key e is o(1)
w.h.p., as both n and N/n grow.

The proof can be found in the full version [20].
Figure 1 shows the average relative error as a function of the load factor for

three types of hypergraphs: 2-uniform, 3-uniform and mixed hypergraph where
a 0.885 fraction of edges are of cardinality 3 and the remaining ones are of
cardinality 14. 2-uniform and 3-uniform hypergraphs illustrate phase transitions
at load factors approaching respectively 0.5 and ≈0.818, peelability thresholds
for 2-uniform and 3-uniform hypergraphs respectively. It is clearly seen that the
phase transition for the mixed hypergraphs occurs at a larger value approaching
≈0.898 which is the peelability threshold for this class of hypergraphs [28].

While this result follows by combining results of [28] and [21], it has not been
observed earlier and has an important practical consequence: using a variable
number of hash functions in Count-Min sketch allows one to increase the load
factor while keeping negligibly small error. In particular, for the same input, this
leads to space saving compared to the uniform case.

Note that parameters k = (3, 14; 0.885) are borrowed from [28] in order
to make sure that the phase transition corresponds to the peelability threshold
obtained in [28]. In practice, “simpler” parameters can be chosen, for example we
found that k = (2, 5; 0.5) produces essentially the same curve as k = (3, 14; 0.885)
(data not shown).

Supercritical Regime. When the load factor becomes large (supercritical
regime), the situation changes drastically. When the load factor just surpasses
the threshold, some edges are still evaluated with small or zero error, whereas for
the other edges, the error becomes large. This “intermediate regime” has been
illustrated in [21]. When the load factor goes even larger, the multi-level pattern
of edge values disappears and all edge values become concentrated around the

224 É. Fusy and G. Kucherov

Fig. 1. err for small λ = m/n, for uniform distribution and different types of hyper-
graphs: 2-uniform, 3-uniform and (3,14)-mixed with a fraction of 0.885 of 3-edges
(parameters borrowed from [28]). Data obtained for n = 1000. The input size in each
experiment is 5, 000 times the number of edges. Each average is taken over 10 random
hypergraphs.

same value. We call this phenomenon saturation. For example, for k = 3 satu-
ration occurs at around λ = 6 (data not shown). Under this regime, the hash
hypergraph is dense enough so that its specific topology is likely to be irrelevant
and the largest counter level “percolates” into all vertex counters. In other words,
all counters grow at the same rate, without any of them “lagging behind” because
of particular graph structural patterns (such as edges containing leaf vertices).

3.2 Step Distribution

In this section, we focus on the simplest non-uniform distribution – step dis-
tribution – in order to examine the behavior of Count-Min sketch in presence
of elements with different frequencies. Our model is as follows. We assume that
input elements are classified into two groups that we call hot and cold, where
a hot element has a larger appearance probability than a cold one. Note that
we assume that we have a prior knowledge on whether a given element belongs
to hot or cold ones. This setting is similar to the one studied for Bloom fil-
ters augmented with prior membership and query probabilities [4]. Note that
our definition of err assumes that the query probability of an element and its
appearance probability in the input are equal.

We assume that the load factors of hot and cold elements are λh and λc

respectively. That is, there are λhn hot and λcn cold edges in the hash hyper-
graph. G > 1, called gap factor, denotes the ratio between probabilities of a
hot and a cold element respectively. Let ph (resp. pc) denote the probability
for an input element to be hot (resp. cold). Then ph/pc = Gλh/λc, and since
ph + pc = 1, we have

ph =
Gλh

λc + Gλh
, pc =

λc

λc + Gλh
.

Count-Min Sketch with Variable Number of Hash Functions 225

For example, if there are 10 times more distinct cold elements than hot ones
(λh/λc = 0.1) but each hot element is 10 times more frequent than a cold one
(G = 10), than we have about the same fraction of hot and cold elements in the
input (ph = pc = 0.5).

In the rest of this section, we will be interested in the combined error of hot
elements alone, denoted errhot . If Eh ⊆ E is the subset of hot elements, and Nh

is the total number of occurrences of hot elements in the input, then errhot is
defined by

errhot =
1

Nh

∑

e∈Eh

occ(e) · err(e) = 1
Nh

∑

e∈Eh

(c(e) − occ(e)).

“Interaction” of Hot and Cold Elements. A partition of elements into
hot and cold induces the partition of the underlying hash hypergraph into two
subgraphs that we call hot and cold subgraphs respectively. Since hot elements
have larger counts, one might speculate that counters associated with hot edges
are larger than counts of cold elements and therefore are not incremented by
those. Then, errhot is entirely defined by the hot subgraph, considered under
the uniform distribution of elements. In particular, errhot as a function of λh

should behave the same way as err for the uniform distribution (see Sect. 3.1).
This conjecture, however, is not true in general. One reason is that there is

a positive probability that all nodes of a cold edge are incident to hot edges
as well. As a consequence, “hot counters” (i.e. those incident to hot edges) gain
an additional increment due to cold edges, and the latter contribute to the
overestimate of hot edge counts. Fig. 2a illustrates this point. It shows, for k = 3,
errhot as a function of λh in presence of cold elements with λc = 5, for the gap
value G = 20. For the purpose of comparison, the orange curve shows the error
for the uniform distribution (as in Fig. 1), that is the error that hot elements
would have if cold elements were not there. We clearly observe the contribution
of cold elements to the error, even in the load interval below the peelability
threshold.

Fig. 2. errhot for k = 3 depending on λh, in presence of cold elements with λc = 5
(blue curves) and without any cold elements (orange curve). (Color figure online)

226 É. Fusy and G. Kucherov

Figure 2b illustrates that when the gap becomes larger (here, G = 50), the
contribution of cold elements diminishes and the curve approaches the one of the
uniform distribution. A larger gap leads to larger values of hot elements and, as
a consequence, to a smaller relative impact of cold ones.

Another reason for which the above conjecture may not hold is the follow-
ing: even if the number of hot elements is very small but the gap factor is not
large enough, the cold edges may cause the counters to become large if λc is
large enough, in particular in the saturation regime described in Sect. 3. As a
consequence, the “background level” of counters created by cold edges may be
larger than true counts of hot edges, causing their overestimates. As an example,
consider again the configuration with k = 3 and λc = 5. The cold elements taken
alone would have an error of about 6 on average (≈6.25, to be precise, data not
shown) which means an about 7× overestimate. Since the graph is saturated in
this regime (see Sect. 3), this means that most of the counters will be about 7
times larger than counts of cold edges. Now, if a hot element is only 5 times
more frequent than a cold one, those will be about 1.4× overestimated, i.e. will
have an error of about 0.4, This situation is illustrated in Fig. 2c.

Mixed Hypergraphs. The analysis above shows that in presence of a “back-
ground” formed by large number of cold elements, the error of hot elements
starts growing for much smaller load factors than without cold elements, even if
the latter are much less frequent than the former. Inspired by results of Sect. 3,
one may ask if the interval of negligible error can be extended by employing
the idea of variable number of hash functions. Note that here this idea applies
more naturally by assigning a different number of hash functions to hot and cold
elements.

Fig. 3. errhot as a function of λh for k = 3, λc = 5 and G = 20 (same as in Fig. 2a)
vs. k = (2, 5) for hot and cold elements respectively

Figure 3 illustrates that this is indeed possible by assigning a smaller number
of hash functions to hot elements and a larger number to cold ones. It is clearly
seen that the interval supporting close-to-zero errors is extended. This happens

Count-Min Sketch with Variable Number of Hash Functions 227

because when the hot subgraph is not too dense, increasing the cardinality of
cold edges leads to a higher probability that at least one of the vertices of such
an edge is not incident to a hot edge. As a consequence, this element does not
affect the error of hot edges. For the same reason, decreasing the cardinality of
hot edges (here, from 3 to 2) improves the error, as this increases the fraction of
vertices non-incident to hot edges.

Saturation in Supercritical Regime. In Sect. 3 we discussed the saturation
regime occurring for large load values: when the load grows sufficiently large,
i.e. the hash hypergraph becomes sufficiently dense, all counters reach the same
level, erasing distinctions between edges. In this regime, assuming a fixed load
(graph density) and the uniform distribution of input, the edge value depends
only on input size and not on the graph structure (with high probability).

It is an interesting, natural and practically important question whether this
saturation phenomenon holds for non-uniform distributions as well, as it is
directly related to the capacity of distinguishing elements of different frequency.
A full and precise answer to this question is not within the scope of this work.
We believe that the answer is positive at least when the distribution is piecewise
uniform, when edges are partitioned into several classes and are equiprobable
within each class, provided that each class takes a linear fraction of all elements.
Here we illustrate this thesis with the step distribution.

Fig. 4. Convergence of average estimates of hot and cold elements for 2-uniform (4a), 3-
uniform (4b) and (2,5)-mixed (4c) hypergraphs. x-axis shows the total load λ = λh+λc

with λh = 0.1 · λ and λc = 0.9 · λ and G = 10 in all cases.

Figure 4 illustrates the saturation phenomenon by showing average values
of hot and cold edges (G = 10) with three different configurations: 2-uniform,
3-uniform, and (2,5)-mixed. Note that the x-axis shows here the total load λ =
λh + λc, where λh = 0.1 · λ and λc = 0.9 · λ. That is, the number of both hot
and cold edges grows linearly when the total number of edges grows.

One can observe that in all configurations, values of hot and cold edges
converge, which is a demonstration of the saturation phenomenon. Interestingly,
the “convergence speed” heavily depends on the configuration: the convergence
is “slower” for uniform configurations, whereas in the mixed configuration, it
occurs right after the small error regime for hot edges.

228 É. Fusy and G. Kucherov

3.3 Zipf’s Distribution

Power law distributions are omnipresent in practical applications. The simplest
of those is Zipf’s distribution which is often used as a test case for different algo-
rithms including Count-Min sketches [3,5,8,13,16]. Under Zipf’s distribution,
element probabilities in descending order are proportional to 1/iβ , where i is the
rank of the key and β ≥ 0 is the skewness parameter. Note that for β = 0, Zipf’s
distribution reduces to the uniform one.

Zipf’s distribution is an important test case for our study as well, as it forces
several (few) most frequent elements to have very large counts and a large num-
ber of elements (heavy tail) to have small counts whose values decrease only poly-
nomially on the element rank and are therefore of the same order of magnitude.
Bianchi et al. [5, Fig. 1] observed that for Zipf’s distribution in the supercriti-
cal regime, the estimates follow the “waterfall-type behavior”: the most frequent
elements have essentially exact estimates whereas the other elements have all
about the same estimate regardless of their frequency. Figure 5 illustrates this
phenomenon for different skewness values.

Fig. 5. Exact (blue) and estimated (orange) edge values for Zipf’s distribution as a
function on the element frequency rank, plotted in double log scale. All plots obtained
for n = 1000, λ = 5, k = 2, and the input size 50 · 106. Estimates are averaged over 10
hash function draws. (Color figure online)

The waterfall-type behavior for Zipf’s distribution is well explained by the
analysis we developed in the previous sections. The “waterfall pool level” of values
(called error floor in [5]) is the effect of saturation formed by heavy tail elements.
The few “exceptionally frequent” elements are too few to affect the saturation
level (their number is � n), they turn out to constitute “peaks” above the level
and are thus estimated without error. Naturally, smaller skewness values make
the distribution less steep and reduce the number of “exceptionally frequent”
elements. For example, according to Fig. 5, for λ = 5 and k = 2, about 50 most
frequent elements are evaluated without error for β = 0.7, about 40 for β = 0.5
and only 5 for β = 0.3.

Following our results from previous sections, we studied whether using a
variable number of hash functions can extend the range of frequent elements

Count-Min Sketch with Variable Number of Hash Functions 229

estimated with small error. We found that for moderate loads λ, this is possible
indeed. More specifically, using a variable number of hash functions can lead to
a sharper “break point” compared to the constant number of hash functions, see
Fig. 5. As a result, although the “waterfall pool level” may be higher, a larger
range of most frequent elements are evaluated with small error. This observation
matches the phenomenon illustrated earlier in Fig. 4. Due to space limitation,
we refer to the full version [20] for the data illustrating this point.

4 Conclusions

In this paper, we presented a series of experimental results providing new insights
into the behavior of conservative Count-Min sketch. Some of them have direct
applications to practical usage of this data structure. Main results can be sum-
marized as follows.

– For the uniform distribution of input elements, assigning a different num-
ber of hash functions to different elements extends the subcritical regime
(range of load factors λ) that supports asymptotically vanishing relative error.
This immediately implies space saving for Count-Min configurations verifying
this regime. For non-uniform distributions, variable number of hash functions
allows extending the regime of negligible error for most frequent elements,

– Under “sufficiently uniform distributions”, including uniform and step distri-
butions, a Count-Min sketch reaches a saturation regime when λ becomes
sufficiently large. In this regime, counters become concentrated around the
same value and elements with different frequency become indistinguishable,

– Frequent elements that can be estimated with small error can be seen as
those which surpass the saturation level formed by the majority of other
elements. For example, in case of Zipf’s distribution, those elements are a
few “exceptionally frequent elements”, whereas the saturation is insured by
the heavy-tail elements. Applying a variable number of hash functions can
increase the number of those elements for moderate loads λ.

Many of those results lack a precise mathematical analysis. Perhaps the
most relevant to practical usage of Count-Min is the question of saturation level
(“waterfall pool level”), as it provides a lower bound to the frequency of elements
that will be estimated with small error, which in turn is a fundamental informa-
tion for heavy-hitter type of applications. Bianchi et al. [5] observed that in the
case of non-uniform distribution of input elements, the “waterfall pool level” is
upper-bounded by the saturation level for the uniform distribution of input. This
latter is computed in [5] using a method based on Markov chains and differential
equations. We believe that this method can be extended to the case of mixed
graphs as well and leave it for future work. However, providing an analysis for
more complex distributions including Zipf’s distribution is an open problem.

230 É. Fusy and G. Kucherov

References

1. Behera, S., Gayen, S., Deogun, J.S., Vinodchandran, N.: KmerEstimate: a stream-
ing algorithm for estimating k-mer counts with optimal space usage. In: Proceed-
ings of the 2018 ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics, pp. 438–447 (2018)

2. Ben Mazziane, Y., Alouf, S., Neglia, G.: A formal analysis of the count-min sketch
with conservative updates. In: IEEE INFOCOM WNA 2022 - The second Work-
shop on Networking Algorithms (WNA), New York, USA (2022). https://doi.org/
10.1109/INFOCOMWKSHPS54753.2022.9798146

3. Ben Mazziane, Y., Alouf, S., Neglia, G.: Analyzing count min sketch with con-
servative updates. Comput. Netw. 217, 109315 (2022). https://www.sciencedirect.
com/science/article/pii/S1389128622003607

4. Bercea, I.O., Houen, J.B.T., Pagh, R.: Daisy Bloom filters. CoRR abs/2205.14894
(2022)

5. Bianchi, G., Duffy, K., Leith, D.J., Shneer, V.: Modeling conservative updates in
multi-hash approximate count sketches. In: 24th International Teletraffic Congress,
ITC 2012, Kraków, Poland, 4–7 September 2012, pp. 1–8. IEEE (2012). https://
ieeexplore.ieee.org/document/6331813/

6. Bruck, J., Gao, J., Jiang, A.: Weighted Bloom filter. In: Proceedings 2006 IEEE
International Symposium on Information Theory, ISIT 2006, The Westin Seattle,
Seattle, Washington, USA, 9–14 July 2006, pp. 2304–2308. IEEE (2006). https://
doi.org/10.1109/ISIT.2006.261978

7. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theor. Comput. Sci. 312(1), 3–15 (2004)

8. Chen, P., Wu, Y., Yang, T., Jiang, J., Liu, Z.: Precise error estimation for sketch-
based flow measurement. In: Proceedings of the 21st ACM Internet Measurement
Conference, IMC 2021, pp. 113–121. Association for Computing Machinery, New
York (2021). https://doi.org/10.1145/3487552.3487856

9. Cohen, S., Matias, Y.: Spectral Bloom filters. In: Halevy, A.Y., Ives, Z.G., Doan,
A. (eds.) Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, San Diego, California, USA, 9–12 June 2003, pp. 241–252.
ACM (2003). https://doi.org/10.1145/872757.872787

10. Cormode, G.: Count-min sketch. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems, 2nd edn., pp. 653–659. Springer, New York (2018). https://doi.
org/10.1007/978-1-4614-8265-9_87

11. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proc.
VLDB Endow. 1(2), 1530–1541 (2008)

12. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

13. Cormode, G., Muthukrishnan, S.: Summarizing and mining skewed data streams.
In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.) Proceedings of
the 2005 SIAM International Conference on Data Mining, SDM 2005, Newport
Beach, CA, USA, 21–23 April 2005, pp. 44–55. SIAM (2005). https://doi.org/10.
1137/1.9781611972757.5

14. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink,
M.: Tight thresholds for cuckoo hashing via XORSAT. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6198, pp. 213–225. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14165-2_19

https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798146
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798146
https://www.sciencedirect.com/science/article/pii/S1389128622003607
https://www.sciencedirect.com/science/article/pii/S1389128622003607
https://ieeexplore.ieee.org/document/6331813/
https://ieeexplore.ieee.org/document/6331813/
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1145/3487552.3487856
https://doi.org/10.1145/872757.872787
https://doi.org/10.1007/978-1-4614-8265-9_87
https://doi.org/10.1007/978-1-4614-8265-9_87
https://doi.org/10.1137/1.9781611972757.5
https://doi.org/10.1137/1.9781611972757.5
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1007/978-3-642-14165-2_19

Count-Min Sketch with Variable Number of Hash Functions 231

15. Dietzfelbinger, M., Walzer, S.: Dense peelable random uniform hypergraphs. In:
Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Sympo-
sium on Algorithms, ESA 2019, Munich/Garching, Germany, 9–11 September 2019.
LIPIcs, vol. 144, pp. 38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.ESA.2019.38

16. Einziger, G., Friedman, R.: A formal analysis of conservative update based approx-
imate counting. In: International Conference on Computing, Networking and Com-
munications, ICNC 2015, Garden Grove, CA, USA, 16–19 February 2015, pp.
255–259. IEEE Computer Society (2015). https://doi.org/10.1109/ICCNC.2015.
7069350

17. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In:
Mathis, M., Steenkiste, P., Balakrishnan, H., Paxson, V. (eds.) Proceedings of the
ACM SIGCOMM 2002 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, Pittsburgh, PA, USA, 19–23 August
2002, pp. 323–336. ACM (2002). https://doi.org/10.1145/633025.633056

18. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than Bloom. In: Proceedings of the 10th ACM International on Con-
ference on Emerging Networking Experiments and Technologies, CoNEXT 2014,
pp. 75–88. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2674005.2674994

19. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: a scalable wide-area web
cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000). https://
doi.org/10.1109/90.851975

20. Fusy, É., Kucherov, G.: Count-min sketch with variable number of hash functions:
an experimental study. CoRR abs/2302.05245 (2023). https://doi.org/10.48550/
arXiv.2302.05245, to appear in SPIRE’23

21. Fusy, É., Kucherov, G.: Phase transition in count approximation by count-min
sketch with conservative updates. In: Mavronicolas, M. (ed.) CIAC 2023. LNCS,
vol. 13898, pp. 232–246. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-30448-4_17. Full version in arxiv:2203.15496

22. Goodrich, M.T., Mitzenmacher, M.: Invertible Bloom lookup tables. In: 2011 49th
Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 792–799. IEEE (2011)

23. Liu, H., Lin, Y., Han, J.: Methods for mining frequent items in data streams: an
overview. Knowl. Inf. Syst. 26(1), 1–30 (2011)

24. Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A family of perfect hashing
methods. Comput. J. 39(6), 547–554 (1996)

25. Mohamadi, H., Khan, H., Birol, I.: ntCard: a streaming algorithm for cardinality
estimation in genomics data. Bioinformatics 33(9), 1324–1330 (2017)

26. Molloy, M.: Cores in random hypergraphs and Boolean formulas. Random Struct.
Algorithms 27(1), 124–135 (2005)

27. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
28. Rink, M.: Mixed hypergraphs for linear-time construction of denser hashing-based

data structures. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J.,
Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 356–368. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35843-2_31

29. Shibuya, Y., Kucherov, G.: Set-min sketch: a probabilistic map for power-law dis-
tributions with application to k-mer annotation. bioRxiv, p. 2020.11.14.382713
(2020). https://doi.org/10.1101/2020.11.14.382713

https://doi.org/10.4230/LIPIcs.ESA.2019.38
https://doi.org/10.1109/ICCNC.2015.7069350
https://doi.org/10.1109/ICCNC.2015.7069350
https://doi.org/10.1145/633025.633056
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/90.851975
https://doi.org/10.48550/arXiv.2302.05245
https://doi.org/10.48550/arXiv.2302.05245
https://doi.org/10.1007/978-3-031-30448-4_17
https://doi.org/10.1007/978-3-031-30448-4_17
http://arxiv.org/abs/2203.15496
https://doi.org/10.1007/978-3-642-35843-2_31
https://doi.org/10.1101/2020.11.14.382713

232 É. Fusy and G. Kucherov

30. Walzer, S.: Random hypergraphs for hashing-based data structures. Ph.D. thesis,
Technische Universität Ilmenau, Germany (2020). https://www.db-thueringen.de/
receive/dbt_mods_00047127

31. Wang, X., Ji, Y., Dang, Z., Zheng, X., Zhao, B.: Improved weighted bloom filter and
space lower bound analysis of algorithms for approximated membership querying.
In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS,
vol. 9050, pp. 346–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18123-3_21

https://www.db-thueringen.de/receive/dbt_mods_00047127
https://www.db-thueringen.de/receive/dbt_mods_00047127
https://doi.org/10.1007/978-3-319-18123-3_21
https://doi.org/10.1007/978-3-319-18123-3_21

Dynamic Compact Planar Embeddings

Travis Gagie , Meng He , and Michael St Denis(B)

Dalhousie University, Halifax, NS B3H 4R2, Canada
{travis.gagie,michael.stdenis}@dal.ca, mhe@cs.dal.ca

Abstract. This paper presents a way to compactly represent dynamic
connected planar embeddings, which may contain self loops and multi-
edges, in 4m + o(m) bits, to support basic navigation in O(lg n) time
and edge and vertex insertion and deletion in O(lg1+ε n) time, where
n and m are respectively the number of vertices and edges currently
in the graph and ε is an arbitrary positive constant. Previous works
on dynamic succinct planar graphs either consider decremental settings
only or are restricted to triangulations where the outer face must be
a simple polygon and all inner faces must be triangles. To the best of
our knowledge, this paper presents the first representation of dynamic
compact connected planar embeddings that supports a full set of dynamic
operations without restrictions on the sizes or shapes of the faces.

Keywords: Planar embedding · Dynamic planar embedding ·
Dynamic compact data structures

1 Introduction

A particular type of graphs, planar graphs, may be used to model the famous
initial graph problem known as the seven bridges of Königsberg [21]. Aside from
this application, planar graphs are also applicable to some maps in general,
VLSI circuits [11], chemical molecules [1], and spatial partitions in geographical
information systems (GIS) [11].

A more contemporary problem concerns the dramatic growth of problem
sizes with respect to the growth in computer memory [7,16]. Although com-
puter memories are growing, and our ability to store data in secondary or even
tertiary storage is still sufficient, being able to process this data in main mem-
ory is becoming more cumbersome. Secondary to this concern is the size of the
data structure built on the data which is used to perform queries and updates.
These data structures often occupy much more space than the data itself. Hence,
Jacobson proposed to study succinct data structures [12].

This paper exists at the intersection of graph theory and compact data struc-
tures, examining a way to represent a connected planar graph embedding using
compact data structures. Much research has been conducted on static planar

This work was supported by NSERC of Canada.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 233–245, 2023.
https://doi.org/10.1007/978-3-031-43980-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_18&domain=pdf
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0000-0003-0358-7102
http://orcid.org/0009-0002-7163-576X
https://doi.org/10.1007/978-3-031-43980-3_18

234 T. Gagie et al.

graphs where O(n) bits are used to support common navigational operations
such as adjacency testing and listing a vertex’s neighbors [3–5,7,12,14,19].

Static data structures offer easy access to the objects they store. However,
objects either cannot be added or deleted from the structure or doing so would
require rebuilding the entire structure itself. None of the prior works cited sup-
port the insertion or deletion of an edge or a vertex. Prior work on dynamic
succinct planar graphs is restricted to triangulations where the outer face must
be a simple polygon and all inner faces must be triangles [2] or consider the
decremental setting under which the graph is updated by edge contractions and
vertex deletions only [13]. This paper presents a way to dynamize a compact
representation of a connected planar embedding.

The operations we aim to support include the following:

– Given a vertex v, or an edge (v, u), list the edges incident to v in clockwise
or counterclockwise order, starting from (v, u) when given.

– Given an edge (v, u) and a face F that (v, u) is incident to, list the edges
incident to F in clockwise or counterclockwise order starting from (v, u).

– Given two corners of a face, insert an edge between their apexes, bisecting
these corners. Here, a corner is defined as the space between consecutive
edges incident to a vertex [10], and this vertex is the apex of the corner.

– Delete a given edge from G so long as G remains connected.
– Given a corner with apex v, insert a degree-1 vertex u in the corner as a new

neighbor of v.
– Given a degree-1 vertex v, delete v and the edge e it is incident to from G.

These operations allow for the transformation from one connected planar
embedding to another connected planar embedding.

1.1 Our Contribution

Our contribution is summarized by the following theorem:

Theorem 1. Given a connected planar embedding G, possibly containing multi-
edges and self loops, on n vertices and m edges, there is a compact representation
of G occupying 4m + o(m) bits that can list the edges incident to a given vertex
in clockwise or counterclockwise order in O(lg n) time per edge, list the edges
incident to a face in O(lg n) time per edge, and support insertion or deletion of
an edge or a vertex in O(lg1+ε n) time for any constant ε > 0.

To the best of our knowledge, this paper presents the first dynamic compact
connected planar embedding that supports fast insertion and deletion of an
edge or a vertex and has no restrictions on the sizes or shapes of the faces.
Additionally, we present the marker model to support navigational operations
within a given connected planar embedding. This model is similar to the finger-
update model [6] where a finger, or marker, is maintained on a given vertex and
updates to the structure are limited to the position of the finger, or marker.
The difference between the marker model and the finger-update model is that
a marker has an indicator that points to a specific corner in the given planar
embedding.

Dynamic Compact Planar Embeddings 235

2 Related Work

We survey previous results on succinct representations of planar embeddings
[3,4,7,14,19,20]. Succinct planar graph representations that cannot encode an
arbitrary embedding are not included; see [4] for a survey including those results.
Tutte [20] enumerated rooted planar maps and his results implied that m lg 12 =
3.58m bits are required to encode an m-edge planar embedding. Turán [19]
derived a simple succinct encoding of planar graphs that uses 4m bits. Keeler and
Westbrook [14] then showed an encoding of planar maps that achieves Tutte’s
lower space bound, but no operations are supported. Additionally, their encoding
and decoding algorithms run in linear time. Later, researchers designed succinct
data structures for planar embeddings, and the operations supported by these
structures include listing the neighbors of a given vertex in counterclockwise
or clockwise order. Barbay et al. [3] showed how to represent a simple planar
embedding in 18n+o(m) bits to support degree and adjacency queries in constant
time and the listing of neighbors in constant time per neighbor. Blelloch and
Farzan [4] developed a data structure that occupies 3.58m+o(m) bits and provide
the same support for queries. Ferres et al. [7] modified Turán’s [19] structure to
occupy o(m) additional bits and showed the following: the edges incident to
vertex v can be listed in clockwise or counterclockwise order in constant time
per edge, the edges limiting a face can be traversed in constant time per edge,
a vertex’s degree can be found in O(f(m)) time for any function f(m) ∈ ω(1)
and testing if two given vertices are neighbors in O(f(m)) time for any function
f(m) ∈ ω(lg m). This data structure is simpler than previous solutions and can
be constructed in parallel efficiently. Fuentes-Sepúlveda et al. [8] further showed
that by using half-edges and condensing Ferres et al.’s [7] data structures, a full
set of topological queries can be supported efficiently.

All the above-mentioned works concern succinct representations of planar
graphs in the static case. With respect to the dynamic case, Aleardi et al. [2]
designed a succinct representation of an n-vertex triangulated graph with fixed
genus g and a simple polygon boundary that supports standard navigation in
O(1) time, vertex addition in O(1) amortized time without supporting access
to satellite data associated with each vertex, O(lg n) amortized time with data
access, and vertex deletion or edge flip1 in O(lg2 n) amortized time. This data
structure occupies 2.17m + o(m) bits and uses an additional O(g lg m) bits for
representing triangulations on genus g surfaces. Kammer and Meintrup [13] pro-
vided a dynamic data structure, a modification of Blelloch and Farzan’s [4], that
encodes a planar graph in H(n) + o(n) bits to support an arbitrary sequence of
edge contractions and vertex deletions in O(n) time, where H(n) is the entropy
of encoding an n-vertex planar graph. It can compute the degree of a vertex
in O(1) time and list the neighbors in O(1) time per neighbor. Edge or vertex
insertions are not supported, so their solution is for the decremental setting only.

1 Edge flipping refers to removing the edge e and replacing it with the other diagonal
of Q, where Q is the union of two triangles which create a quadrilateral.

236 T. Gagie et al.

3 Preliminaries

3.1 Notation

We assume the word-RAM model of computation. For the remainder of this
paper, let G be a given connected planar embedding on n vertices, m edges and
f faces that may contain multi-edges and self loops. All logarithms are written
as lg and are base 2, unless otherwise specified.

3.2 Dynamic Bitvectors

A dynamic bitvector B[1..n], supporting the following operations, is a key
compact data structure (b ∈ {0, 1} in the following definitions):

– access(B, i): return the bit in B[i] for any i such that 1 ≤ i ≤ n.
– rankb(B, i): return the number of occurrences of b in B[1..i] where 1 ≤ i ≤ n.
– selectb(B, j): return the index of the jth occurrence of b in B.
– insert(B, i, b): inserts bit b between B[i − 1] and B[i] where 1 ≤ i ≤ n.
– delete(B, i): deletes the bit in position B[i] where 1 ≤ i ≤ n.
– link(B, p,B′): attaches all the bits in B′ between bits B[p] and B[p + 1]

where 1 ≤ p ≤ n and |B′| is another bit vector with O(n) bits.
– cut(B, i, j): returns bitvector B′ which contains all the detached bits in B

from B[i] up to and including B[j] where 1 ≤ i < j ≤ n. B is then the
concatenation of the bit ranges [1..(i − 1)] and [(j + 1)..n].

Navarro and Sadakane [17] present the following:

Lemma 1 ([17]). There exists a succinct dynamic bitvector structure that sup-
ports access, rank, select, insert and delete in O(lg n

lg lg n) time and link and
cut in O(lg1+ε n) time, where n is the number of bits currently in the bitvector
and ε is an arbitrary positive constant.

3.3 Planar Graph Traversal

The traversal of a planar embedding G developed by Turán [19], which is used
by Ferres et al. [7] to generate a binary sequence A, is now described. From
here forward, we will refer to this traversal as a Turán traversal. An arbitrary
spanning tree T , which is rooted at some vertex v0 on the outer face of G, is com-
puted before the traversal. We note that a Turán traversal can be performed in
counterclockwise or clockwise order. Without the loss of generality, we use coun-
terclockwise order and design our data structures with respect to this ordering.
We call an edge in G that is also in T a primal edge and an edge in G not in
T a dual edge. In this Turán traversal, after we visit a vertex v and traverse
or examine an edge, (v, u), incident to it, we view (v, u) as a directed edge by
orienting it from v to u, even though the graph G is undirected.

The traversal of G begins from the vertex selected as the root v0 of T and
examines one of its incident edges (v0, u) such that (v0, u) is on the boundary

Dynamic Compact Planar Embeddings 237

Fig. 1. Planar embedding G where the red solid edges correspond to edges in T , the
black dashed edges correspond to edges in G \ T , and blue dotted edges correspond
to edges in T ∗, the dual of G complementary to T . Each vertex of G is labeled by its
preorder rank in T , while each face is labeled alphabetically in the order they are first
visited in the Euler tour of T ∗. The violet arrow on the vertex labeled 1 and directed at
the face labeled E depicts a marker (to be discussed in Sect. 4.2). Bitvector A contains
a Turán traversal beginning with edge (1, 5) and proceeding counterclockwise. The
violet boldfaced 1 bit indicates the marker as represented by the violet arrow on vertex
1 which is marker 16. (Color figure online)

of the outer face and the outer face is to its right. The traversal is a modified
depth first search (DFS) where we visit vertices in counterclockwise order. In
a standard DFS, we examine an edge (v, u) and do not traverse from v to u if
u has already been visited, unless we are returning to a parent. In the Turán
traversal, we examine an edge (v, u), and if (v, u) is a primal edge, we traverse
from v to u and record a 1 in a bitvector A. Afterwards, we examine the next
edge incident to u after (u, v) in counterclockwise order. Otherwise, (v, u) is a
dual edge, and we do not traverse it. Instead, we remain on v, record a 0 in A
and examine the next edge in counterclockwise order. This process is repeated
recursively until we have visited all vertices and returned to the root v0 of T . All
edges in G have been traversed or examined twice and A[i] indicates whether
the ith edge examined in the Turán traversal is a primal or dual edge.

Observe that a Turán traversal of G performs an Euler tour traversal of T
and an Euler tour traversal of the spanning tree of the dual of G with respect
to T , which we refer to as T ∗. More specifically, to define T ∗, consider some
dual edge (v, u) in G not yet examined. Let fr (fl) be the face on the right
(left) side of (v, u). Examining (v, u) advances the Euler tour of T ∗ from fr to
fl, establishing fr as the parent of fl in T ∗, and we refer to edge (u, v) as the
entry edge of fl. Thus, T ∗ encodes a spanning tree on the faces of G and each
edge in G not in T is crossed by an edge in T ∗. In this way, every connected

238 T. Gagie et al.

planar embedding can be represented as interdigitating spanning trees of the
primal and the dual [18]. As the Turán traversal in this paper is performed in
counterclockwise order, the traversal of T ∗ is performed clockwise from its root,
i.e., the outer face. Figure 1 gives an example.

3.4 Dynamic Succinct Euler-Tour Trees

Gagie and Wild [9] describe how to succinctly represent a set of Euler-Tour trees
of an n-vertex forest in 2n+o(n) bits. An Euler-Tour tree contains directed edges
(u, v) and (v, u) for every undirected edge in the given forest and preserves an
encoding of the order in which edges are visited in an Euler tour. Each tree in
the forest is unrooted, and its Euler tour determines the current parent-child
relationship among its nodes; this relationship may change during updates. We
use {a, b} to refer to the corner of Euler-Tour tree T between the two edges
traversed at the ath and bth steps of the Euler tour of T . In [9], the merge and
split operations are implied, but we state them explicitly as operations 10 and
11. Throughout this paper, we refer to operations 3, 4 and 5 in the lemma below
as vertex, entry and inverse, respectively. Note that Gagie and Wild did not
state the support for entry, but their existing data structures can support it
easily. The following lemma summerizes their results:

Lemma 2 ([9]). Given a planar embedding of a forest F on n vertices, F can
be encoded in a data structure occupying 2n + o(n) bits such that operations 1
through 5 below take constant time, operations 6 and 7 take O(lg n) time, and
operations 8 through 11 take O(lg1+ε n) time for any constant ε > 0.

1. return the predecessor and successor in the Euler tour of the tree containing
the given directed edge e.

2. return the predecessor and successor in the counterclockwise order of the
edges incident to u when given directed edge (u, v).

3. return vertex v such that v is the vertex arrived at after traversing the given
directed edge e in the Euler tour of T .

4. return the directed edge e encountered in the Euler tour traversal of T such
that, after traversing e, the Euler tour arrived at the given vertex v the first
time, i.e., e links the parent of v in the Euler tour traversal to v;

5. return the edge e′ such that, given a tree T and an edge e encountered in
the Euler tour of T , edge e′ corresponds to the inverse edge of e.

6. return the edge e′ such that the distance from the given directed edge e to e′

is the given distance t in the Euler tour of the tree containing e.
7. return the Euler tour distance between the given edges e and e′ so long as

the two edges are in the same tree.
8. delete the given edge e from the tree containing it and return the represen-

tations of the two resulting trees.
9. insert an edge between T and T ′ at the given corners, bisecting those corners,

and return the representation of the resulting tree.
10. merge the adjacent vertices u and v to become one vertex and retain all other

edges adjacent to u and v.

Dynamic Compact Planar Embeddings 239

11. split v into two adjacent vertices, v1 and v2, where v1 is a parent of v2.
Two incident boundary edges ei and ej are also given as parameters so that
edges incident to v starting from ei to ej in counterclockwise order are to be
incident to v1, while the remaining edges are to be incident to v2.

Operation 9 supports the insertion of an edge between two arbitrary ver-
tices in two trees. This operation cannot be supported by the dynamic succinct
tree representation of Navarro and Sadakane [17] which is based on a balanced
parenthesis representation, but it is needed in our dynamic planar graph repre-
sentation. We also comment that, to support operations 1–5 in constant time,
each edge is identified by a unique internal identifier. Operations 6 and 7 can
perform mapping between this identifier and the rank of the edge in the Euler
tour in O(lg n) time. Thus, when the context is clear, we may also pass or return
the rank of an edge in the Euler tour when calling vertex, entry or inverse,
and the increase in running time does not affect the complexity of our solution.

4 Data Structure and the Marker Model

4.1 Data Structure

Our representation of connected planar embedding G on n vertices, m edges,
and f faces, contains the following components:

– A dynamic bitvector, A, which encodes a Turán traversal of G described in
Sect. 3.3. It is represented by Lemma 1 in 2m + o(m) bits.

– A spanning tree, T , of G as defined in Sect. 3.3. It is represented by Lemma 2
in 2n + o(n) bits.

– A spanning tree, T ∗, of the dual of G as defined in Sect. 3.3. It is represented
by Lemma 2, in 2f + o(f) bits.

Observe that T and T ∗ represent succinct Euler-Tour trees on the vertices
and faces of G, respectively. By Euler’s formula [15], the total space cost of our
data structure is 2m + o(m) + 2n + o(n) + 2(m − n + 2) = 4m + o(m) bits.

4.2 The Marker Model

The marker model provides a way to map an index in A to specific vertices
in T and T ∗. A marker, or a marker’s value, is denoted by an index i in A,
where 1 ≤ i ≤ 2m. Recall that a Turán traversal of G induces an Euler tour
traversal on T and T ∗. Thus, we say that a marker stands on the vertex most
recently visited in the Euler tour of T and points to the face most recently
visited in the Euler tour of T ∗. The number of 1’s (0’s) in A corresponds to the
primal (dual) Euler-Tour tree edges just traversed in an Euler tour of T (T ∗).
Therefore, a marker with value i stands on the vertex of G that corresponds to
node vertex(T, rank1(A, i)) in T , and the face it points to corresponds to node
vertex(T ∗, rank0(A, i)) in T ∗. Figure 1 shows marker 16 as an example.

The following lemma shows how the face that a marker i points to relates to
the edge A[i] represents. Its proof is omitted due to space constraints.

240 T. Gagie et al.

Lemma 3. Let (v, u) be the directed edge represented by A[i]. If (v, u) is a primal
edge, then the marker i is standing on u and pointing to the face on the right side
of (v, u). If (v, u) is a dual edge, then the marker is standing on v and pointing
to the face on the left side of (v, u).

Because we do not require G to be bi-connected, a vertex can be incident to
multiple corners of the same face. This means multiple markers can stand on the
same vertex and point to the same face, but each marker points to a different
corner of the face. Therefore, we define the orientation of a marker as the vertex
it stands on and the corner it points to. More formally, let marker i refer to
directed edge (v, u). By Lemma 3, if (v, u) is primal, then marker i stands on u
and points to the corner that has u as its apex and is on the right of directed
edge (v, u). If (v, u) is a dual edge, then marker i stands on v and points to the
corner that has v as its apex and is to the left of directed edge (v, u).

If more than one marker is maintained at a given time, then, after an update,
all markers must be updated to preserve orientation. The index a marker refers
to can be updated in O(1) time via a constant number of comparisons and
arithmetic operations due to the way we support updates. Thus, the time to
update all markers is linear in the number of markers maintained.

4.3 Navigation

Now we define two rotation operations and a traverse operation. Either rotate
operation changes the corner the marker is pointing to and the traverse operation
changes the vertex the marker is standing on. These operations are necessary to
move the marker to support queries and updates on our representation of G. For
the operations described below, let v be the vertex marker i currently stands on
and corner C of face F be the corner marker i currently points to; they will also
be referred to when we discuss how to support these operations later.

– rotate ccw(i): Compute a new orientation of the marker such that the marker
is still standing on v but is pointing to the corner next to C when listing all
the corners incident to v in counterclockwise order.

– rotate cw(i): Compute a new orientation of the marker such that the marker
is still standing on v but is pointing to the corner next to C when listing all
the corners incident to v in clockwise order.

– traverse(i): Let the edge (v, w) be the (i+1)st edge examined in the Turán
traversal. Compute a new orientation of the marker such that the marker is
now standing on w but still pointing to F .

To support rotate ccw(i), first consider the ith edge examined in a Turán
traversal. One of its endpoints is v, let u be the other endpoint, and let (v, w) be
the next edge after (v, u) in counterclockwise order. If the ith edge is a primal
edge, then, by Lemma 3, it is oriented from u to v. Furthermore, corner C is to
the right of (u, v) and is thus to the left of (v, u). If this edge is a dual edge,
then by Lemma 3, it is oriented from v to u, and corner C is again to the left of

Dynamic Compact Planar Embeddings 241

(v, u). In either case, since (v, w) is the edge next to (v, u) in counterclockwise
order, C is to the right of (v, w). Therefore, our goal is to compute a marker still
standing on v but pointing to the corner, C ′, to the left of (v, w); C ′ is next to
C when listing all the corners incident to v in counterclockwise order.

There are now two cases, depending on whether the (i + 1)st edge, (v, w),
enumerated in a Turán traversal, is a dual or primal edge, i.e. whether A[i+1] is
0 or 1. If A[i+1] = 0, then by Lemma 3 and the definition of marker orientation,
marker i+1 continues to stand on v but points to C ′. Therefore, we return i+1
as the answer. Otherwise, A[i + 1] = 1 and the answer is computed as the index
in A when the Turán traversal returns to v from edge (w, v). This is computed by
j =select1(A,inverse(T,rank1(A, i + 1))). This follows from Lemma 3; since
(w, v) is a primal edge, the marker j is standing on v and pointing to the corner
to the right of (w, v). As the right side of (w, v) is the left side of (v, w), the
marker computed is also pointing to C ′ in this case.

The details of how to support rotate cw and traverse operations are omit-
ted due to space constraints. In the worst case, at most two dynamic bitvector
operations and one succinct Euler-Tour tree operation are performed to support
each navigational operation. Combining this with Lemmas 1 and 2, we have

Lemma 4. The structures in this section can support rotate ccw, rotate cw,
and traverse in O(lg n) time.

These rotation and traverse operations imply the support for listing the edges
incident to a vertex or a face of G. For example, to list the edges incident to a
vertex v in counterclockwise order, we start from a marker standing on v and
call rotate ccw repeatedly. Details are omitted due to space limitations. Thus,
we have proved the support of navigational operations stated in Theorem 1.

5 Dynamization

We now prove the support of updates stated in Theorem 1. As the support for
edge insertions and deletions (especially edge deletions) is more interesting, we
discuss them here. Descriptions of how to insert or delete vertices are omitted
due to space limitations.

5.1 Inserting an Edge

To minimize the changes to the Turán traversal, a new edge is always inserted
as a dual edge. To insert an edge, we need two markers, i and j, pointing to two
corners of the same face F . Let v be the vertex marker i stands on and let u be
the vertex marker j stands on. These vertices, v and u, are the endpoints of the
edge to be inserted. We assume, without the loss of generality, that i < j.

The rank0 query on A, with parameters i and j, computes the Euler tour
edges in T ∗ just processed at the ith and jth step in the Turán traversal. We
denote these Euler tour edges as i′ and j′. Recall that v is one endpoint of the
ith edge examined in a Turán traversal of G, and let w be the other endpoint.

242 T. Gagie et al.

By Lemma 3, and similar to the reasoning from Sect. 4.3, no matter if this
edge is a dual edge or a primal edge, the corner, C, that marker i points to
is to the left of (v, w). If we rotate counterclockwise from (v, w), with v as the
pivot, C is the first corner encountered and is encountered before any other
edge incident to v. Therefore, when inserting an edge bisecting C, the new edge,
(v, u), is the next edge examined in a Turán traversal. This means that (v, u)
will be inserted as the dual edge examined in the (i + 1)st step of the Turán
traversal. Thus, we perform insert(A, i + 1, 0). Due to the insertion of a new
bit, we also increment j, so that marker j corresponds to the same edge after
insertion. Then, by similar reasoning, we additionally perform insert(A, j+1, 0)
to indicate that (u, v) is the dual edge examined in the (j +1)st step. To update
T ∗, we observe that drawing an edge across F splits the face. Therefore, we
perform split(vertex(T ∗, i′), i′, j′). As inserting a dual edge only affects the
faces and not the vertices, T is unaffected. Lastly, we increment m by 1. An
example depicting this is omitted due to space constraints. Thus, we have the
following lemma:

Lemma 5. Given two corners of the same face, an edge connecting their apexes
and bisecting these corners can be inserted into G in O(lg1+ε n) time.

5.2 Deleting an Edge

We perform an edge deletion only if, after removing the edge, G remains con-
nected. Deleting dual edges does not disconnect G, as the primal edges form the
spanning tree T , connecting all vertices of G. However, G could become discon-
nected when deleting primal edges. Therefore, we allow primal edge deletions
only if the deletion of that primal edge does not disconnect G. As the steps for
dual edge deletion are symmetric to those for edge insertion, their descriptions
are omitted while focusing on primal edge deletion in this section.

To discuss primal edge deletion, let edge (v, u) correspond to the edge enu-
merated at the ith step in a Turán traversal of G and be the primal edge we
wish to delete. When deleting a primal edge from our representation of G, there
are four items to consider. The first item to consider is how to determine if G
would be disconnected after deleting (v, u). Second, if G remains connected after
deleting (v, u), how do we choose a dual edge to promote to primal? The third
item is, how are T and T ∗ affected by primal edge deletion? Lastly, recall from
Sect. 3.3 that a Turán traversal follows primal edges, and thus, primal edge dele-
tion changes the Turán traversal of G. We must then determine how we update
A to reflect a valid Turán traversal after deleting (v, u).

To determine if G would be disconnected after deleting (v, u), we inspect the
faces on either side of (v, u). If the faces are the same, then (v, u) cannot be
deleted as it is the only edge linking two connected components of G \ {(v, u)}.
If the faces are different, then (v, u) can be deleted while G remains connected.

Assuming the faces adjacent to (v, u) are different, we now discuss how to
select a dual edge to promote to primal. Recall that the ith step in a Turán traver-
sal corresponds to traversing (v, u) and let the jth step be the step traversing the

Dynamic Compact Planar Embeddings 243

same edge in the reverse direction, i.e. from u to v. We assume, without the loss
of generality, that i < j. Observe that deleting a primal edge in G corresponds
to deleting an edge in T and therefore disconnecting T into two trees. Our goal
is to select a dual edge to promote to primal that reconnects these two trees.
The following lemma will be useful when we select such an edge; when proving
it, we define the interval of A corresponding to an edge of G (henceforth the
interval of this edge for short) to be [a, b] if this edge is examined in steps a and
b of the Turán traversal with a < b, e.g., the interval of (v, u) is [i, j].

Lemma 6. Between the two faces incident to (v, u), at least one of them has
the property that the interval of its entry edge does not enclose [i, j].

Proof. Let F1 and F2 be the two faces incident to (v, u). Let g1 and g2 be the
indices in A corresponding to the entry edges of F1 and F2, respectively, and let
k1 and k2 be the indices of the reverse of the edges corresponding to A[g1] and
A[g2], respectively. We assume, without the loss of generality, that g1 < g2.

Assume to the contrary that both [g1, k1] and [g2, k2] enclose [i, j]. Then
[g1, k1] and [g2, k2] must intersect. Furthermore, the endpoints of the interval of
the entry edge of a face correspond to the first and the last time we visit the
node of T ∗ representing this face in an Euler tour traversal of T ∗. Therefore, if
the entry edge intervals of two faces intersect, one must enclose the other. Since
g1 < g2, we have [g2, k2] ⊂ [g1, k1], and the node, f2, of T ∗ representing F2 is
a descendant of the node, f1, of T ∗ representing F1. This means that between
steps g2 and k2 of the Turán traversal, the induced Euler tour of T ∗ only visits
nodes that are descendants of f2 in T ∗, including f2 itself. Since f1 is the parent
of f2, no marker between g2 and k2 can point to face F1. However, either marker
i or marker j points to F1, and [i, j] ⊂ [g2, k2], which is a contradiction. ��

Let F be a face incident to (v, u) such that the interval, [g, k], of its entry
edge, (w, x), does not enclose [i, j]; if both faces incident to (v, u) satisfy this
condition, we choose F arbitrarily between them. Then marker g stands on w
while marker k stands on x. We promote dual edge (w, x) to primal because:

Lemma 7. (T \ {(v, u)}) ∪ {(w, x)} is a spanning tree of G.

Proof. All the markers that point to F are in [g, k]. Since either marker i or
marker j points to F , i or j must be strictly between g and k. Therefore, [i, j]
and [g, k] must intersect, and [g, k] �⊆ [i, j]. As F is the face whose entry edge
interval, [g, k], does not enclose [i, j], we observe the following two cases:

1 ≤ g < i < k < j ≤ 2m (1)

1 ≤ i < g < j < k ≤ 2m (2)

To prove our lemma in either case, observe that the removal of edge (v, u)
disconnects T into two connected components. One of these two components
is Tu, the subtree rooted at vertex u. By the definition of a Turán traversal, a
marker stands on a vertex in Tu if and only if this marker is in [i, j − 1]. The

244 T. Gagie et al.

inequalities for these two cases then guarantee that the vertex that g stands on
(which is vertex w) and the vertex that k stands on (which is vertex x) are in
different components of T \ {(u, v)}, and the lemma follows. ��

We are now ready to describe our algorithm for primal edge deletion. To
delete the primal edge (v, u) enumerated at the ith step of a Turán traversal of
G, we first compute the step j where the Turán traversal traverses (v, u) in the
reverse direction, i.e., from u to v. By Lemma 3, marker i points to the face on one
side of (v, u) and marker j points to the face on the other side of (v, u). Hence,
we perform v1 = vertex(T ∗, rank0(A, i)) and v2 = vertex(T ∗, rank0(A, j))
to compute the nodes of T ∗ that respectively represent the faces adjacent to
(v, u). If these faces are the same, then deleting (v, u) would disconnect G, so we
do not remove (v, u) and immediately return. Otherwise, the intervals of these
faces are [select0(A, entry(T ∗, v1)), select0(A, inverse(T ∗, entry(T ∗, v1)))]
and [select0(A, entry(T ∗, v2)), select0(A, inverse(T ∗, entry(T ∗, v2)))]. We
compare these intervals to [i, j] to determine which of these two faces should be
chosen to be F so that F is a face incident to (v, u) whose entry edge’s interval,
[g, k], does not enclose [i, j]. Let F ′ be the other face incident to (v, u).

Next we update T and T ∗ to reflect the deletion of (v, u) and the promo-
tion of (w, x). Deleting a primal edge from G corresponds to deleting an edge
from T , thereby disconnecting T . By Lemma 7, after deleting (v, u) and pro-
moting (w, x), T remains a spanning a tree of G. Let Tv be the tree containing
v and Tu be the tree containing u, after the deletion of (v, u). By promoting
(w, x), we are connecting Tv and Tu at corners {rank1(A, g), rank1(A, g) + 1}
and {rank1(A, k), rank1(A, k) + 1}. As for T ∗, promoting (w, x) to primal cor-
responds to deleting the edge connecting the faces on either side of (w, x), so
we delete the Euler tour edge in T ∗ corresponding to rank0(A, g). This creates
two subtrees in T ∗, T ∗

F and T ∗
F ′ , where one subtree contains F and the other

contains F ′. Deleting (v, u) corresponds to merging faces F and F ′ and thereby
reconnecting T ∗. To merge these faces in T ∗ we first add an edge to connect the
two subtrees, T ∗

F and T ∗
F ′ , at the corners {rank0(A, i), rank0(A, i) + 1} and

{rank0(A, j), rank0(A, j) + 1} and temporarily store a reference to this newly
added edge, �, and its inverse, �′. Then, we merge F and F ′ by performing
merge(T ∗, vertex(T ∗, �), vertex(T ∗, �′)). By Lemma 2, merging vertices and
deleting edges in a succinct Euler-Tour tree takes at most O(lg1+ε n) time.

Finally, we show how to update A. There are two cases. In the first case,
inequality 1 holds. In this case, we update A to A[1, g − 1].1.A[k +1, j − 1].A[i+
1, k −1].1.A[g +1, i−1].A[j +1, 2m], where “.” is the concatenation operator for
bitvectors. This can be done using a constant number of insert, delete, cut,
and link operations over A in O(lg1+ε n) time. The correctness can be shown by
analyzing how the Turán traversal works after edge deletion; details are omitted
due to space constraints. With respect to the second case, inequality 2 holds, and
we update A to A[1, i−1].A[j+1, k−1].1.A[g+1, j−1].A[i+1, g−1].1.A[k+1, 2m].
This bitvector is obtained by similar reasoning as the first case above.

Lemma 8. An edge can be deleted from G in O(lg1+ε n) time, so long as G
remains connected.

Dynamic Compact Planar Embeddings 245

References

1. Akram, M., Mohsan Dar, J., Farooq, A.: Planar graphs under Pythagorean fuzzy
environment. Mathematics 6(12), 278 (2018)

2. Aleardi, L.C., Devillers, O., Schaeffer, G.: Dynamic updates of succinct triangula-
tions. Technical report (2005)

3. Barbay, J., Castelli Aleardi, L., He, M., Munro, J.I.: Succinct representation of
labeled graphs. Algorithmica 62, 224–257 (2012)

4. Blelloch, G.E., Farzan, A.: Succinct representations of separable graphs. In: Amir,
A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 138–150. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13509-5 13

5. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications. Soc.
Ind. Appl. Math. J. Comput. 34(4), 924–945 (2005)

6. Farzan, A., Munro, J.I.: Dynamic succinct ordered trees. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009.
LNCS, vol. 5555, pp. 439–450. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02927-1 37

7. Ferres, L., Fuentes-Sepúlveda, J., Gagie, T., He, M., Navarro, G.: Fast and compact
planar embeddings. Comput. Geom. 89, 101630 (2020)

8. Fuentes-Sepúlveda, J., Navarro, G., Seco, D.: Navigating planar topologies in near-
optimal space and time. Comput. Geom. 109, 101922 (2023)

9. Gagie, T., Wild, S.: Succinct Euler-Tour trees. In: He, M., Sheehy, D. (eds.) Pro-
ceedings of the 33rd Canadian Conference on Computational Geometry, Dalhousie
University, Halifax, Nova Scotia, Canada, 10–12 August 2021, pp. 368–376 (2021)

10. Holm, J., Rotenberg, E.: Dynamic planar embeddings of dynamic graphs. Theory
Comput. Syst. 61, 1054–1083 (2017)

11. Irribarra-Cortés, A., Fuentes-Sepúlveda, J., Seco, D., Aśın, R.: Speeding up com-
pact planar graphs by using shallower trees. In: 2022 Data Compression Conference,
pp. 282–291. IEEE (2022)

12. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium
on Foundations of Computer Science, pp. 549–554. IEEE Computer Society (1989)

13. Kammer, F., Meintrup, J.: Succinct planar encoding with minor operations.
arXiv Computing Research Repository abs/2301.10564 (2023). https://doi.org/
10.48550/arXiv.2301.10564

14. Keeler, K., Westbrook, J.: Short encodings of planar graphs and maps. Discret.
Appl. Math. 58(3), 239–252 (1995)

15. Levin, O.: Discrete mathematics: an open introduction (2021)
16. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,

vol. 1180, pp. 37–42. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
62034-6 35

17. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
Assoc. Comput. Mach. Trans. Algorithms 10(3), 1–39 (2014)

18. von Staudt, K.G.C.: Geometrie de Lage. Bauer und Raspe, Nürnberg (1847)
19. Turán, G.: On the succinct representation of graphs. Discret. Appl. Math. 8(3),

289–294 (1984)
20. Tutte, W.T.: A census of planar maps. Can. J. Math. 15, 249–271 (1963)
21. Wilson, R.J.: Introduction to Graph Theory. Prentice Hall/Pearson, New York

(2010)

https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1007/978-3-642-02927-1_37
https://doi.org/10.1007/978-3-642-02927-1_37
https://doi.org/10.48550/arXiv.2301.10564
https://doi.org/10.48550/arXiv.2301.10564
https://doi.org/10.1007/3-540-62034-6_35
https://doi.org/10.1007/3-540-62034-6_35

A Simple Grammar-Based Index
for Finding Approximately Longest

Common Substrings

Travis Gagie1,3(B) , Sana Kashgouli1 , and Gonzalo Navarro2,3

1 Faculty of Computer Science, Dalhousie University, Halifax, Canada
travis.gagie@dal.ca

2 Department of Computer Science, University of Chile, Santiago, Chile
3 CeBiB—Center for Biotechnology and Bioengineering, Santiago, Chile

Abstract. We show how, given positive constants ε and δ, and an α-
balanced straight-line program with g rules for a text T [1..n], we can
build an O(g)-space index that, given a pattern P [1..m], in O(m logδ g)
time finds w.h.p. a substring of P that occurs in T and whose length is
at least a (1 − ε) fraction of the longest common substring of P and T .
The correctness can be ensured within the same expected query time.

Keywords: Grammar-based indexing · Approximately longest
common substrings · alpha-balanced grammars

1 Introduction

Recent years have witnessed a sustained effort for indexing highly repetitive
text collections within compressed space and supporting exact pattern matching
[10,11]. Exact pattern matching is however insufficient in some applications.
In Bioinformatics, for example when storing repetitive collections formed by
genomes of the same species, matching strings is rarely useful. Instead, one may
be interested in finding long substrings of a string that appear in the sequence
collections, to find for example conserved regions of a genome in a population.

The research on matching the longest possible substrings using these indices is
scarce, however. A recent result [12] finds all the maximal exact matches (MEMs)
of a pattern P [1..m] in a text T [1..n] that is indexed with a grammar. By building
on an arbitrary (run-length) context-free grammar of size g, the index is of size
O(g) and finds all the MEMs in time O(m2 logδ g), for any constant δ > 0 (see
also [6]). If the grammar is of a kind called locally consistent, the time improves
to O(m log m(log m + logδ n)). Other results (see [3,12]) require larger indices.

In this paper we consider the simpler problem of finding one longest common
substring between P and T (i.e., a longest MEM). Further, we are satisfied with
a common substring whose length is at least 1 − ε times the longest one, for

Funded in part by NSERC grant RGPIN-07185-2020; NSF/BIO grant DBI-2029552;
NIH/NHGRI grant R01HG011392; and Basal Funds FB0001, ANID, Chile.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 246–252, 2023.
https://doi.org/10.1007/978-3-031-43980-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_19&domain=pdf
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0009-0008-1583-2914
http://orcid.org/0000-0002-2286-741X
https://doi.org/10.1007/978-3-031-43980-3_19

Finding Approximately Longest Common Substrings 247

some fixed 0 < ε < 1. We show that, on α-balanced grammars [4,14], this can
be solved with high probability in time O(m logδ g) for any fixed constant δ > 0.
The correctness of the answer can be ensured in O(m logδ g) expected time.

2 Preliminaries

Our index uses grammar-based compression, which compresses a text T [1..n] by
building and storing a context-free grammar that generates only T [9]. We focus
in particular on straight-line programs (SLPs), where each rule is of the form
X → Y Z, where Y and Z are terminals or nonterminals (called symbols). If T
is repetitive, then it can be represented with an SLP of g rules, with g � n.
Grammar-based indices [5] aim to use space linear in the grammar size while
offering indexed searches for patterns P [1..m], that is, enumerating all the posi-
tions in T where P occurs. Following Charikar et al. [4], we write 〈X〉 and [X] to
denote the string symbol X expands to and the length of that expansion, respec-
tively. Our work builds on α-balanced SLPs, defined next. There exist practical
constructions of small α-balanced grammars from repetitive texts [14].

Definition 1 ([4]). For a constant 0 < α ≤ 1/2, an SLP is said to be α-
balanced if, for every rule X → Y Z, it holds that

α

1 − α
≤ [Y]

[Z]
≤ 1 − α

α
.

3 Data Structure

Our data structure is built from an α-balanced SLP G. For each nonterminal X in
this SLP, the structure stores a set of prefixes and suffixes of 〈X〉, of exponentially
increasing lengths. Those are called prefix and suffix blocks, respectively.

Definition 2. Let X be a symbol in G and fix a constant 0 < ε < 1. Then,
for each 0 ≤ k ≤ log1/(1−ε)[X], we call 〈X〉[1..�1/(1−ε)k�] a prefix block and
〈X〉[[X]−�1/(1−ε)k�+1..[X]] a suffix block.

Precisely, given ε, consider the following sets:

X = {〈X〉, X is a symbol in G},

Bpref = {B, B is a prefix block of a symbol X in G},

Bsuff = {B, B is a suffix block of a symbol X in G}.

For every prefix block B ∈ Bpref , we compute B’s Karp-Rabin [8] hash h(B)
and the lexicographic range [sB , eB] of the strings in X that are prefixed by B.
We store each pair (h(B), [sB , eB]) in a perfect hash table Hpref , with h(B) as
the key and [sB , eB] as the value. Symmetrically, for each suffix block B ∈ Bsuff ,
we compute B’s Karp-Rabin hash h(B) and the co-lexicographic range [sB , eB]
of the strings in X that are suffixed by B, storing each pair (h(B), [sB , eB])

248 T. Gagie et al.

in a perfect hash table Hsuff with h(B) as the key and [sB , eB] as the value.
The Karp-Rabin hash function h(B) is designed to have no collision between
substrings of T , which can be built in O(n log n) expected time [1]. With low
probability, however, there may be collisions between substrings of a pattern P
and blocks of T .

We now show that |Bpref | and |Bsuff | are O(g), and therefore our hash tables
are of size O(g) as well.

Lemma 1. If X → Y Z is a rule in G, then only O(1) prefix blocks B ∈ Bpref

are prefixes of 〈X〉 but not of 〈Y 〉, and only O(1) suffix blocks B ∈ Bsuff are
suffixes of 〈X〉 but not of 〈Z〉.
Proof. By Definition 1, we have

[X] = [Y] + [Z] ≤
(

1 +
1 − α

α

)
· [Y] =

[Y]
α

,

so the number of prefix blocks that are prefixes of 〈X〉 but not 〈Y 〉 is, by Defi-
nition 2,

log 1
1−ε

[X]−log 1
1−ε

[Y]+O(1) = log 1
1−ε

[X]
[Y]

+O(1) ≤ log 1
1−ε

1
α

+O(1) = O(1) .

Symmetrically, because [X] ≤ [Z]/α, the number of suffix blocks that are suffixes
of 〈X〉 but not of 〈Z〉 is O(1).
�
Corollary 1. The number of prefix and suffix blocks is |Bpref | + |Bsuff | = O(g).

Proof. By Lemma 1, each symbol X of G, of which there are g, contributes O(1)
prefix blocks to Bpref and O(1) suffix blocks to Bsuff .
�

The final component of our data structure is a discrete two-dimensional grid
G, with one row and one column per element of X . Let

– X → Y Z be a rule in G,
– 〈Y 〉 have co-lexicographic position i in X , and
– 〈Z〉 have lexicographic position j in X ,

then we set a point at position (i, j) in the grid. We label this point with the
position where 〈Y 〉 ends inside an occurrence of 〈X〉 in T (i.e., if we choose the
occurrence T [a..b] = 〈X〉, then the label of the point is a+[Y]−1). The grid has
g points, thus it can be represented in O(g) space and answer range emptiness
queries in O(logδ g) time, for any constant δ > 0 [2].

Our whole data structure then comprises Hpref , Hsuff , and G, which add up to
O(g) space. We note that the values [sB , eB] stored in Hpref are the lexicographic
ranges of grid columns corresponding to strings in X prefixed with B, and those
stored in Hsuff are the co-lexicographic ranges of grid rows corresponding to
strings in X suffixed with B.

Finding Approximately Longest Common Substrings 249

4 Queries

Our searches build on a key result used in all grammar-based indices [5].

Lemma 2. Let string S, of length |S| > 1, appear in T . Then, there is an index
1 ≤ p < |S| and a point (i, j) in G such that

– i is the co-lexicographic range of a string 〈Y 〉 ∈ X suffixed by S[1..p] and
– j is the lexicographic range of a string 〈Z〉 ∈ X prefixed by S[p + 1..|S|].
Proof. Note that S appears as a substring of the expansion of the initial symbol
and, possibly, of others. If we order the rules X → Y Z so that Y and Z are
listed before X, then the first time S appears as a substring of 〈X〉, it must
appear as the concatenation of a nonempty suffix of 〈Y 〉 and a nonempty prefix
of 〈Z〉. The lemma then follows from the definition of G.
�

Now let L be the longest common substring of P and T and assume |L| > 1.
Per Definition 2, let k = �log1/(1−ε) |L|. We note that

(
1

1 − ε

)k

>

(
1

1 − ε

)(
log 1

1−ε
|L|

)
−1

= (1 − ε) · |L|.

Thus, for our purposes, it suffices to find a substring of length � = (1/(1−ε))k of
L. By Lemma 2, there exists an index 1 ≤ p < |L| such that LY = L[1..p] suffixes
some 〈Y 〉 ∈ X , LZ = L[p + 1..|L|] prefixes some 〈Z〉 ∈ X , and there is a rule
X → Y Z in G. Further, let kY = �log1/(1−ε) |LY | and kZ = �log1/(1−ε) |LZ |.
By the same argument above, it follows that

(
1

1 − ε

)kY

> (1 − ε) · |LY | and
(

1
1 − ε

)kZ

> (1 − ε) · |LZ |.

Therefore, it suffices to find a suffix of length �Y = �(1/(1 − ε))kY � of 〈Y 〉 and a
prefix of length �Z = �(1/(1 − ε))kZ � of 〈Z〉 to form a substring of L of length
�Y + �Z > (1 − ε) · (|LY | + |LZ |) = (1 − ε) · |L|, because L = LY · LZ .

Per Definition 2, those suffixes L′
Y = LY [|LY |−�Y +1..�Y] are suffix blocks,

and those prefixes L′
Z = LZ [1..�Z] are prefix blocks, and therefore they are stored

in our hash tables. Thus, if we search Hsuff for L′
Y and retrieve the associated

range [sY , eY], and search Hpref for L′
Z and retrieve the associated range [sZ , eZ],

we will find a point in the (row,column) range [sY , eY] × [sZ , eY] of G.
The correctness of Algorithm 1 stems from this discussion. A position of the

common substring found is obtained by noticing that, when we assign � in line
12, the string occurs at P [p − �Y + 1..p + �Z] and T [t − �Y + 1..t + �Z], where t
is the label of any point in the grid range.

Since we do not know |L| beforehand, the algorithm tries all the possible
values for kY and kZ , which yields a time complexity dominated by O(m log2 m)
range emptiness queries, that is, O(m log2 m logδ n) [2]. We note that, since the
hashes are of Karp-Rabin type, we can precompute in O(m) time the hash of

250 T. Gagie et al.

Algorithm 1. The simple algorithm returning an approximation to the length
of the longest common substring between T and P [1..m].
1: � ← 0
2: for p ← 1 to m do
3: for kY ← 0 to �log1/(1−ε) p� do

4: �Y ← �(1/(1 − ε))kY �
5: [sY , eY] ← search Hsuff for P [p−�Y +1..p]
6: if [sY , eY] was found then
7: for kZ ← 0 to �log1/(1−ε)(m − p)� do

8: �Z ← �(1/(1 − ε))kZ �
9: [sZ , eZ] ← search Hpref for P [p + 1..p + �Z]

10: if [sZ , eZ] was found then
11: if G has a point in [sY , eY] × [sZ , eZ] then
12: � ← max(�, �Y + �Z)

13: return �

every prefix, h(P [1..p]), and then we can compute in constant time the hash of
every substring of P by operating with the modular inverses of the hashes [13].
If there is a collision we may find a false positive.

Note that Algorithm 1 will find only the empty string if |L| = 1, as we
assumed |L| > 1. In case the algorithm returns zero, we must determine if
|L| = 1 by checking if some symbol of P appears as a terminal in G; this is
easily done with additional O(m) time and O(g) space.

5 Faster Queries

We can reduce the time complexity of Algorithm 1 by decreasing the number of
combinations (kY , kZ) we explore. The algorithm may try out Θ(log2 m) com-
binations per value of p, but several of those are redundant. For example, if the
range [sY , eY] × [sZ , eZ] corresponding to the pair (kY , kZ) is empty, then so is
the range [s′

Y , e′
Y] × [sZ , eZ] corresponding to (kY + 1, kZ), as well as the range

[sY , eY]× [s′
Z , e′

Z] corresponding to (kY , kZ +1). It then suffices to explore max-
imal combinations (kY , kZ). Further redundant work is done among values of p:
we may be working on maximal combinations (kY , kZ) that nevertheless yield
shorter strings than one we had already obtained with a previous value of p.

To avoid redundant work, we will visit only the combinations (kY , kZ) for
which �Y + �Z > �; recall that � is the maximum length �Y + �Z obtained so far.
Therefore, every time we find a nonempty range in G, the value of � increases.
We say those combinations are useful. The other combinations, where either the
searches in Hpref or in Hsuff fail, or they succeed but the resulting range in G is
empty, are useless. We will count useful and useless combinations separately.

Since there are only O(log2 m) combinations (kY , kZ), there exist O(log2 m)
different values �Y + �Z . Since the value of � never decreases along the process,
there are only O(log2 m) situations in which a new value of �Y +�Z can increase �.
This implies that the total number of useful combinations we visit is O(log2 m).

Finding Approximately Longest Common Substrings 251

To keep the number of useless combinations low, we will visit the space
(kY , kZ) in some suitable order. We first consider all the combinations where
kY ≥ kZ , and then where kZ > kY . We analyze the former case; the other is
symmetric. We visit the values of kY in increasing order, and the values of kZ in
increasing order for each value of kY . Each new visited value kY is first combined
with the smallest kZ for which �Y + �Z > �. If this leads to a nonempty range
in G, then this is a useful combination, for which we have already accounted.
The successive values of kZ we try out from there are all useful, until we finally
fail to find a nonempty range—and this then a useless combination— or until
kZ > kY . We do not consider further values kZ ≤ kY in the first case because
they will also fail to produce a nonempty range in G.

Thus, each value of kY we visit leads to zero or more useful combinations
possibly followed by a single useless one. We say that kY succeeds if it produces
at least one useful combination; otherwise it fails. If kY succeeds, then the cost of
its last useless combination, if any, can be charged to the useful ones it produced.
Therefore we only need to count the number of values kY that fail. We will now
show that a sequence of consecutive values of kY that fail has O(1) combinations
(all of them useless), and therefore their cost can also be charged to the preceding
or following value of kY that succeeds. Only a sequence of all-failing values of
kY cannot be accounted for in that way, but this can only be one sequence per
value of p, adding up to O(m) cost for the useless combinations.

The value of � does not change across a sequence of failing values of kY . We
never visit values �Y ≤ �/2: since �Z ≤ �Y , they could not increase �. A failing
sequence of visited values kY then starts with some �Y > �/2 and increments kY

successively, combining it with nonincreasing values of kZ . In this sequence, the
first combination (kY , kZ) we try for each kY , with the smallest kZ that yields
�Y + �Z > �, is useless, so we visit only that smallest value of kZ per value of kY .
We proceed increasing kY , always failing, until �Y exceeds �, at which point the
smallest value of kZ that makes �Y + �Z > � is 0. If such combination also fails,
there is no point in continuing with larger values of �Y , because even combined
with kZ = 0 will not yield a useful combination. Since �Y is exponential in kY ,
there are only O(1) values of kY that yield values �/2 < �Y ≤ �. Only O(1)
combinations are then tried along a sequence of failing values of kY .

Overall, we have O(log2 m) steps charged to useful combinations and O(m)
to useless ones. Multiplied by the range emptiness time complexity, this yields
O(m logδ g) total time. Note that we obtain a correct result only with high
probability, because we check only that h(LY) and h(LZ) match the hash values
of the corresponding block prefixes and suffixes. To ensure correctness, we can
store the nonterminal X → Y Z associated with the point connecting 〈Y 〉 and
〈Z〉 in G, so as to verify the correctness our answer in O(m) time by extracting
a suffix of 〈Y 〉 and a prefix of 〈Z〉 in optimal time [7]. If our answer turns out to
be incorrect (which happens with low probability) we can re-run the algorithm,
this time verifying every potentially useful combination, in total time O(m2). We
can thus ensure correct results by making our time O(m logδ n + m + n−cm2) =
O(m logδ n) in expectation (for any constant c > 2).

252 T. Gagie et al.

The construction time of our structure is dominated by the construction of
the Karp-Rabin hash function with no collisions between blocks of T [13, Sec. 4].

Theorem 1. Given positive constants ε and δ, and an α-balanced straight-line
program with g rules for a text T [1..n], we can build in O(n log n) expected time
an O(g)-space index with which, given a pattern P [1..m], in O(m logδ g) time we
can find with high probability a substring of P that occurs in T and whose length
is at least a (1 − ε) fraction of the longest common substring of P and T . The
correctness can be guaranteed with time still O(m logδ g), yet in expectation.

References

1. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest
common extensions. J. Discrete Algorithms 25, 42–50 (2014)

2. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of the 27th ACM Symposium on Computational Geom-
etry (SoCG), pp. 1–10 (2011)

3. Charalampopoulos, P., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Faster algo-
rithms for longest common substring. In: Proceedings of the 29th Annual European
Symposium on Algorithms (ESA), pp. 30:1–30:17 (2021)

4. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

5. Claude, F., Navarro, G., Pacheco, A.: Grammar-compressed indexes with logarith-
mic search time. J. Comput. Syst. Sci. 118, 53–74 (2021)

6. Gao, Y.: Computing matching statistics on repetitive texts. In: Proceedings of the
32nd Data Compression Conference (DCC), pp. 73–82 (2022)

7. Gasieniec, L., Kolpakov, R., Potapov, I., Sant, P.: Real-time traversal in grammar-
based compressed files. In: Proceedings of the 15th Data Compression Conference
(DCC), p. 458 (2005)

8. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 2, 249–260 (1987)

9. Kieffer, J.C., Yang, E.H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

10. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness
measures. ACM Comput. Surv. 54(2) (2021). Article 29

11. Navarro, G.: Indexing highly repetitive string collections, part II: compressed
indexes. ACM Comput. Surv. 54(2) (2021). Article 26

12. Navarro, G.: Computing MEMs on repetitive text collections. In: Proceedings of
the 34th Annual Symposium on Combinatorial Pattern Matching (CPM), p. article
22 (2023)

13. Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41–50 (2019)

14. Ohno, T., Goto, K., Takabatake, Y., I, T., Sakamoto, H.: LZ-ABT: a practical
algorithm for α-balanced grammar compression. In: Iliopoulos, C., Leong, H.W.,
Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 323–335. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94667-2 27

https://doi.org/10.1007/978-3-319-94667-2_27

On the Number of Factors in the LZ-End
Factorization

Paweł Gawrychowski1(B), Maria Kosche2, and Florin Manea2

1 Faculty of Mathematics and Computer Science, University of Wrocław, Wrocław,
Poland

gawry@cs.uni.wroc.pl
2 Computer Science Department and CIDAS, Göttingen University, Göttingen,

Germany
{maria.kosche,florin.manea}@cs.uni-goettingen.de

Abstract. Kreft and Navarro [DCC 2010] introduced a restricted vari-
ant of the well-known Lempel-Ziv factorization, called the LZ-End factor-
ization. Only recently Kempa and Saha [SODA2022] were able to obtain
a good upper bound on the size of the LZ-End factorization in terms of
the size of the LZ factorization. We extend their approach to improve
the upper bound by a doubly-logarithmic factor.

Keywords: LZ factorization · LZ-End factorization · compressibility

1 Introduction

The Lempel-Ziv factorization is considered to provide a natural measure of com-
pressibility of texts. It was introduced in [14] in order to define the Lempel-Ziv
(LZ77) lossless compression algorithm. Currently, this is among the most com-
monly used such algorithms (as reflected in [13]), and many popular compression
formats, such as gzip or png, are based on it (see also [1,3]). While, by now, we
have algorithms for computing the LZ factorization of a given string that are
efficient both in theory and practice [4,6,9], it is desirable to augment the stored
compressed representation with a structure allowing random access to the under-
lying string. Denoting by z the size of the LZ factorization of a string of length
n, we know how to support such queries in O(log n) time with a structure of
size O(z log(n/z)) by building a balanced grammar, and it is not known if the
extra log(n/z) factor is necessary. Kreft and Navarro [11] proposed a variant
of the LZ factorization, dubbed the LZ-End factorization, which allows decom-
pressing arbitrary phrases in optimal time with a linear-size structure. While
computable in linear time [8] and compressed space [7], for quite some time
it was not known how the size of the new factorization, denoted ze, relates to
that of the LZ factorization, except that ze/zno has a lower bound approaching
2 [5,12], where zno denotes the number of phrases in the so-called nonoverlapping

Maria Kosche’s work was supported by the DFG project number 389613931. Florin
Manea’s work was supported by the DFG Heisenberg-project number 466789228.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 253–259, 2023.
https://doi.org/10.1007/978-3-031-43980-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_20&domain=pdf
https://doi.org/10.1007/978-3-031-43980-3_20

254 P. Gawrychowski et al.

LZ factorization. Then, Kempa and Saha [10] provided the first upper bound of
ze = O(z log2(n/z)). Later, computing an optimal LZ-End factorization was
shown to be NP-hard [2].

Previous Work. The high-level idea of the proof of Kempa and Saha [10] is as
follows. We call a phrase of the LZ-End factorization special when its length is at
least half of that of the previous phrase. It is immediate that the total number of
phrases is larger than the number of special phrases by at most a factor of log n,
hence it is enough to upper bound the number of special phrases. This is done
by charging each special phrase of length � to roughly � distinct substrings of the
same length 2k, and arguing that each distinct substring will be charged at most
twice. On the other hand, it is known that the number of distinct substrings of
the same length m is at most mz. Altogether, this upper bounds the number of
special phrases by O(z log n). Refining the upper bound by replacing n with n/z
follows by standard arguments.

Our Result. We improve the upper bound of Kempa and Saha [10] by a factor of
log log(n/z). This is achieved by following their approach, however we are more
careful about upper bounding the number of phrases that are not special. For an
integer b > 2, we call a phrase b-shrinking when its length is smaller than that
of the previous phrase by a factor of b. Firstly, we show that the number of b-
shrinking phrases cannot exceed O

(
z log n
log b

)
. Secondly, we argue that the number

of remaining phrases is O(zb log n) by again charging each such phrase of length
� to roughly � distinct substrings of the same length 2k, except that now each
distinct substring is charged at most b times. Altogether, this allows us to upper
bound the total number of phrases by O

(
z log n
log b + zb log n

)
. By adjusting b we

obtain that ze = O
(

z log2 n
log log n

)
, and finally by a more careful analysis we reach

ze = O
(

z log2(n/z)
log log(n/z)

)
.

2 Preliminaries

We consider strings over an alphabet Σ. For two strings S and T , ST denotes
their concatenation. For a string S = s1s2 · · · s�, with s1, s2, . . . , s� ∈ Σ, |s|
denotes its length �, S[i] refers to the i-th character of S, and S[i : j] refers to
the substring sisi+1 · · · sj . By convention, S(i : j] = S[i + 1 : j]. When i = 1
(respectively, j = |S|) then S[i : j] is called a prefix (respectively, a suffix) of S.
We say that p is a period of S[1 : n] when S[i] = S[i+ p] for every i ∈ [1, n − p].

For a string T of length n ending with a character $ that does not appear
anywhere else, we consider two factorizations of T .

The LZ factorization is a factorization T = F1F2 . . . Fz, where F1, . . . , Fz

are called the LZ phrases. The i-th phrase Fi is chosen as the longest prefix of
T [k : |T |], where k = 1 + |F1 · · · Fi−1|, that also occurs starting at a position
smaller than k in T . If there is no such prefix then Fi = T [k]. This definition

On the Number of Factors in the LZ-End Factorization 255

is slightly different than the one of Kreft and Navarro [11], who define the next
phrase to always include an additional character. The bounds achieved by Kempa
and Saha [10] and our improvement easily extend to the original definition.

The LZ-End factorization is given by T = α1α2 . . . αze
, where α1, . . . , αze

are called the LZ-End phrases. In this case, the i-th phrase αi is chosen as the
longest prefix of T [k : |T |], where k = 1 + |α1 · · · αi−1|, that also occurs earlier
in T ending at the end of a previous phrase. Formally, we want αi to be a suffix
of T [1 : |α1 · · · αj |] for some j < i. If there is no such prefix, then αi = T [k].

All logarithms appearing in this paper are in base 2.

3 Our Result

In this section, we analyse the number of factors in the LZ-End factorization of a
word T , of length n, and, in particular, their relation to the number of factors in
the LZ factorization of T . In this setting, we want to show the following theorem.

Theorem 1. Let b > 2 be a natural number. Then ze = O
(

z log2 n
log b + zb log n

)
.

Framework. We start by introducing several concepts and notations which are
useful in our proof.

A substring T [i : i+2�−1] of the string T is centered in T [x : y] (respectively,
in T (x : y]) if and only if x ≤ i + � ≤ y (respectively, x < i + � ≤ y).

Let α1 = T (0 : e1], . . . , αze
= T (eze−1 : eze

] be the phrases of the LZ-End fac-
torization of T . That is, T = α1α2 · · · αze

= T (0 : e1]T (e1 : e2] · · · T (eze−1, eze
].

For uniformity, let e0 = 0. It is immediate that, according to the definition of
the LZ-End factorization, we have |α1| = |αze

| = 1; in particular, αze
= $ and

eze
= n. Further, let �j = |αj | = ej − ej−1, for j ∈ [1 : ze].
Let Sm = {w | w is a length-m substring of T#∞}, where # is a letter not

occurring in T . In [10] it is shown that |Sm| ≤ mz. For simplicity of exposure,
we use the following notation: for some a ≤ n and � ∈ N, T [a : a + � − 1] is
defined as the prefix of length � of T#∞; that is, if a+ � − 1 > n then we simply
define T [a : a+ � − 1] as the suffix T [a : n] of T padded with # up to the desired
length. Also, to avoid unnecessary case analyses, we call strings T [a : a + � − 1]
defined as above substrings of T although, in fact, they might be substrings of
T#∞, which only start in T but end after the last position of T in T#∞.

Special Phrases. Following [10], we define a phrase αj of the LZ-End factorization
of T to be special if and only if j ∈ {1, ze}, or j ∈ [2 : ze −1] and 2�j ≥ �j−1. Let
z′
e be the number of special phrases in the LZ-End factorization of T . In [10] it

is shown that z′
e = O(z log n). Let S ⊆ [1 : ze] be the set such that j ∈ S if and

only if αj is special.

b-Shrinking Phrases. For j ≥ 2, the phrase αj is called b-shrinking if b�j ≤ �j−1.
Let zb be the number of b-shrinking phrases in the LZ-End factorization of T .
Let B ⊆ [1 : ze] be the set such that j ∈ B if and only if αj is b-shrinking.

256 P. Gawrychowski et al.

Lemma 1. zb = O
(

z log2 n
log b

)
.

Proof. We first note that for any phrase αj with j ≥ 2 we trivially have log �j −
log �j−1 ≤ log n. If αj is b-shrinking, then log �j + log b ≤ log �j−1, so log b ≤
log �j−1 − log �j holds. Clearly, special phrases are not b-shrinking, so S ⊆ [1 :
ze] \B. If αj is not special then 2�j < �j−1, so in particular log �j − log �j−1 ≤ 0.

We observe that log �1 = log �ze
= 0, so we have the following equality:

ze∑
j=1

(log �j − log �j−1) = log �ze
− log �1 = 0.

This implies:
∑
j∈B

(log �j−1 − log �j) =
∑

j∈[1:ze]\B

(log �j − log �j−1).

Further, by the definition of B we have zb log b ≤ ∑
j∈B(log �j−1 − log �j), hence

zb log b ≤ ∑
j∈[1:ze]\B(log �j−log �j−1). Next, we observe that the following holds:

∑
j∈[1:ze]\B

(log �j − log �j−1)

=
∑
j∈S

(log �j − log �j−1) +
∑

j∈[1:ze]\(S∪B)

(log �j − log �j−1)

≤
∑
j∈S

(log �j − log �j−1) ≤ z′
e log n,

using that for all j ∈ [1 : ze] \ (B ∪ S) we have log �j − log �j−1 ≤ 0.
Altogether, zb log b ≤ z′

e log n. Thus, zb = O
(

z′
e log n
log b

)
and, as z′

e = O(z log n),
the conclusion follows. ��

Analysis of Phrases Which are Neither Special Nor b-Shrinking.
Let αj be a phrase of the LZ-End factorization of T which is neither special

nor b-shrinking. In this case, we have 2�j < �j−1 < b�j . It follows that 2 < j < ze

holds; in particular, j > 2 because �1 = 1, so 2�2 cannot be smaller than 1.
For αj , let kj be such that 2kj ≤ 10�j−1 < 2kj+1. We now consider all

substrings x = T [i − 2kj−1 : i + 2kj−1 − 1] with i ∈ (ej−2 : ej−1]. That is
x = T [i−2kj−1 : i+2kj−1 −1] is a substring of T of length 2kj centered in αj−1.
Let Xj be the multiset containing all such substrings.

Note that if T [i−2kj−1 : i+2kj−1−1] ∈ Xj , then T [i : i+2kj−1−1] has length
2kj−1 and 2kj−1 ≥ 2�j−1+�j . Thus, i−2kj−1 ≤ ej−2 < ej−1 < ej ≤ i+2kj−1−1,
i. e., T [i − 2kj−1 : i + 2kj−1 − 1] contains αj−1αj as a substring.

We want to show the following two claims:

A: Each two strings of Xj are distinct.
B: Each substring contained in some set Xj is contained in at most 10b sets Xt.

On the Number of Factors in the LZ-End Factorization 257

Lemma 2 (Claim A). Each two strings of Xj are distinct.

Proof. Consider two substrings T [x − 2kj−1 : x + 2kj−1 − 1] and T [y − 2kj−1 :
y + 2kj−1 − 1] from Xj , with x < y. Assume, for the sake of contradiction, that
T [x − 2kj−1 : x + 2kj−1 − 1] = T [y − 2kj−1 : y + 2kj−1 − 1]. See Fig. 1.

Fig. 1. The alignment of T [x − 2kj−1 : x+ 2kj−1 − 1] and T [y − 2kj−1 : y + 2kj−1 − 1]
in the proof of Lemma 2. Note that, in this figure, |u| is divisible by p.

It is immediate that p = y−x ≤ �j−1 is a period of T [x−2kj−1 : y+2kj−1−1].
Let z be the position of T such that (z − ej−1) mod p = 0 and z ∈ [x + 2kj−1 :
y+2kj−1 − 1]. Then, u = T (ej−1 : z] is a suffix of T [x− 2kj−1 : ej−1] and has αj

as a proper prefix. This is a contradiction with the choice of αj as a factor of the
LZ-End factorization of T : the jth phrase of this factorization should have been
u. Therefore, our assumption that T [x − 2kj−1 : x + 2kj−1 − 1] = T [y − 2kj−1 :
y + 2kj−1 − 1] is false. The conclusion of the lemma now follows.

��
Consequently, |Xj | ≥ 2kj

10 , by the choice of kj and |Xj | = �j−1.

Lemma 3 (Claim B). Assume that w is a word that appears in Xi1 , . . . , Xis ,
for some s ≥ 1, with i1 < i2 < · · · < is. Then, s ≤ 20b.

Proof. Assume |w| = 2k. Let s′ = 	(s + 1)/2
, and define i′j = i2j−1 for every
j ∈ [1, s′]. Recall that, for every j ∈ [2, s′], if w ∈ Xi′

j
then w has its occurrence

w = T [xj : xj + 2k − 1] that fully contains the phrases αi′
j−1αi′

j
. Let aj =

ei′
j−2 − xj + 1. Then, w[aj : 2k] starts with αi′

j−1αi′
j
.

For any j ∈ [2 : s′ −1], we want to show that aj +�i′
j−1+�i′

j
≤ aj+1+�i′

j+1−1;
that is, the starting position of αi′

j+1
from the occurrence of αi′

j+1−1αi′
j+1

in w
is after the ending position of the occurrence of αi′

j−1αi′
j

in w.
Assume otherwise, so aj + �i′

j−1 + �i′
j
− 1 ≥ aj+1 + �i′

j+1−1; see Fig. 2. Then,
w[aj+1 : aj + �i′

j−1 + �i′
j

− 1] is a suffix of α1 · · · αi′
j

and |w[aj+1 : aj + �i′
j−1 +

�i′
j

− 1]| > �i′
j+1−1. We observe that i′j < i′j+1 − 1 by the definition of the i′js,

so this this means that the phrase αi′
j+1−1 was not chosen correctly when the

LZ-End factorization of T was constructed, a contradiction.
Then, aj + �i′

j−1 + �i′
j

≤ aj+1 + �i′
j+1−1, in other words (aj+1 + �i′

j+1−1) −
(aj + �i′

j−1) ≥ �i′
j
. By the choice of k, �i′

j
≥ 2k

10b , so in fact (aj+1 + �i′
j+1−1) −

258 P. Gawrychowski et al.

Fig. 2. The occurrences of αi′j−1αi′j and αi′j+1−1αi′j+1
within w, aligned such that

aj + �i′j−1 + �i′j − 1 ≥ aj+1 + �i′j+1−1 − 1.

(aj + �i′
j−1) ≥ 2k

10b for any j ∈ [2 : s], and additionally aj + �i′
j−1 ≤ 2k for any

j ∈ [1 : s′]. Thus, s′ cannot be larger than 10b, and s is at most 20b. ��
We are now ready to analyse the number of phrases which are neither special

nor b-shrinking. We first note that, for each j ∈ [1 : ze], we have kj ≤ �log n�+4.
We choose k such that k ≤ �log n� + 4, and let Pk = {j ∈ [1 : ze] | kj = k}.
If j ∈ Pk then, by the corollary of Lemma 2, we have |Xj | ≥ 2k

10 . Consequently,∑
j∈Pk

|Xj | ≥ |Pk|2k
10 . However,

∑
j∈Pk

|Xj | ≤ 10b|S2k |, as each distinct string of

S2k may appear in at most 20b sets Xj by Lemma 3. Thus, |Pk|2k
10 ≤ 20b|S2k |.

As observed in [10], |S2k | ≤ 2kz, so altogether |Pk| = O(bz). Summing this up
over all k ≤ �log n� + 4, we get that the number of phrases which are neither
special nor b-shrinking is O(zb log n).

Proof (of Theorem 1). We separately analyse the number of special phrases, the
number of b-shrinking phrases, and the number of phrases which are neither
special nor b-shrinking. Altogether, we get that the total number of phrases in
the LZ-End factorization of T is O(z log n) + O

(
z log2 n
log b

)
+ O(zb log n). ��

Taking, for instance, b =
√
log n in the statement of Theorem 1, we immediately

obtain the following result:

Theorem 2. ze = O
(

z log2 n
log log n

)

Refined Upper Bound. We conclude with a refined version of the upper bound
from Theorem 2. Consider the proof of Lemma 1, where we have upper bounded∑

j∈S(log �j − log �j−1) by z′
e log n, and then z′

e by O(z log n). The former can be
actually upper bounded by O(z′

e log(n/z′
e)), because |S| = z′

e and
∑

j∈S �j ≤ n,
and by [10, Lemma 3.2], we have z′

e = O(z log(n/z)). Altogether:
∑
j∈S

(log �j − log �j−1) = O(z′
e log(n/z′

e)) = O(z log(n/z) log(n/z′
e))

= O(z log(n/z) log
n

z log(n/z)
) = O(z log2(n/z)).

On the Number of Factors in the LZ-End Factorization 259

Hence, zb = O
(

z log2(n/z)
log b

)
. Next, when analysing the number of phrases that

are neither special nor b-shrinking we summed up over all k ≤ �log n� + 4,
but in fact it is enough to sum up over all k ≤ �log(n/z)� + 4, as the number
of phrases of length exceeding n/z is at most z. Thus, the number of such
phrases is O(zb log(n/z)). The overall number of phrases is now O(z log(n/z))+
O

(
z log2(n/z)

log b

)
+ O(zb log(n/z)), which is O

(
z log2(n/z)
log log(n/z)

)
, for b =

√
log(n/z).

References

1. Alakuijala, J., et al.: Brotli: a general-purpose data compressor. ACM Trans. Inf.
Syst. (TOIS) 37(1), 1–30 (2018)

2. Bannai, H., Funakoshi, M., Kurita, K., Nakashima, Y., Seto, K., Uno, T.: Optimal
LZ-End parsing is hard. In: CPM. LIPIcs, vol. 259, pp. 3:1–3:11. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2023)

3. Collet, Y., Kucherawy, M.: Zstandard compression and the application/zstd media
type. Techical report (2018)

4. Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: DCC, pp.
133–142. IEEE (2013)

5. Ideue, T., Mieno, T., Funakoshi, M., Nakashima, Y., Inenaga, S., Takeda, M.:
On the approximation ratio of LZ-End to LZ77. In: Lecroq, T., Touzet, H. (eds.)
SPIRE 2021. LNCS, vol. 12944, pp. 114–126. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86692-1_10

6. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization:
simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4_19

7. Kempa, D., Kosolobov, D.: LZ-end parsing in compressed space. In: DCC, pp.
350–359. IEEE (2017)

8. Kempa, D., Kosolobov, D.: LZ-end parsing in linear time. In: ESA. LIPIcs, vol. 87,
pp. 53:1–53:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

9. Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: simple, fast, practical. In:
ALENEX, pp. 103–112. SIAM (2013)

10. Kempa, D., Saha, B.: An upper bound and linear-space queries on the LZ-End
parsing. In: SODA, pp. 2847–2866. SIAM (2022)

11. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: DCC,
pp. 239–248. IEEE Computer Society (2010)

12. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

13. Mahoney, M.: Large text compression benchmark (2011)
14. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Inf. Theory 23(3), 337–343 (1977)

https://doi.org/10.1007/978-3-030-86692-1_10
https://doi.org/10.1007/978-3-030-86692-1_10
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19

Non-overlapping Indexing in BWT-Runs
Bounded Space

Daniel Gibney1 , Paul Macnichol2 , and Sharma V. Thankachan2(B)

1 Department of CS, University of Texas at Dallas, Dallas, TX, USA
daniel.gibney@utdallas.edu

2 Department of CS, North Carolina State University, Raleigh, NC, USA
{pemacnic, svalliy}@ncsu.edu

Abstract. We revisit the non-overlapping indexing problem for an effi-
cient repetition-aware solution. The problem is to index a text T [1..n],
such that whenever a pattern P [1..p] comes as a query, we can report
the largest set of non-overlapping occurrences of P in T . A previous
index by Cohen and Porat [ISAAC 2009] takes linear space and opti-
mal O(p + occno) query time, where occno denotes the output size. We
present an index of size O(r), where r denotes the number of runs in
the Burrows Wheeler Transform (BWT) of T . The parameter r is signif-
icantly smaller than n for highly repetitive texts. The query time of our
index is O(p log logw σ + sort(occno)), where σ denotes the alphabet size,
w denotes the machine word size in bits and sort(x) denotes the time for
sorting x integers within the range [1, n].

1 Introduction and Related Work

Text indexing is a well-studied problem in computer science with many applica-
tions in information retrieval and bioinformatics. The basic version is defined as
follows: Preprocess a given text T [1..n] into a data structure (called index) such
that whenever a pattern P [1..p] comes as an input, we can efficiently support
both counting queries and reporting queries. A reporting query asks to output
Occ(T, P) = {i | T [i..i+p) = P}, the set of occurrences of P in T and a counting
query asks for its size occ. We assume that the characters in T and P are from
an alphabet Σ = {0, 1, 2, . . . , σ − 1} and σ = nO(1). Our model of computation
is word RAM with a machine word of size w = Ω(log n) bits.

By maintaining the classic suffix tree data structure over T , we can perform
both counting and reporting in optimal times O(p) and O(p + occ), respec-
tively [25]. Alternatively, we can use the suffix array of T for counting in time
O(p log n) and reporting in time O(p log n + occ) [19]. The space complexity
of both structures is O(n) words, equivalently O(n log n) bits, which can be
orders of magnitude more than the size of text, which is n�log σ� bits. There-
fore, obtaining space-efficient encoding of these fundamental data structures has
been an active line of research. Two important results on this topic from early
2000 are the Compressed Suffix Arrays and the FM index—encodings in succinct

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 260–270, 2023.
https://doi.org/10.1007/978-3-031-43980-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_21&domain=pdf
http://orcid.org/0000-0003-1493-5432
http://orcid.org/0009-0001-0351-6155
http://orcid.org/0000-0002-6852-1035
https://doi.org/10.1007/978-3-031-43980-3_21

Non-overlapping Indexing in BWT-Runs Bounded Space 261

or entropy-compressed space [7,13]. Compressed suffix tree was also introduced
later [24]. These initial results have witnessed various improvements over time;
we refer to [20] for further reading. One of the recent breakthroughs in (com-
pressed) text indexing is the r-index by Gagie, Navarro, and Prezza [8]. Its O(r)
space version can perform counting and reporting in times O(p log logw(σ+n/r))
and O((p + occ) log logw(σ + n/r)) respectively, where r denotes the number of
runs in the text’s Burrows-Wheeler Transform (BWT). The parameter r is a
popular measure of compressibility that captures repetitiveness. It can be signifi-
cantly smaller than n for highly repetitive texts. In a new result by Nishimoto and
Tabei [22], the r-index’s query times for counting and reporting were improved
to O(p log logw σ) time and O(p log logw σ +occ), respectively. Another result by
Gagie et al. [9] shows that the suffix tree can be encoded in O(r log(n/r)) space
and support most of its operations in time O(log(n/r)), which includes random
access to suffix array, inverse suffix array, longest common prefix array, etc.

We now formally define the main problem considered in this paper.

Problem 1 (Non-overlapping indexing). Preprocess a given text T [1..n]
over an integer alphabet of size σ = nO(1) into a data structure (called index)
such that whenever a pattern P [1..p] comes as a query, we can report the largest
set Occno(T, P) ⊆ Occ(T, P) of occurrences of P in T , such that the difference
between any two occurrences in Occno(T, P) is at least p.

Keller et al. [16] introduced this problem and presented an O(n log n) space
solution with O(p + occno · log log n) query time, where occno = |Occno(T, P)|.
In 2009, Cohen and Porat proposed an improved solution with space O(n) and
optimal O(p + occno) query time [4]. Later, Ganguly et al. [10,11] showed that
all we need is a suffix tree (or any of its space-efficient variants) of T . The time
complexity of their query algorithm is O(search(P) + occno · tSA + sort(occno)),
where search(P) denotes the time for computing the suffix range of P and tSA
denotes the time for accessing a given entry in the suffix array or inverse suffix
array, and sort(x) denotes the time for sorting a subset of {1, 2, . . . , n} of size
x. Many space-time trade-offs are immediate from this general result, includ-
ing a repetition-aware index of size O(r log(n/r)) and query time O(p + occno ·
log(n/r) + sort(occno)) using the suffix tree of Gagie et al. [9]. The interesting
question is, can we improve the space complexity to O(r)? Note that Ganguly et
al.’s algorithm [11] needs random access to the suffix array and its inverse array,
and whether suffix trees can be encoded in O(r) space is still open. To that end,
we present the following result.

Theorem 1. For the non-overlapping indexing problem, there exists an O(r)
space index that can report Occno(T, P) in time O(p log logw σ + sort(occno)).

Our result is based on the work by Hooshmand et al. [15], where the authors
proposed modifying Ganguly et al.’s algorithm [11], which led to an efficient
external memory solution; also see [14]. This modified algorithm avoids much
of the random accesses but requires some additional structures, specifically the
suffix array of the reverse of T , for its implementation. The critical insight we

262 D. Gibney et al.

make in this paper is that the (less general) operations supported by the r-index
of T suffice to efficiently implement the algorithm by Hooshmand et al. [15].

2 Preliminaries

For a string S[1..m] ∈ Σm, we denote its i-th character by S[i], and a substring
starting at position i and ending at position j by S[i..j], which is an empty string
if i > j. When S[i..j] is a suffix of S (i.e., j = m), we denote it by S[i..] and
when S[i..j] is a prefix of S (i.e., i = 1), we denote it by S[..j]. The reverse of S

is denoted by
←−
S . The concatenation of two strings (or characters) S1 and S2 is

denoted by S1S2.

2.1 Rank and Select

For any string S[1..m] ∈ Σm, rankS(i, c) denotes the number of occurrences of c
in S[1..i], where i ∈ [1,m], c ∈ Σ. Also, selectA(j, c) denotes the ith occurrence
of c in S. A rank query of the form rankS(i, S[i]) is called a partial query.

If S is a binary string with t 1’s, we can maintain a t log(m/t) + O(t)-bit
structure (known as indexible dictionary) and find rankS(i, 1) for any i with
S[i] = 1 in O(1) time [23]. It can also support select queries in O(1) time.

2.2 Suffix Array

The suffix array of a text T [1..n] is an array SA[1, n], such that SA[i] represents
the starting position of the ith smallest suffix of T in lexicographic order. For
convenience, we assume that the last character of T , denoted by $, does not
appear anywhere else in the text or in the pattern and is lexicographically smaller
than all other symbols in Σ. The suffix range of a pattern P [1..p], denoted
by [sp(P), ep(P)] is the maximal range, such that Occ(T, P) = {SA[i] | i ∈
[sp(P), ep(P)]}. The suffix range is empty if P does not appear in T . The suffix
range, hence the number of occurrences, can be computed in O(p log n) time. The
inverse suffix array ISA is also an array of length n, such that ISA[SA[i]] = i
for all i ∈ [1, n]; equivalently, ISA[i] is the lexicographic rank of the suffix T [i..].

2.3 Burrows–Wheeler Transform

The Burrows-Wheeler Transform (BWT) [3] of a text T is a (reversible) per-
mutation of the symbols of T such that BWT [i] = T [SA[i] − 1] if SA[i] �= 1
and is T [n] otherwise (recall that T [n] = $ appears only once in T and is
smaller than all other symbols in lexicographic order). The BWT can be encoded
in n log σ bits or even in O(r) words by applying run-length encoding, where
r ∈ [σ, n] denotes the number of runs (maximal unary substrings) in BWT.
For example, the BWT of the text mississippi$ is ipssm$pissii with 9 runs.
The LF-mapping is a function defined as follows: LF [i] is ISA[SA[i] − 1] if
SA[i] �= 1 and is 1 otherwise. The LF-mapping can be computed using rank

Non-overlapping Indexing in BWT-Runs Bounded Space 263

queries on BWT as follows: LF [i] = Count[BWT [i]] + rankBWT (i, BWT [i]),
where Count[c] = |{k ∈ [1, n] | T [k] < c}| for any c ∈ Σ. We call i ∈ [1, n] a run
boundary, if i ∈ {1, n} or BWT [i] �= BWT [i − 1] or BWT [i] �= BWT [i + 1].

2.4 The r-Index and Some Related Results

Using the r-index by Gagie et al. [8,9] and refinements by Bannai et al. [2], we
can support the following operations:

1. Given a pattern P [1..p], for each j ∈ [1, p], we can compute the suffix range
of P [j..p]. i.e., [sp(P [j..]), ep(P [j..])], in total time O(p log logw(σ + n/r)). In
addition to this, we can get SA[sp(P [j..])] and SA[ep(P [j..])] for each j ∈ [1, p]
in the same time.

2. Given any i, we can compute LF [i] in O(log logw(n/r)) time.
3. Given any (i, SA[i]), we can compute φ−1(SA[i]) = SA[i + 1] in

O(log logw(n/r)) time.

Nishimoto and Tabei [22] improved the time complexity of operation 1 to
O(p log logw σ), and operations 2 and 3 to O(1) time. As a result, given any
(i, i+h, SA[i]), we can report {SA[k] | i ≤ k ≤ i+h} in O(h+1) time. Since the
result for operation 1 is not explicitly stated in their paper, especially SA[ep(·)]
part, we provide a short proof here.

Lemma 1 (Modified Toehold Lemma). By maintaining some additional
information with r-index in O(r) space, we can support the following query:
given a pattern P [1..p], we can output SA[sp(P [j..])] and SA[ep(P [j..])] for all
j ∈ [1, p] in time O(p log logw σ).

Proof. We store a bit vector B[1..n] and a sampled suffix array SA′. The vec-
tor B is defined as follows: B[LF [i]] = 1 iff i is a run boundary. Therefore,
number of 1’s in B is Θ(r). By maintaining B in space O(r log(n/r)) bits,
i.e., O(r) words, we can compute rankB(i, 1) for any i with B[i] = 1 in O(1)
time (via a partial rank query) [23]. The sampled suffix array SA′ is defined
as, SA′[j] = SA[selectB(j, 1)] and its size is O(r). Therefore, SA[LF [i]] =
SA′[rankB(LF [i], 1)] for any run boundary i can be retrieved in O(1) time.
We also explicitly store Count[c] for all c ∈ Σ.

We process a query P [1..p] as follows. Inductively, assume that we have
already computed sp(P [k..]), ep(P [k..]), SA[sp(P [k..])] and SA[ep(P [k..])] for
all k ∈ [j, p] for some j ≤ p (the base case where k = p is easy). The r-index
can give us [sp(P [k − 1..]), ep(P [k − 1..])] in O(log logw σ) time. Let α be the
first and β be the last occurrences of P [k −1] in the range [sp(P [k..]), ep(P [k..])]
in BWT. Note that since BWT is run-length encoded form; finding α and β is
costly, however we have LF [α] = sp(P [k −1..]) and LF [β] = ep(P [k −1..]). Also
observe that finding BWT [x] for an arbitrary x is costly. However, we can utilize
the O(1) time LF-mapping operation to determine if BWT[x] equals P [k − 1],
since BWT [x] = P [k − 1] iff Count(P [k − 1]) < LF [x] ≤ Count(P [k − 1] + 1).
We have the following cases:

264 D. Gibney et al.

– If BWT [sp(P [k..])] = P [k − 1], then SA[sp(P [k − 1..])] = SA[sp(P [k..])] −
1. Else, α will be a run boundary and SA[sp(P [k − 1..])] = SA[LF [α]] =
SA′[rankB(LF [α], 1)] can be obtained in constant time.

– If BWT [ep(P [k..])] = P [k − 1], then SA[ep(P [k − 1..])] = SA[ep(P [k..])] −
1. Else, β will be a run boundary and SA[ep(P [k − 1..])] = SA[LF [β]] =
SA′[rankB(LF [β], 1)] can be obtained in constant time.

This completes the proof. 	

3 The Data Structures

Let x1, x2, . . . , xocc denotes the occurrences of P [1..p] in T in the ascending
order. We say xi and xj , where i < j are overlapping occurrences if 0 < xj −
xi < p and non-overlapping occurrences otherwise. Define, Overlap(xi, xj) =
max{p − (xj − xi), 0}. The following simple algorithm can report the largest
set of non-overlapping occurrences. First, find all occurrences of P and sort
them to obtain x1, x2, . . . , xocc. Report the last occurrence xocc. Then scan the
remaining occurrences in the right-to-left order, and report an occurrence if it
does not overlap with the last reported occurrence. Although this algorithm
correctly reports Occno, its time complexity is equal to the time for reporting all
occurrences of P plus sort(occ). For a better solution, we exploit the pattern’s
periodicity.

The period of P [1..p] is its shortest prefix Q, such that we can write P as a
concatenation of several copies of Q and a proper prefix R of Q. Note that R
can be an empty string. For example, we can write P = abcabcab as Q2R, where
Q = abc and R = ab. Also, define λ = �p/|Q|�. Also, we say P is periodic if
λ > 2 and aperiodic otherwise. We can determine P ’s period in O(p) time [5]. If
P is aperiodic, then occ = Θ(occno) and the result of Theorem 1 is immediate
using r-index and the simple algorithm described before. The rest of this paper
focuses only on the more involved periodic case.

If P is periodic and Overlap(xi+1, xi) ≥ |Q|, then xi+1 − xi = |Q|. Based on
this, we have the following definition from [11].

Definition 1 (Cluster). Let 1 ≤ i ≤ j ≤ occ and P is periodic. We call a
subset {xi, xi+1, . . . , xj} of consecutive occurrences a cluster, iff

1. i = 1 or Overlap(xi−1, xi) < |Q|,
2. xk+1 − xk = |Q| for all k ∈ [i, j), and
3. j = occ or Overlap(xj , xj+1) < |Q|.
Additionally, we call xi (resp., xj) the head (resp, tail) of the cluster.

We use π to denote the number of clusters. Let h1, h2, . . . , hπ denotes the
clusters heads and t1, t2, . . . , tπ denotes clusters tails, where h1 ≤ t1 < h2 ≤
t2 < . . . , < hπ ≤ tπ. Define Ci = {hi, hi + |Q|, hi + 2|Q|, . . . , ti}, which call the
ith cluster. Note that two consecutive non-overlapping occurrences within the
same cluster must be exactly λ|Q| characters apart.

Non-overlapping Indexing in BWT-Runs Bounded Space 265

3.1 An O(r log(n/r)) Space Solution

We obtain the following result in this section via a direct implementation of
Ganguly et al.’s algorithm [11] using the O(r log(n/r)) space suffix tree of Gagie
et al. [9]. The algorithm is based on the following observations:

– The number of clusters π = O(occno); follows from the fact that
{h1, h3, h5, . . . } is a set of non-overlapping occurrences of size �π/2�.

– The set {t1, t2, . . . , tπ} of all cluster tails can be obtained using a suffix tree
(or an equivalent data structure) efficiently as described below.

– Once we have sorted the list of all cluster tails, we can find Occno via O(occno)
number of ISA queries.

We now present the algorithm formally.

1. Find all cluster tails and sort them to obtain t1, t2, . . . , tπ (also let
t0 = 0).

2. Initialize x = ∞ (we use this variable to keep track of the last reported
occurrence).

3. For i = π to 1, process Ci as follows:
(a) If x and ti are non-overlapping, then x = ti; otherwise x = ti −|Q|

(this new x is potentially the rightmost output from Ci).
(b) While x ∈ Ci (i.e., ISA[x] ∈ [sp(P), ep(P)] and ti−1 < x)

report x and x ← x − |Q|λ.

To find all cluster tails, observe that an occurrence of P is a cluster tail
iff it is not an occurrence of QP . Therefore, {t1, t2, . . . , tπ} = {SA[k] | k ∈
[sp(P), ep(P)] and k /∈ [sp(QP), ep(QP)]}. Since P is a prefix of QP , we have
[sp(QP), ep(QP)] ⊆ [sp(P), ep(P)]. Therefore,

{t1, t2, . . . , tπ} = {SA[k] | sp(P) ≤ k < sp(QP), ep(QP) < k ≤ ep(P)}.

The implementation is straightforward; step-1 takes O(π) number of SA
queries and the step-3 takes O(occno) number of SA queries. This combined
with the time initial pattern search and the sorting of all cluster tails, the query
time can be bounded by O(p + occno · log(n/r) + sort(occno)).

3.2 An O(r + rR) Space Solution

This result is based on a slight “modification” of Ganguly et al.’s algorithm [11],
which was proposed by Hooshmand et al. [15] for efficiently solving the non-
overlapping indexing problem in the external memory model by minimizing the
number of SA/ISA queries. Some key observations on the previous algorithm are
as follows:

– Step-1 (of finding all cluster tails) can be implemented using r-index (using
φ−1 queries instead of SA queries).

266 D. Gibney et al.

– Once we have the sorted list of all cluster heads, we can avoid the ISA query
in Step-3(b), because x ∈ Ci iff hi ≤ x.

Formally, we have the following algorithm with a slight modification.

1. Find all cluster tails and sort them to obtain t1, t2, . . . , tπ.
2. Find all cluster heads and sort them to obtain h1, h2, . . . , hπ.
3. Initialize x = ∞.
4. For i = π to 1, process Ci as follows:

(a) If x and ti are non-overlapping, then x = ti; otherwise x = ti −|Q|
(this new x is potentially the rightmost non-overlapping occur-
rence from Ci).

(b) While x ∈ Ci (i.e., hi ≤ x), report x and x ← x − |Q|λ.

We now present the implementation details. We execute step-1 using the r-
index of T as follows. Find the suffix range [sp(P), ep(P)] of P and the suffix
range [sp(QP), ep(QP)] of QP . We also obtain SA[sp(P)] and SA[ep(QP)] (refer
to Lemma 1). Then, all cluster tails can be obtained by applying φ−1 function
π times. The time complexity is O(p log logw σ + π) plus sort(π). For Step-2, we
use the following strategy by Hooshmand et al. [15]. An occurrence x of P is
a cluster head iff (x − |Q|) is not an occurrence of QP . Alternatively, we can
say, i ∈ [1, n] is a cluster head iff a substring of T ending at (i + p − 1) matches
with P , but not QP . The position (i + p − 1) in T corresponds to an occurrence
(n−(i+p−1)+1) of

←−
P , but

←−−
QP in

←−
T . This means, cluster heads are equivalent

to cluster tails in the reverse text, and we can retrieve them using the strategy
used before, but on the suffix tree (or r-index) of the reverse text. Therefore,
the time complexity is also O(p log logw σ + π) plus sort(π). Step-4 takes (occno)
time and the overall time is O(p log logw σ + sort(occno)).

Since we maintain two r-indexes, the space complexity is O(r + rR), where
rR is the number of runs in the BWT of

←−
T . Note that rR can be more than r

(see [12]) although a recent result shows that rR = O(r log2 n) [17]. Therefore,
the space complexity (in terms of r and n) is O(r log2 n).

3.3 Our Final O(r) Space Solution

In this section, we prove that by maintaining an O(r) space structure and the
r-index of T , we can find all cluster heads in time O(p log logw σ+π). Therefore,
for implementing Step-2 of the previous algorithm in Sect. 3.2, the r-index for
the text’s reverse is no longer required; hence Theorem 1 is immediate.

Recall that a position x is a cluster head iff x is an occurrence of P and
x − |Q| is not an occurrence of QP . This means, x is a cluster head, iff there
exists a proper (possibly empty) suffix Q[j..] of Q (i.e., j ∈ [2, |Q| + 1]), such
that y = (x − (|Q| − j + 1)) is an occurrence of Q[j..]P and T [y − 1] �= Q[j − 1].
We have the following observation by substituting SA[i] = y.

Observation 1. For some j ∈ [2, |Q|+1], SA[i] is an occurrence of Q[j..]P and
BWT [i] �= Q[j − 1] iff SA[i] + (|Q| − j + 1) is a cluster head.

Non-overlapping Indexing in BWT-Runs Bounded Space 267

The set of cluster heads is given by the union of Π2,Π3, . . . , Π|Q|+1, where

Πj = {SA[i]+(|Q|−j+1) | i ∈ [sp(Q[j..]P), ep(Q[j..]P)] and BWT [i] �= Q[j−1]}.

Lemma 2 presents our structure for finding Πj for any j in optimal O(1+|Πj |)
time, given sp(Q[j..]P), ep(Q[j..]P) and SA[sp(Q[j..]P)]. Finding these input
parameters for all values of j ∈ [2, |Q| + 1] using r-index takes O(p log logw σ)
time. Thus, the overall time for finding all cluster heads is O(p log logw σ + |Q|+∑

j |Πj |) = O(p log logw σ + π) as desired.

Lemma 2. By maintaining an O(r) space structure with r-index, we can sup-
port the following query: given a range [sp, ep], SA[sp] and a character c ∈ Σ,
we can output the elements in X = {SA[i] | i ∈ [sp, ep] and BWT [i] �= c} in
optimal O(1 + |X|) time.

Proof. We maintain a sorted list L[1, r] of the start of all run boundaries (i.e.,
i’s, where i = 1 or BWT [i − 1] �= BWT [i]. We also maintain a sampled suffix
array SA′[1, r], where SA′[i] = SA[L[i]]. We now present the query algorithm.

If ep−sp = LF [ep]−LF [sp], we conclude that all characters in BWT [sp, ep]
are the same. Then, if BWT [sp] �= c, we report SA[sp] and all the remaining
entries in SA[sp, ep] using Φ−1 function, else, we report none of them. On the
other hand, if ep − sp �= LF [ep] − LF [sp], there exists two values f and h, such
that L[f − 1] ≤ sp < L[f] ≤ L[f + h] ≤ ep < L[f + h + 1]. We find f via binary
search in time O(log r) and then find h in O(h) time. Then, perform the steps
below.

1. If BWT [sp] �= c, then report SA[sp], compute the remaining entries in
SA[sp, L[f]) using Φ−1 function, and report them.

2. For all g ∈ [f, f + h), if BWT [L[g]] �= c, then report SA[L[g]] = SA′[g],
compute the remaining entries in SA[L[g], L[g + 1]) using Φ−1 function, and
report them.

3. If BWT [L[f + h]] �= c, then report SA[L[f + h]] = SA′[f + h], compute the
remaining entries in SA[L[g], ep] using Φ−1 function, and report them.

The time complexity is O(log r+h+|X|). Also note that for any g, BWT [L[g]] �=
BWT [L[g + 1]]. Therefore, |X| ≥ (h − 1)/2.

Finally, to remove the term log r, we maintain some additional structures:
(i) the optimal one-dimensional range reporting structure by Alstrup et al. [1]
over L in O(r) space and (ii) a bit vector B[1..n], such that B[j] = 1 iff j = L[i]
for some i ∈ [1, r]. We maintain B in space O(r log(n/r)) bits, i.e., O(r) words,
so that partial rank queries (rankB(j, 1) when B[j] = 1) can be computed in
O(1) time [23]. Now, for computing f and h, we use the following procedure:
report all L[i]’s within (sp, ep] in time O(h). The smallest among them is L[f]
and the largest among them is L[f + h]. Then compute f = rankB(L[f], 1) and
f + h = rankB(L[f + h], 1) using two partial rank queries. The overall time
complexity is optimal as desired. 	

268 D. Gibney et al.

4 Open Problems

We conclude with some follow-up questions for future research.

1. Can we design an efficient index for counting the largest number of non-
overlapping occurrences of P in T? i.e., an index that can quickly output
occno. No nontrivial result is known for this problem; therefore, it is interesting
to know whether there exists an O(n·poly log(n)) space index with query time
O(p · poly log(n)).

2. Can we design new space-time trade-offs for the non-overlapping indexing
problem, where space is in terms of other measures of repetitiveness, like
the number of Lempel-Ziv factors [26] or δ-measure [18] (a.k.a. substring
complexity)?

3. Can we design repetition-aware indexes for the range non-overlapping index-
ing problem, which is a generalization of the non-overlapping indexing prob-
lem? Here the input consists of a pattern P and a range [α, β], and the task
is to output the largest set of non-overlapping occurrences within the range
[α, β]. Several solutions exist to this problem [4,6,16], including an O(n logε n)
space index with optimal query time [11] and a linear-space index with near-
optimal query time [21], where ε > 0 denotes an arbitrarily small constant.
An orthogonal range query data structure is a part of these indexes, which
makes it challenging to encode them in repetition-aware space.

Acknowledgements. This research is supported in part by the U.S. National Science
Foundation (NSF) award CCF-2315822.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in
one dimension. In: Proceedings on 33rd Annual ACM Symposium on The-
ory of Computing, 6–8 July 2001, Heraklion, Crete, Greece, pp. 476–
482 (2001). http://doi.acm.org/10.1145/380752.380842, https://doi.org/10.1145/
380752.380842

2. Bannai, H., Gagie, T., Tomohiro, I.: Refining the r-index. Theor. Comput. Sci.
812, 96–108 (2020). https://doi.org/10.1016/j.tcs.2019.08.005

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
SRC Research Report, 124 (1994)

4. Cohen, H., Porat, E.: Range non-overlapping indexing. In: Proceedings of
the Algorithms and Computation, 20th International Symposium, ISAAC
2009, Honolulu, Hawaii, USA, 16–18 December 2009, pp. 1044–1053 (2009).
http://dx.doi.org/10.1007/978-3-642-10631-6 105, https://doi.org/10.1007/978-3-
642-10631-6 105

5. Crochemore, M.: String-matching on ordered alphabets. Theoret. Comput. Sci.
92(1), 33–47 (1992)

6. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved
algorithms for the range next value problem and applications. In: Proceed-
ings of the STACS 2008, 25th Annual Symposium on Theoretical Aspects

http://doi.acm.org/10.1145/380752.380842
https://doi.org/10.1145/380752.380842
https://doi.org/10.1145/380752.380842
https://doi.org/10.1016/j.tcs.2019.08.005
http://dx.doi.org/10.1007/978-3-642-10631-6_105
https://doi.org/10.1007/978-3-642-10631-6_105
https://doi.org/10.1007/978-3-642-10631-6_105

Non-overlapping Indexing in BWT-Runs Bounded Space 269

of Computer Science, Bordeaux, France, 21–23 February 2008, pp. 205–216
(2008). http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1359, https://doi.org/10.
4230/LIPIcs.STACS.2008.1359

7. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005). http://doi.acm.org/10.1145/1082036.1082039, https://doi.org/10.1145/
1082036.1082039

8. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, 7–10 January 2018, pp. 1459–1477. SIAM (2018). https://doi.org/10.1137/
1.9781611975031.96

9. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020). https://
doi.org/10.1145/3375890

10. Ganguly, A., Shah, R., Thankachan, S.V.: Succinct non-overlapping indexing. In:
Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 185–195.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0 16

11. Ganguly, A., Shah, R., Thankachan, S.V.: Succinct non-overlapping indexing. Algo-
rithmica 82(1), 107–117 (2020). https://doi.org/10.1007/s00453-019-00605-5

12. Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel
results on the number of runs of the burrows-wheeler-transform. In: Bureš, T., et al.
(eds.) SOFSEM 2021. LNCS, vol. 12607, pp. 249–262. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-67731-2 18

13. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005).
https://doi.org/10.1137/S0097539702402354

14. Hooshmand, S., Abedin, P., Külekci, M.O., Thankachan, S.V.: Non-overlapping
indexing - cache obliviously. In: Navarro, G., Sankoff, D., Zhu, B. (eds.) Annual
Symposium on Combinatorial Pattern Matching, CPM 2018, 2–4 July 2018 - Qing-
dao, China. LIPIcs, vol. 105, pp. 8:1–8:9. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2018). https://doi.org/10.4230/LIPIcs.CPM.2018.8

15. Hooshmand, S., Abedin, P., Külekci, M.O., Thankachan, S.V.: I/O-efficient data
structures for non-overlapping indexing. Theor. Comput. Sci. 857, 1–7 (2021).
https://doi.org/10.1016/j.tcs.2020.12.006

16. Keller, O., Kopelowitz, T., Lewenstein, M.: Range non-overlapping indexing and
successive list indexing. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 625–636. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73951-7 54

17. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp. 1002–1013.
IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00097

18. Kociumaka, T., Navarro, G., Prezza, N.: Toward a definitive compressibility mea-
sure for repetitive sequences. IEEE Trans. Inf. Theory 69(4), 2074–2092 (2023).
https://doi.org/10.1109/TIT.2022.3224382

19. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

20. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), 2 (2007). https://doi.org/10.1145/1216370.1216372

http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1359
https://doi.org/10.4230/LIPIcs.STACS.2008.1359
https://doi.org/10.4230/LIPIcs.STACS.2008.1359
http://doi.acm.org/10.1145/1082036.1082039
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-319-19929-0_16
https://doi.org/10.1007/s00453-019-00605-5
https://doi.org/10.1007/978-3-030-67731-2_18
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.4230/LIPIcs.CPM.2018.8
https://doi.org/10.1016/j.tcs.2020.12.006
https://doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1137/0222058
https://doi.org/10.1145/1216370.1216372

270 D. Gibney et al.

21. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 24

22. Nishimoto, T., Tabei, Y.: Optimal-time queries on BWT-runs compressed indexes.
In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, 12–16 July 2021, Glasgow,
Scotland (Virtual Conference). LIPIcs, vol. 198, pp. 101:1–101:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.
2021.101

23. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k -ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007). https://doi.org/10.1145/1290672.1290680

24. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007). https://doi.org/10.1007/s00224-006-1198-x

25. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, 15–17 October 1973, pp.
1–11 (1973). http://dx.doi.org/10.1109/SWAT.1973.13, https://doi.org/10.1109/
SWAT.1973.13

26. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.4230/LIPIcs.ICALP.2021.101
https://doi.org/10.4230/LIPIcs.ICALP.2021.101
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/s00224-006-1198-x
http://dx.doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

Efficient Parameterized Pattern Matching
in Sublinear Space

Haruki Ideguchi(B), Diptarama Hendrian , Ryo Yoshinaka ,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
haruki.ideguchi.q3@dc.tohoku.ac.jp,

{diptarama,ryoshinaka,ayumis}@tohoku.ac.jp

Abstract. The parameterized matching problem is a variant of string
matching, which is to search for all parameterized occurrences of a pat-
tern P in a text T . In considering matching algorithms, the combinatorial
natures of strings, especially periodicity, play an important role. In this
paper, we analyze the properties of periods of parameterized strings and
propose a generalization of Galil and Seiferas’s exact matching algorithm
(1980) into parameterized matching, which runs in O(π|T | + |P |) time
and O(log |P | + |Π|) space in addition to the input space, where Π is
the parameter alphabet and π is the number of parameter characters
appearing in P plus one.

Keywords: Parameterized matching · String matching · Sublinear
space · Combinatorics on words

1 Introduction

String matching is a problem to search for all occurrences of a pattern P in a text
T . Since it is one of the most important computer applications, many efficient
algorithms for the problem have been proposed. Let us denote the length of T
and P by n and m, respectively. While a naive algorithm takes O(nm) time to
solve the problem, Knuth, Morris, and Pratt [13] gave an algorithm which runs
in only O(n+m) time by constructing auxiliary arrays called border arrays. After
that, various algorithms to solve the problem in linear time have been proposed,
which use auxiliary data structures, such as suffix trees [19], suffix arrays [15],
LCP arrays [15]. All of those algorithms outperform the naive algorithm in terms
of time complexity. They require additional space to store their auxiliary data,
whose sizes are typically Θ(n) or Θ(m). On the other hand, studies for reducing
such extra space were conducted. Firstly, Galil and Seiferas reduced extra space
usage to O(log m) [11], and later several time-space-optimal, O(n+m) time and
O(1) extra-space algorithms were devised [5,6,12].

In this paper, we consider a variant of string matching: parameterized match-
ing. It is a pattern matching paradigm in which two strings are considered a
match if we can map some characters (parameter characters) in one string to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 271–283, 2023.
https://doi.org/10.1007/978-3-031-43980-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_22&domain=pdf
http://orcid.org/0000-0002-8168-7312
http://orcid.org/0000-0002-5175-465X
http://orcid.org/0000-0002-4978-8316
https://doi.org/10.1007/978-3-031-43980-3_22

272 H. Ideguchi et al.

characters in another string. This paradigm was first introduced by Baker [4] for
use in software maintenance by the ability to detect ‘identical’ computer pro-
grams renaming their variables. For solving the parameterized matching prob-
lem, a number of linear-time algorithms have been proposed that extend algo-
rithms for exact matching [2,7,8,10,14,17,18]. See also [16] for a survey. How-
ever, we know of no previous attempt to reduce extra space usage to sublinear
for time-efficient parameterized matching algorithms, although one can solve the
problem in constant extra space if the time efficiency does not matter.

The main contribution of this paper is to give a sublinear-extra-space algo-
rithm for the parameterized matching problem by extending Galil and Seiferas’s
exact matching algorithm [11]. It runs in O(|ΠP |n+m) time and O(log m+ |Π|)
space in addition to the input space, where Π is the set of parameter characters
and ΠP is the non-empty1 set of parameter characters appearing in P .

In order to provide the basis for our algorithm, we also investigate the proper-
ties of periodicity of parameterized strings in this paper. It is widely known that
periods of strings are useful for exact matching algorithms [5,6,11–13], which
is also the case for parameterized matching [2]. We extend previous work on
parameterized periods by Apostolico and Giancarlo [3] and derive several prop-
erties for our algorithm. In particular, we focus on ‘sufficiently short’ periods of
parameterized strings having properties useful for matching algorithms. Those
results contain a parameterized version of Fine and Wilf’s periodicity lemma [9].

Remark 1. The time and space complexities of our algorithm stated above are
based on a computing model in which functions Π → N can be stored as arrays.
If not, one can use AVL trees [1] instead of arrays to store such functions. Then,
our algorithm runs in O((|ΠP |n + m) log |ΠP |) time and O(log m + |ΠP |) extra
space.

2 Preliminaries

Let N and N
+ be the set of natural numbers including and excluding 0, respec-

tively. For x, y ∈ N, we denote by x | y that y is a multiple of x.
For n ∈ N and a function f whose domain and codomain are the same, we

denote by fn the composite of the function n times.

2.1 Parameterized Matching Problem

In parameterized matching, we consider two disjoint alphabets: the constant
alphabet Σ and the parameter alphabet Π. A string over Σ ∪ Π is called a param-
eterized string or a p-string. Consider a p-string w ∈ (Σ ∪ Π)∗. We denote the
length of w by |w|. For 0 ≤ i < |w|, let us denote i-th letter of w by w[i],
where the index i is 0-based. For 0 ≤ i ≤ j ≤ |w|, we denote the substring
w[i]w[i + 1] · · · w[j − 1] by w[i : j]. (Note that w[i : j] does not contain w[j].)

1 We can assume ΠP �= ∅ without loss of generality. See Remark 2.

Efficient Parameterized Pattern Matching in Sublinear Space 273

We denote the set of permutations of Π by SΠ. Throughout this paper, for
a permutation f ∈ SΠ and a constant character c ∈ Σ, let f(c) = c. Then, the
map f is naturally expanded as a bijection over p-strings: (Σ ∪ Π)∗ → (Σ ∪ Π)∗.

Definition 1 (Baker [4]). Two p-strings x and y are called a parameterized-
match or a p-match if and only if there exists a permutation f ∈ SΠ such that
f(x) = y. Denote this relation by x ≡ y.

Example 1. Let Σ = {a, b, c} and Π = {A, B, C}. We have ABaCBCa ≡ BCaACAa
with a permutation f such that f(A) = B, f(B) = C, and f(C) = A.

Clearly, the relation ≡ is an equivalence relation over (Σ ∪ Π)∗. Note that
if x ≡ y, we have |x| = |y| and x[i : j] ≡ y[i : j] for any 0 ≤ i ≤ j ≤ |x|. By
this relation, the problem we consider in this paper, the parameterized matching
problem, is defined as follows.

Problem 1 ([4]). Given two p-strings T (text) and P (pattern), find all 0 ≤
i ≤ |T | − |P | such that T [i : i + |P |] ≡ P .

Remark 2. For Problem 1, we can assume that P contains at least one parameter
character without loss of generality. If P ∈ Σ∗, choose any c ∈ Σ appearing in P
and let constant and parameter alphabets be Σ ∪ Π \ {c} and {c}, respectively.
Our algorithm presented in Sect. 4 is based on this assumption.

2.2 Periodicity of Parameterized Strings

Periodicity is one of the most fundamental concepts in combinatorics of strings
and a wealth of applications. In exact matching, the Knuth-Morris-Pratt algo-
rithm and various algorithms based on it rely on the properties of periods
[5,6,11–13]. It is also the case for parameterized matching [2], where periods
of parameterized strings are defined as follows:

Definition 2 (Apostolico and Giancarlo [3]). Consider w ∈ (Σ ∪ Π)∗ and
p ∈ N

+ with p ≤ |w|. Then, p is called a period of w if and only if w[0 : |w| − p] ≡
w[p : |w|].

If p is a period of w, there exists f ∈ SΠ satisfying f(w[0 : |w| − p]) =
w[p : |w|] by definition. We denote this relation by p ‖f w or simply by p ‖ w
when f is not specified.

In general, a p-string w can have multiple periods. We denote the shortest
period of w as period(w). It is clear that a period p of a p-string w is also a
period of any substring w′ of w such that |w′| ≥ p.

Example 2. Let Σ = {a, b, c} and Π = {A, B, C}. For w := ABaCBCaACAa, we have
4 ‖f w as ABaCBCa ≡ BCaACAa with f(A) = B, f(B) = C, and f(C) = A.

Instead of Definition 2, one can use the following equivalent definition for
periods, which is a more intuitive representation of the repetitive structure of
strings:

274 H. Ideguchi et al.

Lemma 1 ([3]). Consider w ∈ (Σ ∪ Π)∗, p ∈ N
+, and f ∈ SΠ. Then, p ‖f w

holds if and only if w can be written as

w = f0(v) · f1(v) · f2(v) · · · f�ρ�−1(v) · f�ρ�(v′),

where ρ = |w|
p , v = w[0 : p] and v′ is a prefix of v (allowing the case v′ is empty).

The following lemma has important applications for various matching algo-
rithms. Particularly, it is used to shift the pattern string safely in the Knuth-
Morris-Pratt algorithm and variants [2,13].

Lemma 2. Consider x, y ∈ (Σ ∪ Π)∗ with x ≡ y. For any 0 < δ < period(y),
we have x[δ : |x|] 	≡ y[0 : |y| − δ].

Proof. We give a proof by contraposition. Suppose x[δ : |x|] ≡ y[0 : |y| − δ]. Then
we have y[0 : |y| − δ] ≡ x[δ : |x|] ≡ y[δ : |y|], which means δ ‖ y. Hence, δ ≥
period(y) holds.
�

One of the main interest regarding string periodicity is what holds when
a string w has two different periods p and q. For ordinary strings, Fine and
Wilf’s periodicity lemma [9] gives an answer: gcd(p, q) is also a period when
|w| ≥ p+q−gcd(p, q), where gcd(p, q) is the greatest common divisor of p and q.
Apostolico and Giancarlo showed a similar property for parameterized strings.

Lemma 3 ([3]). For w ∈ (Σ ∪ Π)∗, p, q ∈ N
+, and f, g ∈ SΠ, assume that

p ‖f w and q ‖g w. If |w| ≥ p + q and fg = gf , we have gcd(p, q) ‖ w.

It is known that the length |w| = p + q − gcd(p, q) is not sufficient for this
lemma unlike in the case of ordinary strings [3].

3 Properties of Parameterized Periods

In this section, we show some properties of periods of parameterized strings.
They play an important role in our algorithm presented in Sect. 4.

3.1 Alternative Periodicity Lemma

The requirements of Lemma 3 are slightly different from Fine and Wilf’s lemma
for ordinary strings. Particularly, the commutativity of f and g is essential
(Lemma 5 in [3]). In this section, we show a new periodicity lemma for param-
eterized strings which does not assume the commutativity.

Firstly, we focus on parameter characters contained in a given p-string and its
substrings. For w ∈ (Σ ∪ Π)∗, we denote by Πw the set of parameter characters
appearing in w.

Example 3. Let Σ = {a, b, c} and Π = {A, B, C}. For w := ABabAca, we have
Πw = {A, B}.

Efficient Parameterized Pattern Matching in Sublinear Space 275

Lemma 4. Consider w ∈ (Σ ∪ Π)∗ and any of its substrings w′ and w′′. Then,
the following hold:

– If |w′| ≥ period(w) · (|Πw| − 1), we have |Πw′ | ≥ |Πw| − 1.
– If |w′′| ≥ period(w) · |Πw|, we have Πw′′ = Πw.

Proof. The case Πw = ∅ is trivial. Suppose Πw 	= ∅. Let p := period(w) and f
be a permutation of Π such that p ‖f w. It suffices to show the lemma for the
cases |w′| = p · (|Πw| − 1) and |w′′| = p · |Πw|. By Lemma 1, w′ and w′′ can
be written as w′ = v′ · f(v′) · · · f |Πw|−2(v′) and w′′ = v′′ · f(v′′) · · · f |Πw|−1(v′′),
where v′ and v′′ are the prefixes of w′ and w′′ of length p, respectively. Now, we
consider the cyclic decomposition of f .

Suppose the characters in Πw make one cyclic permutation in f . Let a be
any parameter character contained in v′. Note that a, f(a), · · · , f |Πw|−2(a) are
all different characters and all appear in w′. Therefore, we have |Πw′ | ≥ |Πw|−1.
The analogous argument shows |Πw′′ | = |Πw|.

Suppose the characters in Πw make two or more cyclic permutations in f .
Then, those cyclic permutations are all of length |Πw|−1 or less. For 0 ≤ i < |w|,
there exists an integer k such that w[i + kp], w[i + (k + 1)p], · · · , w[i + (k +
|Πw| − 2)p] are all contained in w′. Then, those characters can be represented
as fk(w[i]), fk+1(w[i]), · · · , fk+|Πw|−2(w[i]), and by the assumption about f , at
least one of them is equal to w[i]. Therefore, we have w[i] ∈ Πw′ . Since i is
arbitrary, we end up with Πw ⊆ Πw′ , as required.
�

Now, we show a variant of Lemma 3. It does not require any assumption on
the permutations, in exchange of a stricter requirement for the length of strings.

Lemma 5. Suppose w ∈ (Σ ∪ Π)∗ with Πw 	= ∅ has periods p and q. If |w| ≥
p + q + min(p, q) · (|Πw| − 1), we have gcd(p, q) ‖ w.

Proof. Let f and g be permutations of Π such that p ‖f w and q ‖g w. Without
loss of generality, we suppose f(a) = a and g(a) = a for any a ∈ Π \ Πw. By
Lemma 3, it suffices to show that fg = gf . Let w′ := w[0 : |w| − p − q]. Then,
notice that fg(w′) = f(w[q : |w| − p]) = w[p + q : |w|] = g(w[p : |w| − q]) =
gf(w′), which claims fg(a) = gf(a) for any a ∈ Πw′ . Moreover, given |w′| =
|w|−p−q ≥ min(p, q)·(|Πw|−1) ≥ period(w)·(|Πw−1|), we have |Πw′ | ≥ |Πw|−1
by Lemma 4. Hence, the permutations fg and gf behave the same for at least
|Π| − 1 parameter characters. This implies fg = gf .
�

Corollary 1. Suppose w ∈ (Σ ∪ Π)∗ with Πw 	= ∅ has a period q. If q ≤ |w|
|Πw|+1 ,

then period(w) | q.

Proof. Let p := period(w). By p ≤ q ≤ |w|
|Πw|+1 , we have p · |Πw| + q ≤ q · (|Πw| +

1) ≤ |w|
|Πw|+1 (|Πw|+1) = |w|. Hence, we can use Lemma 5 to obtain gcd(p, q) ‖ w.

Then, since p is the smallest period of w, we have gcd(p, q) ≥ p, which means
gcd(p, q) = p i.e. p | q, as required.
�

276 H. Ideguchi et al.

Table 1. Let Π = {A, B}. A p-string w := ABABBABAABABBABAABBA has prefix periods
1 and 4. Circled numbers in the table below are prefix periods of w with w[0 : i + 1]
as witnesses. For instance, 4 is a prefix period of w with w[0 : 18] as a witness because

period(w[0 : 18]) = 4 and 4 ≤ |w[0:18]|
k

. (Note that k = |Πw| + 2 = 4.)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

w[i] A B A B B A B A A B A B B A B A A B B A

period(w[0 : i + 1]) 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 18 18

reachw(1) = 4 reachw(4) = 18

3.2 Prefix Periods

Galil and Seiferas’s exact matching algorithm [11] can be regarded as an exten-
sion of the Knuth-Morris-Pratt algorithm [13]. The main idea of their algorithm
is to deal with only periods of pattern prefixes which are ‘short enough.’ They
pointed out that periods shorter than 1

k times the length of the string have useful
properties for saving space usage in exact string matching for an arbitrarily fixed
k ≥ 3. We show, in this section, that similar properties hold for parameterized
strings as well when k is set to be |Πw| + 2. Most of those properties come from
Lemma 5 we proved in the previous section.

Lemma 6. Suppose w ∈ (Σ ∪ Π)∗ has a period p. If p ≤ |w|
|Πw|+1 , there exists

only one character a ∈ Σ ∪ Π such that p ‖ wa.

Proof. Consider the prefix w′ := w[0 : |w| − p]. By p ≤ |w|
|Πw|+1 , we have |w|−p ≥

p|Πw| ≥ period(w)|Πw|. By Lemma 4, Πw′ = Πw. Therefore, w[|w| − p] already
appears in w′ as w[i] = w[|w| − p] for some i < |w| − p. Hence, for any f such
that p ‖f w, it holds that p ‖f wa if and only if a = w[i + p].
�
Corollary 2. Suppose w ∈ (Σ ∪ Π)∗ has a period p. For any � ∈ N

+ such that
�p ≤ |w|

|Πw|+1 , we have p ‖ wa ⇐⇒ �p ‖ wa for any a ∈ Σ ∪ Π.

Proof. By Lemma 6, the characters a1 and a2 such that p ‖ wa1 and �p ‖ wa2

are unique respectively. Then, since p ‖ wa1 =⇒ �p ‖ wa1 (shown immediately
by Lemma 1), we get a1 = a2, as required.
�

Now, we introduce the key concept for our algorithm: prefix periods. This
is a natural extension of the one introduced in [12] for parameterized strings.
Hereafter in this section, we consider a fixed p-string w ∈ (Σ ∪ Π)∗ with Πw 	= ∅
and let k := |Πw| + 2.

Definition 3. A positive integer p ∈ N
+ is called a prefix period of w if and

only if there exists a prefix w′ of w such that period(w′) = p and p ≤ |w′|
k .

We give an example of prefix periods in Table 1. For a fixed p, only prefixes
w′ of w satisfying |w′| ≥ kp can be a witness for p being a prefix period. We show
in the following lemmas that it suffices to consider only one prefix w′ = w[0 : kp]
for checking whether p is a prefix period.

Efficient Parameterized Pattern Matching in Sublinear Space 277

Lemma 7. For any a ∈ Σ ∪ Π, if period(wa) 	= period(w), we have period(wa)
> |w|

|Πw|+1 .

Proof. We show the lemma by contraposition. Suppose period(wa) ≤ |w|
|Πw|+1 .

Since period(wa) is also a period of w, we can use Corollary 1 to obtain
period(w) | period(wa). Therefore, we get period(w) ‖ wa by Corollary 2, which
implies period(w) ≥ period(wa). On the other hand, we have period(w) ≤
period(wa) by definition. Thus period(w) = period(wa) holds.
�

Lemma 8. Consider any 0 < p ≤ |w|
k . Then, p is a prefix period of w if and

only if period(w′) = p where w′ := w[0 : kp].

Proof. (⇐=) Immediate by the definition of prefix periods.
(=⇒) Let v be a prefix of w that witnesses p being a prefix period, i.e.,
|v| ≥ kp and period(v) = p. If |v| = kp, we are done. Suppose |v| > kp and let
u := v[0 : |v| − 1]. Then, period(v) = p < |v|

k ≤ |v|
|Πu|+2 < |u|

|Πu|+1 . By Lemma 7,
we have period(u) = period(v) = p. By repeatedly applying this discussion, we
can shorten the witness up to length kp.
�

Next, we introduce an auxiliary function reachw.

Definition 4. For any 0 < p ≤ |w|, let
reachw(p) := max{r ∈ N : r ≤ |w| and p ‖ w[0 : r]}.

Note that p ‖ w[0 : r] ⇐⇒ reachw(p) ≥ r holds by definition. Using reachw,
we get an equivalent definition of prefix periods as follows, which is directly used
in our searching algorithm.

Lemma 9. Consider any 0 < p ≤ |w|
k . Then, p is a prefix period of w if and

only if all the following hold:

(1) reachw(p) ≥ kp,
(2) reachw(q) < reachw(p) for any 0 < q < p.

Proof. (=⇒) (1) is by definition. We show (2). By Lemma 8, period(w[0 : kp]) =
p. Thus, q < p is not a period of w[0 : kp], i.e., reachw(q) < kp ≤ reachw(p) by
(1).
(⇐=) Let w′ := w[0 : reachw(p)]. (2) implies period(w′) = p since any q

satisfying 0 < q < p is not a period of w′. Additionally, we have p ≤ |w′|
k by (1).

Thus p is a prefix period of w with w′ as a witness.
�
Galil and Seiferas [11] in Corollary 1 pointed out that the number of prefix

periods of a word w is O(log |w|). We show in the following lemma that it is
the case for parameterized strings. It contributes directly to reducing the space
complexity of our algorithm.

Lemma 10. Suppose w has prefix periods p and q. If p < q, then 2p ≤ q.

278 H. Ideguchi et al.

Proof. We prove the lemma by contradiction. Suppose p < q < 2p. By definition,
p ‖ w[0 : kp] and q ‖ w[0 : kq] hold. Let w′ := w[0 : kp]. By Lemma 8, p is the
shortest period of w′. Since both p and q are periods of w′ and p · |Πw′ | + q <
p · |Πw| + 2p = kp = |w′|, we get gcd(p, q) ‖ w′ by Lemma 5. Hence, we have
gcd(p, q) ≥ period(w′) = p, which claims gcd(p, q) = p i.e. p | q. However, this
contradicts to the assumption p < q < 2p.
�
Corollary 3. The number of prefix periods of w ∈ (Σ ∪ Π)∗ is at most log2 |w|.

4 Proposed Algorithm

In this section, we propose a sublinear-extra-space algorithm for the parame-
terized matching problem. Throughout this section, let T and P be p-strings
whose lengths are n and m respectively, and let k := |ΠP | + 2. Besides, we sup-
pose ΠP 	= ∅. Our algorithm is an extension of Galil and Seiferas’s exact string
matching algorithm [11] and runs in O(|ΠP |n+m) time and O(log m+|Π|) extra
space. When |Π| = |ΠP | = 1, our algorithm behaves exactly as theirs.

Firstly, we introduce a method for testing whether two p-strings match. While
it is common to use the prev-encoding [4] for this purpose, it is not suitable for
our goal since it requires additional space proportional to the input size. Thus
we use an alternative method as follows, which requires only O(|Π|) extra space.

Lemma 11. Consider a prefix x of P and y ∈ (Σ ∪ Π)∗ with x ≡ y and any
a, b ∈ Σ ∪ Π. We have xa ≡ yb if and only if one of the following holds:

1. a ∈ Σ and a = b,
2. a ∈ Π and firstP (a) ≥ |x| and b ∈ Π and county(b) = 0,
3. a ∈ Π and firstP (a) < |x| and y[firstP (a)] = b,

where firstP : Π → N and county : Π → N are defined as follows:

firstP (c) =

{
min{i ∈ N : i < |P | and P [i] = c} if c ∈ ΠP ,
|P | if c ∈ Π \ ΠP ,

county(c) = |{i ∈ N : i < |y| and y[i] = c}|

Proof. By definition, we have xa ≡ yb if and only if b = f(a), where f satisfies
y = f(x). If a is a constant character or appears in x, the value f(a) is determined
(Cases 1 and 3). Otherwise, b must be a parameter character not appearing in
y (Case 2).
�

Let MATCH(x, y, a, b,firstP , county) be the function which returns whether
xa ≡ yb under the condition x ≡ y using Lemma 11. Clearly, one can com-
pute it in constant time if firstP and county are given as arrays. Note that
firstP can be computed in O(m) time and O(|Π|) space.

Efficient Parameterized Pattern Matching in Sublinear Space 279

Algorithm 1: PREFIX PERIODS

Input: P ∈ (Σ ∪ Π)∗

Output: a list of all prefix periods of P and their reaches
1 begin
2 k ← |ΠP | + 2
3 first ← firstP
4 PP ← empty list // PP is a list of pairs (val, reach)

5 idx ← −1
6 (p, r) ← (1, 1)
7 foreach a ∈ Π do count [a] ← 0
8 max reach ← 0
9 while kp ≤ |P | do

10 while MATCH(P [0 : r − p], P [p : r], P [r − p], P [r],first , count) do
11 Increment count [P [r]]
12 r ← r + 1

13 if idx + 1 < |PP | and PP [idx + 1].val ≤ r−p
k

then Increment idx

14 if r ≥ kp and r > max reach then
15 Push (p, r) into PP

16 max reach ← max{max reach, r}

17 if 0 ≤ idx < |PP | and PP [idx].reach ≥ r − p > 0 then
18 for p ≤ i < p + PP [idx].val do Decrement count [P [i]]
19 p ← p + PP [idx].val

20 else
21 for p ≤ i < r do Decrement count [P [i]]

22 p ← p + 	 r−p
k

 + 1
23 r ← p

24 until PP [idx].val ≤ r−p
k

or idx = −1 do Decrement idx

25 return PP

4.1 Pattern Preprocessing

In this section, we show the preprocessing for the pattern P for our matching
algorithm. The output of the preprocessing is the list of pairs of a prefix period of
P (in ascending order) and its reach, just like Galil and Seiferas [11] introduced
for exact string matching. The list plays a similar role to the border array in the
parameterized Knuth-Morris-Pratt algorithm [2]. While border array uses Θ(m)
space to memorize the shortest periods of all prefixes of P , the prefix period list
requires only O(log m) space by Corollary 3.

We present the preprocess in Algorithm 1. The algorithm finds prefix periods
and their reaches in order from the smallest to the largest and put them into
the list PP . By PP [idx].val and PP [idx].reach, we denote the idx -th prefix
period and its reach in PP , respectively. Starting with p = 1, it monotonically

280 H. Ideguchi et al.

increases p and checks whether an integer p is a prefix period based on Lemma 9.
Throughout the algorithm run, we maintain the invariant

p ‖ P [0 : r], i.e., P [0 : r − p] ≡ P [p : r] (♠)

We calculate reachP (p) by increasing r as long as P [0 : r − p] ≡ P [p : r]
holds (Lines 10–13). To let the function MATCH decide P [0 : r − p] ≡ P [p : r],
we use two auxiliary arrays first and count that satisfy first [a] = firstP (a)
and count [a] = countP [p:r](a), defined in Lemma 11. Moreover, we maintain
the variable max reach to be the largest reach calculated so far. By Lemma 9,
the condition of Line 14 is satisfied if and only if p is a prefix period. One can
construct the list PP by incrementing p one by one, but it takes too much time.
Instead, we use a more efficient way explained later to make the algorithm run
in linear time.

The following lemmas justify the behavior of our algorithm.

Lemma 12. Throughout Algorithm 1, the value of the variable idx is always
the upper bound that satisfies PP [idx].val ≤ r−p

k . If there exists no such index,
we have idx = −1.

Proof. The variable idx is updated in conjunction with p and r to preserve the
condition. See Lines 13 and 24.
�
Lemma 13. Let ♠ hold at Line 17 in Algorithm 1. If period(P [0 : r − p]) ≤
r−p

k , we have PP [idx].val = period(P [0 : r − p]).

Proof. Let w′ := P [0 : r − p], p′ := period(w′), p′′ := PP [idx].val , and w′′ =
P [0 : kp′′]. By the assumption, p′ is a prefix period of P . Additionally, we have
p′ ≤ p since p ‖ w′. Thus p′ is in the list PP , and thus we have p′ ≤ p′′ by
Lemma 12. On the other hand, we have period(w′′) = p′′ by Lemma 8. Since
|w′′| = kp′′ ≤ r − p = |w′|, we have period(w′′) ≤ period(w′), i.e. p′′ ≤ p′. Hence
we get p′ = p′′.
�
Lemma 14. Let ♠ hold at Line 17 in Algorithm 1. We have PP [idx].reach ≥
r − p ⇐⇒ period(P [0 : r − p]) ≤ r−p

k .

Proof. Let w′ := P [0 : r − p] and p′ := PP [idx].val .
(=⇒) We have p′ ‖ w′ by the assumption. Then period(w′) ≤ p′ ≤ r−p

k holds
by Lemma 12.
(⇐=) By Lemma 13, we have p′ = period(w′). Then PP [idx].reach =
reachP (p′) = reachP (period(w′)) ≥ |w′| = r − p.
�

Now, we show that the invariant ♠ always holds.

Lemma 15. Throughout Algorithm 1, we have P [0 : r − p] ≡ P [p : r].

Proof. One must see the condition preserved at the lines in which p or r is
updated. The update at Lines 22–23 is trivial. Line 12 preserves the condition,
ensured by the condition of Line 10. For Line 19, let q := PP [idx].val . Since q =

Efficient Parameterized Pattern Matching in Sublinear Space 281

period(P [0 : r − p]) by Lemma 13, we have P [0 : r − (p + q)] ≡ P [q : r − p] ≡
P [p + q : r]. Note that Lemma 13 requires ♠ only at Line 17, so the argument
does not circulate.
�

The following lemma plays a key role to avoid incrementing p one by one.

Lemma 16. Consider P ∈ (Σ ∪ Π)∗, p ∈ N
+ and let r := reachP (p). Then, no

prefix period q of P exists such that p < q < p + period(P [0 : r − p]).

Proof. We use Lemma 2 for x := P [p : r], y := P [0 : r − p], δ := q − p to obtain
P [q : r] 	≡ P [0 : r − q], which means q ∦ P [0 : r]. Thus we have reachP (q) < r =
reachP (p), which implies that q is not a prefix period of P by Lemma 9.
�

We now present the way to compute the list of prefix periods efficiently, in
which we skip calculating reachP (p) if we are sure that p is not a prefix period.
For realizing an efficient shift, we maintain a variable idx so that it points at the
largest index of PP such that PP [idx].val ≤ r−p

k (Lemma 12). The shift amount
is determined in the following manner. If PP [idx].reach ≥ r − p > 0 at Line 17,
Lemmas 14 and 13 imply PP [idx].val = period(P [0 : r − p]). Hence, Lemma 16
justifies the shift amount PP [idx].val of p at Line 19. On the other hand, if
PP [idx].reach < r − p, by Lemma 14, we have period(P [0 : r − p]) > r−p

k . This
justifies the shift � r−p

k � + 1 of p at Line 22 again by Lemma 16. If r − p = 0,
then p is incremented by just one.

Now, we show that the algorithm runs in O(m) time. Firstly, notice that the
while loops at Line 9 and 10 are repeated only O(m) times in total, since the
quantity kp + r keeps increasing and kp + r ≤ k · m

k + m = O(m). Hence, the
fact we must show is that decrementing count and idx at Line 18, 21, and 24
takes O(m) time in total. As their values are always greater than or equal to
their initial values, the number of decrements does not exceed the number of
increments, which is O(m) since they are in Line 11–13.

Theorem 1. All prefix periods of P and their reaches can be calculated in O(m)
time and O(log m + |Π|) extra space.

4.2 Searching for Parameterized Matches

Our matching algorithm is shown in Algorithm 2. As it is the case for the Galil-
Seiferas algorithm, it resembles the preprocess. Now, the invariants in Algo-
rithm 2 are obtained by replacing p, r, and P [p : r] in Lemma 12–15 with i, j,
and T [i : j], respectively. Particularly, by the invariant that P [0 : j − i] ≡ T [i : j],
one can find matching positions i when j = i+ |P | (Line 13). The shift amounts
are also justified by using Lemma 2 for x := T [i : j] and y := P [0 : j − i], whose
conclusion T [i + δ : j] 	≡ P [0 : j − i − δ] implies T [i + δ : i + δ + |P |] 	≡ P for
any δ smaller than the shift by the algorithm. We can show that the searching
phase (Line 8–22) runs in O(|ΠP |n) time in the same way as for the preprocess
with the increasing quantity ki + j.

Theorem 2. The parameterized matching problem can be solved in O(|ΠP |n +
m) time and O(log m + |Π|) extra space.

282 H. Ideguchi et al.

Algorithm 2: SEARCH
Input: T, P ∈ (Σ ∪ Π)∗

Output: all 0 ≤ i ≤ |T | − |P | such that T [i : i + |P |] ≡ P
1 begin
2 k ← |ΠP | + 2
3 first ← firstP
4 PP ← PREFIX PERIODS(P)
5 idx ← −1
6 (i, j) ← (0, 0)
7 foreach a ∈ Π do count [a] ← 0
8 while i < |T | − |P | do
9 while MATCH(P [0 : j − i], T [i : j], P [j − i], T [j],first , count) do

10 Increment count [T [j]]
11 j ← j + 1

12 if idx + 1 < |PP | and PP [idx + 1].val ≤ j−i
k

then Increment idx

13 if j − i = |P | then
14 output i

15 if 0 ≤ idx < |PP | and PP [idx].reach ≥ j − i > 0 then
16 for i ≤ u < i + PP [idx].val do Decrement count [T [u]]
17 i ← i + PP [idx].val

18 else
19 for i ≤ u < j do Decrement count [T [u]]

20 i ← i + 	 j−i
k

 + 1
21 j ← i

22 until PP [idx].val ≤ j−i
k

or idx = −1 do Decrement idx

5 Conclusion and Future Work

We studied the periodicity of parameterized strings and extended the Galil-
Seiferas algorithm [11] for parameterized matching. The proposed algorithm
requires only sublinear extra space. The properties of periods of parameterized
strings we presented in this paper may be used to design more space-efficient
algorithms for parameterized matching, as Galil and Seiferas [12] used prefix
periods to design a constant-extra-space algorithm for exact matching.

Acknowledgements. The authors deeply appreciate the anonymous reviewers help-
ful comments. This work was supported by JSPS KAKENHI Grant Numbers
JP19K20208 (DH), JP18K11150 (RY), JP20H05703 (RY), JP23K11325 (RY), and
JP21K11745 (AS).

Efficient Parameterized Pattern Matching in Sublinear Space 283

References

1. AdelsonVelskii, M., Landis, E.M.: An algorithm for the organization of information.
Joint Publications Research Service Washington DC, Technical report (1963)

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994)

3. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discret. Appl. Math. 156(9), 1389–1398 (2008)

4. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

5. Crochemore, M.: String-matching on ordered alphabets. Theor. Comput. Sci.
92(1), 33–47 (1992)

6. Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 650–674
(1991)

7. Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: Proceedings of the Prague Stringology Confer-
ence 2008, pp. 84–94 (2008)

8. Diptarama, Katsura, T., Otomo, Y., Narisawa, K., Shinohara, A.: Position heaps
for parameterized strings. In: Proceedings of the 28th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2017), pp. 8:1–8:13 (2017)

9. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965)

10. Fujisato, N., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Right-to-left
online construction of parameterized position heaps. In: Proceedings of the Prague
Stringology Conference 2018 (PSC 2018), pp. 91–102 (2018)

11. Galil, Z., Seiferas, J.: Saving space in fast string-matching. SIAM J. Comput. 9(2),
417–438 (1980)

12. Galil, Z., Seiferas, J.: Time-space-optimal string matching. J. Comput. Syst. Sci.
26(3), 280–294 (1983)

13. Knuth, D.E., Morris, J.H., Jr., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

14. Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix trees.
In: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, pp. 631–638 (1995)

15. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

16. Mendivelso, J., Thankachan, S.V., Pinzón, Y.: A brief history of parameterized
matching problems. Discret. Appl. Math. 274, 103–115 (2020)

17. Nakashima, K., et al.: Parameterized DAWGs: efficient constructions and bidirec-
tional pattern searches. Theor. Comput. Sci. 933, 21–42 (2022)

18. Nakashima, K., Hendrian, D., Yoshinaka, R., Shinohara, A.: An extension of linear-
size suffix tries for parameterized strings. In: SOFSEM 2020 Student Research
Forum, pp. 97–108 (2020)

19. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
Symposium on Switching and Automata Theory, pp. 1–11 (1973)

Largest Repetition Factorization
of Fibonacci Words

Kaisei Kishi1(B), Yuto Nakashima2 , and Shunsuke Inenaga2

1 Department of Information Science and Technology, Kyushu University,
Fukuoka, Japan

kishi.kaisei.216@s.kyushu-u.ac.jp
2 Department of Informatics, Kyushu University, Fukuoka, Japan

{nakashima.yuto.003,inenaga.shunsuke.380}@m.kyushu-u.ac.jp

Abstract. A factorization of a string w is said to be a repetition fac-
torization of w if every factor in the factorization is a repetition (i.e.,
the factor has a period shorter than or equal to the half of its length).
Inoue et al. [TOCS 2022] showed how to compute the largest/smallest
repetition factorization of a given string w of length n in O(n logn) time
and O(n) space, by reducing the problems to the longest/shortest path
problems on the repetition graph built on w. Inoue et al. also considered
repetition factorizations on Fibonacci words, and posed a conjecture on
the size SFk of the largest repetition factorization of the k-th Fibonacci
word Fk. In this work, we provide a complete proof for this problem, by
showing that SFk is given by the recurrence SFk = SFk−1 + SFk−2 + 1
for every k ≥ 15.

1 Introduction

Various factorizations (or parsings) of strings play important roles in stringol-
ogy and are well-studied. A sequence of m-strings f1, . . . , fm is said to be a
factorization of a string w if w = f1 · · · fm holds. We call each fi a factor of
the factorization and m the size of the factorization. One of the most signifi-
cant applications of factorizations is data compression. For instance, each of the
factorizations in the Lempel-Ziv family [9–12], lexparse [8] produces a compact
representation of a string whose size depends on the size of the factorization (see
also a nice survey [7]). Also, many variants of string factorizations by combinato-
rial properties or structures are considered, such as the Lyndon factorization [1],
palindromic factorizations, etc.

In this paper, we deal with a factorization such that each factor is a repet-
itive structure called a repetition. Factorizations by repetitive structures were
studied by Dumitran et al. [2]. They considered the two types of factorizations
called square factorizations and repetition factorizations, which are factorized
into squares and repetitions, respectively. For square factorizations, they pre-
sented an O(n log n)-time algorithm that computes a square factorization of a
given string of length n. After that, a linear-time algorithm on the word RAM
model of machine word size Ω(log n) were presented by Matsuoka et al. [6]. For
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 284–296, 2023.
https://doi.org/10.1007/978-3-031-43980-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_23&domain=pdf
http://orcid.org/0000-0001-6269-9353
http://orcid.org/0000-0002-1833-010X
https://doi.org/10.1007/978-3-031-43980-3_23

Largest Repetition Factorization of Fibonacci Words 285

repetition factorizations, Dumitran et al. [2] claimed that a repetition factoriza-
tion of a given string of length n can be computed in O(n) time.

Inoue et al. [4] extended the repetition factorization problem. The new prob-
lem aims to find the largest/smallest repetition factorizations with the max-
imum/minimum number of factors, respectively. They proposed an algorithm
that computes an arbitrary such factorization in O(n log n) time and O(n)
space using a reduction from the largest/smallest factorization problems to the
longest/shortest path problems on a graph representing repetitive structures in
the input text. They also showed that the size of the graph is in Θ(n log n) when
the input string is the Fibonacci word. This bound introduced a problem about
the size of the largest/smallest repetition factorizations of the Fibonacci word.
They proved that the size of the smallest repetition factorization of the k-th
Fibonacci word is 2 for any k ≥ 8, and also conjectured that the size SFk

of the
largest repetition factorization of the k-th Fibonacci word Fk can be represented
as SFk

= SFk−1 + SFk−2 + 1 for any sufficiently large k.
In this paper, we proved that the conjecture is true. More formally, SFk

=
SFk−1 +SFk−2 +1 holds for k ≥ 15. The main ideas for our proof can be explained
as follows. First, we give a parsing (representing a rough repetition factorization)
by specific substrings of the Fibonacci word. Because every specific substring has
a repetition factorization, we consider the sum of the size of the largest repetition
factorization of every phrase of the parsing as a candidate of the size of the largest
repetition factorization of the Fibonacci word. Next, we show that the length of
factors of the largest repetition factorization is at most 18. Then, by using the
property, we prove that the size of other repetition factorizations cannot exceed
the candidate.

The rest of this paper is organized as follows. First, we give notation and
definitions on strings in Sect. 2. In Sect. 3, we present the candidates of the
largest repetition factorizations. Finally, in Sect. 4, we describe the maximality
of the size of the candidate repetition factorization.

2 Preliminaries

Strings. Let Σ be a binary alphabet. An element of Σ∗ is called a string.
The length of a string w is denoted by |w|. The empty string ε is a string of
length 0, namely, |ε| = 0. Let Σ+ be the set of non-empty strings, i.e., Σ+ =
Σ∗ − {ε}. For a string w = xyz, x, y and z are called a prefix, substring, and
suffix of w, respectively. The i-th character of a string w is denoted by w[i],
where 1 ≤ i ≤ |w|. For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j]
denote the substring of w that begins at position i and ends at position j. For
convenience, let w[i..j] = ε when i > j. Pre(w, k) and Suf (w, k) denote the
prefix and suffix of length k of w, respectively. Namely, Pre(w, k) = w[1..k] and
Suf (w, k) = w[|w| − k + 1..|w|]. For a string w and an integer k ≥ 2, let w1 = w
and wk = wwk−1.

Repetitions and Factorizations. An integer p ≥ 1 is said to be a period of
a string w if w[i] = w[i + p] for all 1 ≤ i ≤ |w| − p. If p is a period of a string

286 K. Kishi et al.

w with p < |w|, then w[1..|w| − p] = w[p + 1..|w|] is said to be a border of w.
A non-empty string s is said to be a repetition, if s = xkx′ for some string x,
some integer k ≥ 2, and some proper prefix x′ of x. A sequence r1, . . . , rm of non-
empty strings is said to be a repetition factorization of a string w, if w = r1 · · · rm

and each ri (1 ≤ i ≤ m) is a repetition. Each ri in a repetition factorization
r1, . . . , rm of a string w is called a factor of the factorization. The size of the
repetition factorization is the number m of factors in the factorization. We refer
to a repetition factorization that has the maximum number of factors as a largest
repetition factorization. In this paper, we will represent a factorization (parsing)
as a concatenation of substrings for simplicity. For example, consider the string
w = abaabaabababababa. There are ten largest repetition factorizations of w as
follows.

abaaba|abab|abababa abaaba|ababa|bababa abaaba|ababab|ababa
abaaba|abababa|baba abaabaa|baba|bababa abaabaa|babab|ababa
abaabaa|bababa|baba abaabaab|abab|ababa abaabaab|ababa|baba
abaabaaba|baba|baba

We remark that there exist strings that have no repetition factorization.
However, the k-th Fibonacci word has a repetition factorization for every k ≥
8 [4].

Fibonacci Words. The k-th (finite) Fibonacci word Fk(a, b) over an alphabet
{a, b} is defined as follows: F1(a, b) = b, F2(a, b) = a, and Fk(a, b) = Fk−1(a, b) ·
Fk−2(a, b) for any k > 2 (cf. [5]). Let fk be the length of k-th Fibonacci word.
In this paper, we sometimes use strings u, v as characters in the notation of
Fibonacci words. For example, F6(u, v) = uvuuvuvu for any strings u, v. We
also deal with the infinite Fibonacci word F(a, b) = limk→∞ Fk(a, b) over an
alphabet {a, b}. We will drop the alphabet whenever it is clear from context.

Regular Expression. Let A be the set of special symbols { (,), ε, ∅, ·, +, ∗}.
Notice that Σ ∩ A = ∅. A regular expression over Σ is a string over Σ ∪ A that
is recursively defined as follows.

– a (∈ Σ), ε, and ∅ are regular expressions.
– For any regular expressions x, y, (x · y) is a regular expression.
– For any regular expressions x, y, (x + y) is a regular expression.
– For any regular expression x, x∗ is a regular expression.

For any sets W,Z of strings, let W ·Z = {wz | w ∈ W, z ∈ Z}. A regular expres-
sion represents a (regular) language which will be explained in the following. For
any regular expression x, let ‖x‖ denotes a language represented by x.

– For any a ∈ Σ, ‖a‖ = {a}.
– ‖ε‖ = {ε}.
– ‖∅‖ = ∅.
– For any regular expressions x, y, ‖(x · y)‖ = ‖x‖ · ‖y‖.
– For any regular expressions x, y, ‖(x + y)‖ = ‖x‖ ∪ ‖y‖.
– For any regular expression x, ‖x∗‖ = ‖x‖∗.

We will sometimes drop (,) if it is clear. We say that a string w matches a
regular expression x if w ∈ ‖x‖.

Largest Repetition Factorization of Fibonacci Words 287

3 Candidate of Largest Factorizations

In this paper, we show the size of the largest repetition factorizations of Fibonacci
words. Our goal is stated in the following theorem.

Theorem 1. Let Sw be the size of the largest repetition factorization of a string
w. Then SFk

= SFk−1 + SFk−2 + 1 holds for every k ≥ 15.

In this section, we explain a repetition factorization that has the largest
number of factors. Notice that the proof of its maximality will be given in Sect. 4.

First, we introduce a base-factor parsing of finite Fibonacci words. Roughly
speaking, we consider specific substrings of Fibonacci words and represent
Fibonacci words as a concatenation of the substrings. First, we present a set
of specific substrings which are called base-factors in our parsing.

Definition 1 (Base-factors). Let BFs be the set of base-factors. The seven
elements of BFs are given in the following.

oddpre = F8 oddsuf = baabaab
evenpre = F12 · F8 evensuf = baabaab · F12

F−
11 = F11[f8 + 1..f11 − 7] F−

13 = F13[f8 + 1..f13 − 7]
core = baabaab · F12 · F8

By the definition, we can see the following relations:

core = evensuf · oddpre = oddsuf · evenpre,
F11 = oddpre · F−

11 · oddsuf,
F13 = oddpre · F−

13 · oddsuf,
oddpre · F−

13 = evenpre · F−
11.

Next, we consider a parsing of Fk with BFs. We give a parsing by using a
regular expression such that the largest repetition factorization which we will
propose is a refinement of this parsing:

RegΣ = (oddpre+ evenpre) · (F−
11 + F−

13) · (core · (F−
11 + F−

13))
∗ · (oddsuf + evensuf).

Due to a formal description of the parsing, we use meta-strings such that each
meta-character corresponds to a base-factor. Let Π = {boddpre, . . . , bF−

13
} be an

alphabet such that Σ ∩ Π = ∅. We also consider a function g : BFs → Π as
follows.

g(oddpre) = boddpre g(oddsuf) = boddsuf
g(evenpre) = bevenpre g(evensuf) = bevensuf
g(F−

11) = bF−
11

g(F−
13) = bF−

13

g(core) = bcore

288 K. Kishi et al.

We extend the regular expression for Π as follows:

RegΠ = (boddpre +bevenpre) · (bF−
11

+bF−
13

) · (bcore · (bF−
11

+bF−
13

))∗ · (boddsuf +bevensuf).

Then we can give a rough parsing of a largest repetition factorization (Defi-
nition 2) because every base-factor has a repetition factorization (cf. Fact 1),
and we also show that Fk can be written as a concatenation of base-
factors (Lemma 1).

Definition 2 (Base-factor parsing (BFparse)). Let w be a string over Σ. A
factorization w1, . . . , wk of w is a base-factor parsing of w if there exists a string
x ∈ ‖RegΠ‖ that has g(w1) · · · g(wk) as a substring.

Lemma 1. For every k ≥ 15, Fk ∈ ‖RegΣ‖.
Proof. We show that Fk has a base-factor parsing by induction on k. In other
words, we show the following parsing BFparse(Fk) of Fk:

BFparse(Fk) =
{

oddpre · F−
13 · Xk · core · F−

13 · oddsuf for odd k (1)
evenpre · F−

11 · Xk · core · F−
11 · evensuf for even k (2)

where Xk is a base-factor parsing such that g(Xk) ∈ ‖(bcore · (bF−
11

+ bF−
13

))∗‖.
For k = 15,

F15 = F13 · F12 · F13 = oddpre · F−
13 · oddsuf · F12 · oddpre · F−

13 · oddsuf
= oddpre · F−

13 · core · F−
13 · oddsuf.

Thus Eq. (1) holds for k = 15 since X15 = ε.
For k = 16,

F16 = F15 · F14 = oddpre · F−
13 · core · F−

13 · oddsuf · F14

= evenpre · F−
11 · core · F−

13 · oddsuf · F12 · F11 · F12

= evenpre · F−
11 · core · F−

13 · oddsuf · F12 · oddpre · F−
11 · oddsuf · F12

= evenpre · F−
11 · core · F−

13 · core · F−
11 · evensuf.

Thus Eq. (2) holds for k = 16 since X16 = core · F−
13.

Suppose that there exists a base-factor parsing that is represented by Eqs. (1)
and (2) for every k < c for some integer c ≥ 17. Let c be an odd. By the induction
hypothesis, there are base-factor parsings as follows:

BFparse(Fc−1) = evenpre · F−
11 · Xc−1 · core · F−

11 · evensuf,
BFparse(Fc−2) = oddpre · F−

13 · Xc−2 · core · F−
13 · oddsuf.

Then,

Fc = evenpre · F−
11 · Xc−1 · core · F−

11 · evensuf
· oddpre · F−

13 · Xc−2 · core · F−
13 · oddsuf

= oddpre · F−
13 · Xc−1 · core · F−

11 · core
· F−

13 · Xc−2 · core · F−
13 · oddsuf.

Largest Repetition Factorization of Fibonacci Words 289

Since Xc−1 · core · F−
11 · core · F−

13 · Xc−2 is a base-factor parsing that corresponds
to (bcore · (bF−

11
+ bF−

13
))∗, let Xc = Xc−1 · core · F−

11 · core · F−
13 · Xc−2. Then

BFparse(Fc) = oddpre · F−
13 · Xc · core · F−

13 · oddsuf.

Let c be an even. We can prove the statement for this case in a similar way,
where Xc = Xc−1 · core · F−

13 · core · F−
11 · Xc−2. Therefore, the lemma holds for

any k ≥ 15.
�
We refer to the BFparse described in the lemma as canonical BFparse of the

Fibonacci word. Let us denote the canonical parsing of Fk by Fibk. Formally,
the equations are given as follows.

Fibk =

{
oddpre · F−

13 · Xk · core · F−
13 · oddsuf for odd k

evenpre · F−
11 · Xk · core · F−

11 · evensuf for even k

Xk =

{
Xk = Xk−1 · core · F−

11 · core · F−
13 · Xk−2 for odd k

Xk = Xk−1 · core · F−
13 · core · F−

11 · Xk−2 for even k

In the rest of this section, we give several properties and notations on BFs
and base-factor parsings.

Fact 1. Every base-factor has a repetition factorization. The sizes of largest
repetition factorizations of base-factors are Soddpre = 4, Soddsuf = 1, Sevenpre = 32,
Sevensuf = 29, SF−

11
= 12, SF−

13
= 40, and Score = 34. Note that Score = Sevensuf +

Soddpre + 1 = Soddsuf + Sevenpre + 1 (this structure gives an additional factor).

Example 1. The largest repetition factorizations of oddpre, evenpre, evensuf, and
F−
11 are as follows.

oddpre abaaba|baabaa|baba|ababa

evenpre

abaaba|baabaa|baba|ababa|abaaba|baabaab|abaaba|baabaa|baba|
abab|aabaab|abaaba|abab|aa|baba|abaaba|baabaa|baba|abab|
aabaab|abaaba|baabaa|baba|abaaba|baababaaba|abab|aa|baba|
abaaba|baabaa|baba|ababa

evensuf

baabaab|abaaba|baabaa|baba|ababa|abaaba|baabaab|abaaba|
baabaa|baba|abab|aabaab|abaaba|abab|aa|baba|abaaba|baabaa|
baba|abab|aabaab|abaaba|baabaa|baba|abaaba|baababaaba|abab|
aa|baba

F−
11

abaaba|baabaab|abaaba|baabaa|baba|abab|aabaab|
abaaba|abab|aa|baba|abaaba

Fact 2. A string babaabaababaababa (of length 17) is a suffix of oddpre, evenpre,
core, and a string aababaababaabaaba (of length 17) is a suffix of F−

11, F
−
13.

290 K. Kishi et al.

We can check the above facts by a computer search. In the rest of this paper,
for a base-factor x, L(x) denote an arbitrary fixed largest repetition factorization
of x (i.e., Fact 1). If a string x has a base-factor parsing x1, . . . , xi, then x
has a repetition factorization L(x1), . . . ,L(xi). We call this factorization the
repetition factorization of a base-factor parsing x1, . . . , xi. Especially, we call
the repetition factorization of Fibk the candidate repetition factorization of Fk.
Then we consider the size of the specific repetition factorization as follows.

Definition 3. Let X be a base-factor parsing of a string x ∈ Σ∗. We define BX

as the size of the repetition factorization of X.

In the next section, we prove that the candidate factorization of Fk is a
largest repetition factorization. Since BFibk

≤ SFk
is clearly holds, our task is to

show BFibk
≥ SFk

. We conclude this section with the following property about
the candidate repetition factorization of Fk.

Lemma 2. For every k ≥ 17, BFibk
= BFibk−1 + BFibk−2 + 1.

Proof. Due to the discussions in the proof of Lemma 1, we replaced evenpre ·F−
11

with oddpre ·F−
13 and evensuf ·oddpre with core for odd k. In the former case, the

number of factors cannot be changed since Sevenpre+SF−
11

= Soddpre+SF−
13

= 44. In
the latter case, the number of factors increases by one since Sevensuf+Soddpre+1 =
Score = 34. Thus BFibk

= BFibk−1 +BFibk−2 +1 holds for any odd k. We can prove
for even k in a similar argument.
�

4 Maximality of Candidate Repetition Factorizations

In this section, we prove that the candidate repetition factorization of Fk which
was given in the previous section (Definition 3) is a largest repetition factoriza-
tion of Fk. Namely, we show the following lemma.

Lemma 3. For every k ≥ 17, BFibk
= SFk

.

Clearly, by Lemmas 2 and 3, SFk
= SFk−1 +SFk−2 +1 holds for every k ≥ 17.

By a computer search, we know that S13 = 45, S14 = 73, S13 = 119, S13 = 193
(cf. [4]). This implies that SFk

= SFk−1 + SFk−2 + 1 also holds for k = 15, 16.
Then we can obtain our main result Theorem 1. This section is organized as
follows. In Subsect. 4.1, we show an upper bound of the length of factors of the
largest repetition factorizations of Fibonacci words. Finally, in Subsect. 4.2, we
present our main result by using careful analysis for the candidate repetition
factorization.

4.1 Upper Bound of the Length of Factors

We give the upper bound of the length of factors of the largest repetition factor-
izations of Fibonacci words (Lemma 6). To prove the lemma, we use Lemma 5.

Largest Repetition Factorization of Fibonacci Words 291

Lemma 4 (Lemma 2.2 of [3]). For any integers � and k satisfying 0 ≤ � < k,

Fk(a, b) = Fk−�(F�+2(a, b), F�+1(a, b)).

Moreover, F(a, b) = F(Fk+1(a, b), Fk(a, b)) for any k ≥ 1.

Lemma 5. Let k ≥ 3, and dk be an integer satisfying fk < dk ≤ fk+1. Then
every substring of length dk of F occurs in F [1..fk+2 + dk − 1].

Proof. By Lemma 4, F can be represented as

F = Fk+2 · Fk+1 · Fk+2 · Fk+2 · Fk+1 · Fk+2 · Fk+1 · Fk+2 · · ·

for every k. Let x be a substring of length dk of F .

1. Suppose that x is a substring of Fk+2. Then x has an occurrence in F [1..fk+2+
dk − 1] since Fk+2 is a prefix of F .

2. Suppose that x is a substring of Fk+1. Then x has an occurrence in F [1..fk+2+
dk − 1] since Fk+1 is also a prefix of F .

3. Suppose that x has an occurrence in Fk+2 · Fk+1 that contains the boundary
of Fk+2 and Fk+1. Then x has an occurrence in F [1..fk+2 + dk − 1] since
dk ≤ fk+1 and Fk+2 · Fk+1 is also a prefix of F .

4. Suppose that x has an occurrence in Fk+1 · Fk+2 that contains the boundary
of Fk+1 and Fk+2. Then x is a substring of Fk+1 · Fk+1 since Fk+1 · Fk+2 =
Fk+1 · Fk+1 · Fk. Moreover, F has Fk+1 · Fk+1 as a prefix because

F = Fk+2 · Fk+1 · · · = Fk+1 · Fk · Fk+1 · · ·
= Fk+1 · Fk · (Fk−1 · Fk−2 · Fk−1) · · ·
= Fk+1 · Fk+1 · Fk−2 · Fk−1 · · · .

Thus x has an occurrence in F [1..fk+2 + dk − 1].

Therefore the lemma holds.
�
Lemma 6. For any largest repetition factorization of Fibonacci words, the
length of every factor is at most 18.

Proof. Let us consider a substring of length d of F where 19 ≤ d ≤ 37. By
Lemma 5, every substring of length d of F is a substring of F [1..125] since
f9 < 37 ≤ f10. By an exhaustive enumeration of length-d substrings of F [1..125],
we can see that the size of the largest repetition factorization of every length-d
substring of F is at least 2. This implies that the size of the largest repetition
factorization of substring of length more than 37 of F is at least 4 (since each sub-
string can be represented as a concatenation of substrings of length in [19, 37]).
Thus every substring of length more than 18 of F has a repetition factorization
of size at least 2. Assume on the contrary that a largest repetition factorization
of Fk has a factor of length more than 18. Then the factor can be factorized into
at least 2 repetitions, a contradiction. Therefore the lemma holds.
�

292 K. Kishi et al.

4.2 Analysis of Candidate Factorizations

To prove Lemma 3, we consider other parsings which can be obtained by shift-
ing boundaries of candidate parsings. Furthermore, we show that the size of
the largest repetition factorizations of any of such parsings cannot exceed the
candidate.

First, by Lemma 6, a simple but a significant property for our proof is given
as the following lemma.

Lemma 7. For any substring xy of Fk such that Sx, Sy ≥ 1, there is an end-
position of a phrase of any largest repetition factorization of Fk in an interval
[|x| − 17, |x|] of xy.

If we know SPre(x,|x|−i) for all i ∈ [0, 17] and SSuf (x,i)·y for all i ∈ [0, 17], then
we can obtain Sxy as follows: Sxy = max0≤i≤17(SPre(x,|x|−i) +SSuf (x,i)·y). In our
proof, we use this idea for every boundary of base-factor parsings. Now we will
define such strings which are obtained by shifting boundaries in the following
way. We consider shifted base-factors in a base-factor parsing.

Definition 4 (Shifted base-factors (SBF)). Let X = t1, . . . , tm be a base-
factor parsing of a string x in ‖RegΣ‖ and Y = tp . . . tq be a base-factor parsing
of y which is a substring of x (1 ≤ p ≤ q ≤ m). For any integers i, j satisfying
1 ≤ i, j ≤ 18, the shifted base-factor SBFX,Y (i, j) is defined as follows:

SBFX,Y (i, j) = Suf (tp−1, i − 1) · Pre(y, |y| − j + 1).

Notice that Suf (tp−1, i − 1) = ε if p = 1 and i = 1, SBFX,Y (i, j) is undefined if
p = 1 and i ≥ 2, or p = m and j ≥ 2.

Lemma 8. Let X = t1, . . . , tm be a base-factor parsing of a string x in ‖RegΣ‖
and Y = tp . . . tq be a base-factor parsing of y which is a substring of x (1 ≤ p ≤
q ≤ m). If SBFX,Y (i, j) is defined, then the following equations hold.

1. If tp ∈ {F−
11,F

−
13}, then

SBFX,Y (i, j) = Suf (aababaababaabaaba, i − 1) · Pre(y, |y| − j + 1).
2. If tp ∈ {oddpre, evenpre, core}, then

SBFX,Y (i, j) = Suf (babaabaababaababa, i − 1) · Pre(y, |y| − j + 1).
3. If tp ∈ {oddsuf, evensuf}, then

SBFX,Y (i, 1) = Suf (babaabaababaababa, i − 1) · tp.

Proof. By the definition of parsings, F−
11,F

−
13 appear as even numbered base-

factors in X, and the other factors appear as odd-numbered base-factors in X.
If tp ∈ {F−

11,F
−
13}, then tp−1 ∈ {oddpre, evenpre, core}. Thus Suf (tp−1, i − 1) =

Suf (aababaababaabaaba, i − 1) by Fact 2. If tp = core, then tp−1 ∈ {F−
11,F

−
13}.

On the other hand, tp ∈ {oddpre, evenpre} implies that p = 1 and i = 1. Thus
Suf (tp−1, i − 1) = Suf (babaabaababaababa, i − 1) by Fact 2. Otherwise, tp−1 ∈
{F−

11,F
−
13}, p = q = m, and j = 1. These conditions implies that SBFX,Y (i, 1) =

Suf (babaabaababaababa, i − 1) · tp. Therefore the lemma holds.
�

Largest Repetition Factorization of Fibonacci Words 293

Table 1. MBFcore

i j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 −1 −2 −3 −1 −2 −2 −3 −3 −3 −3 −4 −3 −4 −4 −4 −4 −5

2 0 0 −1 −2 −1 −1 −2 −2 −2 −2 −3 −3 −2 −3 −3 −3 −4 −4

3 0 0 −1 −2 −1 −1 −2 −2 −2 −2 −3 −3 −2 −3 −3 −3 −4 −4

4 0 0 −1 −2 −1 −1 −2 −2 −2 −2 −3 −3 −2 −3 −3 −3 −4 −4

5 1 1 0 −1 0 0 −1 −1 −1 −1 −2 −2 −1 −2 −2 −2 −3 −3

6 0 0 −1 −2 −1 −1 −2 −2 −2 −2 −3 −3 −2 −3 −3 −3 −4 −4

7 1 0 −1 −2 0 −1 −1 −2 −2 −2 −2 −3 −2 −3 −3 −3 −3 −4

8 1 1 0 −1 0 0 −1 −1 −1 −1 −2 −2 −1 −2 −2 −2 −3 −3

9 1 1 0 −1 0 0 −1 −1 −1 −1 −2 −2 −1 −2 −2 −2 −3 −3

10 1 1 0 −1 0 0 −1 −1 −1 −1 −2 −2 −1 −2 −2 −2 −3 −3

11 2 1 0 −1 1 0 0 −1 −1 −1 −1 −2 −1 −2 −2 −2 −2 −3

12 2 2 1 0 1 1 0 0 0 0 −1 −1 0 −1 −1 −1 −2 −2

13 3 2 1 0 2 1 1 0 0 0 0 −1 0 −1 −1 −1 −1 −2

14 1 1 0 −1 0 0 −1 −1 −1 −1 −2 −2 −1 −2 −2 −2 −3 −3

15 2 2 1 0 1 1 0 0 0 0 −1 −1 0 −1 −1 −1 −2 −2

16 3 3 2 1 2 2 1 1 1 1 0 0 1 0 0 0 −1 −1

17 4 3 2 1 3 2 2 1 1 1 1 0 1 0 0 0 0 −1

18 4 4 3 2 3 3 2 2 2 2 1 1 2 1 1 1 0 0

This lemma implies that SBFX,Y (i, j) depends on the first phrase of Y .
Hence, we will use SBFY (i, j) by dropping a subscript X.

Definition 5 (Matrix for base-factors (MBF)). Let t be a base-factor. For
any integers i, j satisfying 1 ≤ i, j ≤ 18, we define a matrix MBFt as follows:

MBFt(i, j) = SSBF t(i,j) − St.

For convenience, SSBF t(i,j) = −∞ if SBF t(i, j) is undefined or SBF t(i, j) has
no repetition factorization.

The matrix for core is given in Table 1 (matrices for other factors are omitted
due to the lack of space).

Intuitively, MBFt(i, j) represents the difference of the size of repetition fac-
torizations between a base factor t and its shifted factor. Since the size and the
number of MBFs are constant, we can check all values in the matrices by an
exhaustive search. Then we can obtain the following fact.

Fact 3 (MBF property). For any integers i, j satisfying 1 ≤ i, j ≤ 18,

– MBFoddpre(i, j) ≤ MBFevenpre(i, j),
– MBFoddsuf(i, j) ≤ MBFevensuf(i, j),
– MBFF−

11
(i, j) ≤ MBFF−

13
(i, j).

294 K. Kishi et al.

Table 2. MCBF
core·F−

13
= MCBF

(core·F−
13)·(core·F

−
13)

(i, j)

i j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 −1 −1 −2 −2 −1 −1 −2 −2 −3 −2 −3 −3 −3 −3 −4 −4 −5

2 0 −1 −1 −2 −2 −1 −1 −2 −2 −3 −2 −3 −3 −3 −3 −4 −4 −5

3 0 −1 −1 −2 −2 −1 −1 −2 −2 −3 −2 −3 −3 −3 −3 −4 −4 −5

4 0 −1 −1 −2 −2 −1 −1 −2 −2 −3 −2 −3 −3 −3 −3 −4 −4 −5

5 1 0 0 −1 −1 0 0 −1 −1 −2 −1 −2 −2 −2 −2 −3 −3 −4

6 0 −1 −1 −2 −2 −1 −1 −2 −2 −3 −2 −3 −3 −3 −3 −4 −4 −5

7 1 0 0 −1 −1 0 0 −1 −1 −2 −1 −2 −2 −2 −2 −3 −3 −4

8 1 0 0 −1 −1 0 0 −1 −1 −2 −1 −2 −2 −2 −2 −3 −3 −4

9 1 0 0 −1 −1 0 0 −1 −1 −2 −1 −2 −2 −2 −2 −3 −3 −4

10 1 0 0 −1 −1 0 0 −1 −1 −2 −1 −2 −2 −2 −2 −3 −3 −4

11 2 1 1 0 0 1 1 0 0 −1 0 −1 −1 −1 −1 −2 −2 −3

12 2 1 1 0 0 1 1 0 0 −1 0 −1 −1 −1 −1 −2 −2 −3

13 3 2 2 1 1 2 2 1 1 0 1 0 0 0 0 −1 −1 −2

14 1 0 0 −1 −1 0 0 −1 −1 −2 −1 −2 −2 −2 −2 −3 −3 −4

15 2 1 1 0 0 1 1 0 0 −1 0 −1 −1 −1 −1 −2 −2 −3

16 3 2 2 1 1 2 2 1 1 0 1 0 0 0 0 −1 −1 −2

17 4 3 3 2 2 3 3 2 2 1 2 1 1 1 1 0 0 −1

18 4 3 3 2 2 3 3 2 2 1 2 1 1 1 1 0 0 −1

A matrix MBF is defined for base-factors. Next we extend the notion of
matrix for base-factor parsings (i.e., concatenation of base-factors).

Definition 6 (Matrix for concatenated base-factors (MCBF)). Let Z be
a base-factor parsing of a string. For any integers i, j satisfying 1 ≤ i, j ≤ 18, we
define MCBFZ(i, j) as follows. If Z ∈ BFs, then MCBFZ(i, j) = MBFZ(i, j). If
Z = X · Y where X and Y are base-factor parsings, then

MCBFX·Y (i, j) = max{MCBFX(i, �) + MCBFY (�, j) | 1 ≤ � ≤ 18}.

Intuitively, when Z = Fibk, MCBFX·Y (1, 1) represents the difference size
between the largest repetition factorization and the candidate factorization of
Fk. This claim will be shown as Corollary 1. Then we show properties of MCBF
as Lemmas 9 and 10. The first one can be obtained by an exhaustive search, and
the second one can be obtained by the definition of MCBF.

Lemma 9 (MCBF property 1). For any integers i, j satisfying 1 ≤ i, j ≤ 18,
the following equation holds:

MCBFcore·F−
13

(i, j) = MCBF(core·F−
13)·(core·F−

13)
(i, j).

The matrix MCBFcore·F−
13

(i, j) is given in Table 2. This property indicates
why we consider the matrices as the difference of values instead of the maximum
values.

Largest Repetition Factorization of Fibonacci Words 295

Lemma 10 (MCBF property 2). Let X,X ′, Y, Y ′,X · Y,X ′ · Y , and X · Y ′

be base-factor parsings.

1. If MCBFX(i, j) ≤ MCBFX′(i, j) for all i, j satisfying 1 ≤ i, j ≤ 18, then
MCBFX·Y (m,n) ≤ MCBFX′·Y (m,n) for all m,n satisfying 1 ≤ m,n ≤ 18.

2. If MCBFY (i, j) ≤ MCBFY ′(i, j) for all i, j satisfying 1 ≤ i, j ≤ 18, then
MCBFX·Y (m,n) ≤ MCBFX·Y ′(m,n) for all m,n satisfying 1 ≤ m,n ≤ 18.

Finally, in the rest of this section, we discuss the matrices for the Fibonacci
word.

Lemma 11. For every integer k ≥ 15, MCBFFibk
(1, 1) ≤ 0.

Proof. Let Fibk = t1 · · · tm. Then

MCBFFibk
(1, 1) = MCBFt1···tm

(1, 1)
≤ MCBFevenpre·F−

13·(core·F−
13)

α·evensuf(1, 1)

= MCBFevenpre·F−
13·core·F−

13·evensuf(1, 1)

= 0,

where α is the number of occurrences of core in the parsing Fibk.
�
Lemma 12. Let Fibk = t1, . . . , tm and Z = tp, . . . , tq where p, q satisfies 1 ≤
p ≤ q ≤ m. Then

MCBFZ(i, j) = SSBFZ(i,j) − BZ

holds for all integers i, j satisfying 1 ≤ i, j ≤ 18.

Proof. Let d = q − p + 1 be the number of phrases of a parsing Z. Namely, we
write Z = tp, . . . , tq = s1, . . . , sd. We prove this lemma by induction on d. For
d = 1,

MCBFZ(i, j) = MBFZ(i, j) = SSBFZ(i,j) − BZ

by Definitions 5 and 6. Suppose that the statement holds for every d ≤ c for
some integer c ≥ 1. We consider the case when d = c + 1. Let X = s1, . . . , sα

and Y = sα+1, . . . , sc+1 for some integer α that satisfying 1 ≤ α ≤ c. By the
definition of B, BZ = BX + BY holds. By Lemma 7,

SSBFZ(i,j) = max
1≤�≤18

(SSBFX(i,q) + SSBFY (q,j))

holds. Then

MCBFZ(i, j) = max
1≤�≤18

(MCBFX(i, q) + MCBFY (q, j))

= max
1≤�≤18

((SSBFX(i,q) − BX) + (SSBFY (q,j) − BY))

= max
1≤�≤18

((SSBFX(i,q) + SSBFY (q,j)) − (BX + BY))

= max
1≤�≤18

(SSBFX(i,q) + SSBFY (q,j)) − BZ

= SSBFZ(i,j) − BZ .

Thus MCBFZ(i, j) = SSBFZ(i,j) − BZ holds for any d, and the lemma holds.
�

296 K. Kishi et al.

Corollary 1. For every k ≥ 17, MCBFFibk
(1, 1) = SFk

− BFibk
.

Finally, we can obtain our main result with the proof of Lemma 3.

Proof of Lemma 3. Lemma 11 and Corollary 1 imply that SFk
−BFibk

≤ 0. Thus
BFibk

≥ SFk
. On the other hand, it is clear from the definition that BFibk

≤ SFk
.

Therefore BFibk
= SFk

holds for any k ≥ 17.
�

Acknowledgments. We gratefully acknowledge the comments of anonymous review-
ers for improving our paper. This work was supported by JSPS KAKENHI Grant
Numbers JP21K17705, JP23H04386 (YN), JP22H03551 (SI).

References

1. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. IV. The quotient
groups of the lower central series. Ann. Math. 68(1), 81–95 (1958)

2. Dumitran, M., Manea, F., Nowotka, D.: On prefix/suffix-square free words. In:
Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
54–66. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 6

3. Iliopoulos, C.S., Moore, D., Smyth, W.: A characterization of the squares in a
Fibonacci string. Theor. Comput. Sci. 172(1), 281–291 (1997). https://doi.org/10.
1016/S0304-3975(96)00141-7. https://www.sciencedirect.com/science/article/pii/
S0304397596001417

4. Inoue, H., Matsuoka, Y., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.:
Factorizing strings into repetitions. Theory Comput. Syst. 66(2), 484–501 (2022).
https://doi.org/10.1007/s00224-022-10070-3

5. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Boston (1983)
6. Matsuoka, Y., Inenaga, S., Bannai, H., Takeda, M., Manea, F.: Factorizing a string

into squares in linear time. In: Proceedings of the CPM 2016, pp. 27:1–27:12 (2016)
7. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness

measures. ACM Comput. Surv. 54(2), 29:1–29:31 (2022). https://doi.org/10.1145/
3434399

8. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
IEEE Trans. Inf. Theory 67(2), 1008–1026 (2021). https://doi.org/10.1109/TIT.
2020.3042746

9. Storer, J., Szymanski, T.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982)

10. Welch, T.A.: A technique for high performance data compression. IEEE Comput.
17, 8–19 (1984)

11. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory IT-23(3), 337–349 (1977)

12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

https://doi.org/10.1007/978-3-319-23826-5_6
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1016/S0304-3975(96)00141-7
https://www.sciencedirect.com/science/article/pii/S0304397596001417
https://www.sciencedirect.com/science/article/pii/S0304397596001417
https://doi.org/10.1007/s00224-022-10070-3
https://doi.org/10.1145/3434399
https://doi.org/10.1145/3434399
https://doi.org/10.1109/TIT.2020.3042746
https://doi.org/10.1109/TIT.2020.3042746

String Covers of a Tree Revisited

Łukasz Kondraciuk(B)

University of Warsaw, Warsaw, Poland
lk385775@students.mimuw.edu.pl

Abstract. We consider covering labeled trees with a collection of
paths with the same string label, called a (string) cover of a tree.
This problem was originated by Radoszewski et al. (SPIRE 2021), who
show how to compute all covers of a directed rooted labeled tree in
O(n log n/ log log n) time and all covers of an undirected labeled tree
in O(n2) time and space, or O(n2 logn) time and O(n)-space. (Here n
denotes the number of nodes of a given tree). We improve those results
by proposing a linear time algorithm for reporting all covers of a directed
tree, and showing an O(n2) time and O(n)-space algorithm for computing
undirected tree covers. Both algorithms assume that labeling characters
come from an integer alphabet.

1 Introduction

String C is a cover of string S if every character of S belongs to at least one
substring of S equal to C. Cover-related problems have been studied since at
least 1990. Apostolico and Ehrenfeucht introduced this feature of a string in [2].
Apostolico, Farach, and Iliopoulos in [3] discovered an algorithm for checking
if string S contains any covers, other than S, in O(|S|) time. They called S
superprimitive if it doesn’t contain any cover other than itself. Dany Breslauer
in [4] extended this algorithm to work online - it tests if each prefix of the input
string is superprimitive as soon as the prefix is given. Please note that cover
and quasiperiod are equivalent terms. However, it is not clear how to define
periodicity when we switch from words to trees, thus later in this paper we will
only use the term cover.

Moore and Smyth [15] were the first to discover a way to report all covers
of a string S in O(|S|) time – our algorithm and the previous algorithm [16]
use their result as a starting point for the directed cover problem. Czajka and
Radoszewski in [8] evaluated the practical performance of algorithms computing
covers of strings. For a very recent survey on other variants of covers, see [14].

Let us consider a rooted tree T , consisting of n nodes. Each of its edges
is labeled by a single character ∈ Σ. A simple directed path (let us denote it
as p) is a non-repeating sequence of nodes. Each pair of consecutive nodes is
connected by an edge. The first node of this sequence is a start point of p - let
us denote it as s. The last node is an endpoint of p - let us denote it as e. We
will define s → e as a sequence of nodes on a single path from s to e, equivalent

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 297–309, 2023.
https://doi.org/10.1007/978-3-031-43980-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_24&domain=pdf
http://orcid.org/0000-0002-7332-6533
https://doi.org/10.1007/978-3-031-43980-3_24

298 Ł. Kondraciuk

to p. Any simple directed path of T is uniquely identified by a two-element tuple
(aka ordered pair) (startpoint, endpoint). The label of a directed simple path is a
string constructed by concatenating characters on edges connecting consecutive
nodes. String C is a cover of a tree T , if there exists a set of simple paths M ,
each of them having a label equal to C, so that each edge of T belongs to at
least one path from M . We will consider two variants of this problem, which
were first proposed and studied by Radoszewski et al. in [16]. Similar problems,
involving labeled trees and computing their runs, powers, and palindromes, were
extensively studied in [5,7,9,10,12,13,19], and most recently in [11].

Fig. 1. a) and b): aba is a directed cover of this tree, ab is not: 3 edges cannot be
covered by this string. c) and d): abb, bba = (abb)R, and ba = (ab)R are undirected
covers this tree (only aab and bba are visualized).

For the directed cover problem the considered tree is rooted at some node,
and we add a restriction that all paths from M should be only going up. It means
that for any p ∈ M its endpoint is an ancestor of its startpoint. The algorithm
presented in [16] runs in time O(n log n/ log log n) time and O(n)-space, and
requires the labeling character alphabet to be integer. Our improvement involves
preprocessing the input tree by compacting branchless paths, which later bounds
the total number of iterations of an inner loop of an algorithm, instead of utilizing
a data structure for the dynamic marked ancestor problem. This gives us O(n)
time and space algorithm. Unfortunately, it still requires the labeling alphabet
to be integer.

For the undirected cover problem, there are no more restrictions. Algorithms
described in [16] were O(n2) time O(n2) space (divides paths of a tree between
cover-candidates all at once), and O(n2 log n) time O(n)-space (this one verifies
only one cover-candidate at the time). Our algorithm will combine both ideas by,
for one candidate at a time, finding a compressed set of paths that this candidate
covers. This way we can achieve O(n2) time O(n)-space complexity.

Figure 1 shows examples of a directed and an undirected cover. Each cover
will be reported by our algorithms as an ordered pair of nodes. (v, w) will be
representing a string - label on a path v → w. This way we can report all covers
(we will later prove that in both variants there are at most O(n) of them) in
o(n2) time, even though their straightforward representation can be as large as
Θ(n2). This is the case for instance when a given tree forms a simple path, and
all of its edges are labeled by the same letter.

String Covers of a Tree Revisited 299

We provide reference Python implementations of the described algorithms,1
as well as the extended edition of this publication containing proofs and listings
omitted due to page limit.2

2 Preliminaries

A string S is a sequence of characters S[1], S[2], ..., S[|S|] ∈ Σ. A substring of S
is any string of the form S[i..j] = S[i], S[i + 1], . . . , S[j]. If i = 1 (j = |S|), it is
called a prefix (a suffix, respectively), SR = S[|S|], S[|S| − 1], ..., S[1].

Let us consider any string S. A cover C is a substring of S, which occurs at
some positions of S, and each letter of S is covered by at least one occurrence
of C. Formally, string C is a cover of S, if there exists a set of positions M ⊆
{1, . . . , |S| − |C| + 1}, such that for every i ∈ M , S[i..(i + |C| − 1)] = C (M
represents a – not necessarily proper – subset of occurrences of C), and for every
1 ≤ i ≤ |S|, there exists j ∈ M , such that i − |C| + 1 ≤ j ≤ i (every letter of S
should be covered by an occurrence).

When we consider a rooted tree and algorithms processing it, it is helpful
to define a few properties of a tree and its nodes. path(u → v) is a simple
path connecting nodes u and v. Sometimes to simplify notation we will omit
path(∗) and denote it as u → v. |p| denotes the number of nodes in a path p.
parent(v) is the first node on the path from v to the root (parent(root) = null).
children(v) = {u |parent(v) = u}. dist(u, v) is the number of edges on a sim-
ple path connecting u and v. Please note that dist(v, u) = dist(u, v) = |u →
v| − 1, depth(v) = dist(v, root), subtree(v) = {u | v ∈ path(u → root)},
height(v) = max

l∈subtree(v)
dist(v, l), label(u → v) is a label of path(u → v)

constructed as a concatenation of characters labeling its consecutive edges,
labeld(u → v) = label(u → v)[1..d].

Let us define childrenHeights(v) =
∑

w∈children(v) height(w),
maxChildHeight(v) = maxw∈children(v) height(w) (0 if children(v) = ∅),
and superHeight(v) = childrenHeights(v) − maxChildHeight(v).

Lemma 1. For a rooted tree T with n nodes, we have
∑

v

superHeight(v) =
∑

v

(childrenHeights(v) − maxChildHeight(v)) ≤ n

Proof. The following proof is based on Second Heights lemma proof from [16].
For a node v we define MaxPath(v) as the longest path from v to a leaf in
subtree(v). (|MaxPath(v)| = height(v)). Initially, we choose (one of possibly
many) MaxPath(root), then we remove this path (both nodes and edges) and
choose the longest paths for roots of resulting subtrees. We continue in this way
and obtain a decomposition of the tree into node-disjoint longest paths.

1 https://students.mimuw.edu.pl/~lk385775/string_tree_covers_ref_impl.zip.
2 https://students.mimuw.edu.pl/~lk385775/string_tree_covers_extended.pdf.

https://students.mimuw.edu.pl/~lk385775/string_tree_covers_ref_impl.zip
https://students.mimuw.edu.pl/~lk385775/string_tree_covers_extended.pdf

300 Ł. Kondraciuk

Let FirstChild(v) denote a child of v which belongs to the same path in the
decomposition and OtherChildren(v) = {w ∈ children(v) : w �= FirstChild(v)}.
We have

∑
v superHeight(v) =

∑
v;w∈OtherChildren(v) |MaxPath(w)| ≤ n since all

selected longest paths are node-disjoint. This sum is a sum of the lengths of all
removed paths, excluding the one removed in the first step of the algorithm. 	

Let us define secondHeight(v) as the height of a second highest child of v
(or 0 if | children(v)| < 2). We have childrenHeights(v) − maxChildHeight(v) ≥
secondHeight(v), so

Lemma 2 (Second height lemma, also used in [16]). For a rooted tree T with n
nodes, the following inequality holds:

∑

v

secondHeight(v) ≤ n.

Pref table is a data structure that is used to store and retrieve information
about prefixes of a given string. It is defined as

PrefS [i] = max{d ≥ 0 : S[i..(i + d − 1)] = S[1..d]}
This data structure can be generalized to rooted trees with character-labeled

edges. For a string S, rooted tree T and node v ∈ T , we denote

TreePrefS [v] = max{d ≥ 0 : labeld(v → root) = S[1..d]}
Lemma 3 ([16] using [17]). TreePrefS can be computed in O(n) time for a
rooted tree T with n nodes over an integer alphabet.

3 Directed Tree Cover

Let us consider a directed variant of the string tree cover. For a given rooted
tree T , we direct each edge towards the root. For this problem, we will assume
that all edge labels are characters over an integer alphabet. Let us fix some leaf
node l. An edge between l and parent(l) can only be covered by a path starting
in l and going upwards.

Observation 1 [16]. The cover must be a prefix of label(l → root).

Let L = label(l → root). Let us define up(v, k) = parent(up(v, k − 1)),
up(v, 0) = v. For each 1 ≤ d ≤ |L|, we will check if L[1..d] covers all edges of the
tree. Let us calculate TreePrefL. Set {v : TreePrefL[v] ≥ d} contains nodes (let
us denote any of those nodes as v), for which label(v → root) matches L on the
first d positions. If labeld(v → root) = L[1..d] holds, then then the first d edges
on path v → root are covered by path v → up(v, d).

For each fixed d, we will consider L[1..d]. Let us mark all w’s, for which
TreePrefL[w] ≥ d. Edge w → parent(w) is covered (by a path having label =
L[1..d]), if and only if there exists a marked node u ∈ subtree(w), having
dist(w, u) < d.

We will maintain a data structure to store marked nodes. It will be able to:

String Covers of a Tree Revisited 301

– initialize itself with any set of marked nodes (all leaves need to be in this set),
– unmark a marked node,
– query for the largest distance between any node and its closest marked descen-

dant.

3.1 Gaps

All leaves have to be marked at all times - it is the only way to cover leaf edges.
For a set M of marked nodes we define gap(v) = min

u∈M∩ subtree(v)
dist(v, u) and

MaxGap = max
v∈nodes\{root}

gap(v).

In a data structure, nodes will keep (either directly or indirectly) their current
gap value. Let v be any marked node, which is not a leaf. Let M ′ = M \
{v} be the set of marked nodes after unmarking v. Let us define gap′(w) =

min
u∈M ′∩ subtree(w)

dist(w, u) – it is a gap function after unmarking v.

Observation 2. If gap(w) �= gap′(w), then w ∈ path(v → root).

Proof. A gap could change only for those nodes w, for which v ∈ subtree(w). 	

Lemma 4. Let u,w ∈ path(v → root), and depth(u) > depth(w). If gap′(u) =
gap(u), then gap′(w) = gap(w).

Proof. If dist(w, v) �= gap(w) then there exists x ∈ subtree(w) ∩ M (x �= v), for
which dist(w, x) = gap(w). Since x ∈ M ′ = M \{v}, then gap′(w) = dist(w, x) =
gap(w).

Otherwise, if dist(w, v) = gap(w), then dist(u, v) = gap(u). Since gap′(u) =
gap(u), then there exists x ∈ subtree(u)∩M ′, for which dist(u, x) = dist(u, v) =
gap(u). dist(w, x) = dist(w, u) + dist(u, x) = dist(w, u) + dist(u, v) = dist(w, v).
And since x ∈ subtree(u) ∩ M ′ ⊆ subtree(w) ∩ M ′, then gap′(w) = dist(w, x) =
dist(w, v) = gap(w). 	

Corollary 1. After unmarking v, we only need to update gap for some prefix of
nodes on path(v → root).

3.2 Binarisation and Path Compaction

For the data structure representation, we apply two transformations on tree T :

1. binarisation - we will insert artificially created nodes, so that every node,
except for the root, has at most 2 children. Let us denote the resulting tree
as T ′. The number of inserted nodes is

∑
v �=root min(0,degree(v)− 3) ≤ n, so

|T ′| ≤ 2n = O(n).
2. path compaction - we will replace each non-branching path of T ′ by a single

entity, called compacted path. Here by non-branching path, we refer to a
group of nodes, forming a simple path, each of them having only one child.

302 Ł. Kondraciuk

The result of those transformations will be called a pseudotree.
The defined gap function will be invariant to those transformations. We will

calculate and update its values as if all nodes were located in the original input
tree T . We will not take into account gap values calculated for nodes added
during binarisation.

The resulting pseudotree will consist of four types of nodes: root, leaves,
binary nodes, and implicit nodes. Each non-branching vertical path will be
replaced by a compacted path. The remaining edges will be replaced by triv-
ial (that is not having any implicit nodes inside) compacted paths.

Each binary node holds two compacted paths going down and one going up.
The root holds some number (possibly one) of compacted paths going down.
Each leaf holds only one compacted path going up. Implicit nodes are connected
together and contained inside compacted paths. Compacted paths will hold both:
nodes they are connected to, and a collection of implicit nodes inside of it.

3.3 Updates

The key observation here is that we do not need to explicitly keep and update
the gap sizes of implicit nodes.

Listing 1: Auxilary functions needed for gap values updates.
global maxGap = 1
function calcGapBinaryNode (v)

if v.isMarked then
return 0

else
return min(v.pathLeft.topGap, v.pathRight.topGap)+!v.isFake;

function walkAndUpdate (v)
while (not isRoot(v)) and v.gap < calcGapBinaryNode(v) do

v.gap = calcGapBinaryNode(v)
path = v.pathUp
if path.lowestMarked �= null then

gap = v.gap + dist(path.bottom, path.lowestMarked) + 1
maxGap = max(maxGap, gap)
break

else
path.topGap = v.gap + dist(path.top, path.bottom) + 1
maxGap = max(maxGap, path.topGap)
v = path.nodeUp

unmark(v) is an update entry point of the data structure. It will be described
below, please refer to the extended edition of this paper for its pseudocode. On
Listing 1 we attach the pseudocode of walkAndUpdate function, which is called
by unmark to propagate new gap values upwards.

Let us denote any implicit node v, and its compacted path as p. When we
unmark v:

String Covers of a Tree Revisited 303

– If v is the only marked node on p, then the new gap value for p.top is p.length+
p.nodeDown.gap and this value needs to be passed to walkAndUpdate to
propagate it upwards.

– Otherwise, if v is the highest marked node on p, then we can calculate the
new longest gap as a distance between p.top and the new highest marked node
on p. Then it needs to be propagated upwards using walkAndUpdate.

– Otherwise, if v is the lowest marked node on p, then the longest new gap is
equal to p.nodeDown.gap plus the distance between p.bottom and child of the
new lowest marked node on p. This value does not get propagated upwards,
since there exist marked nodes on p, other than v.

– Otherwise, v is located between two other marked implicit nodes. We can
calculate the longest new gap using the distance between them.

Similarly, whenever walkAndUpdate tries to traverse a compacted path p (to
proceed from a binary node on its lower end to the one on its upper end), it
checks if there exists any marked node on this path. It can use the gap calculated
for the binary node connected to the lower end of that path, in order to calculate
the new gap size for implicit nodes of p. It needs this value to update maxGap.

Listing 2 contains the final high-level algorithm for computing all directed
covers of a given rooted tree.

Listing 2: Computing all directed covers of a given rooted tree.
Fix any leaf l. Let us denote L = label(l → root)
Calculate TreePrefL - this can be done in O(n) as we are working with integer
alphabet

Initialize gap data structure - apply binarization and path compression
Set all real nodes (that is those which were not created during binarisation) as
marked

for k := 0 to minv∈leaves TreePrefL[v] − 1 do
for v ∈ nodes and TreePrefL[v] = k do

unmark(v)
if maxGap < k then

report that L[1..k] is a cover

Lemma 5. The total amortized time cost of maintaining the gap data structure
is O(n).

Proof. unmark itself does only O(1) amount of work. walkAndUpdate runs in
time proportional to the number of touched binary nodes. By touched nodes,
we refer to those nodes, for which node.gap has changed. Since node.gap can
only increase, the total amount of time used by walkAndUpdate is limited by∑

v∈binary nodes FinalGap(v). (By FinalGap(v) we refer to v.gap after termina-
tion of the algorithm).

All leaves are always marked, so FinalGap(v) ≤ minl∈leaves∩subtree(v) dist(v, l)
(here we refer to leaves, subtree, and dist in regards to T ′). Each binary node

304 Ł. Kondraciuk

v has two children, so FinalGap(v) ≤ secondHeight(v). Second heights lemma
(Lemma 2) applied to T ′ implies that

∑
v secondHeight(v) ≤ 2n. This indicates

that the total number of binary node gap updates done by walkAndUpdate is
bounded by 2n. This also proves the complexity of the complete directed cover
computing algorithm. 	

Theorem 1. All covers of a directed rooted tree labeled with characters over an
integer alphabet can be computed in O(n) time and O(n)-space.

The only step of the algorithm, which requires characters labeling edges to
be over an integer alphabet, is the subroutine computing TreePrefL 3 from [17].
Thus

Corollary 2. Covers of a directed tree labeled with characters over a general
alphabet can be computed in O(n) time and O(n)-space if TreePrefL, for L =
label of some path from a leaf to the root, is given.

Comparison with the algorithm from [16]. Instead of maintaining gap data
structure over a transformed tree – they maintain the so-called chain decompo-
sition of an input tree, where each marked node is an end of some chain, and the
chain from any unmarked node leads to the closest marked node in its subtree –
our maxGap is equal to the length of the longest chain in their data structure.
Chain description is stored in the top node of each chain. None of the other
chain nodes store any information about the chain they currently belong to. A
data structure from [1] is used to query for a top node of each chain. The time
complexity of such a query is O(log n/ log log n). This impacts the overall time
complexity of their algorithm, which is O(n log n/ log log n).

4 Undirected Tree Cover

The cover of an undirected tree is quite a different problem than that of a directed
tree. String S is a cover of an undirected tree T , if we can pick a set of simple
paths M , each of them having a label equal to S, such that for each edge from
the tree, there should exist at least one path from M , going through that edge.

Let us root the input tree in any node.

Observation 3. For any leaf l, edge l → parent(l) can only be covered by a path
starting or finishing in l.

We will fix some leaf l. Let us denote set of paths that can cover edge l →
parent(l) as P = {l → v | v ∈ T \ {l}} ∪ {v → l | v ∈ T \ {l}}. We have
|P | = 2n − 2.

The set of candidates for a cover is naturally induced by P . Let us denote it
by C = {label(p) | p ∈ P }. Thus |C| ≤ 2n − 2 = O(n).

Corollary 3 ([16]). The set of candidates has O(n) elements.

String Covers of a Tree Revisited 305

4.1 Match Tables

Let us fix a candidate S. For each node v we will consider those paths, for which
v is the highest point (v is the highest point of p if it has the smallest depth
among all its nodes). We will try to match a prefix of S, coming from a subtree of
some u ∈ children(v), with a prefix of SR coming from another subtree. A prefix
of S concatenated with the reverse of a prefix of SR of proper length makes S.
Found matches-paths will be saved on the side.

We will be going from the bottom to the top of the tree (the top being root,
and the bottom being leaves). For each node v we will compute two match tables:
dynamic arrays of linked lists: A and B. They have the following properties:

– |A| = |B| = height(v)
– A[i] and B[i] contain nodes from subtree(v).
– For each u ∈ A[i] (and for each u ∈ B[i]), dist(u, v) = i.
– If there exists node u having label(u → v) = S[1..i], then A[i] is not empty

and contains a node y such that label(y → v) = S[1..i]. Otherwise, it might
be empty or might contain some nodes with label different than S[1..i].

– If there exists node u having label(u → v) = SR[1..i], then B[i] is not empty
and contains a node y such that label(y → v) = SR[1..i]. Otherwise, it might
be empty or might contain some nodes having label different than SR[1..i].

– For all nodes u ∈ A[i], label(u → v) is the same.
– For all nodes u ∈ B[i], label(u → v) is the same.

Each table is held by a data structure, which allows amortized O(1)-time
insertions to the front and O(1)-time random access. Such data structure can be
implemented similarly to std::vector from C++ STL [18] or Dynamic Table
from [6]: by keeping a pointer to a chunk of allocating memory, and lazily moving
its content to a chunk twice as big when space runs out. The only difference is
that we will push to the front, not to the back, and use the current size to
calculate the offset for O(1)-time random access. We will call it FrontVector.

If v is a leaf, then match tables for v are trivial: A.size() = B.size() = 1,
and A[0] = B[0] = {v}. (By V.size() we denote the number of elements of a
table V . For the match table represented by FrontVector it is the difference
between its capacity and offset.) Otherwise, we need to calculate A and B for v.
At first we “claim” match tables calculated for the highest child. That is from the
child, whose subtree is the highest among all v’s children, in case of ambiguity,
whichever child can be picked. Match tables calculated for a node will be used
only by its parent, so we can immediately claim its ownership.

Then we need to push {v} to the front of A and B, iterate over the remaining
children, and join its match tables. We will be also looking for matches during
that process.

At the beginning of the algorithm, we precalculate TreePrefS and
TreePrefSR , which per Lemma 3 can be done in O(n) [17].

This lemma requires the labeling alphabet to be integer. If this is not the
case, then we can convert it to an equivalent integer alphabet in O(n2) time and
O(n)-space. Equivalent in the sense, that equivalence relation on edges, based on

306 Ł. Kondraciuk

equality of their labeling characters, will look exactly the same. Since we repre-
sent a cover as an ordered pair of endpoints of a path having its label as an actual
cover, the output of our algorithms will not change after this transformation.
Now we are able for a given v and u ∈ subtree(v) check if label(u → v) is a prefix
of S (or SR). This condition is equivalent to checking if TreePrefS [u] ≥ dist(u, v)
(TreePrefSR [u] ≥ dist(u, v)).

Listing 3: auxiliary procedures used to find matches in match tables
and mark found matches.
function matchAndMark (v, A, B, i, j)

// i + j == len(W)
clearA(v, A, i)
clearB(v, B, j)
if !A[i].empty() and !B[j].empty() then

for u ∈ (A[i] ∪ B[j]) do
markVerticalPath(u, v) // markVerticalPath works in O(1) and
will be described later

clearButOne(A, i)
clearButOne(B, j)

function findMatches (v, A, B, A’, B’, height)
lowerBound = max(len(S) - A.size() + 1, 0)
upperBound = min(height, len(S)) + 1
for i := lowerBound to upperBound do

matchAndMark(v, A, B’, len(S) - i, i)
matchAndMark(v, A’, B, i, len(S) - i)

Let us denote current tables as A and B, and match tables calculated for some
other child as A′ and B′. Let h = A′.size() = B′.size() = height of the subtree
rooted in that child. For 1 ≤ i ≤ h, we consider matches between A′[i] and
B[|S|−i]. To do that we first need to check if A′[i] contains valid candidates, that
is nodes u, for which label(u → v) = S[1..i]. Please recall that every u ∈ A′[i] has
the same label(u → v), so it is sufficient to check that condition for any element
of A′[i] - we will use the first one. In our pseudocode, we will use clearA (and
clearB for match table B) procedures to refer to this step.

Similar procedure must be performed for B[|S| − i] - it should contain nodes
u having label(u → v) = SR[1..(|S| − i)].

After that step, for each u1 ∈ A′[i] and u2 ∈ B[1..(|S|−i)] we have label(u1 →
u2) = S, so we can mark both u1 → v and u2 → v as covered. If both A′[i] and
B[1..(|S| − i)] are not empty, then we will delete all elements of A′[i] except for
one and B[1..(|S| − i)] except for one. This a crucial step to the complexity of
the algorithm. Here we will only present simplified intuition why we can do this,
proof of correctness will be discussed later.

Imagine that we would not delete any elements of A′[i]. When seeking
matches for some v′ - ancestor of v, in terms of A′[i] we will care about two
things:

String Covers of a Tree Revisited 307

– A′[i] (which will become A[i + dist(v, v′)]) is not empty - then we can find
match it with some B[j] coming from some other child of v′ and, as a conse-
quence mark all paths v′ → u for u ∈ B[j].

– if we indeed find a match, all paths v′ → u for u ∈ A′[i] will become marked.

Please note that since each path v → u is already marked, if we mark v′ → v
then all paths v′ → u will become marked, so marking any path v′ → u marks
all of them.

Both of those objectives will still be satisfied if we delete all but one element of
A′[i]. Similar argument can be conducted for B[i], A[i] and B′[i]. In pseudocodes,
we will use clearButOne subroutine to refer to this step.

Then we follow the same procedure to find matches between B′[i] and A[|S|−
i].

After we have considered all valid matches, we can merge A′ into A, and
B′ into B. For 1 ≤ i ≤ h, we have to check if A[i] contains nodes u, having
label(u → v) = S[1..i]. To do that, it is enough to check that condition for u =
first element of A[i] (all nodes in A[i] have the same path to the root). If not,
we can clear A[i]. We apply the exact same procedure to A′[i]. After that, both
A′[i] and A[i] contain only valid candidates, so we can move all nodes from A′[i]
into A[i] (in O(1)-time).

To merge B′ into B we execute the same algorithm, but instead of comparing
labels of paths to root with S, we compare them with SR.

4.2 Complexity and Correctness

Let us denote calcAB(root) as an entry point for the entire procedure. Please
refer to the extended edition of this publication for its formal pseudocode. It
calls recursively itself, resulting in a call to calcAB(v) once for every v of the
tree (O(n) calls). It also iterates over all children (O(|edges|) = O(n) in total).
A single call consumes amortized constant time for inserting {v} to the front of
match tables - implemented as a push_front on an instance of FrontVector.
So O(|edges|) + O(|nodes|) = O(n) of total time consumed.

For each other child (let us denote its height as h) it calls: findMatches once,
and clearA, clearB h times - to clear each entry of match tables propagated from
that child. findMatches calls matchAndMark h times. If we disregard time spent
on clearA, clearB, clearButOne and matchAndMark, then total time spent in
findMatches and calcAB is bounded by O(

∑
v superHeight(v)) + O(n) = O(n)

(by Sum of heights, Lemma 1).
clearA, clearB, and clearButOne run in time proportional to the number

of deleted nodes. Each node is inserted only twice - each node v is inserted only
in calcAB(v). When a node is deleted, it is deleted permanently. Match tables
are never copied - only moved and merged. It implies that the total number of
deletions is bounded by the total number of insertions = 2n, so the time cost of
clearing functions is bounded by O(n). Please refer to the extended edition of
this publication for pseudocodes of those functions.

308 Ł. Kondraciuk

matchAndMark calls: clearA, clearB, and clearButOne. If we disregard that,
it runs in time proportional to the number of deleted nodes by auxiliary sub-
routines: loop for u ∈ (A[i] ∪ B[j]) iterates over |A[i]| + |B[j]| elements. Calls
to clearButOne(A, i) delete |A[i]| − 1 elements, calls to clearButOne(B, j)
delete |B[j]| − 1 elements. Thus the total cost of matchAndMark is also bounded
by O(n).

Corollary 4. We can compute match tables for all nodes of a tree using O(n)
time.

Finally, we verify if the found set of marked paths indeed covers the whole
tree. This procedure comes from [16], we repeat it here for completeness. We
will store a counter for each node. All marked paths are vertical - one of their
ends is a descendant of the other. For each marked path we will add 1 to the
counter of the lower, and add -1 to the counter of the higher end - this is what
markVerticalPath from pseudocode serves for. Let us fix any node v. The sum
of counters in the subtree rooted in v is equal to the number of marked paths
going through the edge from v to its parent. With a single DFS from the root
we can calculate sums for every subtree. All edges of a tree are covered if and
only if

∑
u∈subtree(v) counter(u) is positive for every node v except for the root.

Now all that is left, is the proof of correctness.

Lemma 6. matchAndMark marks only simple paths p having label(p) = S.

Lemma 7. If matchAndMark did not delete nodes using clearButOne subrou-
tine, then we would mark every path p in the tree having label(p) = S.

The next lemma establishes that deleting some nodes in matchAndMark and
leaving only one representative, even if labels of their paths to v are still valid
prefixes of S/SR, is indeed a correct action.

Lemma 8. If label(a → v) = label(b → v) and both a → v and b → v are
marked, then we can skip propagating either one upwards.

Please refer to the extended edition of this publication for proofs of Lemmas
6, 7, and 8. Those three lemmas combined together prove that matchAndMark
will mark all, and only edges covered by S. Thus they are completing a proof of
the main theorem of this section.

Theorem 2. We can compute all undirected covers in O(n2) time and O(n)-
space.

The general idea of the presented algorithm is similar to the centroid decom-
position algorithm from [16]. We rely on the same set of candidates, and in the
same way, we check if the set of marked paths covers all edges of the tree. How-
ever, calculating match tables A and B to mark all covered edges is a completely
new idea.

Achieved O(n2) time O(n)-space complexity improves results from [16]
(O(n2) time and space, or O(n2 log n) time O(n)-space), but is still superlin-
ear. Further work will be focused on research on o(n2) time algorithm or finding
a conditional lower bound.

String Covers of a Tree Revisited 309

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: 39th Annual
Symposium on Foundations of Computer Science, FOCS 1998, 8–11 November
1998, Palo Alto, California, USA, pp. 534–544. IEEE Computer Society (1998)

2. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theor. Comput. Sci. 119(2), 247–265 (1993)

3. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991)

4. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992)

5. Brlek, S., Lafrenière, N., Provençal, X.: Palindromic complexity of trees. In:
Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 155–166. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21500-6_12

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

7. Crochemore, M., et al.: The maximum number of squares in a tree. In: Kärkkäinen,
J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31265-6_3

8. Czajka, P., Radoszewski, J.: Experimental evaluation of algorithms for computing
quasiperiods. Theor. Comput. Sci. 854, 17–29 (2021)

9. Funakoshi, M., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Computing
maximal palindromes and distinct palindromes in a trie. In: Holub, J., Zdárek, J.
(eds.) Prague Stringology Conference 2019, Prague, Czech Republic, 26–28 August
2019, pp. 3–15. Czech Technical University in Prague, Faculty of Information Tech-
nology, Department of Theoretical Computer Science (2019)

10. Gawrychowski, P., Kociumaka, T., Rytter, W., Waleń, T.: Tight bound for the
number of distinct palindromes in a tree. In: Iliopoulos, C., Puglisi, S., Yilmaz, E.
(eds.) SPIRE 2015. LNCS, vol. 9309, pp. 270–276. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23826-5_26

11. Gawrychowski, P., Kociumaka, T., Rytter, W., Waleń, T.: Tight bound for the
number of distinct palindromes in a tree. Electron. J. Comb. 30, 04 (2023)

12. Kociumaka, T., Pachocki, J., Radoszewski, J., Rytter, W., Waleń, T.: Efficient
counting of square substrings in a tree. Theor. Comput. Sci. 544, 60–73 (2014)

13. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: String powers in trees.
Algorithmica 79(3), 814–834 (2017)

14. Mhaskar, N., Smyth, W.F.: String covering: a survey. CoRR, abs/2211.11856 (2022)
15. Moore, D.W.G., Smyth, W.F.: A correction to “an optimal algorithm to compute

all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995)
16. Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba, W.: String covers of

a tree. In: Lecroq, T., Touzet, H. (eds.) SPIRE 2021. LNCS, vol. 12944, pp. 68–82.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86692-1_7

17. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. In: ISAAC
1999. LNCS, vol. 1741, pp. 225–236. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-46632-0_24

18. Stroustrup, B.: The C++ Programming Language - Special Edition, 3rd edn.
Addison-Wesley (2007)

19. Sugahara, R., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Efficiently
computing runs on a trie. Theor. Comput. Sci. 887, 143–151 (2021)

https://doi.org/10.1007/978-3-319-21500-6_12
https://doi.org/10.1007/978-3-642-31265-6_3
https://doi.org/10.1007/978-3-319-23826-5_26
https://doi.org/10.1007/978-3-319-23826-5_26
https://doi.org/10.1007/978-3-030-86692-1_7
https://doi.org/10.1007/3-540-46632-0_24
https://doi.org/10.1007/3-540-46632-0_24

Compacting Massive Public Transport
Data

Benjamı́n Letelier2 , Nieves R. Brisaboa1 , Pablo Gutiérrez-Asorey1 ,
José R. Paramá1 , and Tirso V. Rodeiro1(B)

1 Universidade da Coruña, CITIC, Campus Elviña, 15071 A Coruña, Spain
tirso.varela.rodeiro@udc.es

2 Instituto de Informática, Universidad Austral de Chile, Valdivia, Chile

Abstract. In this work, we present a compact method for storing and
indexing users’ trips across transport networks. This research is part of
a larger project focused on providing transportation managers with the
tools to analyze the need for improvements in public transportation net-
works. Specifically, we focus on addressing the problem of grouping the
massive amount of data from the records of traveller cards as coher-
ent trips that describe the trajectory of users from one origin stop to
a destination using the transport network, and the efficient storage and
querying of those trips. We propose two alternative methods capable of
achieving a space reduction between 60 to 80% with respect to storing
the raw trip data. In addition, our proposed methods are auto-indexed,
allowing fast querying of the trip data to answer relevant questions for
public transport administrators, such as how many trips have been made
from an origin to a destination or how many trips made a transfer in a
certain station.

Keywords: Compression · Public Transport · Trip analysis

1 Introduction

The widespread use of public transport cards has opened the door to a wide
range of possibilities for analysing people’s movements through cities. Each time
a passenger boards any means of public transport, his card number, time, and
transport mean get registered. This enables not only the analysis of individuals
(where, when, etc.) but also aggregated analysis to study the movement pat-
terns in cities (rush hours, flows between zones, etc.). However, the storage and

This work was partially supported by the CITIC research center funded by Xunta
de Galicia, FEDER Galicia 2014-2020 80%, SXU 20% [CSI: ED431G 2019/01];
MCIN/ AEI/10.13039/501100011033 ([EXTRA-Compact: PID2020-114635RB-I00];
“NextGenerationEU”/PRTR [SIGTRANS: PDC2021-120917-C21], [PLAGEMIS:
TED2021-129245B-C21]; EU/ERDF A way of making Europe [OASSIS-UDC:
PID2021-122554OB-C3]); by GAIN/Xunta de Galicia [GRC: ED431C 2021/53]; by
UE FEDER [CO3: IN852D 2021/3]; by Xunta de Galicia [ED481A/2021-183], and by
the Fondecyt grant #11221029 of Universidad Austral de Chile.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 310–322, 2023.
https://doi.org/10.1007/978-3-031-43980-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_25&domain=pdf
http://orcid.org/0009-0005-5997-0225
http://orcid.org/0000-0001-8025-3048
http://orcid.org/0000-0002-6878-6041
http://orcid.org/0000-0002-8727-0980
http://orcid.org/0000-0003-2373-0746
https://doi.org/10.1007/978-3-031-43980-3_25

Compacting Massive Public Transport Data 311

management of these data are not trivial due to their spatio-temporal nature
and their size.

Usually, static information about transport networks and their topology is
publicly shared to be the basis of geographic information systems used for public
transport webs and applications. There are several queries of interest in this
context that could be solved using directly the network information (e.g. What
route should be followed to travel from point A to point B using the transport
network?). This is not the target of this work, our goal is the representation of
user behaviour, i.e. movement patterns, preferred routes, etc.

Our current line of research involves the creation of a tool for efficiently
storing and analyzing the vast amount of data related to the use of public trans-
port networks. While this research faces three main challenges pertaining to the
grouping of traveller cards transaction records into trips, the efficient storage of
trips on a novel Compact Data Structure (CDS) [9], and the design and imple-
mentation of user interfaces for querying the stored data based on Geographical
Information System (GIS) technologies, this work will focus primarily on intro-
ducing our compact method for the storage of the trips.

2 Background

Compact Data Structures have gained a lot of notoriety as an efficient strategy
for Big Data scenarios, and in particular, we have already done some work at
our research group regarding trajectories and mobility data on transport net-
works [6]. Our proposal follows those footsteps, using a variety of well-known
data structures as the building blocks for our approach.

First, it should be noted that, given that CDS operate at bit level, bitvectors
(sequences of bits) are one fundamental element in most of these data structures.
Bitvectors can be processed in a highly efficient manner due to two well-known
basic operations: rank and select [8]. For this work, we used rank and select
implementations included in [7], both with a temporal cost of O(1), where the
rank operation uses 0.25n additional bits (with n being the size of the bitvector),
and select at most 0.2n bits of additional space.

We also used an indexing structure known as Kn tree. The K2 structure was
first conceived as a compact web graph representation [5]. However, it turns out
to be a more efficient version of a region quadtree [10], and thus, it can be used
as a spatial index [2–4].

It represents a binary matrix of size n × n using a conceptual K2-ary tree
for a given K. The root node represents the entire matrix. Then, the matrix is
divided into K2 submatrices of size n/K×n/K. The order for those submatrices
is established as left-to-right and top-to-bottom, adding a child node to the root
of the tree for each submatrix. Each node is labelled with a bit. If a submatrix
contains at least a 1-bit, the corresponding node stores a 1-bit, otherwise, the
node stores a 0-bit. For the submatrices with at least one 1-bit, the procedure
continues recursively until reaching a submatrix with only 0-bits or the individual
cells of the original matrix. The K2-tree divides that bitmap in two: L, which

312 B. Letelier et al.

is formed by the bits corresponding to the last level of the tree, and T , which
contains the rest.

The K2-tree can efficiently answer several queries, like retrieving the value
of a single cell, row/column queries, or window queries. Queries are solved by
navigating T and L with rank and select operations.

Note that the K2 structure can be generalized to any n. In this work, we used
a variant for indexing three-dimensional binary matrices called the K3−tree [2].

One last concept that is necessary in order to fully understand the following
sections is the prefix sums. Given an array S[1..n] of non-negative numbers, the
prefix sum of S is defined as a new array SPS [1..n + 1] that stores the sum of
prefixes of the input sequence in the form of SPS [1] = 0 and SPS [j] =

∑j−1
i=1 S[i],

with 2 ≤ j ≤ n + 1. This representation allows for the recovery of the sum in
any range on S by using

∑j
i′=i S[i′] = (SPS [j +1]−SPS [i]), with 1 ≤ i ≤ j ≤ n,

in O(1). Note that, in the case of i = j, the value returned is S[i]. One apparent
problem with this representation is that SPS requires much more space than S.
Therefore, this work used the sampling technique described by Navarro [9] to
space optimize prefix sums.

3 Previous Concepts on Transport Networks

This section addresses the basic vocabulary related to transport networks needed
to understand the following sections and shows some of the difficulties associated
with constructing trips from traveller card records.

The fundamental element in any public transport network is the stop. A stop
is where a traveller can board (or alight) a particular means of transport following
a given route (consecutive sequence of stops). Using this basic element, public
networks build an entire topology combining stops (routes, lines, schedules, etc.).

We define a trip as the act of a user travelling across a transport network
from one stop (origin) to a different stop (destination). A trip always consists of,
at least, one boarding at an origin and an alighting at a destination. However,
a trip may not be a direct trip, that is, it could have intermediate stops where
the user alights a vehicle and boards a different one to continue towards its final
destination. Each individual pair of boarding-alighting will be denoted as trip
stage from now on.

The prime difficulty in grouping the travellers’ card records into trips resides
in the fact that, in many cities around the world, the traveller cards are nor-
mally only validated when boarding a means of transport. Thus, there is hardly
any alighting information. To tackle this problem, we designed a deduction algo-
rithm for the alighting stops following the general strategy presented in previous
works [1]. This strategy exploits the expected space-time continuity of consec-
utive stages of the same trip, as well as the movement symmetry of travellers
(each day’s movements start where they left off the previous day) to estimate
alighting stops based on the boarding data and the topology of the transport
network.

Compacting Massive Public Transport Data 313

As a final addendum to our definition of trips, note that in practice, we are
only interested in storing the alighting of the last trip stage, i.e. the final desti-
nation of the whole trip. Applying the same continuity principle that allows us
to estimate alightings by using boarding data, we can consider the intermediate
alighting stops implicit on a consecutive sequence of boardings. Therefore, we
can represent a complete trip as a sequence of stops T = B1, T1, ..., Tn, A1, with
the first stop always corresponding to the boarding at the origin stop, the last
stop with the alighting at the destination, and any intermediate stop being a
boarding in a transfer stop.

4 Our Proposal

We need to store all the ways users travelled between each possible origin-
destination pair of a transport network in a compact and indexed way.

Fig. 1. A readable trip matrix describing each trip and the number of passengers that
made it on the left; and its proposed compact representation on the right.

Let S = [S1, S2, . . . , Sσ] be the ordered set of stops in a public transport
network, and let BS[1..v] be the ordered list of different possible trips that
travellers actually follow across the considered network. Each of these trips is an
ordered list of stops, we denote each of them as type of trip. In Fig. 1.a, we can
see a list of types of trips. For example, the type of trip tr1 starts at Sa, includes
a transfer at stop Sz, and ends at stop Sd. It is possible to compactly store BS
by using three vectors:

1. The bitvector M [1..σ2] specifies for which origin-destination pairs there are
types of trips in BS. Bitvector M simulates a conceptual origin-destination

314 B. Letelier et al.

matrix of size σ × σ, where the cell at coordinates (i, j) stores a 1-bit if there
is at least one trip between Si and Sj in BS. M is simply the result of storing
the contents of that matrix row by row in a vector. If at least one type of trip
starts at Si and ends at Sj , then M [((i−1)∗σ)+ j] stores a 1-bit and a 0-bit
otherwise.

2. The bitvector N [1..v] indicates for each pair of origin-destination stops how
many different types of trips exist in BS connecting them. More precisely, for
each 1-bit in M , N stores in unary the number of different trips between two
particular stops. For example, the N bitvector in Fig. 1.b shows that there
are four ways (0001) to get to Sd from So.

3. The integer vector TS[1..v] contains the number of transfer stops for every
type of trip represented in N . In the example of Fig. 1.b, the four ways to get
to Sd from So require 0, 1, 2, and 3 transfers.

Any extra information related to a trip can be represented as an array aligned
with N or TS. This can be any type of information that may be of interest to
transport managers, such as the example we have chosen for this paper: total
number of passengers Q that made that trip last month. Additionally, in our
implementation, we store Q as its prefix sum representation QPS in order to
allow aggregated and individual queries on it.

Fig. 2. Plain Transfer Representation (PTR). An additional vector D and its alignment
with TS in order to recover transfer stops.

This simple representation is enough for storing and querying direct trips.
However, it does not allow recovering information related to transfer stops of
a type of trip. The straightforward approach to achieve this, henceforth Plain
Transfer Representation (PTR), is by just adding a new vector D with all those
intermediate stop identifiers (see Fig. 2). For the implementation of this method,
we replace TS with its prefix sum representation TSPS .

5 Improving Our Proposal

The previous approach PTR requires sequential searches on D in case of querying
data about transfer stops. To improve this, our second proposal, Tree Transfer
Representation (TTR), indexes the transfer stops identifiers of the existing trips
using K3 − trees, by considering a transfer at stop St of a trip that begins in
So and ends in Sd as a 3D point 〈So, Sd, St〉 over a 3D-grid. TTR uses two

Compacting Massive Public Transport Data 315

K3 − trees, one for trips with exactly one transfer stop and the other one for
every trip with two or more transfer stops, as illustrated in Fig. 3. Note that
direct trips can already be retrieved by using only M , N and TS (see Fig. 1).

From now on, we will refer to the K3 − tree indexing the trips with only 1
transfer stop as T1 − tree (Fig. 3.a), and the K3 − tree indexing trips with 2 or
more transfer stops as T2+ − tree (Fig. 3.c).

T1-tree: Representing a Single Transfer Stop. Any type of trip with a
single transfer stop that starts at So, ends at Sd, and passes through St can be
represented as the 3-tuple 〈So, Sd, St〉 in a 3D-grid, which can be represented
and indexed with a K3 − tree. Observe that each 1-bit in the last level of the
tree (L1) corresponds to one triplet.

For example, in Fig. 3.b, the first (from left to right) shadowed 1-bit in L1

indicates that there is a type of trip that starts at Sx, ends at Sw, and has only
one transfer stop at Sd.

Fig. 3. Tree Transfer Representation (TTR). Additional K3 − trees (T1 and T2+) to
efficiently index transfer stops.

T2+−tree: Representing Two or more Transfer Stops. This tree is built
following the same idea of T1−tree, but considering the type of trips with two or
more transfer stops. However, observe that now, for a given triplet 〈So, Sd, St〉,
we may have several types of trips in BS that start at So, end at Sd, and make
a transfer in St.

This particularity requires three additional data structures:

1. A bitvector NV for storing the number of types of trips (in unary) that start
at So, end at Sd, and make a transfer in St.

316 B. Letelier et al.

2. For each of those types of trips, the array O indicates the position of the
transfer stop at St within the stops of the corresponding type of trip. Observe
in Fig. 3.c that these values are aligned with the values on NV .

3. For each position of NV , the array ID stores the identifier of the correspond-
ing type of trip, which is the position of the trip within BS.

Figure 3.c. shows an example, we only display the last level of the K3 − tree
(L2+). Each 1-bit in L2+ corresponds to the triplet of stops displayed above it
(shown only for ease of understanding). Focusing on the triplet 〈So, Sd, Sx〉, its
1-bit in L2+ means that there is at least one type of trip with origin in So, a
transfer in Sx, and destination Sd. However, there can be more than one type of
trip having that property, and each of them may have other transfers at different
stops. In our example, there are two types of trips connecting So and Sd through
Sx, signalled with the bits 01 in NV . The array O indicates that in the first type
of trip, Sx is the second transfer stop of the type of trip whereas, in the second
type of trip, Sx is the third transfer stop. The array ID stores the position in BS
of the corresponding type of trip, observe that in our example, the two types of
trips are tr5 and tr6 (see Fig. 1).

6 Supported Queries

6.1 Obtaining the Types of Trips to Travel from the Origin Stop So

to the Destination Stop Sd (getTrips)

Given an origin stop So and a destination stop Sd, this query returns all the
existing types of trips between So and Sd. The first step in this query is to
determine the range in N corresponding to the trips between the target stops.
This can be solved using M and N , for both PTR and TTR. As an illustrative
example, suppose we want to recover the types of trips between origin So and
destination Sd, as shown in Fig. 1.

First, we need to determine if at least one trip between So and Sd does exist.
This is true if and only if the value in the in the position pos = ((o − 1)σ) + d
of M is equal to 1, where o and d are the indexes of the origin and destination
stops respectively, and σ the total number of stops in the network. Then, the
number of existing 1-bits in M [1..pos] is computed by using q = rank1(M,pos).
After that, the positions of the q-th and the (q +1)-th 1-bits in N are calculated
by using 〈i, j〉 = 〈select1(N, q) + 1, select1(N, q + 1)〉, returning the range 〈i, j〉,
the number of positions of this range is the number of different types of trips.
As it can be seen highlighted in Fig. 1.b., there are four different types of trips
between the pair (So, Sd).

The next step is to recover the transfer stops of those trips. This process
varies depending on the version:

PTR: Conceptually, we retrieve the range [i..j] of TS to obtain the number
of transfer stops on each trip, and then search D for the corresponding stop
identifiers. Given that PTR (unlike in the figure that uses a plain representation)

Compacting Massive Public Transport Data 317

uses the prefix sum representation TSPS , for each position k within [i..j], we
recover the range 〈l, r〉 = 〈TSPS [k], TSPS [k+1]〉, which corresponds to the range
in D that stores the transfer stops of the type of trip represented by position
k. Then, for each k, the type of trip 〈So,D[l..r], Sd〉 is included in the response.
Note that a direct trip occurs whenever l = r, in which case the trip 〈So, Sd〉 is
included in the response.

TTR: First, if there is a 0 within TS[i..j] (direct trip), 〈So, Sd〉 is included in
the response. Second, if there is a 1 within TS[i..j] (meaning trips with only 1
transfer), then the region 〈So, Sd, S1〉 × 〈So, Sd, Sσ〉 is recovered from the T1 −
tree. We add all the points within this region to the response. In the example
of Fig. 3.b, we can see that there are two types of trips between Sx and Sw, one
uses Sd as a transfer stop while the other uses Sz.

Finally, if there is a 2 or a larger number within TS[i..j] (trips with 2 or more
transfer stops), then the same region is recovered from the T2+ − tree (Fig. 3.c),
obtaining the p points 〈So, Sd, St〉 that exist in the region and their rank1 value
over L2+. For each point p and its rank1 value lr, a select1(NV, lr) + 1 and a
select1(NV, lr +1) would be needed to obtain the range O[ol..or] (highlighted in
Fig. 3.c) assuming NV was stored as a bitvector, but in practice, given that we
store NV as its prefix sum representation NVPS , only one subtraction NVPS [lr+
1] − NVPS [lr] is needed to obtain the same range.

Observe in Fig. 3.c that there are three 1-bits in L2+ corresponding to types
of trips with origin So and destination Sd. The first one (from left to right)
indicates that Sb is the first transfer stop of the type of trip tr6, the second
1-bit, indicates that the third transfer stop of tr6 is Sx and that the second stop
of tr5 is also Sx. Finally, the third 1-bit, signals that the second stop of tr6 is Sz

and that the first stop of tr5 is also Sz.

6.2 Obtaining the Total Number of People Who Made a Trip
Starting at So and Ending at Sd (getPeople)

The algorithm for this query is the same for both PTR and TTR. The first step is
again to find the range in N 〈i, j〉 that corresponds with the trips between the
target stops. Using the structures depicted in Fig. 1.b, the results would be the
sum of all the values within that range in the vector Q (for the example of origin
So and destination Sd, see the highlighted range in Fig. 1.b), given that Q uses a
prefix sum representation, the result is computed simply as QPS [j +1]−QPS [i].

6.3 Obtaining All the Origin and Destination Stops that Uses St

as Transfer Stop (getOriginDestinations)

PTR: First, the range containing all the trips starting at St must be discarded,
as we are only interested in trips where St was boarded as a transfer stop.

The range 〈i, j〉 in M , representing the trips starting at St, can be calculated
as i = ((t−1)σ)+1 and j = 1+ i+σ. Then by using rank and select operations

318 B. Letelier et al.

on M and N , in a similar way to the first step of the getTrips query, we obtain
the corresponding range in N .

Then, we search sequentially D for St appearances and, for each of those
positions, its corresponding positions in N (excluding those falling in the range
where St is the starting stop). For each position k of N obtained in the previous
step, we compute r1 = rank1(N, k) + 1 and then, pos = select1(M, r1) − 1. This
recovers the position in M that corresponds to the k-th trip in N . Finally, the
origin-destination pair is calculated by using 〈So, Sd〉 = 〈�pos/σ�+1, (pos%σ)+
1〉. If the obtained destination is different from St, the pair is added to the result
with a count of 1 unless it was already present, in that case, then a 1 is added
to its count.

TTR: First, the region 〈S1, S1, St〉×〈Sσ, Sσ, St〉 is searched on each tree. In the
case of the T1 − tree, just the returned p points 〈So, Sd, St〉 are needed. All the
pairs 〈So, Sd〉 are added to the result with a count of 1.

In the case of T2+ − tree, for each position p with a 1-bit in L2+ returned by
the search within 〈S1, S1, St〉 × 〈Sσ, Sσ, St〉, we compute l as the rank1(L2+, p).
Then, for each l, the value NVPS [l + 1] − NVPS [l] is added to the count cor-
responding to the origin-destination designed by the considered position p of
L2+.

7 Experimental Evaluation

The experiments were performed on a server with an Intel(R) Xeon(R) E5-2470
@ 2.30 GHz CPU and a main memory of 4× 16 GB DDR3-1067 MHz MHz. All
algorithms were programmed using C++11 language, with several data structures
of the SDSL Library [7], and compiled using g++ version 8.3.0 with -O3 -DNDEBUG
-march=native options. All given runtimes are real (wallclock) times.

7.1 Input Data

As explained, the computation of real trips from only the boarding information
is a complex task, which is being carried out in parallel in the same project.
Since those trips are not ready yet, we opted to test our developed methods
using trips simulated over the A Coruña (Spain) bus transport network instead,
containing 24 different bus lines and a total number of stops σ = 1, 101.

Partial representations of the transport network were used to create four
datasets of different sizes (detailed in Table 1). Each dataset contains the trip
of 150 million users that were simulated through a random-walk algorithm over
the corresponding transport network.

Compacting Massive Public Transport Data 319

Table 1. Description of the datasets.

Dataset # bus lines # stops (σ) # trips (v)

coruna-25 6 259 7,898,453

coruna-50 12 531 15,591,174

coruna-75 18 845 21,412,796

coruna-100 24 1,101 22,898,895

7.2 Used Methods

This work includes the baseline method proposed in Fig. 1.a, containing all the
registered trips ordered by origin stop, then by destination stop and then by
trip length. This order allows answering getTrips and getPeople by using binary
searches, while getOriginDestinations is solved using a sequential search.

In addition to our proposed methods, PTR and TTR, we also include space-
efficient versions for each one, called PTR-C and TTR-C. In PTR-C, the array D
was stored using the minimum amount of bits needed, that is, log2 σ bits to
represent each element, while the prefix sums TSPS and QPS were stored using
the sampling technique. The same technique was used in the arrays TS, O, ID
and the prefix sums NVPS and QPS of TTR-C. In all methods, the data type
used in each array is the smallest integer data type of C++ that can represent
the biggest value stored in the array.

All the tested methods are constructed once for each dataset and stored on
disk. To run an experiment over any method, first, the data structure is loaded
into main memory and then the corresponding experiment is executed.

7.3 Results

Table 2 shows the resulting sizes of every approach tested for the four exper-
imental datasets, in MBs, as well as the compression ratios compared to the
baseline.

Table 2. Space usage on each dataset (MB).

baseline PTR PTR-C TTR TTR-C

coruna-25 159.90 70.00 (43.78%) 28.01 (17.52%) 63.98 (40.01%) 35.51 (22.21%)

coruna-50 313.20 134.77 (43.03%) 56.77 (18.12%) 126.61 (40.42%) 68.52 (21.88%)

coruna-75 426.75 181.40 (42.51%) 75.16 (17.61%) 177.82 (41.67%) 98.44 (23.07%)

coruna-100 453.34 191.18 (42.17%) 83.74 (18.47%) 189.90 (41.89%) 109.54 (24.16%)

Notice that all of our proposals occupy less space than the baseline on each
dataset. The non-compressed versions use between 40.01% and 43.78% the size of
the baseline. The compressed version PTR-C uses between 17.52% and 18.47%
the space of the baseline, while TTR-C needs between 22.21% and 24.16%.

320 B. Letelier et al.

After building the data structures, our first experiment consisted in testing
the speed of the query getTrips. Each method had to reconstruct all the kinds
of trips that started on a random origin Si and ended on a random Sj . This
was repeated 1,000,000 times on each method and the result is the average time
to reconstruct one kind of trip that exists between an origin and a destination.
Each method searched exactly the same values on each query. Table 3 shows the
result of this experiment in μs/trip.

Table 3. Time of getTrips to recover one trip (μs/trip).

baseline PTR PTR-C TTR TTR-C

coruna-25 0.077 0.067 0.313 0.322 0.332

coruna-50 0.115 0.076 0.318 0.777 0.777

coruna-75 0.18 0.078 0.317 1.804 1.761

coruna-100 0.252 0.074 0.317 2.612 2.602

The obtained results of this first experiment prove that PTR and PTR-C recover
single trips in O(1). The time difference between both versions can only be
explained by the access time to the arrays since both use exactly the same
algorithm. The baseline method is always slower than PTR and always faster
than every other method. TTR and TTR-C do not perform well on this query, since
both versions need to access both T1 and T2+ trees in the worst case (if there
are trips with one or more transfer stops to be recovered). Note that the access
time of the arrays that affected the results in PTR and PTR-C does not affect TTR
and TTR-C, achieving similar times.

The next experiment consisted in testing the speed of getPeople query. Each
method had to recover the total number of people that started their trip on a
random origin Si and ended on a random Sj . This was repeated 1,000,000 times
on each method, using exactly the same values in each query. The displayed
value is the average time to answer one query. Table 4 shows the result of the
experiment in μs/query.

Table 4. Time of getPeople query to recover one query (μs/query).

baseline PTR PTR-C TTR TTR-C

coruna-25 2.688 0.735 0.734 0.719 0.727

coruna-50 3.497 0.619 0.628 0.766 0.770

coruna-75 3.975 0.773 0.770 0.682 0.639

coruna-100 4.22 0.469 0.478 0.729 0.472

Theoretically, our proposals should answer the getPeople query in O(1), since
the range in N can be obtained in O(1) and, given that Q is stored as a prefix

Compacting Massive Public Transport Data 321

sum, we can also return any range of data in O(1). In the case of the baseline,
it answers the query in O(k + log2(v)), with k being the number of trips that
start in So and end in Sd and log2(v) the additional time to return the range
using the binary searches. The results of this particular experiment show that
PTR, PTR-C, TTR and TTR-C can answer the getPeople query at least 3.6× faster
than the baseline.

The final experiment consisted in testing the speed of the methods in the
getOriginDestinations query. Each method had to recover a list containing all
the origin-destination pairs that used the stop St as a transfer stop. This was
repeated 1,000 times on each method, using exactly the same values in each
query. The results are shown in Table 5, containing the average time to answer
one query in ms/query.

Table 5. Time of getOriginDestinations query to recover one query (ms/query).

baseline PTR PTR-C TTR TTR-C

coruna-25 53.079 31.147 1927.08 6.898 6.777

coruna-50 101.962 58.446 3749.51 14.649 14.449

coruna-75 141.806 85.286 5027.86 22.070 22.040

coruna-100 152.269 95.884 5252.03 22.409 22.329

As it can be seen in Table 5, tree-based methods always achieve better per-
formance as the intermediate stops are indexed while the baseline and PTR need
extra steps to reach them. Thus, TTR and TTR-C can return all the existing points
that contain the searched transfer stop in logarithmic time, while the baseline,
PTR and PTR-C need to do a sequential search over all the stored trips. Note that
PTR is always faster than the baseline, while PTR-C access times lead to much
worse results.

8 Conclusions and Future Work

This work introduced two compact data structures that represent user trips over
a public transport network, PTR and TTR. We fed these data structures with the
simulated data of 150 million users travelling across the entire A Coruña bus
transport network. The results showed that our main approaches use less than
44% of the space required by the baseline to store these trips, while the space-
efficient versions we implemented, PTR-C and TTR-C, uses less than 18.47% and
24.16% of the space used by the baseline respectively.

The proposed representations are able to efficiently answer three queries of
interest: retrieve trips from an origin stop Si to a destination stop Sj (getTrips),
get the total number of people who travelled between any pair origin-destination
(getPeople), and calculate a list containing all the origin-destination pairs who
used a certain stop St as transfer stop (getOriginDestination). In terms of results,

322 B. Letelier et al.

it is advisable to use our compressed tree version TTR-C if transfer stops retrieval
is needed and the plain version PTR in all other cases.

As future work, we plan to create a hybrid approach between PTR and TTR-C
that could allow faster performance on all the queries, while still using less space
compared to our baseline. We also intend to expand our query capabilities
using feedback from transport administrators and test our methods using real
trip data from the city of Madrid.

References

1. Alsger, A., Assemi, B., Mesbah, M., Ferreira, L.: Validating and improving pub-
lic transport origin-destination estimation algorithm using smart card fare data.
Transp. Res. Part C Emerg. Technol. 68, 490–506 (2016)

2. de Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.:
Compact querieable representations of raster data. In: Kurland, O., Lewenstein,
M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02432-5 14

3. Brisaboa, N.R., Bernardo, G.D., Gutiérrez, G., Luaces, M.R., Paramá, J.R.: Effi-
ciently querying vector and raster data. Comput. J. 60(9), 1395–1413 (2017)

4. Brisaboa, N.R., Gómez-Brandón, A., Navarro, G., Paramá, J.R.: GraCT: a
grammar-based compressed index for trajectory data. Inf. Sci. 483, 106–135 (2019)

5. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Syst. 39, 152–174 (2014)

6. Brisaboa, N., Fariña, A., Galaktionov, D., V Rodeiro, T., Rodriguez, A.: Improved
structures to solve aggregated queries for trips over public transportation networks.
Inf. Sci. 584 (2021)

7. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

8. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium
on Foundations of Computer Science, pp. 549–554. IEEE Computer Society (1989)

9. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, USA (2016)

10. Samet, H.: Foundations of Multimensional and Metric Data Structures. Morgan
Kaufmann, San Francisco (2006)

https://doi.org/10.1007/978-3-319-02432-5_14
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28

Constant Time and Space Updates
for the Sigma-Tau Problem

Zsuzsanna Lipták1 , Francesco Masillo1(B) , Gonzalo Navarro2 ,
and Aaron Williams3

1 Department of Computer Science, University of Verona, Verona, Italy
{zsuzsanna.liptak,francesco.masillo}@univr.it

2 CeBiB and Department of Computer Science, University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl

3 Computer Science Department, Williams College, Williamstown, MA, USA
aaron.williams@williams.edu

Abstract. Sawada and Williams in [SODA 2018] and [ACM Trans. Alg.
2020] gave algorithms for constructing Hamiltonian paths and cycles
in the Sigma-Tau graph, thereby solving a problem of Nijenhuis and
Wilf that had been open for over 40 years. The Sigma-Tau graph is the
directed graph whose vertex set consists of all permutations of n, and
there is a directed edge from π to π′ if π′ can be obtained from π either by
a cyclic left-shift (sigma) or by exchanging the first two entries (tau). We
improve the existing algorithms from O(n) time per permutation to O(1)
time per permutation. Moreover, our algorithms require only O(1) extra
space. The result is the first combinatorial generation algorithm for n-
permutations that is optimal in both time and space, and lists the objects
in a Gray code order using only two types of changes. The simple C code
(∼50 lines) can be found at https://github.com/fmasillo/sigma-tau.

Keywords: permutations · sigma-tau problem · dynamic data
structures · combinatorial generation · combinatorial Gray codes

1 Introduction

The problem of efficiently generating all permutations of [n] = {1, 2, . . . , n} (in
one-line notation) is one of the oldest in combinatorial generation. When survey-
ing permutation generation algorithms in 1977, Sedgewick [37] remarked that “It
was actually one of the first nontrivial nonnumeric problems to be attacked by
computer”. Updated surveys on generating combinatorial objects, including per-
mutations, have been written by Savage [33], and more recently by Mütze [27].

Permutations are of fundamental importance in all areas of computer science.
In string algorithms, they form the basis of compressed data structures such
as compressed suffix arrays [19], compressed suffix trees [15,16,26], and BWT-
based data structures, such as the FM-index [13], the RLFM-index [25], the

G. Navarro—Funded in part by Basal Funds FB0001, ANID, Chile.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 323–330, 2023.
https://doi.org/10.1007/978-3-031-43980-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_26&domain=pdf
http://orcid.org/0000-0002-3233-0691
http://orcid.org/0000-0002-2078-6835
http://orcid.org/0000-0002-2286-741X
http://orcid.org/0000-0001-6816-4368
https://github.com/fmasillo/sigma-tau
https://doi.org/10.1007/978-3-031-43980-3_26

324 Z. Lipták et al.

r-index [17], or the extended r-index [5]. Permutations are also of central inter-
est in computational biology, where they have been used extensively to model
genome rearrangements [1–3,7,12,14,20,21].

In this paper, we provide iterative permutation generation algorithms that
update the current permutation in worst-case O(1) time (i.e., loopless) using
O(1) (additional) space. (We use the transdichotomous RAM model, where a
word has Θ(log n) bits. So O(1) space is O(log n) total bits; the current per-
mutation’s memory is not counted [39].) They create combinatorial Gray codes,
where consecutive permutations differ by one of two operations (one type of swap
or rotation). To the best of our knowledge, no existing permutation generation
algorithm has this set of features, see [27,33,37].

Loopless algorithms for permutations rarely use O(1) space as it cannot sup-
port n! different internal states: log(n!) = Θ(n log n). Thus, an O(1) space algo-
rithm cannot count to n! or compute natural sequences of length n! like the
factorial ruler sequence Ln (Oeis A055881 [28]). This discounts frameworks
by Ganapathi and Chowdhurysee [18], which generalize 19 previous algorithms
using Ln or a similar sequence Rn; also see Knuth’s framework [24]. (As a spe-
cific example, Zaks1 uses two additional arrays.) Thus, an O(1) space algorithm
must at times read from the current permutation. This is true of cool-lex order’s
simple successor rule [30], which can be generated by a loopless O(1) space
algorithm for multiset permutations [39], but it uses n − 1 different changes.
Shorthand universal cycles [23,31,36] give simple Gray codes with two change
types, but no existing loopless implementation uses O(1) space.

Our algorithms generate (σ, τ)-Gray codes by Sawada and Williams [34,35].
Here τ swaps the first two values, and σ rotates the full permutation one position
to the left. Hamilton paths are given for all n [34,35] and Hamilton cycles for odd n
[35] in the underlying directed Cayley graph Gn. Figure 1 shows G4 and a Hamilton
path; Hamilton cycles do not exist for even n [29,38]. Both papers give successor
rules and worst-case O(n) time array-based C programs. Egan created length n! +
(n − 1)! + (n − 2)! + (n − 3)! + n − 3 superpermutations [9,11] using (σ, τ)-Gray
codes from an earlier manuscript [41]. Prior work had found Hamilton cycles in
the undirected shuffle exchange network (i.e., Gn plus σ−1 edges) [4,8].

In his pioneering work on loopless algorithms, Ehrlich [10] differentiates
between (a) changing the current object into its successor, and (b) deciding
which change to apply in (a). Note that both types of computation must be
completed in worst-case O(1) time to obtain a loopless algorithm. Our loopless
σ-τ algorithms use circular data structures to address (a) since the σ operation
requires Θ(n) time in a conventional array. To address (b), we must carefully
introduce additional variables that can be updated in worst-case O(1) time. The
output of one of our algorithms for n = 4 (see Sect. 4) is visualized in Fig. 2.

Our contribution is summarized in Theorem 1 (subsuming Lemmas 3, 6,
and 7). Full C code can be found at https://github.com/fmasillo/sigma-tau.

Theorem 1. There is a data structure implementing the Hamilton path succes-
sor rule of [34], as well as the Hamilton path and Hamilton cycle successor rules
of [35], in worst-case O(1) time per permutation, using O(1) additional space.
1 His pancake flip order dates to the 1700 s [22] (see [6]) and is loopless in a BLL [40].

https://github.com/fmasillo/sigma-tau

Constant Time and Space Updates for the Sigma-Tau Problem 325

Fig. 1. Our loopless algorithms traverse Hamilton paths and cycles in the Sigma-Tau
graph Gn in worst-case O(1) time per vertex. The path in (b) follows [35].

Fig. 2. An alternate order of permutations HP ′ from [34]. Each τ transition swaps the
first (i.e., topmost) pair of elements. Each σ left-rotates all elements one position, with
the leftmost visualized as wrapping around from top to bottom.

2 Constant Time Successor Rule for Hamilton Paths

Sawada and Williams in [34] provided a successor rule for Hamilton paths, which
they later modified slightly in [35] to harmonize with the Hamilton cycle succes-
sor rule in the same paper. We first look at the latter rule, and will discuss the
original rule [34] in Sect. 4.

In the new version [35], the following successor rule was given for constructing
a Hamilton path in Gn, for any n > 1:

Hamilton path successor rule for Gn ([35]) Let π = π(1)π(2) · · · π(n)
be a permutation and let r be the symbol to the right of n when π is
considered cyclically and skipping over π(2). Define the successor rule HP
on Gn as follows:

HP(π) =

⎧
⎪⎨

⎪⎩

τ(π) if (r, π(2)) ∈ {(1, 2), (2, 3), . . . , (n − 2, n − 1), (n − 1, 2)}
and π �= n(n − 1)(n − 2) · · · 1;

σ(π) otherwise.

Let p = π−1(n), then the definition of r in the successor rule above is: r = π(3)
if p = 1, r = π(1) if p = n, and r = π(p + 1) otherwise.

326 Z. Lipták et al.

The authors of [35] gave a simple array-based implementation (see their
Appendix), which, as they state, results in O(n) worst-case time per permu-
tation. The code runs in Ω(n) time for three reasons: (1) the sigma-operation,
(2) identifying the position of n in π, and (3) deciding if π is the special (decreas-
ing) permutation πsp = n(n−1)(n−2) · · · 321. The programs in [34,35] also count
to n!, thus requiring Ω(n log n) bits of memory, which is not O(1) space.

Our implementation uses an array and three integer variables. Given a per-
mutation π, an up-step2 is a position where π, taken circularly, increases, that
is, a position i such that π(i) < π(1 + (i mod n)). Our data structure consists of
the following components:

1. an array C[1, n] containing a rotation of π,
2. a pointer b to the position of π(1), C[b] = π(1),
3. a pointer p to the position of n, C[p] = n, and
4. a counter u, giving the number of up-steps of π.

Example 1. Let n = 7 and π = 5624137. Then the following are two pos-
sible implementations: C1 = [4, 1, 3, 7, 5, 6, 2], b1 = 5, p1 = 4, u1 = 4, or
C2 = [5, 6, 2, 4, 1, 3, 7], b2 = 1, p2 = 7, u2 = 4. Note that u remains invariant.

Note that any value π(i) can be accessed in constant time, since π(i) =
C[1 + (b + i − 2 mod n)]. In particular, permutation π can be listed as C[b], C[b+
1], . . . , C[n], C[1], . . . , C[b−1], and can thus be returned in O(n) time, if required.

We can check the conditions whether to apply τ or σ in constant time:

Lemma 1. Let π be a permutation and C, b, p, u as defined. We can test in O(1)
time if (1) (r, π(2)) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 2)}, and (2) π = πsp.

Proof. 1. Recall that π(i) = C[1 + (b + i − 2 mod n)] is computed in constant
time. In particular π(2) = C[1 + (b mod n)]. On the other hand, we compute r
in constant time as C[1+(p mod n)] if p �= b and C[1+(b+1 mod n)] otherwise.
So we test whether r < n − 1 and π(2) = r + 1, or r = n − 1 and π(2) = 2.

2. It is easy to see that π = πsp if and only if u = 1 and p = b. ��
We next show how to implement σ and τ using our data structure:

Lemma 2. Both operations σ and τ can be executed in constant time using the
data structure C, b, p, u.

Proof. A σ-operation is implemented in constant time by simply incrementing b
circularly, b = 1 + (b mod n). A τ -operation, which exchanges π(1) with π(2), is
implemented, again in constant time, as follows:

1. decrement u once if π(n) < π(1), once if π(1) < π(2), and once if π(2) < π(3);
2. increment u once if π(n) < π(2), once if π(2) < π(1), and once if π(1) < π(3);
3. set p = 1 + (b mod n) if p = b, or set p = b if p = 1 + (b mod n); and
4. exchange C[b] with C[1 + (b mod n)]. ��
2 Note that this definition differs from ascent, which is not taken circularly.

Constant Time and Space Updates for the Sigma-Tau Problem 327

The total space occupied by our data structure is the permutation itself
(array C), and in addition the three integer variables, each taking Θ(log n) bits.
Our algorithm needs O(n) time to write the initial permutation πsp · τ to C and
O(1) time to initialize the variables b, p, u. (Alternatively, we can view the initial
permutation as the input, in which case we refer to the input array as C.) Thus:

Lemma 3. Using the data structure consisting of array C[1, n] and the variables
b, p, u, which are initialized in O(n) time, we can construct a Hamilton path in
Gn, starting from the permutation πsp · τ = (n − 1)n(n − 2) · · · 321 and imple-
menting the HP successor rule of [35], in O(1) worst-case time per permutation,
using O(1) extra words.

3 Constant Time Successor Rule for Hamilton Cycles

In [35], a successor rule for Hamiltonian cycles for odd n is provided. The authors
define the special set Rn, included in the conditions for applying τ rather than
σ. For a permutation π, we define π\2 the (n − 1)-length string obtained from π
by removing the element in position 2 (which is also an (n − 1)-permutation
in case π(2) = n). Then the special set is defined as Rn = {π | π(2) =
n and π\2 is a rotation of idn−1}. E.g., R5 = {15234, 25341, 35412, 45123}.

Hamilton cycle successor rule for Gn, where n is odd ([35]) Let
π = π(1)π(2) · · · π(n) be a permutation and let r be the symbol to the
right of n when π is considered cyclically and skipping over π(2). Define:

HC (π) =

⎧
⎪⎨

⎪⎩

τ(π) if (r, π(2)) ∈ {(1, 2), (2, 3), . . . , (n − 2, n − 1), (n − 1, 2)}
or π ∈ Rn

σ(π) otherwise.

Again, the array based implementation given in [35] results in O(n) time per
permutation in the worst case. In order to achieve constant time, we slightly
modify our data structure, replacing counter u by counter u′, the number of
up-steps of π\2, that is, we count up-steps skipping over position 2.

Lemma 4. It can be checked in constant time whether π ∈ Rn.

Proof. It is clear that an (n − 1)-permutation is a rotation of the identity
123 · · · (n − 2)(n − 1) if and only if the number of its up-steps is n − 2. The
fact that n is inserted in position 2 is equivalent to p = 1 + (b mod n). If
π(2) = n then π\2 is an (n − 1)-permutation, and therefore, π\2 is a rotation
of 123 · · · (n − 2)(n − 1) if and only if u′ = n − 2. Both checks can be done in
constant time. ��
Lemma 5. Both operations σ and τ can be executed in constant time, using the
modified data structure C, b, p, u′.

Proof. For the σ-operation, before setting b = 1 + (b mod n) we need to update
u′ in constant time as follows:

328 Z. Lipták et al.

1. decrement u′ once if π(1) < π(3), and once if π(3) < π(4);
2. increment u′ once if π(1) < π(2), and once if π(2) < π(4).

For the τ -operation we do as follows, also in constant time:

1. decrement u′ once if π(n) < π(1), and once if π(1) < π(3);
2. increment u′ once if π(n) < π(2), and once if π(2) < π(3);
3. set p = 1 + (b mod n) if p = b, or set p = b if p = 1 + (b mod n);
4. exchange C[b] with C[1 + (b mod n)]. ��

Similarly to the Hamilton path data structure, we use additional O(1) words.
Note that the Hamilton cycle can be started at any permutation. From this
discussion and Lemmas 1, 4, and 5, we have:

Lemma 6. Using the data structure consisting of array C[1, n] and the variables
b, p, u′, which are initialized in O(n) time, we can construct a Hamilton cycle in
Gn, starting from the identity permutation and implementing the HC successor
rule of [35], in O(1) worst-case time per permutation, using O(1) extra words.

4 Simpler Rule for Hamilton Paths and Termination

The original Hamilton path successor rule HP ′ given in [34] differs in only one
detail from the one in [35], namely that in the condition for τ , (n − 1, 2) is
replaced by (n− 1, 1). The resulting Hamilton paths in G4 is visualized in Fig. 2.

This change can be easily accommodated using our data structure, by a
simple change in the condition for applying τ . Alternatively, insights from [32]
on this Hamilton path can be used for a further simplification: The syntactic
sequence of a Hamilton path in Gn is a string over the alphabet {τ, σ} which
specifies the sequence of operations applied. Rytter and Zuba [32] showed that
for the Hamilton path resulting from successor rule HP ′, this sequence is highly
compressible.

Lemma 7. Using the data structure consisting of array C[1, n] and variables
b, p, u, which are initialized in O(n) time, we can construct a Hamilton path in
Gn, starting from the permutation πsp · τ = (n − 1)n(n − 2) · · · 321 and imple-
menting the HP ′ successor rule of [34], in O(1) worst-case time per permutation,
using O(1) extra words.

Termination. To terminate our algorithms, we cannot resort to a counter
maintaining the number of permutations, as is done in [34,35], since this would
exceed the O(1) space restriction. Instead, we apply termination conditions iden-
tifying the final permutation. For example, as we start the HC algorithm at the
identity id = 123 · · · n, the final permutation is n123 · · · (n − 1). This is the
unique permutation with π(1) = n, π(2) = 1, and u′ = n − 2 up-steps (skip-
ping over π(2)). Similar tests terminate HP and HP ′: starting from πsp · τ , we
have to detect when the last permutation (n − 2)(n − 1)(n − 3)(n − 4) · · · 21n
occurs. This can be done again in constant time and space by checking whether
u = 2, π(1) = n − 2, π(2) = n − 1, π(n − 1) = 1, and π(n) = n: the only permu-
tation with those extreme values fixed and with no further up-steps is the one
containing the descending sequence (n − 3) · · · 2 in between.

Constant Time and Space Updates for the Sigma-Tau Problem 329

References

1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inver-
sion distance between signed permutations with an experimental study. J. Comput.
Biol. 8(5), 483–491 (2001)

2. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. In:
Proceedings of the 34th Annual Symposium on Foundations of Computer Science
(FOCS 1993), pp. 148–157. IEEE Computer Society (1993)

3. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2),
224–240 (1998)

4. Bass, D.W., Sudborough, I.H.: On the shuffle-exchange permutation network. In:
Proceedings of the 1997 International Symposium on Parallel Architectures, Algo-
rithms and Networks (I-SPAN 1997), pp. 165–171. IEEE (1997)

5. Boucher, C., Cenzato, D., Lipták, Z., Rossi, M., Sciortino, M.: r-indexing the
eBWT. In: Lecroq, T., Touzet, H. (eds.) SPIRE 2021. LNCS, vol. 12944, pp. 3–12.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86692-1 1

6. Cameron, B., Sawada, J., Therese, W., Williams, A.: Hamiltonicity of k-sided pan-
cake networks with fixed-spin: efficient generation, ranking, and optimality. Algo-
rithmica 85(3), 717–744 (2023)

7. Cerbai, G., Ferrari, L.S.: Permutation patterns in genome rearrangement problems:
The reversal model. Discret. Appl. Math. 279, 34–48 (2020)

8. Compton, R.C., Gill Williamson, S.: Doubly adjacent gray codes for the symmetric
group. Linear Multilinear Algebra 35(3–4), 237–293 (1993)

9. Egan, G.: Superpermutations (2018). http://www.gregegan.net/SCIENCE/
Superpermutations/Superpermutations.html

10. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and
other combinatorial configurations. J. ACM 20(3), 500–513 (1973)

11. Engen, M., Vatter, V.: Containing all permutations. Am. Math. Mon. 128(1), 4–24
(2020)

12. Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by
block interchanges. ACM Trans. Algorithms 3(3), 25 (2007)

13. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52, 552–581 (2005)
14. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of

Genome Rearrangements. Computational Molecular Biology, MIT Press, Cam-
bridge (2009)

15. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theoret. Comput. Sci. 410(51), 5354–5364 (2009)

16. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), article 2 (2020)

17. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2018), pp. 1459–1477 (2018)

18. Ganapathi, P., Chowdhury, R.: A unified framework to discover permutation gen-
eration algorithms. Comput. J. 66(3), 603–614 (2023)

19. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)

20. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. In: Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 178–189.
ACM (1995)

https://doi.org/10.1007/978-3-030-86692-1_1
http://www.gregegan.net/SCIENCE/Superpermutations/Superpermutations.html
http://www.gregegan.net/SCIENCE/Superpermutations/Superpermutations.html

330 Z. Lipták et al.

21. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for
sorting by transpositions. Inf. Comput. 204(2), 275–290 (2006)

22. Hindenburg, C.F.: Sammlung combinatorisch-analytischer Abhandlungen, vol. 1.
ben Gerhard Fleischer dem Jungern (1796)

23. Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permuta-
tions. Algorithmica 64, 215–245 (2012)

24. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 2: Generating
All Tuples and Permutations (Art of Computer Programming). Addison-Wesley
Professional (2005)

25. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nord. J. Comput. 12(1), 40–66 (2005)

26. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permu-
tations and functions. Theoret. Comput. Sci. 438, 74–88 (2012)

27. Mütze, T.: Combinatorial gray codes–an updated survey. Electron. J. Combin.
30(3-DS26) (2023)

28. OEIS Foundation Inc.: Sequence A055881 in the On-line Encyclopedia of Integer
Sequences. https://oeis.org/A055881. Accessed 2 June 2023

29. Rankin, R.A.: A campanological problem in group theory. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 44, pp. 17–25. Cambridge
University Press (1948)

30. Ruskey, F., Williams, A.: The coolest way to generate combinations. Discret. Math.
309(17), 5305–5320 (2009)

31. Ruskey, F., Williams, A.: An explicit universal cycle for the (n − 1)-permutations
of an n-set. ACM Trans. Algorithms (TALG) 6(3), 1–12 (2010)

32. Rytter, W., Zuba, W.: Syntactic view of sigma-tau generation of permutations.
Theor. Comput. Sci. 882, 49–62 (2021)

33. Savage, C.D.: A survey of combinatorial Gray codes. SIAM Rev. 39(4), 605–629
(1997)

34. Sawada, J., Williams, A.: A Hamilton path for the Sigma-Tau problem. In: Proceed-
ings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2018), pp. 568–575. SIAM (2018)

35. Sawada, J., Williams, A.: Solving the Sigma-Tau problem. ACM Trans. Algorithms
16(1), 11:1–11:17 (2020)

36. Sawada, J., Williams, A.: Constructing the first (and coolest) fixed-content uni-
versal cycle. Algorithmica 85, 1–32 (2022)

37. Sedgewick, R.: Permutation generation methods. ACM Comput. Surv. (CSUR)
9(2), 137–164 (1977)

38. Swan, R.G.: A simple proof of Rankin’s campanological theorem. Am. Math. Mon.
106(2), 159–161 (1999)

39. Williams, A.: Loopless generation of multiset permutations using a constant num-
ber of variables by prefix shifts. In: Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2009), pp. 987–996. SIAM (2009)

40. Williams, A.: O(1)-time unsorting by prefix-reversals in a boustrophedon linked
list. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 368–379.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6 35

41. Williams, A.: Hamiltonicity of the Cayley digraph on the symmetric group gener-
ated by σ = (1 2 . . . n) and τ = (1 2). CoRR abs/1307.2549 (2013)

https://oeis.org/A055881
https://doi.org/10.1007/978-3-642-13122-6_35

Linear-Time Computation of Generalized
Minimal Absent Words for Multiple

Strings

Kouta Okabe1, Takuya Mieno2 , Yuto Nakashima3 ,
Shunsuke Inenaga3(B) , and Hideo Bannai4

1 Department of Information Science and Technology, Kyushu University,
Fukuoka, Japan

2 Department of Computer and Network Engineering,
University of Electro-Communications, Tokyo, Japan

tmieno@uec.ac.jp
3 Department of Informatics, Kyushu University, Fukuoka, Japan
{nakashima.yuto.003,inenaga.shunsuke.380}@m.kyushu-u.ac.jp

4 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
hdbn.dsc@tmd.ac.jp

Abstract. A string w is called a minimal absent word (MAW) for a
string S if w does not occur as a substring in S and all proper substrings
of w occur in S. MAWs are well-studied combinatorial string objects that
have potential applications in areas including bioinformatics, musicology,
and data compression. In this paper, we generalize the notion of MAWs to
a set S = {S1, . . . , Sk} of multiple strings. We first describe our solution
to the case of k = 2 strings, and show how to compute the set M of MAWs
in optimal O(n+|M|) time and with O(n) working space, where n denotes
the total length of the strings in S. We then move on to the general
case of k > 2 strings, and show how to compute the set M of MAWs
in O(n�k/ log n� + |M|) time and with O(n(k + log n)) bits of working
space, in the word RAM model with machine word size ω = log n. The
latter algorithm runs in optimal O(n + |M|) time for k = O(log n).

1 Introduction

A non-empty string w is said to be an absent word (a.k.a. a forbidden word) for
a string S if w is not a substring of S. An absent word w for S is said to be a
minimal absent word (MAW) for S if all proper substrings of w occur in S. For
instance, for string S = bbacccbaa over an alphabet Σ = {a, b, c, d}, the set
MAW(S) of all MAWs for S is {aaa, bbb, cccc, d, ab, ca, bc, aac, acb, cbb, accb,
cbac, bbaa}. MAWs are combinatorial string objects, and their interesting
mathematical properties have extensively been studied in the literature (see
[1,7,16,17,19,23] and references therein). MAWs also enjoy several applica-
tions including phylogeny [11], data compression [3,15,18], musical information
retrieval [14], and bioinformatics [2,12,22,24].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 331–344, 2023.
https://doi.org/10.1007/978-3-031-43980-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_27&domain=pdf
http://orcid.org/0000-0003-2922-9434
http://orcid.org/0000-0001-6269-9353
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0002-6856-5185
https://doi.org/10.1007/978-3-031-43980-3_27

332 K. Okabe et al.

It is known that the number |MAW(S)| of MAWs for a string S of length n
over an alphabet of size σ is O(σn) and that this bound is tight [17]. Crochre-
more et al. [17] gave an algorithm that computes MAW(S) in O(σn) time with
O(n) working space. Fujishige et al. [20] showed an improved algorithm for com-
puting MAW(S) in optimal O(n + |MAW(S)|) time with O(n) working space,
for an input string S of length n over an integer alphabet of polynomial size in
n. Both of the two aforementioned algorithms utilize an O(n)-size string data
structure called the (directed acyclic word graph) DAWG [9], which recognizes
the set of substrings of S, and can be built in O(n log σ) time for general ordered
alphabets [9], and in O(n) time for integer alphabets of polynomial size in n [20].
There also exist other efficient algorithms for computing MAWs with other string
data structures such as suffix arrays and Burrows-Wheeler transforms [4,8].

The aim of this paper is to extend the notion of MAWs to a set S =
{S1, . . . , Sk} of multiple k strings. We are aware of a few related attempts in
earlier work: Chairungsee and Crochemore [11] introduced a string similarity
measure based on the symmetric difference MAW(S1) �MAW(S2) of the sets of
MAWs for two strings S1 and S2 to compare. They introduced a length threshold
� ≥ 1, and described an approach for computing (MAW(S1) � MAW(S2)) ∩ Σ�

with the two following steps: First, the tries of size O(n�) each representing the
substrings of S1 and S2 of length up to � are built, where n = |S1| + |S2|.
Then, two tries each representing MAW(S1) ∩ Σ� and MAW(S2) ∩ Σ� are
built, which require O(nσ) space. Finally, the length-bounded symmetric dif-
ference (MAW(S1) � MAW(S2)) ∩ Σ� is computed from MAW(S1) ∩ Σ� and
MAW(S2) ∩ Σ�, but the authors did not explicitly describe how this compu-
tation is done in their method. Overall, their algorithm requires Ω(n(� + σ))
time and space [11]1. Charalampapaulose et al. [12] tackled the same problem
of computing the symmetric difference MAW(S1) � MAW(S1) (without length
threshold �), and proposed a solution that requires O(σn) time and space. Their
method firstly computes MAW(S1) and MAW(S2) separately, and then removes
the elements that are in MAW(S1)∩MAW(S2). Charalampopoulos, Crochemore,
and Pissis [13] presented how to count the number |MAW(S1) � MAW(S2)| of
elements in the symmetric difference MAW(S1) �MAW(S2) in O(n) time in the
case of integer alphabets of polynomial size in n, by avoiding to list the elements
explicitly.

Let S = {S1, . . . , Sk} be the input set of k strings, and B ∈ {0, 1}k be a
given bit vector of length k. Our problem is to list (generalized) MAWs w for S
and B such that w ∈ MAW(Si) for every B[i] = 1, and w /∈ MAW(Si) for every
B[i] = 0. For k = 2, the aforementioned problem of computing MAW(S1) �
MAW(S2) is equivalent to solving our problem for B = 01 and B = 10. In
Sect. 4 and Sect. 5, we deal with the case with k = 2, and present an algorithm
running in O(n + |MB|) time with O(n) working space, where MB denotes the
set of (generalized) MAWs to output for a given bit vector B (Theorem 2). This
immediately gives us an algorithm for listing the elements of the symmetric

1 The claimed time bound for computing the trie is O(nσ) (Theorem 1 of [11]). It
seems that the authors regarded the length threshold � as a constant.

Linear-Time Computation of Generalized Minimal Absent Words 333

difference MAW(S1)�MAW(S2) in optimal O(n+ |MAW(S1)�MAW(S2)|) time
(Corollary 1). In Sect. 6, we deal with the general case of k > 2, and extend our
solution for k = 2 to the general case. Let n be the total length of the input
k strings in S. Our solution for general k > 2 works in O(n�k/ log n� + |MB|)
time with O(n(k + log n)) bits of working space on the word RAM model with
machine word size ω = log n. Thus, for k = O(log n), our algorithm runs in
optimal O(n + |MB|) time. All the bounds claimed in this paper are valid for
linearly sortable alphabets, including integer alphabets of polynomial size in n.

As in the previous work [17,20,21], our key data structure is the DAWG for
the input set S of strings. The best-known algorithm for constructing the DAWG
for a set of strings of total length n takes O(n log σ) time [10], thus it can require
O(n log n) time for large alphabets. We describe how the DAWG for a given set
S of strings over an integer alphabet of polynomial size in n can be obtained in
optimal O(n) time (Theorem 1), which may be of independent interest.

2 Preliminaries

Strings. Let Σ be an ordered alphabet. An element of Σ is called a character. For
characters a, b ∈ Σ, we write a ≺ b (or equivalently b 	 a) if a is lexicographically
smaller than b. An element of Σ∗ is called a string. The length of a string S is
denoted by |S|. The empty string ε is the string of length 0. If S = xyz, then
x, y, and z are called a prefix, substring, and suffix of S, respectively. They are
called a proper prefix, proper substring, and proper suffix of S if x
= S, y
= S,
and z
= S, respectively. Let Substr(S) denote the set of substrings of string
S. For any 1 ≤ i ≤ |S|, the i-th character of S is denoted by S[i]. For any
1 ≤ i ≤ j ≤ |S|, S[i..j] denotes the substring of S starting at i and ending at j.
For convenience, let S[i..j] = ε for 0 ≤ j < i ≤ |S| + 1. We say that a string w
occurs in a string S iff w is a substring of S. Note that by definition the empty
string ε is a substring of any string S and hence ε always occurs in S.

For a set S of strings, let ‖S‖ denote the total length of the strings in S, that
is, ‖S‖ =

∑
S∈S |S|. Let Substr(S) denote the set of substrings of the strings in

S, that is, Substr(S) =
(⋃

S∈S{S[i..j] | 1 ≤ i ≤ j ≤ |S|}
)

∪ {ε}.

Minimal Absent Words (MAWs). A string w is called an absent word for a
string S if w does not occur in S. Let AW(S) = Σ∗ \ Substr(S) denote the set of
absent words for a string S. An absent word w ∈ AW(S) for string S is called a
minimal absent word or MAW for S if any proper substring of w occurs in S.
We denote by MAW(S) the set of all MAWs for S. Let nonMAW(S) = AW(S) \
MAW(S) be the set of absent words for S which are not MAWs. Note that, for
strings w and S, it holds that w /∈ MAW(S) iff w ∈ Substr(S) ∪ nonMAW(S).

We extend the aforementioned notion of MAWs to a set S = {S1, . . . , Sk} of
k strings for k ≥ 1, as follows: Let B be a bit-vector of length k, and let SB be a
subset of S such that SB = {Si | B[i] = 1}. Let SB = {Si | B[i] = 0} = S \ SB.
A string w is said to be a MAW for SB if (1) w ∈

⋂
Si∈SB

MAW(Si) and (2) w /∈⋃
Si∈SB

MAW(Si). Condition (1) implies that w is a MAW for any string in SB.

334 K. Okabe et al.

Condition (2) implies that w is not a MAW for any string in SB, which is equiva-
lent to say that w ∈

⋂
Si∈SB

(Substr(Si)∪nonMAW(Si)). Let MAW(SB) be the set
of all MAWs for SB. Here is some example: For string set S = {abaab, aacbba}
over the alphabet Σ = {a, b, c, d}, MAW(S10) = {aaba, bab, bb, c}, MAW(S01) =
{ab, baa, bac, bbb, bc, ca, cba, cc}, and MAW(S11) = {aaa, d}.

The problem we consider in this paper is the following:

Problem 1 (MAWs for multiple input strings). Given a set S = {S1, . . . , Sk} of
k strings over an alphabet Σ and a bit vector B of length k, compute MAW(SB).

3 The DAWG Data Structure

We use the directed acyclic word graph (DAWG) [9] data structure for a set
S = {S1, . . . , Sk} of k strings, which is a DFA of size O(‖S‖) that recognizes all
suffixes of the strings in S.

To give a formal definition of DAWG(S), let End PosS(w) denote the set of
ending positions of all occurrences of a string w in the strings of S, that is,

End PosS(w) = {(i, j) | Si[j − |w| + 1..j] = w, 1 ≤ i ≤ k, 1 ≤ j ≤ |Si|}.

We consider an equivalence relation ≡S of strings over Σ w.r.t. S such that,
for any two strings w and u, w ≡S u iff End PosS(w) = End PosS(u). For any
string x ∈ Σ∗, let [x]S denote the equivalence class for x w.r.t. ≡S . All the non-
substrings x /∈ Substr(S) form a unique equivalence class, called the degenerate
class.

Definition 1. The DAWG of a set S of strings, denoted DAWG(S), is an edge-
labeled DAG (V,E) such that

V = {[x]S | x ∈ Substr(S)},

E = {([x]S , b, [xb]S) | x, xb ∈ Substr(S), b ∈ Σ}.

We also define the set L of suffix links of DAWG(S) by

L = {([ax]S , a, [x]S) | x, ax ∈ Substr(S), a ∈ Σ, [ax]S
= [x]S}.

Namely, two substrings x and y in Substr(S) are represented by the same node
of DAWG(S) iff the ending positions of x and y in the strings of S are equal.
Note that DAWG(S) does not contain the node for the degenerate class nor its
in-coming edges. This is important for DAWG(S) to have a total linear number
of edges [9], and for our linear-time algorithm for listing all the MAWs for a
given query.

For convenience, assume that each string Si in S = {S1, . . . , Sk} terminates
with a unique end-marker #i which does not occur elsewhere, where #i
= #j

for i
= j. Then DAWG(S) has exactly k sink nodes, each of which recognizes all
the non-empty suffixes of Si. For each 1 ≤ i ≤ k, the sink that recognizes the
suffixes of Si is labeled by i.

Linear-Time Computation of Generalized Minimal Absent Words 335

The DAWG for a single string T is the DAWG for a singleton {T} and is
denoted by DAWG(T).

The state-of-the-art algorithm that builds DAWG(S) is Blumer et al.’s online
algorithm [9] which runs in O(n log σ) time with O(n) space, where n = ‖S‖ is
the total length of the strings in S and σ is the alphabet size. Below we describe
a faster construction of DAWG(S) in the case of integer alphabets:

Theorem 1 (Linear-time DAWG construction for a set of strings).
For a given set S = {S1, . . . , Sk} of k strings of total length n over an integer
alphabet Σ of polynomial size in n, one can build the edge-sorted DAWG(S) in
O(n) time and space.

Proof. We first create a concatenated string T = S1 · · · Sk of total length n from
the strings in S. We build DAWG(T) for the single string T in O(n) time and
space, using the algorithm of Fujishige et al. [20,21], where the out-going edges of
every node are lexicographically sorted. Our goal is to convert GT = DAWG(T)
to GS = DAWG(S). For a set P of integer pairs and a pair (a, b) of integers, let
P ⊕ (a, b) = {(p + a, q + b) | (p, q) ∈ P}. Our key observation is that, for any
substrings w ∈ Substr(S) that do not contain separators #i except for their last
positions, it holds that

End PosS(w)

= End PosS1(w) ∪

⎛

⎝
⋃

2≤i≤k

End PosSi
(w) ⊕ (i − 1, |S1 · · · Si−1|)

⎞

⎠ . (1)

Equation (1) implies that the substrings w of T = S1 · · · Sk which are also
substrings of S are represented by essentially the same nodes in GT and in GS ,
meaning that there is an injection from the nodes of GS to the nodes of GT .

What is left is how to remove the redundant nodes in GT which represent the
substrings y of T containing a separator #i inside, which are thus not substrings
of S. Let us call the longest path of GT that represents T as the spine. Since each
#i occurs exactly once in T , any substrings of T that contain #i are represented
by the spine of GT . Thus, we can obtain GS by removing the redundant nodes
from the spine of GT , but we ensure that for every i the suffixes of Si ending
with #i are still represented in the graph. This can be achieved as follows:
We process i = k, . . . , 2 in decreasing order. We first split the spine into two
parts each spelling out S1 · · · Sk−1 and Sk. We remove the nodes in the Sk part
which are not reachable from the source of the modified graph, together with
their out-going edges and suffix links. This gives us DAWG({S1 · · · Sk−1, Sk}).
After processing i = k, we continue the same process for i = k − 1 with the
remaining spine that spells out S1 · · · Sk−1. After processing i = 2, we obtain
GS = DAWG(S). See Fig. 1 for an example of our construction. It is trivial that
all the redundant nodes can be removed in O(n) time. ��

We remark that the order of concatenating the strings in S does not affect the
correctness nor the complexity of our algorithm.

336 K. Okabe et al.

Fig. 1. Illustration for our linear-time construction of DAWG(S) for a set S =
{abc#1, bbac#2, abca#3} of strings. We first build DAWG(T) for the concatenated
string T = abc#1bbac#2abca#3. Then, we remove the redundant nodes in the spine of
the DAWG for i = 3 and then for i = 2. This gives us DAWG(S).

Linear-Time Computation of Generalized Minimal Absent Words 337

4 Algorithm Overview for k = 2

In what follows, we consider the case where our input set S consists of two strings
S1 and S2 which respectively terminate with special characters #1 and #2. We
show how, given a bit vector B ∈ {00, 01, 10, 11} of length 2, we can compute
MAW(SB) in O(n + |MAW(SB)|) time and O(n) working space, where n = ‖S‖.

We first build the edge-sorted DAWG(S) for a given S = {S1, S2} in O(n)
time and space with Theorem 1. We label each node v of DAWG(S) by #i iff v
represents a substring of Si (1 ≤ i ≤ 2). Let label(v) ∈ {#1,#2,#1#2} denote
the label of node v. The labels of all nodes can be precomputed in O(n) time.

Our algorithm is based on Fujishige et al.’s algorithm [20,21] for computing
all the MAWs in the case of a single input string. As such, for each node x of
DAWG(S) we focus on the shortest string represented by x and denote it by au,
where a ∈ Σ and u ∈ Σ∗. We use the suffix link of the node x and its target
node y whose longest member is u (namely, the first letter a of au is removed
by following the suffix link from x to y). For ease of explanation, we identify the
node x with the string au, and the node y with the string u.

Fujishige et al.’s algorithm compares the out-going edges of au and those of
u one by one in the sorted order. Suppose au has an out-going edge labeled b. If
u does not have an out-going edge labeled b, then their algorithm outputs aub
as a MAW for the input string. Otherwise, it outputs nothing, and the cost is
charged to the out-going edge of au labeled b. Each MAW aub in the output is
encoded by a tuple (a, i, j) such that w[i..j] = ub, thus taking O(1) space. This is
how Fujishige et al.’s algorithm works in O(n + |MAW(S)|) time and with O(n)
working space for a single string S.

However, in our case of multiple strings, depending on the label of nodes au,
aub and ub, and depending on the value of the given bit vector B, there may
exist some edge comparisons that cannot be charged either to the output MAWs
or to the out-going edges of node au. It is also possible that even if there is a
node representing aub in DAWG(S), still aub is a MAW for some string(s) in S.
To overcome these difficulties, we introduce skip links that permit us to avoid
unwanted edge character comparisons.

5 Skip Links for k = 2

We use the same conventions for the nodes au, aub and u on DAWG(S) as in the
previous section, and also consider the node ub. We have three possible cases for
the label of node au, where label(au) = #1#2, label(au) = #1, or label(au) = #2.
In each of the three cases, there are some sub-cases for the labels of node aub
and node ub. By inspection, we obtain all the possible cases that need to be
considered, as shown in Fig. 2.

When B = 00, then since MAW(S00) = Σ∗ \ (MAW(S1) ∪ MAW(S2)), there
are no MAWs to output. In what follows, we describe our solutions to the cases
with B ∈ {10, 11}. We remark that the case with B = 01 is symmetric to the
case with B = 10.

338 K. Okabe et al.

5.1 When B = 10

There are four cases in which we output aub as a MAW for MAW(S10) (see the
table on the left of Fig. 2):

Fig. 2. Left: All possible cases of the labels of the nodes au, aub, and ub, and their
corresponding bit vectors B. “absent” refers to the case where there is no out-going edge
labeled b from node au. The cells with “-” refer to impossible combinations of node
labels. Middle: Illustration for DAWG(S) which shows the case where au is labeled
#1#2, aub is labeled #1, and ub is labeled #1#2. In this case aub is a MAW in
MAW(SB) with B = 01 (see the left table). Right: The regions corresponding to the
bit vectors B ∈ {00, 01, 10, 11}.

(1) label(au) = #1#2, label(aub) = #2, and label(ub) = #1#2;
(2) label(au) = #1#2, aub ∈ AW(S), and label(ub) = #1;
(3) label(au) = #1, aub ∈ AW(S), and label(ub) = #1;
(4) label(au) = #1, aub ∈ AW(S), and label(ub) = #1#2.

When label(au) = #1#2. We create skip links that simultaneously manage
Cases (1) and (2), both having label(au) = #1#2. We create a selected list
schar(u) of out-going edge labels of node u such that schar(u) = {b | label(ub) =
#1}, where the elements are lexicographically sorted. Let char(au) be the sorted
list of all out-going edge labels of node au. For any list L of characters and any
character c ∈ Σ, let succ(c, L) denote the lexicographical successor of c in L.
Our algorithm for B = 10 and label(au) = #1#2 is described in Algorithm 1.

When label(au) = #1. We create skip links that simultaneously manage
Cases (3) and (4), both having label(au) = #1. We create another selected list
schar′(u) of out-going edge labels of node u such that schar′(u) = {b | label(ub) ∈
{#1,#1#2}}, where the elements are lexicographically sorted. We use the same
char(au) in the previous case. Our algorithm for B = 10 and label(au) = #1 is
described in Algorithm 2.

Lemma 1 (Linear-time MAW computation for B = 10). Given B = 10,
one can compute MAW(S10) in O(n+ |MAW(S10)|) time and O(n) working space
for integer alphabets of polynomial size in n = ‖S‖.

Linear-Time Computation of Generalized Minimal Absent Words 339

Algorithm 1: Algorithm for B = 10 and label(au) = #1#2

Input: A node au of DAWG(S) such that label(au) = #1#2, B = 10.
Output: A subset M of MAWs aub with b ∈ Σ.

1 M ← ∅;
2 U ← char(au) ∪ {$U} ; /* $U is lex. largest in U */

3 L ← schar(u) ∪ {$L} ; /* $L is lex. largest in L and $L ≺ $u */

4 b̂ ← U [1]; b ← L[1] ; /* start with lex. smallest characters */

5 while b 	= $L do

6 if b̂ = b then
7 if label(aub) = #2 and label(ub) = #1#2 then
8 M ← M ∪ {aub} ; /* output aub */

9 b̂ ← succ(b̂, U) ; /* move to the next character in U */

10 b ← succ(b, L) ; /* move to the next character in L */

11 else if b̂
 b then
12 M ← M ∪ {aub} ; /* output aub */

13 b ← succ(b, L) ; /* move to the next character in L */

14 return M ;

Proof. We run Algorithm 1 and Algorithm 2 for every node au of DAWG(S).
In the preprocessing phase, we build the edge-sorted DAWG(S) in O(‖S‖)

time and space by Theorem 1. Since the out-going edges of every node are
sorted, we can easily compute the sorted lists char(au), schar(u), schar′(u), and
schar′′(u) for all nodes in O(n) total time.

Let us consider the complexity of the scanning phase of Algorithm 1. Each
edge-label comparison that falls into “b̂ = b” in line 6 of Algorithm 1 is associated
either to the reported MAW aub if label(aub) = #2 and label(ub) = #1#2 (in
line 7 and line 8), or to the out-going edge of node au labeled b otherwise.
Each edge-label comparison that falls into “b̂ 	 b” in line 11 is associated to
the reported MAW aub in line 12. This ensures the desired time complexity for
Algorithm 1. The complexity for Algorithm 2 is similar to show.

The correctness of Algorithm 1 and Algorithm 2 is immediate from the tables
in Fig. 2 and 3. ��

5.2 When B = 11

There is a single case in which we output aub as a MAW for MAW(S11) (see
Fig. 2): label(au) = #1#2, aub ∈ AW(S), and label(ub) = #1#2.

Unwanted comparisons can occur here if aub ∈ AW(S), and label(ub) = #1

or label(ub) = #2. To avoid such comparisons, we consider another carefully
selected list schar′′(u) of out-going edge labels of node u such that schar′′(u) =
{b | label(ub) = #1#2}, where the elements are lexicographically sorted. We can
use the same char(au) in the previous subsection.

We can modify Algorithm 2 for B = 01 with label(au) = #1 so that the
modified algorithm computes MAWs for B = 11, only by using schar′′(u) in
place of schar′(u). This leads us to the following lemma:

340 K. Okabe et al.

Fig. 3. Illustration for our algorithm for B = 10 and label(au) = #1#2. The white
cells in the table show the cases where we output elements of MAW(S10). We compare
the labels of the selected out-going edges of node au and u which are connected by the
skip links, in sorted order. In this diagram, aud and aui are output in line 12 and auc
and aue are output in line 12 of Algorithm 1 as elements of MAW(S10).

Lemma 2 (Linear-time MAW computation for B = 11). Given B = 11,
one can compute MAW(S11) in O(n+ |MAW(S11)|) time and O(n) working space
for integer alphabets of polynomial size in n = ‖S‖.

5.3 Our Main Result for k = 2

Finally we obtain the main result for a case of two strings with k = 2.

Theorem 2 (Linear-time MAW computation for a set of two strings).
Given a set S = {S1, S2} of two strings of total length n and a bit vector B ∈
{01, 10, 11}, one can compute MAW(SB) in O(n + |MAW(SB)|) time and O(n)
working space for integer alphabets of polynomial size in n.

The following corollary is immediate from Theorem 2.

Corollary 1. Given a set S = {S1, S2} of two strings of total length n, one can
compute MAW(S1)∩MAW(S2), MAW(S1)∪MAW(S2), and MAW(S1)�MAW(S2)
in O(n+ |MAW(S1)∩MAW(S2)|) time, O(n+ |MAW(S1)∪MAW(S2)|) time, and
O(n+ |MAW(S1)�MAW(S2)|) time, respectively, using O(n) working space, for
integer alphabets of polynomial size in n.

6 Algorithm for Arbitrary k > 2

In this section, we present our algorithm for computing MAW(SB) in case where
S = {S1, . . . , Sk} contains k > 2 strings.

Linear-Time Computation of Generalized Minimal Absent Words 341

Algorithm 2: Algorithm for B = 10 and label(au) = #1

Input: A node au of DAWG(S) such that label(au) = #1, B = 10.
Output: A subset M of MAWs aub with b ∈ Σ.

1 M ← ∅;
2 U ← char(au) ∪ {$U} ; /* $U is lex. largest in U */

3 L ← schar′(u) ∪ {$L} ; /* $L is lex. largest in L and $L ≺ $u */

4 b̂ ← U [1]; b ← L[1] ; /* start with lex. smallest characters */

5 while b 	= $L do

6 if b̂ = b then

7 b̂ ← succ(b̂, U) ; /* move to the next character in U */

8 b ← succ(b, L) ; /* move to the next character in L */

9 else if b̂
 b then
10 M ← M ∪ {aub} ; /* output aub */

11 b ← succ(b, L) ; /* move to the next character in L */

12 return M ;

Let B ∈ {0, 1}k \ {0k} be an input bit vector of length k > 2. We redefine
the labels of the nodes of DAWG(S) such that label(v)[i] = 1 iff v is a substring
of Si for 1 ≤ i ≤ k. Namely, label(v) is now also a bit vector of length k.

Let aub ∈ Σ∗ (a, b ∈ Σ and u ∈ Σ∗) be a candidate of an element of
MAW(SB) as in the previous sections, where the suffix link of node au points to
node u and node u has an out-going edge labeled b. Then, it follows from the
definition of MAW(SB) that aub ∈ MAW(SB) iff

(A) label(aub)[i] = 0, label(au)[i] = 1, and label(ub)[i] = 1 (i.e. aub ∈ MAW(Si)),
or

(A’) au has no out-going edge labeled b, label(au)[i] = 1, and label(ub)[i] = 1
(i.e. aub ∈ MAW(Si))

for all 1 ≤ i ≤ k with B[i] = 1, and

(B) label(aub)[i] = 1 (i.e. aub ∈ Substr(Si)), or
(C) label(aub)[i] = 0, and label(au)[i] = 0 or label(ub)[i] = 0

(i.e. aub ∈ nonMAW(Si)), or
(C’) au has no out-going edge labeled b, and label(au)[i] = 0 or label(ub)[i] = 0

(i.e. aub ∈ nonMAW(Si))

for all 1 ≤ i ≤ k with B[i] = 0.
For each node au in DAWG(S) whose suffix link points to node u, we create

a united single skip link schar(ub) for the children ub of node u such that b ∈
schar(ub) iff label(ub)[i] = 1 for every i with B[i] = 1.

After the above preprocessing is finished, we proceed to the scanning phase of
our algorithm. For each node au, we scan the skip links char(aub) and schar(ub)
in parallel, analogously to the case with k = 2. Let b̂ ∈ char(aub) and b ∈
schar(ub). Our algorithm compares these characters in sorted order while keeping
the invariant b̂ � b as in the case with k = 2.

342 K. Okabe et al.

When the comparison falls into the case “b̂ = b”, then we output aub as
an element of MAW(SB) if Case (A) is satisfied and if Case (B) or Case (C) is
satisfied. When the comparison falls into the case “b̂ 	 b”, then we output aub
as an element of MAW(SB) if Cases (A’) and (C’) are both satisfied.

This already gives us an O(nk)-time algorithm for computing MAW(SB)
using O(n(k+log n)) bits of working space, or alternatively O(n�k/ log n�) words
of working space in the word RAM model with machine word size ω = log n.

We can speed up checking Cases (A), (B), (C) for each node au by using bit
masks of size ω = log n each stored at nodes aub, au, and ub, from O(k) time to
O(�k/ log n�) time. For Cases (A’) and (C’), it suffices for us to use only the bit
masks stored at nodes au and ub, since node aub does not exist in these cases
and we detect this as a result of “b̂ 	 b” comparison.

Theorem 3 (Efficient MAW computation for a set of k strings). Given
a set S = {S1, . . . , Sk} of k strings of total length n and a bit vector B ∈
{0, 1}k \ {0k}, one can compute MAW(SB) in O(n�k/ log n� + |MAW(SB)|) time
and O(n(k + log n)) bits of working space (or alternatively O(n�k/ log n�) words
of working space), for integer alphabets of polynomial size in n.

7 Discussions

Béal et al. [6] considered a different version of MAWs MAW′(S) for a set S of
k strings, where a string w = aub is a MAW for S = {S1, . . . , Sk} if aub /∈
Substr(S), au ∈ Substr(Si) and ub ∈ Substr(Sj) for some 1 ≤ i, j ≤ k. They
gave an O(σn)-time and space solution for computing MAW′(S). This version of
MAWs can be computed in optimal O(n + |MAW′(S)|) time, independently of
k, by running our algorithm without skip links. Ayad et al. [3] considered the
problem of computing the same version of MAWs of length up to � > 1.

Independently to our work, the recent work by Béal and Crochemore [5]
considered the following problem: Let T and R be sets of strings, where T is
called a target and R is called a reference. A T -specific string with respect to R is
a string u such that u ∈ Substr(T), u /∈ Substr(R), v ∈ Substr(R) for any proper
substring v of u. By definition, a string u is a T -specific string with respect to
R if and only if u ∈ MAW(R) ∩ Substr(T). Béal and Crochemore [5] showed
an algorithm for finding all T -specific strings w.r.t. R in O(nσ)-time and O(n)
space, where n is the total length of the strings in T and R, assuming that the
edges of the DAWG are represented by transition matrices (Proposition 2, [5]).
Their algorithm also uses the DAWG built on T and R and marks its nodes in
an appropriate way (Proposition 1, [5]). This marking technique is very similar
to our skip links from Sect. 5 for the case of k = 2, and thus our algorithm can
be extended to solve this problem in O(n) time and space for integer alphabets.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Num-
bers JP23H04381 (TM), JP21K17705, JP23H04386 (YN), JP22H03551 (SI),
JP20H04141 (HB).

Linear-Time Computation of Generalized Minimal Absent Words 343

References

1. Akagi, T., et al.: Combinatorics of minimal absent words for a sliding window.
Theor. Comput. Sci. 927, 109–119 (2022). https://doi.org/10.1016/j.tcs.2022.06.
002

2. Almirantis, Y., et al.: On avoided words, absent words, and their application to
biological sequence analysis. Algorithms Mol. Biol. 12(1), 5 (2017)

3. Ayad, L.A.K., Badkobeh, G., Fici, G., Héliou, A., Pissis, S.P.: Constructing anti-
dictionaries of long texts in output-sensitive space. Theory Comput. Syst. 65(5),
777–797 (2021)

4. Barton, C., Heliou, A., Mouchard, L., Pissis, S.P.: Linear-time computation of
minimal absent words using suffix array. BMC Bioinform. 15(1), 388 (2014)

5. Béal, M., Crochemore, M.: Fast detection of specific fragments against a set of
sequences. In: Drewes, F., Volkov, M. (eds.) Developments in Language Theory.
DLT 2023. LNCS, vol. 13911, pp. 51–60. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-33264-7 5

6. Béal, M., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing
forbidden words of regular languages. Fundam. Inform. 56(1–2), 121–135 (2003)

7. Béal, M.-P., Mignosi, F., Restivo, A.: Minimal forbidden words and symbolic
dynamics. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
555–566. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 45

8. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile Succinct Repre-
sentations of the Bidirectional Burrows-Wheeler Transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40450-4 12

9. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.:
The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.
40, 31–55 (1985)

10. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987).
https://doi.org/10.1145/28869.28873

11. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theor. Comput. Sci. 450, 109–116 (2012)

12. Charalampopoulos, P., Crochemore, M., Fici, G., Mercaş, R., Pissis, S.P.:
Alignment-free sequence comparison using absent words. Inf. Comput. 262, 57–68
(2018)

13. Charalampopoulos, P., Crochemore, M., Pissis, S.P.: On extended special factors
of a word. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) SPIRE
2018. LNCS, vol. 11147, pp. 131–138. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00479-8 11

14. Crawford, T., Badkobeh, G., Lewis, D.: Searching page-images of early music
scanned with OMR: a scalable solution using minimal absent words. In: ISMIR
2018, pp. 233–239 (2018)

15. Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Data compression using
antidictionaries. Proc. IEEE 88(11), 1756–1768 (2000)

16. Crochemore, M., Héliou, A., Kucherov, G., Mouchard, L., Pissis, S.P., Ramusat,
Y.: Absent words in a sliding window with applications. Inf. Comput. 270, 104461
(2020)

17. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inf.
Process. Lett. 67(3), 111–117 (1998)

https://doi.org/10.1016/j.tcs.2022.06.002
https://doi.org/10.1016/j.tcs.2022.06.002
https://doi.org/10.1007/978-3-031-33264-7_5
https://doi.org/10.1007/978-3-031-33264-7_5
https://doi.org/10.1007/3-540-60922-9_45
https://doi.org/10.1007/978-3-642-40450-4_12
https://doi.org/10.1145/28869.28873
https://doi.org/10.1007/978-3-030-00479-8_11
https://doi.org/10.1007/978-3-030-00479-8_11

344 K. Okabe et al.

18. Crochemore, M., Navarro, G.: Improved antidictionary based compression. In: 12th
International Conference of the Chilean Computer Science Society, 2002. Proceed-
ings, pp. 7–13. IEEE (2002)

19. Fici, G.: Minimal forbidden words and applications. Ph.D. thesis, Università di
Palermo and Université Paris-Est Marne-la-Vallée (2006)

20. Fujishige, Y., Tsujimaru, Y., Inenaga, S., Bannai, H., Takeda, M.: Computing
DAWGs and minimal absent words in linear time for integer alphabets. In: MFCS
2016, vol. 58, pp. 38:1–38:14 (2016)

21. Fujishige, Y., Tsujimaru, Y., Inenaga, S., Bannai, H., Takeda, M.: Linear-time
computation of DAWGs, symmetric indexing structures, and MAWs for integer
alphabets. Theor. Comput. Sci. (2023, to appear)

22. Koulouras, G., Frith, M.C.: Significant non-existence of sequences in genomes and
proteomes. Nucleic Acids Res. 49(6), 3139–3155 (2021)

23. Mieno, T., et al.: Minimal unique substrings and minimal absent words in a sliding
window. In: Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp.
148–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2 13

24. Pratas, D., Silva, J.M.: Persistent minimal sequences of SARS-CoV-2. Bioinfor-
matics 36(21), 5129–5132 (2020)

https://doi.org/10.1007/978-3-030-38919-2_13

Frequency-Constrained Substring
Complexity

Solon P. Pissis1,2(B), Michael Shekelyan3, Chang Liu4, and Grigorios Loukides5

1 CWI, Amsterdam, The Netherlands
solon.pissis@cwi.nl

2 Vrije Universiteit, Amsterdam, The Netherlands
3 Queen Mary University of London, London, UK

m.shekelyan@qmul.ac.uk
4 Zhejiang University, Medical Center, Zhejiang, China

0623541@zju.edu.cn
5 King’s College London, London, UK

grigorios.loukides@kcl.ac.uk

Abstract. We introduce the notion of frequency-constrained substring
complexity. For any finite string, it counts the distinct substrings of the
string per length and frequency class. For a string x of length n and a
partition of [n] in τ intervals, I = I1, . . . , Iτ , the frequency-constrained
substring complexity of x is the function fx,I(i, j) that maps i, j to the
number of distinct substrings of length i of x occurring at least αj and at
most βj times in x, where Ij = [αj , βj]. We extend this notion as follows.
For a string x, a dictionary D of d strings (documents), and a partition
of [d] in τ intervals I1, . . . , Iτ , we define a 2D array S = S[1 . . |x|, 1 . . τ]
as follows: S[i, j] is the number of distinct substrings of length i of x
occurring in at least αj and at most βj documents, where Ij = [αj , βj].
Array S can thus be seen as the distribution of the substring complexity
of x into τ document frequency classes. We show that after a linear-time
preprocessing of D, for any x and any partition of [d] in τ intervals given
online, array S can be computed in near-optimal O(|x|τ log log d) time.

Keywords: Substring complexity · Suffix tree · Predecessor search

1 Introduction

The substring complexity or subword complexity of an infinite string x is the func-
tion that maps i to the number of distinct substrings (subwords) of length i in
x. Substring complexity is one of the main topics in combinatorics on words [22].
The ultimate goal is to find explicit formulas for (or estimates of) the number of
distinct fragments of length i occurring in a given infinite string [9,17]. Substring
complexity in finite strings plays also a crucial role in data compression [21]; it
underlies a promising compressibility measure for repetitive sequences [13,14].

We introduce the notion of frequency-constrained substring complexity of
finite strings. For any finite string, it counts the distinct substrings of the string
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 345–352, 2023.
https://doi.org/10.1007/978-3-031-43980-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-43980-3_28

346 S. P. Pissis et al.

per length and frequency class. For a string x of length n and a partition of [n]1

in τ intervals I = I1, . . . , Iτ , the frequency-constrained substring complexity of
x is the function fx,I(i, j) that maps i, j to the number of distinct substrings
of length i of x occurring at least αj and at most βj times in x, where Ij =
[αj , βj]. We extend this notion as follows. For a string x, a dictionary D of
d strings (documents) and a partition of [d] in τ intervals I = I1, . . . , Iτ , the
function fx,D,I(i, j) maps i, j to the number of distinct substrings of length i of
x occurring in at least αj and at most βj documents in D, where Ij = [αj , βj]. In
fact, computing fx,D,I efficiently is the main problem we consider in this paper.

The frequency-constrained substring complexity of x is very descriptive as
it provides subtle information about the substrings of x. It can thus help us
tune string processing algorithms by setting bounds on the substrings length or
on frequency; for example, when τ = 2, the substrings of x are classified into
frequent and infrequent [19]. We can also tune the output size of a document
retrieval algorithm [20], the term’s length used by a tf-idf algorithm [15], or
the seed length used by seed-and-extend sequence alignment algorithms [5,16].

Example 1. Let D = {a,ananan,baba,ban,banna,nana}. For x = banana and
I1 = [1, 2], I2 = [3, 4], I3 = [5, 6], we have fx,D,I(2, 2) = 3: ba occurs in 3 ∈ I2
documents; an occurs in 4 ∈ I2 documents; and na occurs in 3 ∈ I2 documents.

Our Contribution. Let S be a 2D array such that S[i, j] = fx,D,I(i, j). We
show that after a linear-time preprocessing of D, for any x and any partition
I of [d] in τ intervals given online, array S can be computed in near-optimal
O(|x|τ log log d) time. Since array S is of size |x|×τ , our data structure is nearly-
optimal with respect to the preprocessing and query times. The main ingredients
of our data structure are suffix trees [4,7,23] and predecessor search [6,18].

2 The Data Structure

Let us denote by D = {y1, . . . , yd} the input dictionary consisting of d = |D|
strings (documents). We assume that all strings in D are over an integer alphabet
Σ of size σ ≤ ||D||O(1), where ||D|| is the total length of all the strings in D.

Let us denote by y = y1$1 . . . yd$d the concatenation of the d documents in
D in some arbitrary but fixed order; the $i letters, i ∈ [1, d], are unique letters
not from Σ. We construct the suffix tree ST(y) of y (with suffix links) in linear
time [7]. We implement O(1)-time transitions in the suffix tree in linear time
using perfect hashing [10]. For any string w, we define its document frequency
in D as the number of distinct documents in D in which w has at least one
occurrence. We decorate each node u of ST(y) with the document frequency of
the string spelled from the root of ST(y) to u. This is done in linear time [12].

Upon a query string x, we construct the suffix tree ST(x) of x in O(|x|)
time [7]: if any letter of x is not in D, which is checked using ST(y), we replace it
with a unique letter not in Σ, and hash the letters of x into the range [0, |x|] [10].

1 By the notation [u] we denote {1, 2, . . . , u}.

Frequency-Constrained Substring Complexity 347

We first show how to compute, for each node u of ST(x), the document frequency
of the string spelled from the root of ST(x) to u in O(|x|) total time.

We perform a DFS on ST(x). Every leaf in a standard suffix tree is labeled
with the starting position of the suffix it represents. While traversing ST(x), we
propagate upwards the labels of the leaf nodes maintaining only the smallest
label (starting position) in every node. For any ST(·), we denote the small-
est label i for node u by start(u) = i. Consider now a node u of ST(x)
which stores label start(u). Then the path from the root to u spells the string
x[start(u) . . start(u) + d(u) − 1], where d(u) is the string depth of node u. At
the end of the DFS, we group the nodes per label i, for all i ∈ [1, |x|], using
radix sort. Specifically, two nodes u, v of ST(x) are in group Gi if and only if
start(u) = start(v) = i. By construction (i.e., by choosing the smallest label) one
node represents a prefix of the other node. The whole process takes O(|x|) time.

We run the matching statistics algorithm [3,11] using x and ST(y): for each
starting position i in x, we compute the longest match of length �i ≥ 0 in any
document in D. In particular, this algorithm gives us a locus on ST(y), which
represents the longest match x[i . . i + �i − 1], for all i ∈ [1, |x|]. More formally,
a locus in a suffix tree is a pair (v, �i) where d(parent(v)) < �i ≤ d(v), for some
node v of the suffix tree and some string depth �i. Provided that ST(y) is already
constructed, computing the matching statistics takes O(|x|) time [11].

Let this locus on ST(y) be (v, �i) and let it represent y[start(v) . . start(v) +
�i − 1]. In particular, substring x[i . . i + �i − 1] = y[start(v) . . start(v) + �i − 1]
is precisely this longest match. We consider Gi: the group of nodes from ST(x)
having label i. Say we are processing such a node u ∈ Gi. We have two cases:

– If �i < d(u) the frequency assigned to node u is 0. This is correct because
x[start(u) . . start(u)+d(u)−1] does not occur in any document in D otherwise
a longer than the longest match would be output by the matching statistics.

– If �i ≥ d(u) then we ask a weighted ancestor query [8] to locate the substring
y[start(v) . . start(v)+d(u)−1] of y, and it gives us a locus (w, d(u)) in constant
time after a linear-time preprocessing of y [2]. More formally, the weighted
ancestor problem on suffix trees is defined as follows: given ST(y), we are
asked to preprocess it so that can find the locus of any substring y[p . . q] of y
on ST(y). We read the frequency stored at node w, and this is precisely the
frequency we assign to node u. This is correct, because x[start(u) . . start(u)+
d(u)−1] is a prefix of x[start(u) . . start(u)+ �i −1], by �i ≥ d(u), and because
x[start(u) . . start(u) + d(u) − 1] = y[start(v) . . start(v) + d(u) − 1].

Since the matching statistics algorithm finds a locus (v, �i) for every starting
position i of x, we can assign the correct document frequency to every node of
ST(x) in O(|x|) total time. We obtain the following result, which we refine next.

Lemma 1. The document frequency for all nodes of ST(x) can be computed in
the optimal O(|x|) time after a linear-time preprocessing of dictionary D.

Let us now describe in detail how we can efficiently compute array S. The
first step is to construct ST(x) and compute for all of its nodes the document

348 S. P. Pissis et al.

Fig. 1. ST(y) with nodes weighted by document frequency for D =
{a,ananan,baba,ban,banna,nana} from Example 1. A successor weighted ancestor
query of the blue node with argument αj = 3, takes us to the ancestor of the blue
node with the smallest frequency at least 3. This is the red node. Any such query can
be answered in O(log log d) time after a linear-time preprocessing of ST(y) [1,8].

frequency using Lemma 1. This takes O(|x|) time after a linear-time preprocess-
ing of dictionary D. Up to this point, we have correctly identified the document
frequency for every substring of x that is spelled from the root of ST(x) ending
exactly at some node of ST(x). However, we have no access to the document
frequency of the substrings of x that end in the middle of an edge of ST(x).

We thus need to have an efficient way to subdivide the edges of ST(x)
accordingly. The crucial observation is that we have only τ frequency inter-
vals I = I1, . . . , Iτ , and thus it suffices to split every edge of ST(x) in at most
τ sub-edges. To achieve this, we also preprocess ST(y) for successor weighted
ancestor queries with respect to document frequency as node weights. This is
possible because of the max-heap property : any node on ST(y) has equal or
smaller weight than any of its ancestors. Recall that for any node u in ST(x) we
can find the corresponding locus (w, d(u)) in ST(y) (see Lemma 1) in O(|x|) total
time. In the second step, we enhance ST(x) with at most τ new nodes per edge
using τ weighted ancestor queries on ST(y). In particular, we ask one weighted
ancestor query αj per interval Ij = [αj , βj] (see Fig. 1). Each new node stores
a document frequency and it takes O(log log d) time to find its locus on ST(y)
using a weighted ancestor query, after a linear-time preprocessing of ST(y) [1,8].

The third step is to traverse the enhanced ST(x) and construct a collection of
labeled length intervals [i, j]f , one for each node u of ST(x), defined as follows:
i = d(parent(u)) + 1, j = d(u), and f is the document frequency stored in u. We
do this in O(τ |x|) total time because we have O(τ |x|) nodes in ST(x). We ignore
labeled length intervals with f = 0 (no occurrence) or j = 0 (empty string).

The fourth step is to sort these intervals and view each interval, say of node u,
as a line starting at point (i, u) and ending at point (j, u) on the [0, |x|]×[0, 2τ |x|]

Frequency-Constrained Substring Complexity 349

Fig. 2. Step 1 from Example 2. We assume that x ends with a unique letter $ /∈ Σ.

plane. The y-axis represents the distinct lines (we have no more than 2τ |x|
intervals because we have no more than 2τ |x| nodes), and the x-axis represents
the lengths of substrings x (the maximum length is |x|). We can do this in
O(τ |x|) time using radix sort because for any interval [i, j]f , i, j ∈ [|x|].

In the last step, for each length in [|x|], we count how many lines it stabs after
classifying the lines in frequency intervals. For the latter, we employ predeces-
sor/successor search after O(d)-time and space preprocessing [6]: we insert the
endpoints of every interval in O(τ log log d) total time as we have 2τ endpoints
in total. A line with frequency f belongs to the frequency interval Ij = [αj , βj]
if and only if the predecessor of f is αj and its successor is βj . The search takes
O(log log d) time per line [6]. The endpoints are then deleted from the structure
in O(τ log log d) total time [6]. We sweep through the lines from left to right and
maintain counters on the sum of currently “active” lines per frequency interval.
We do this in O(τ) time per length. We have arrived at the following result.

Theorem 1 (Main Result). After a linear-time preprocessing of a dictionary
D of d strings, for any query string x and any partition I of [d] in τ intervals,
array S, such that S[i, j] = fx,D,I(i, j), can be computed in O(|x|τ log log d) time.

Example 2. Consider the dictionary D, the query string x = x[1 . . |x|] = banana,
and the partition I from Example 1. We show in Fig. 2 (on the left) the suffix
tree ST(x) and the smallest label start(u) (underlined) for every node u after the
DFS. We have three groups of nodes: G1 = {-banana}, G2 = {-a,-ana,-anana}
and G3 = {-na,-nana}. (Here we use the notation - before a string to denote a
node.) From the matching statistics algorithm, we know the longest match for
each position i of x: L = [3, 5, 4, 3, 2, 1]; e.g., �1 = L[1] = 3 tells us that the
longest match of x[1 . . 6] = banana in D is x[1 . . 3] = ban. For the only node in
G1 we have frequency 0 since 3 < |banana|. For G2, we first find the document
frequency for the deepest node -anana and we reach the node -ananan in ST(y)
(see Fig. 1). Then from this node (-ananan) we ask for depths 3 and 1 (using
weighted ancestor queries), and get to nodes -ana and -a in ST(y), which give
the corresponding document frequencies in ST(x). Similarly we process G3 and
get the ST(x) in Fig. 2 (on the right) with document frequencies (Lemma 1).

We next show in Fig. 3 how we enhance ST(x) (on the left) with at most τ
nodes per edge (on the right) using weighted ancestor queries on ST(y). Let us

350 S. P. Pissis et al.

Fig. 3. In Step 2 from Example 2 the edge -banana is subdivided to -ba-n-ana.

Fig. 4. Steps 3–4 from Example 2. On the left: the added nodes are in red; the nodes
with f = 0 are pruned. On the right: the length intervals labeled by frequency interval.

consider the edge -banana, for which we need to add new nodes. First, we have
L[1] = 3. We add a node at depth 3 and separate -banana to -ban-ana. From
ST(y), we know the frequency of node -ban is 2. Then we ask whether node
-ban in ST(y) has an ancestor node with a frequency at least 3 (I2) or at least
5 (I3). Indeed we find that node -ba in ST(y) has frequency 3, and so we add a
node in ST(x) subdividing -ban to -ba-n. No ancestor of -ban in ST(y) has a
frequency of at least 5, so we do not need to add any more nodes in ST(x).

After the end of the second step, we construct a labeled length interval for
each node of the enhanced ST(x), and so we get the tree in Fig. 4 (on the left).
In the fourth step, we sort these length intervals and view them as lines (on the
right). In the last step, after classifying the lines in frequency intervals, we sweep
through them from left to right, and compute array S.

S [1,2] [3,4] [5,6]
1 0 2 1
2 0 3 0
3 3 0 0
4 2 0 0
5 1 0 0
6 0 0 0

Frequency-Constrained Substring Complexity 351

References

1. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorithms 3(2), 19 (2007). https://doi.org/10.1145/
1240233.1240242

2. Belazzougui, D., Kosolobov, D., Puglisi, S.J., Raman, R.: Weighted ancestors
in suffix trees revisited. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd
Annual Symposium on Combinatorial Pattern Matching, CPM 2021, 5–7 July
2021, Wroc�law, Poland. LIPIcs, vol. 191, pp. 8:1–8:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CPM.2021.8

3. Chang, W.I., Lawler, E.L.: Sublinear approximate string matching and biologi-
cal applications. Algorithmica 12(4/5), 327–344 (1994). https://doi.org/10.1007/
BF01185431

4. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

5. Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., Salzberg,
S.L.: Alignment of whole genomes. Nucleic Acids Res. 27(11), 2369–2376 (1999).
https://doi.org/10.1093/nar/27.11.2369

6. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett. 6(3), 80–82 (1977). https://doi.org/10.1016/0020-
0190(77)90031-X

7. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, 19–22 October 1997, pp. 137–143. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646102

8. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: formalization and algo-
rithms. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 130–
140. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61258-0 11

9. Ferenczi, S.: Complexity of sequences and dynamical systems. Discret. Math.
206(1–3), 145–154 (1999). https://doi.org/10.1016/S0012-365X(98)00400-2

10. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst
case access time. J. ACM 31(3), 538–544 (1984). https://doi.org/10.1145/828.1884

11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997). https://
doi.org/10.1017/cbo9780511574931

12. Chi, L., Hui, K.: Color set size problem with applications to string matching. In:
Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1992. LNCS,
vol. 644, pp. 230–243. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
56024-6 19

13. Kociumaka, T., Navarro, G., Prezza, N.: Toward a definitive compressibility mea-
sure for repetitive sequences. IEEE Trans. Inf. Theory 69(4), 2074–2092 (2023).
https://doi.org/10.1109/TIT.2022.3224382

14. Kutsukake, K., Matsumoto, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda,
M.: On repetitiveness measures of thue-morse words. In: Boucher, C., Thankachan,
S.V. (eds.) SPIRE 2020. LNCS, vol. 12303, pp. 213–220. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59212-7 15

15. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd ed.
Cambridge University Press, Cambridge (2014). https://www.mmds.org/

16. Loukides, G., Pissis, S.P.: Bidirectional string anchors: a new string sampling mech-
anism. In: Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Sym-
posium on Algorithms, ESA 2021, 6–8 September 2021, Lisbon, Portugal (Virtual

https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1007/BF01185431
https://doi.org/10.1007/BF01185431
https://doi.org/10.1093/nar/27.11.2369
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1016/S0012-365X(98)00400-2
https://doi.org/10.1145/828.1884
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/3-540-56024-6_19
https://doi.org/10.1007/3-540-56024-6_19
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1007/978-3-030-59212-7_15
https://www.mmds.org/

352 S. P. Pissis et al.

Conference). LIPIcs, vol. 204, pp. 64:1–64:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.64

17. Mignosi, F.: Infinite words with linear subword complexity. Theor. Comput. Sci.
65(2), 221–242 (1989). https://doi.org/10.1016/0304-3975(89)90046-7

18. Navarro, G., Rojas-Ledesma, J.: Predecessor search. ACM Comput. Surv. 53(5),
105:1–105:35 (2021). https://doi.org/10.1145/3409371

19. Pissis, S.P.: MoTeX-II: structured MoTif eXtraction from large-scale datasets.
BMC Bioinform. 15, 235 (2014). https://doi.org/10.1186/1471-2105-15-235

20. Puglisi, S.J., Zhukova, B.: Document retrieval hacks. In: Coudert, D., Natale, E.
(eds.) 19th International Symposium on Experimental Algorithms, SEA 2021, 7–
9 June 2021, Nice, France. LIPIcs, vol. 190, pp. 12:1–12:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.SEA.2021.
12

21. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65(3), 685–709 (2013). https://
doi.org/10.1007/s00453-012-9618-6

22. Shallit, J.O., Shur, A.M.: Subword complexity and power avoidance. Theor. Com-
put. Sci. 792, 96–116 (2019). https://doi.org/10.1016/j.tcs.2018.09.010

23. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, 15–17 October 1973, pp.
1–11. IEEE Computer Society (1973). https://doi.org/10.1109/SWAT.1973.13

https://doi.org/10.4230/LIPIcs.ESA.2021.64
https://doi.org/10.1016/0304-3975(89)90046-7
https://doi.org/10.1145/3409371
https://doi.org/10.1186/1471-2105-15-235
https://doi.org/10.4230/LIPIcs.SEA.2021.12
https://doi.org/10.4230/LIPIcs.SEA.2021.12
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1016/j.tcs.2018.09.010
https://doi.org/10.1109/SWAT.1973.13

Chaining of Maximal Exact Matches
in Graphs

Nicola Rizzo , Manuel Cáceres , and Veli Mäkinen(B)

Department of Computer Science, University of Helsinki,
P. O. Box. 68, Pietari Kalmin katu 5, 00014 Helsinki, Finland

{nicola.rizzo,manuel.caceresreyes,veli.makinen}@helsinki.fi

Abstract. We show how to chain maximal exact matches (MEMs)
between a query string Q and a labeled directed acyclic graph (DAG)
G = (V, E) to solve the longest common subsequence (LCS) problem
between Q and G. We obtain our result via a new symmetric formulation
of chaining in DAGs that we solve in O(m+n+ k2|V |+ |E|+ kN log N)
time, where m = |Q|, n is the total length of node labels, k is the mini-
mum number of paths covering the nodes of G and N is the number of
MEMs between Q and node labels, which we show encode full MEMs.

Keywords: sequence to graph alignment · longest common
subsequence · sparse dynamic programming

1 Introduction

Due to recent developments in pangenomics [9] there is a high interest to extend
the notion of string alignments to graphs. A common pangenome representation
is a node-labeled directed acyclic graph (DAG), whose paths represent plau-
sible individual genomes from a species. Unfortunately, even finding an exact
occurrence of a query string as a subpath in a graph is a conditionally hard
problem [12,13]: only quadratic time dynamic programming solutions are known
and faster algorithms would contradict the Strong Exponential Time Hypothesis
(SETH). Due to this theoretical barrier, parameterized solutions have been devel-
oped [5,10,11,21], and/or the task has been separated into finding short exact
occurrences (anchors) and then chaining them into longer matches [8,15,16,18].
Although the chaining algorithms provide exact solutions to their internal chain-
ing formulations and their solutions can be interpreted as alignments of queries
to a graph with edit operations, so far they have not been shown to provide
exact solutions to the corresponding alignment formulation.

In this paper, we integrate a symmetric formulation from string chaining
[17,22] to graph chaining [18] yielding the first chaining-based parameterized
exact alignment algorithm between a query string and a graph. Namely, we
obtain an O(m + n + k2|V | + |E| + kN log N) time algorithm for computing the
length of a longest common subsequence (LCS) between a query string Q and a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 353–366, 2023.
https://doi.org/10.1007/978-3-031-43980-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_29&domain=pdf
http://orcid.org/0000-0002-2035-6309
http://orcid.org/0000-0003-0235-6951
http://orcid.org/0000-0003-4454-1493
https://doi.org/10.1007/978-3-031-43980-3_29

354 N. Rizzo et al.

path of G, where m = |Q|, n is the total length of node labels, k is the width
(minimum number of paths covering the nodes) of G, and N is the number of
maximal exact matches (MEMs) between Q and the node labels (node MEMs).
While N can be quadratic (thus, the result is not breaking the known conditional
LCS lower bounds [1,4]), there are also inputs where N grows slower. Moreover,
when MEMs are limited by a length threshold, N can be made smaller; we show
that in this setting the algorithm solves a variant of the LCS problem.

The paper is structured as follows. The preliminaries in Sect. 2 and the basic
concepts in Sect. 3 follow the notions developed in our recent work [20], where
we introduce the definition of a MEM between a string and a graph, and study
the non-trivial problem of finding graph MEMs with a length threshold; for the
purposes of this paper, we observe that node MEMs are sufficient. In Sect. 4.1, we
revise the solution for an asymmetric chaining formulation in DAGs [18] for the
case of node MEMs. Then, in Sect. 4.2, we tailor the string to string symmetric
chaining algorithm [17,22] to use MEM anchors. In Sect. 4.3, we show how to
integrate these two approaches to obtain our main result. Finally, in Sect. 5 we
discuss the length threshold setting and cyclic graphs.

2 Preliminaries

Strings. We work with strings coming from a finite alphabet Σ = [1..σ] and
assume that σ is at most the length of the strings we work with. For two integers
x and y we use [x..y] to denote the integer interval {x, x+1, . . . , y} or the empty
set ∅ when x > y. A string T is an element of Σn for a non-negative integer n,
that is, a sequence of n symbols from Σ, where n = |T | is the length of the string.
We denote ε to the only string of length zero. We also denote Σ+ = Σ∗ \ {ε}.
For two strings T1 and T2 we denote their concatenation as T1 ·T2, or just T1T2.
For a set of integers I and a string T , we use T [I] to denote the subsequence of T
made of the concatenation of the characters indicated by I in increasing order. If
I is an integer interval [x..y], then T [x..y] is a substring : if x = y then we also use
T [x], if y < x then T [x..y] = ε, if x ≤ y = n we call it a suffix (proper suffix when
x > 1) and if 1 = x ≤ y we call it a prefix (proper prefix when y < n). A length-κ′

substring Q[x..x+κ′ − 1] occurs in T if Q[x..x+κ′ − 1] = T [i..i+κ′ − 1]; in this
case, we say that (x, i, κ′) is an (exact) match between Q and T , and maximal
(a MEM) if the match cannot be extended to the left (left-maximality), that is,
x1 = 1 or x2 = 1 or Q[x1 − 1] �= T [x2 − 1] nor it can be extended to the right
(right-maximality) x1 + � = |Q| or x2 + � = |T | or Q[x1 + �] �= T [x2 + �].

Labeled Graphs. We work with labeled directed acyclic graphs (DAGs) G =
(V,E, �), where V is the vertex set, E the edge set, and � : V → Σ+ a labeling
function on the vertices. A length-k path P from v1 to vk is a sequence of
nodes v1, . . . , vk such that (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ E, in this case we say
that v1 reaches vk. We extend the labeled function to paths by concatenating
the corresponding node labels, that is, �(P) := �(v1) · · · �(vk). For a node v
and a path P we use ‖·‖ to denote its string length, that is ‖v‖ = |�(v)| and

Chaining of Maximal Exact Matches in Graphs 355

‖P‖ = |�(P)|. We say that a length-κ′ substring Q[x..x + κ′ − 1] occurs in G
if Q[x..x + κ′ − 1] occurs in �(P) for some path P . In this case, we say that
([x..x + κ′ − 1], (i, P = v1 . . . vk, j)) is an (exact) match between Q and G,
where Q[x..x + κ′ − 1] = �(v1)[i..] · �(v2) · · · �(vk−1) · �(vk)[..j], with 1 ≤ i ≤
‖v1‖ and 1 ≤ j ≤ ‖vk‖. We call the triple (i, P, j) a substring of G and we
define its left-extension lext(i, P, j) as the singleton {�(v1)[i − 1]} if i > 1 and
{�(u)[‖u‖] | (u, v1) ∈ E} otherwise. Analogously, the right-extension rext(i, P, j)
is {�(vk)[j + 1]} if j < ‖vk‖ and {�(v)[1] | (vk, v) ∈ E} otherwise. Note that the
left (right) extension can be equal to the empty set ∅, if the start (end) node of
P does not have incoming (outgoing) edges. See Fig. 1.

Chaining of Matches. An asymmetric chain A′[1..N ′] is an ordered subset of a
set A of N exact matches between a labeled DAG G = (V,E, �) and a query
string Q, with the ordering A′[l] < A′[l + 1] for 1 ≤ l < N ′ defined as ([x′..x′ +
κ′′ − 1], (i′, Pl, j

′)) < ([x..x + κ′ − 1], (i, Pl+1, j)) iff the start of path Pl+1 is
strictly reachable from the end of path Pl and x′ ≤ x. Such ordering is also
called co-linear as it enforces linear order in two dimensions. The asymmetry
comes from the fact that overlaps are not allowed in G, but they are allowed in Q.
We are interested in chains that maximize the length of an induced subsequence
Q′, denoted Q′ = Q | A′, that is obtained by deleting all parts of Q that are
not covered by chain A′. For example, consider Q = ACATTCAGTA and A′ =
([2..4], (i1, P1, j1)), ([3..6], (i2, P2, j2)), ([9..10], (i3, P3, j3)). Then Q′ = Q | A′ =
CATTCTA; anchors cover the underlined part of Q = ACATTCAGTA.

We could define symmetric chains by considering overlaps of long paths, but
for the purposes of this paper it will be sufficient to consider the chaining of
exact matches involving length-1 paths in G, along with their possible overlaps:
a symmetric chain A′[1..N ′] is an ordered subset of a set A of N exact matches
between the nodes of a labeled DAG G = (V,E, �) and a query string Q, with the
ordering A′[l] < A′[l + 1] for 1 ≤ l < N ′ defined as ([x′..x′ + κ′′ − 1], (i′, v, j′)) <
([x..x + κ′ − 1], (i, w, j)) iff (i) w is strictly reachable from v, or v = w and i′ ≤ i
and (ii) x′ ≤ x. We extend the notation Q′ = Q | A′ to cover symmetric chains
A′ so that Q′ is obtained by deleting all parts of Q that are not mutually covered
by chain A′. We define mutual coverage in Sect. 4.2: informally, Q′ is formed by
concatenating the prefixes of exact matches until reaching the overlap between
the next exact match in the chain. Figure 1 illustrates the concept.

3 Finding MEMs in Labeled DAGs

We now consider the problem of finding all maximal exact matches (MEMs)
between a labeled graph G and a query string Q for the purpose of chaining.

Definition 1 (MEM between a pattern and a graph [20]). Let G =
(V,E, �) be a labeled graph, with � : V → Σ+, and Q ∈ Σ+. We say that a
match ([x..y], (i, P, j)) between Q and G is left-maximal (right-maximal) if it
cannot be extended to the left (right) in both Q and G, that is,

356 N. Rizzo et al.

Fig. 1. Co-linear chaining setting between a string Q and a labeled graph G. If v is the
last node to the right, then ([16..20], (1, v, 5)) is a match, with lext(1, v, 5) = {G, T} and
rext(1, v, 5) = {A}. It is a MEM since |lext(i, P, j)| ≥ 2 and it cannot be extended to the
right (Definition 1). In fact, all exact matches are MEMs and they form a symmetric
chain A′ (blue-green-red-yellow) inducing the subsequence Q | A′ (the last C of the
green match is omitted due to overlap with the red match).

(LeftMax) x = 1 ∨ lext(i, P, j) = ∅ ∨ Q[x − 1] /∈ lext(i, P, j) and
(RightMax) y = |Q| ∨ rext(i, P, j) = ∅ ∨ Q[y + 1] /∈ rext(i, P, j).

The pair ([x..y], (i, P, j)) is a MEM if it is left-maximal or its left (graph) exten-
sion is not a singleton, and right-maximal or its right (graph) extension is not a
singleton, that is LeftMax ∨ |lext(i, P, j)| ≥ 2 and RightMax ∨ |rext(i, P, j)| ≥ 2.

See Fig. 1 for an example. We use this particular extension of MEMs to
graphs—with the additional conditions on non-singletons lext and rext—as it
captures all MEMs between Q and �(P), where P is a source-to-sink path in
G. Moreover, we will show that this MEM formulation captures LCS through
co-linear chaining, whereas avoiding the additional conditions would fail. Indeed,
consider Q, G, and match ([16..20], (1, v, 5)) from Fig. 1: the match is not left-
maximal, since Q[15] = G and G ∈ lext(1, v, 5), but extending it would impose
any chain using it as an anchor to go through the bottom suboptimal path, that
in this case does not capture the LCS between Q and G. Also, it turns out that
we can focus on MEMs between the node labels and the query, as chaining will
cover longer MEMs implicitly.

To formalize the intuition, we say that a node MEM is a match (i, P, j) of
Q[x..y] in G such that P = v for some node v, and it is left and right maximal
w.r.t. �(P) only in the string sense: conditions LextMax∨i = 1 and RightMax∨j =
‖v‖ hold. Consider the text Tnodes =

∏
v∈V 0 · �(v), where 0 /∈ Σ is used as a

delimiter to prevent MEMs spanning more than a node label. Running the MEM
finding algorithm [2] on Q and Tnodes will retrieve exactly the node MEMs we are
looking for [20] (a more involved problem of finding graph MEMs with a length
threshold is studied in [20], but here a simplified result without the threshold is
sufficient):

Lemma 1 ([20]). Given a labeled DAG G = (V,E, �), with � : V → Σ+, and
a query string Q, we can compute all node MEMs between Q and G in time

Chaining of Maximal Exact Matches in Graphs 357

O(n + m + N), where n is the total length of node labels, m = |Q|, and N is the
number of node MEMs.

Let A be the set of node MEMs found using Lemma 1. In an extended version
of this paper [19], we show that any long MEM spanning two or more nodes in
G can be formed by concatenating node MEMs into perfect chains—chains that
have no gap between consecutive matches.

Theorem 1 (Appendix B in [19]). For every MEM ([x..y], (i, P, j)) between
G and Q, there is a perfect chain A′[1..p] ⊆ A such that A′[1] · · · A′[p] =
([x..y], (i, P, j)).

Corollary 1. The set A is a compact representation of the set M of MEMs
between query Q and a labeled DAG G = (V,E, �): it holds |A| ≤ ‖M‖, where
‖M‖ is the length of the encoding of the paths in MEMs as the explicit sequence
of its nodes.

Our strategy is to use set A as the representation of MEMs: perfect chains
are implicitly covered by the chaining algorithms of the next section.

4 Symmetric Co-Linear Chaining in Labeled DAGs

Mäkinen et al. [18, Theorem 6.4] gave an O(kN log N + k|V |)-time algorithm to
find an asymmetric chain A′[1..N ′] of a set A of N anchors1 between a labeled
DAG G = (V,E, �) and a query string Q maximizing the length of an induced
subsequence Q′ = Q | A′. Here k is the width of G, that is, the minimum number
of paths covering nodes V of G. The algorithm assumes a minimum path cover
as its input, which can be computed in O(k2|V | + |E|) time [6,7]. A limitation
of this chaining algorithm is that anchors in the solution are not allowed to
overlap in the graph, which has been partially solved by considering one-node
overlaps [16]. However, both of these approaches maximize the length of the
sequence induced by the reported chain only on the string Q, which makes the
problem formulation asymmetric.

In the case of two strings as input, the asymmetry of the coverage metric
was solved by Mäkinen and Sahlin [17] applying the technique by Shibuya and
Kurochkin [22]. They provided an O(N log N)-time algorithm to find a symmet-
ric chain A′[1..N ′] of a set A of N anchors maximizing the length of an induced
common subsequence C = Q | A′ = T | A′ between two input strings Q and
T , that is obtained by deleting all parts of Q, or equivalently all parts of T ,
that are not mutually covered by chain A′ (to be defined below). Here anchors
are assumed to be exact matches (x, i, κ′) (not necessarily maximal) such that
Q[x..x + κ′ − 1] = T [i..i + κ′ − 1], and A′[j] < A′[j + 1] for 1 ≤ j < N ′, where
the order < between anchors is defined as (x′, i′, κ′′) < (x, i, κ′) iff x′ ≤ x and
i′ ≤ i. For completeness, in an extended version of this paper [19], we include
1 Anchors have the same representation as graph MEMs, ([x..y], (i, P, j)), but they do

not necessarily represent exact matches.

358 N. Rizzo et al.

a revised proof that this algorithm computes the length of a longest common
subsequence of strings Q and T if it is given all (string) MEMs between Q and T
as input [17]. The concept of mutual coverage [17, Problem 1] is defined through
the score

coverage(A′) =
N ′
∑

j=1

min
(i, x, κ′) := A′[j + 1],
(i′, x′, κ′′) := A′[j]

{
min(i, i′ + κ′′) − i′,
min(x, x′ + κ′′) − x′,

where A′[N ′ + 1] = (∞,∞, 0). Each part of the sum contributes the corre-
sponding number of character matches from the beginning of the anchors to
the induced common subsequence. These form the mutually covered part of the
inputs; see Fig. 1 for an illustration of an extension of this concept to graphs.

Consider now the symmetric chaining problem between a DAG and a string:

Problem 1 (Symmetric DAG chaining with overlaps). Find a symmetric chain
A′[1..N ′] of a set A of N anchors between a labeled DAG G = (V,E, �) and
a query string Q maximizing the length of an induced common subsequence
C = P | A′ = Q | A′ for some path P of G, where P | A′ denotes the subsequence
obtained by deleting the parts of �(P) that are not mutually covered by chain
A′ and Q | A′ denotes the subsequence obtained by deleting the parts of Q not
mutually covered by chain A′.2

In this section, we will solve this problem in the special case where the anchors
are all node MEMs between G and Q: thanks to Theorem 1 we know that the
algorithm by Mäkinen et al. [18] solves the problem when a longest induced com-
mon subsequence C is covered by node MEMs that appear in different nodes.
Since in our setting the overlaps can only occur inside node labels, we are left with
what essentially is the symmetric string-to-string chaining problem [17,22]. How-
ever, we cannot separate these subproblems and call the respective algorithms
as black boxes, but instead we need to carefully interleave the computation of
both techniques in one algorithm.

4.1 DAG Chaining with Node MEMs

Algorithm 1 shows the pseudocode of [18, Algorithm 1] simplified to take node
MEMs as anchors. The original algorithm uses two arrays to store the start and
the end nodes of anchor paths, but in the case of node MEMs one array suffices.
We also modified [18, Lemma 3.2] below to explicitly use primary and secondary
keys (the original algorithms [17,18] implicitly assumed distinct keys). We still
use primary keys to store MEM ending positions in Q to do range searches, and
we use the secondary key to store the MEM identifiers to update the values of
the corresponding anchors.
2 Identically, A′ maximizes |C| = coverage(A′) when the anchors are interpreted as

exact matches between Q and �(P), with P some path of G containing the nodes
involved by the matches in A′, in the order specified by the chain.

Chaining of Maximal Exact Matches in Graphs 359

ALGORITHM 1: Asymmetric co-linear chaining between a sequence and
a DAG using a path cover and node MEMs.
Input: A DAG G = (V, E, �), a query string Q, a path cover P1, P2, . . . , Pk of

G, and node MEMs A[1..N] of the form ([x..x + κ′ − 1], (i, v, i + κ′ − 1))
where �(v)[i..i + κ′ − 1] = Q[x..x + κ′ − 1].

Output: Index of a MEM ending at a chain with maximum coverage maxj C[j]
allowing at most one MEM per node of G.

1 Use Lemma 3 to find all forward propagation links;
2 for k′ ← 1 to k do

3 Initialize data structures T a
k′ and T b

k′ with keys (x + κ′ − 1, j) such that
([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], 1 ≤ j ≤ N , and with key (0, 0), all
keys associated with values −∞;

4 T a
k′ .update((0, 0), 0);

5 T b
k′ .update((0, 0), 0);

/* Save to anchors[v] all node MEMs of node v. */

6 for j ← 1 to N do
7 ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j];
8 anchors[v].push(j);
9 C−[j] ← 0;

10 C[j] ← κ′;

11 for v ∈ V in topological order do
12 for j ∈ anchors[v] do

/* Update the data structures for every path that covers v,
stored in paths[v]. */

13 ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j];
14 for k′ ∈ paths[v] do
15 T a

k′ .upgrade((x + κ′ − 1, j), C[j]);

16 T b
k′ .upgrade((x + κ′ − 1, j), C−[j] − x);

/* PROPAGATE FORWARD STARTS */

17 for (w, k′) ∈ forward[v] do
18 for j ∈ anchors[w] do
19 ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j];
20 Ca[j] ← T a

k′ .RMaxQ(0, x − 1);

21 Cb[j] ← x + T b
k′ .RMaxQ(x, x + κ′ − 1);

22 C−[j] ← max(C−[j], Ca[j], Cb[j]);
23 C[j] = C−[j] + κ′;

/* PROPAGATE FORWARD ENDS */

24 return argmaxj C[j];

Just like the original algorithm, our simplified version fills a table C[1..N]
such that C[j] is the maximum coverage of an asymmetric chain that uses the
j-th node MEM as its last item. That is, there is an asymmetric chain that
induces a subsequence Q′ of the query Q of length C[j]. In addition, our version
is restricted to chains including at most one MEM per node and performs an

360 N. Rizzo et al.

intermediate step to fill table C−[1..N] such that C−[j] = C[j] − κ′, where κ′

is the length of the j-th node MEM. The reason for these modifications will
become clear when we integrate the algorithm with the symmetric string-to-
string chaining.

To fill tables C[1..N] and C−[1..N], the algorithm considers a) MEMs from
different nodes without overlap in the query and b) MEMs from different nodes
with overlap in the query. These cases are illustrated in the left panel of Fig. 2.
The algorithm maintains the following data structure for each case and for each
path in a given path cover of k paths (see e.g. [3, Chapter 5]):

Lemma 2. The following four operations can be supported with a balanced
binary search tree T in time O(log n), where n is the number of key-value pairs
((k, j), val) stored in the tree. Here k is the primary key, j is the secondary key
to break ties, and k, j, val are integers.

– value(k, j): Return the value associated to key (k, j) or −∞ if (k, j) is not a
proper key.

– update((k, j), val): Associate value val to key (k, j).
– upgrade((k, j), val): Associate value max(val, value(k, j)) to key (k, j).
– RMaxQ(l, r): Return maxl≤k≤r,(k,j) is a key in T value(k, j), or −∞ if range

[l..r] is empty (Range Maximum Query).

Moreover, the balanced binary search tree can be constructed in O(n) time, given
the n pairs ((k, j), val) sorted by component (k, j).

The algorithm processes the nodes in topological order, keeping the invariant
that once node v is visited, the final values C[j] and C−[j] are known for all
anchors j included in node v. These values are then stored in the search trees.
As a final step in the processing of v, the information stored in the search trees
is propagated forward to nodes w, where v is the last node reaching w on some
path-cover path, in order to update the intermediate values for MEMs at node
w. These forward links are preprocessed with the following lemma:

Lemma 3 (Adaptation of [18, Lemma 3.1]). Let G = (V,E) be a DAG, and
let P1, . . . , Pk be a path cover of G. We can compute in O(k2|V |) time the set
of forward propagation links forward[u] defined as follows: for any node v and
path k′, (v, k′) ∈ forward[u] if and only if u is the last node on path k′ that
reaches v such that u �= v.

Proof. The original DP algorithm [18] runs in O(k|E|) time, but recently it has
been shown [14, Algorithms 6 and 7] how to do this in time O(k|Ered|), where
Ered are the edges in the transitive reduction of G. Finally, Cáceres et al. [6,7]
showed a transitive sparsification scheme proving that |Ered| ≤ k|V |.

Data structures T a
k′ store as primary keys all ending positions of MEMs in

Q and as values the corresponding C[j]s for node MEMs A[j] processed so far
and reaching path Pk′ (line 15). When a new node MEM is added to a chain at
line 20, the range query on T a

k′ guarantees that only chains ending before v in G

Chaining of Maximal Exact Matches in Graphs 361

and before the start of the new node MEM in Q are taken into account. Data
structures T b

k′ also store as primary keys all ending positions of node MEMs in
Q, but as values they store the values C−[j] with an invariant subtracted (line
16). This invariant is explained by the range query at line 21, that considers
chains overlapping (only) in Q with the new node MEM to be added: consider
the chain ending at node MEM A[j′] = ([x′..x′ + κ′′ − 1], (i′, v′, i′ + κ′′ − 1)) and
the new node MEM A[j] = ([x..x + κ′ − 1], (i, v, i + κ′ − 1) is to be added to this
chain, where x ≤ x′ + κ′′ − 1 ≤ x + κ′ − 1. This addition increases the part of Q
covered by the chain (excluding the new node MEM) by x − x′. This is exactly
the value computed at line 21, maximizing over such overlapping node MEMs.

Fig. 2. Precedence of MEMs partitioned to three classes (left, top right, and bottom
right subfigures) by occurrence in graph/text (top part of each subfigure) and thereafter
to two out of total four cases that require different data structure on the query (bottom
part of each subfigure).

4.2 Revisiting Symmetric String-to-string Chaining with MEMs

Before modifying the algorithm to properly consider overlaps of node MEMs
in G, let us first modify the symmetric string-to-string chaining algorithm of
Mäkinen and Sahlin [17, Algorithm 2] to harmonize the notation and to consider
the simplification of [17, Theorem 6] that applies in the case of (string) MEMs.
This modification computes the optimal chain given MEMs A[1..N] between
strings T and Q and is given as Algorithm 2.

The algorithm uses the same two data structures as before to handle the
cases illustrated at the top right of Fig. 2. Moreover, the two additional data
structures (balanced binary search trees) in Algorithm 2 handle the overlaps in
T by dividing the computation further into cases c) and d) illustrated at the
bottom right of Fig. 2): c) if two MEMs overlap more in T than in Q, tree T c is
used for storing the solution; d) otherwise, tree T d is used for storing the solution.
We refer to the original work [17] for the derivation of the invariants and the
range queries to handle these cases. The handling of these cases is highlighted
with gray background in Algorithm 2.

362 N. Rizzo et al.

ALGORITHM 2: Symmetric chaining with two-sided overlaps using
MEMs.
Input: An array A[1..N] of (string) MEMs (x, i, κ′) between Q and T .
Output: Index of a MEM ending a chain with maximum coverage maxj C[j].

1 Initialize data structures T a and T b with keys (x + κ′ − 1, j) and data
structures T c and T d with keys (x − i, j), where (x, i, κ′) = A[j], 1 ≤ j ≤ N ,
and all trees with key (0, 0). Associate values −∞ to all keys.

2 T a.upgrade((0, 0), 0);
3 M = {(x, j) | (x, i, κ′) = A[j], 1 ≤ j ≤ N} ∪ {(x + κ′ − 1, j) | (x, i, κ′) = A[j], 1 ≤

j ≤ N};
4 M.sort();
5 for (x′, j) ∈ M do
6 (x, i, κ′) = A[j];
7 if x == x′ then

/* Start of MEM. */

8 Ca[j] = T a.RMaxQ(0, x − 1);
9 Cb[j] = x + T b.RMaxQ(x, x + κ′ − 1);

10 Cc[j] = i + T c.RMaxQ(−∞, x − i);

11 Cd[j] = x + T d.RMaxQ(x − i + 1, ∞);
12 C−[j] = max(Ca[j], Cb[j], Cc[j], Cd[j]);
13 C[j] = C−[j] + κ′;

14 T c.upgrade((x − i, j), C−[j] − i);

15 T d.upgrade((x − i, j), C−[j] − x);

16 else
/* End of MEM. */

17 T a.upgrade((x + κ′ − 1, j), C[j]);
18 T b.upgrade((x + κ′ − 1, j), C−[j] − x);

19 T c.update((x − i, j), −∞);

20 T d.update((x − i, j), −∞);

21 return argmaxj C[j];

4.3 Integration of Symmetry to DAG Chaining

We will now merge the two algorithms from previous subsections to solve Prob-
lem 1. This algorithm is shown as Algorithm 3; lines highlighted with a dark gray
background are from Algorithm 2, whereas lines highlighted with a light gray
background are a hybrid of both, and the rest are from Algorithm 1. When visit-
ing node v the algorithm executes the steps of Algorithm 2 on anchors included in
v, with Ca[j] and Cb[j] having already been updated with anchors not included
in v through forward propagation identical to Algorithm 1. The hybrid parts
reflect the required changes to Algorithm 1 in order to visit the MEM anchors
twice as in Algorithm 2. This merge covers all three cases of Fig. 2.

Theorem 2. Given labeled DAG G = (V,E, �) with path cover P1, . . . , Pk,
query string Q, and set A[1..N] of node MEMs between Q and G, Algorithm 3

Chaining of Maximal Exact Matches in Graphs 363

solves the symmetric DAG chaining with overlaps problem (Problem 1) in time
O(k2|V | + kN log N).

Corollary 2. The length of a longest common subsequence (LCS) between a
path in a labeled DAG G = (V,E, �) and string Q can be computed in time
O(n+m+ k2|V |+ |E|+ kN log N), where m = |Q|, n is the total length of node
labels, k is the width (minimum number of paths covering the nodes) of G, and
N is the number of node MEMs.

Proof. The node MEMs can be computed in time O(n+m+N) with Lemma 1. A
minimum path cover with k paths can be computed in O(k2|V |+ |E|) time [6,7].
Forward propagation links can be computed in O(k2|V |) time with Lemma 3.
Finally, the term kN log N comes from Theorem 2. The connection between LCS
and solution to symmetric chaining follows with identical arguments as in [19,
Appendix B] If P is a path containing an LCS of length c, then Algorithm 3
finds a chain of coverage exactly c as its execution considers the corresponding
chain between �(P) and Q as done in Algorithm 2. In this case, node MEMs are
not necessarily MEMs between �(P) and Q, but exact matches supporting the
necessary character matches [19, Appendix B].

Note that the LCS connection can be easily adapted for long MEMs spanning
two or more nodes of G, but we avoided considering symmetric chains of long
MEMs due to the difficulty of handling path overlaps efficiently (see also [18]).

5 Discussion

In this paper, we focused on MEMs with no lower threshold on their length to
achieve the connection with LCS. In practical applications, chaining is sped up
by using as anchors only MEMs that are of length at least κ, a given thresh-
old. Just finding all such κ-MEMs is a non-trivial problem and solvable in sub-
quadratic time only on some specific graph classes [20]. However, once such
κ-MEMs are found, one can split them to node-MEMs and then apply Algo-
rithm 3 to chain them. The resulting chain optimizes the length |C| of a longest
common subsequence C between the query Q and a path P such that each match
C[k] = Q[ik] = �(P)[jk] is supported by an exact match of length at least κ,
where 1 ≤ k ≤ |C|, i1 < i2 < · · · < i|C|, and j1 < j2 < · · · < j|C|. That is, there
is a κ-MEM ([xk, yk], [ck, dk]) with respect to Q and �(P) s.t. xk ≤ ik ≤ yk and
ck ≤ jk ≤ dk for each k. Additionally, Ma et al. [16, Appendix C] showed that
asymmetric co-linear chaining can be extended to graphs with cycles by consid-
ering the graph of the strongly connected components. In the extended version
of this paper, we will show how to combine our results to obtain symmetric
chaining in general graphs.

364 N. Rizzo et al.

ALGORITHM 3: Symmetric co-linear chaining between a sequence and
a DAG using a path cover and node MEMs.
Input: Same as in Algorithm 1.
Output: Index of a MEM ending at a chain with maximum coverage maxj C[j]

allowing overlaps in G.
1 Use Lemma 3 to find all forward propagation links.
2 for k′ ← 1 to k do
3 Initialize data structures T a

k′ and T b
k′ with keys (x + κ′ − 1, j) and key (0, 0),

and data structures T c
k′ and T d

k′ with keys (x − i, j), where
([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], 1 ≤ j ≤ N . Associate values −∞ to
all keys.

4 T a
k′ .update((0, 0), 0);

5 T b
k′ .update((0, 0), 0);

6 Initialize arrays: anchors, C− and C as in Algorithm 1;
7 for v ∈ V in topological order do

8 M = {(x, j) | ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], j ∈ anchors[v]} ∪
{(x + κ′ − 1, j) | ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], j ∈ anchors[v]};

9 M.sort();
/* Update the data structures for every path that covers v,

stored in paths[v]. */

10 for k′ ∈ paths[v] do

11 for (x′, j) ∈ M do

12 (x, i, κ′) = A[j];

13 if x == x′ then
/* Start of MEM. */

14 Ca[j] = T a
k′ .RMaxQ(0, x − 1);

15 Cb[j] = x + T b
k′ .RMaxQ(x, x + κ′ − 1);

16 Cc[j] = i + T c
k′ .RMaxQ(−∞, x − i);

17 Cd[j] = x + T d
k′ .RMaxQ(x − i + 1, ∞);

18 C−[j] = max(C−[j], Ca[j], Cb[j], Cc[j], Cd[j]);

19 C[j] = C−[j] + κ′;

20 T c
k′ .upgrade((x − i, j), C−[j] − i);

21 T d
k′ .upgrade((x − i, j), C−[j] − x);

22 else
/* End of MEM. */

23 T a
k′ .upgrade((x + κ′ − 1, j), C[j]);

24 T b
k′ .upgrade((x + κ′ − 1, j), C−[j] − x);

25 T c
k′ .update((x − i, j), −∞);

26 T d
k′ .update((x − i, j), −∞);

27 Execute PROPAGATE FORWARD subroutine of Algorithm 1;

28 return argmaxj C[j];

Chaining of Maximal Exact Matches in Graphs 365

Acknowledgments. This project has received funding from the Academy of Finland
grants No. 352821 and 328877 and the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk�lodowska-Curie grant agreement No. 956229.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and
other sequence similarity measures. In: Guruswami, V. (ed.) IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17–20 October 2015, pp. 59–78. IEEE Computer Society (2015). https://doi.org/
10.1109/FOCS.2015.14

2. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Linear-time string index-
ing and analysis in small space. ACM Trans. Algorithms 16(2), 17:1–17:54 (2020).
https://doi.org/10.1145/3381417

3. de Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer Science & Business Media,
Berlin, Heidelberg (2000). https://doi.org/10.1007/978-3-540-77974-2

4. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17–20 October 2015, pp. 79–97. IEEE Computer Society (2015). https://doi.org/
10.1109/FOCS.2015.15

5. Cáceres, M.: Parameterized algorithms for string matching to dags: funnels and
beyond. In: Bulteau, L., Lipták, Z. (eds.) 34th Annual Symposium on Combina-
torial Pattern Matching, CPM 2023, June 26–28, 2023, Marne-la-Vallée, France,
France. LIPIcs, vol. 259, pp. 7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPIcs.CPM.2023.7

6. Caceres, M., Cairo, M., Mumey, B., Rizzi, R., Tomescu, A.I.: Minimum path cover
in parameterized linear time. arXiv preprint arXiv:2211.09659 (2022)

7. Cáceres, M., Cairo, M., Mumey, B., Rizzi, R., Tomescu, A.I.: Sparsifying, shrinking
and splicing for minimum path cover in parameterized linear time. In: Naor, J.S.,
Buchbinder, N. (eds.) Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference/Alexandria, VA, USA, 9–12 January
2022, pp. 359–376. SIAM (2022). https://doi.org/10.1137/1.9781611977073.18

8. Chandra, G., Jain, C.: Sequence to graph alignment using gap-sensitive co-
linear chaining. In: Tang, H. (eds.) Research in Computational Molecular Biology.
RECOMB 2023. LNCS, vol. 13976, pp. 58–73. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-29119-7 4

9. Consortium, T.C.P.G.: Computational pan-genomics: status, promises and chal-
lenges. Brief. Bioinform. 19(1), 118–135 (2016). https://doi.org/10.1093/bib/
bbw089

10. Cotumaccio, N.: Graphs can be succinctly indexed for pattern matching in O(|E|2+
|V |5/2) time. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.)
Data Compression Conference, DCC 2022, Snowbird, UT, USA, 22–25 March 2022,
pp. 272–281. IEEE (2022). https://doi.org/10.1109/DCC52660.2022.00035

11. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 2585–2599. SIAM (2021)

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/3381417
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.CPM.2023.7
http://arxiv.org/abs/2211.09659
https://doi.org/10.1137/1.9781611977073.18
https://doi.org/10.1007/978-3-031-29119-7_4
https://doi.org/10.1007/978-3-031-29119-7_4
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1109/DCC52660.2022.00035

366 N. Rizzo et al.

12. Equi, M., Mäkinen, V., Tomescu, A.I.: Graphs cannot be indexed in polynomial
time for sub-quadratic time string matching, unless SETH fails. In: Bureš, T., et al.
(eds.) SOFSEM 2021. LNCS, vol. 12607, pp. 608–622. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-67731-2 44

13. Equi, M., Mäkinen, V., Tomescu, A.I., Grossi, R.: On the complexity of string
matching for graphs. ACM Trans. Algorithms 19(3), 1–25 (2023)

14. Kritikakis, G., Tollis, I.G.: Fast reachability using DAG decomposition. In:
Georgiadis, L. (ed.) 21st International Symposium on Experimental Algorithms,
SEA 2023, July 24–26 2023, Barcelona, Spain. LIPIcs, vol. 265, pp. 2:1–2:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.
4230/LIPIcs.SEA.2023.2

15. Li, H., Feng, X., Chu, C.: The design and construction of reference pangenome
graphs with minigraph. Genome Biol. 21, 1–19 (2020)

16. Ma, J., Cáceres, M., Salmela, L., Mäkinen, V., Tomescu, A.I.: Chaining
for accurate alignment of erroneous long reads to acyclic variation graphs.
bioRxiv (2022). https://doi.org/10.1101/2022.01.07.475257, https://www.biorxiv.
org/content/early/2022/05/19/2022.01.07.475257, to appear in Bioinformatics

17. Mäkinen, V., Sahlin, K.: Chaining with overlaps revisited. In: Gørtz, I.L.,
Weimann, O. (eds.) 31st Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2020, 17–19 June 2020, Copenhagen, Denmark. LIPIcs, vol. 161, pp.
25:1–25:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://
doi.org/10.4230/LIPIcs.CPM.2020.25

18. Mäkinen, V., Tomescu, A.I., Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi, R.:
Sparse dynamic programming on DAGs with small width. ACM Trans. Algorithms
15(2), 29:1–29:21 (2019). https://doi.org/10.1145/3301312

19. Rizzo, N., Cáceres, M., Mäkinen, V.: Chaining of maximal exact matches in
graphs. https://doi.org/10.48550/arXiv.2302.01748, preprint of an extended ver-
sion of SPIRE 2023 paper

20. Rizzo, N., Cáceres, M., Mäkinen, V.: Finding maximal exact matches in graphs.
In: Belazzougui, D., Ouangraoua, A. (eds.) 23rd International Workshop on Algo-
rithms in Bioinformatics, WABI 2023, September 4–6 2023, Houston, TX, USA.
LIPIcs, vol. 273, pp. 10:1–10:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPIcs.WABI.2023.10

21. Rizzo, N., Tomescu, A.I., Policriti, A.: Solving string problems on graphs using the
labeled direct product. Algorithmica 84(10), 3008–3033 (2022)

22. Shibuya, T., Kurochkin, I.: Match chaining algorithms for cDNA mapping. In: Ben-
son, G., Page, R.D.M. (eds.) WABI 2003. LNCS, vol. 2812, pp. 462–475. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39763-2 33

https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.4230/LIPIcs.SEA.2023.2
https://doi.org/10.4230/LIPIcs.SEA.2023.2
https://doi.org/10.1101/2022.01.07.475257
https://www.biorxiv.org/content/early/2022/05/19/2022.01.07.475257
https://www.biorxiv.org/content/early/2022/05/19/2022.01.07.475257
https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://doi.org/10.1145/3301312
https://doi.org/10.48550/arXiv.2302.01748
https://doi.org/10.4230/LIPIcs.WABI.2023.10
https://doi.org/10.1007/978-3-540-39763-2_33

Algorithms and Hardness for the Longest
Common Subsequence of Three Strings

and Related Problems

Lusheng Wang1,2 and Binhai Zhu3(B)

1 Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong
cswangl@cityu.edu.hk

2 ShenZhen Research Institution, City University of Hong Kong, Shenzhen, China
3 Gianforte School of Computing, Montana State University,

Bozeman, MT 59717, USA
bhz@montana.edu

Abstract. A string is called a square (resp. cube) if it is in the form
of XX = X2 (resp. XXX = X3). Given a sequence S of length n, a
fundamental problem studied in the literature is the problem of com-
puting a longest subsequence of S which is a square or cube (i.e., the
longest square/cubic subsequence problem). While the longest square
subsequence (LSS) can be computed in O(n2) time, the longest cubic
subsequence (LCubS) is only known to be solvable in O(n5) time, using
the longest common subsequence of three strings (LCS-3) as a subrou-
tine (which was much less studied compared with LCS for two strings, or
LCS-2). To improve the running time for LCubS, we look at its comple-
mentary version and also investigate LCS-3 for three strings S1, S2, S3,
with input lengths m ≤ n1 ≤ n2 respectively. Firstly, we generalize an
algorithm by Nakatsu et al. for LCS-2 to have an O(n1n2δ) algorithm
for computing LCS-3, where δ is the minimum number of letters to be
deleted in S1 to have an LCS-3 solution for S1, S2 and S3. This results
in an O(k3n2) algorithm for LCubS, where k is the minimum number of
letters deleted in S to have a feasible solution. Then, let R be the number
of triples (i, j, k) that match in the input, i.e., S1[i] = S2[j] = S3[k], we
show that LCS-3 can be computed in O(n + R log log n + R2) time (n is
the maximum length of the three input strings). Finally, we define the t-
pseudo-subsequence of S under an integer parameter t, which is a string
Z containing a subsequence S′ of S such that S′ can be obtained from Z
by deleting at most t letters. Subsequently, we study the longest major-
ity t-pseudo-subsequence (LMtPS) of Si, i = 1..3, which is a t-pseudo-
subsequence T = t1t2 · · · tK of Si, i = 1..3, with the maximum length K;
moreover, when T is aligned with some subsequence S′

i’s of length K in
Si, i = 1..3, each tj matches at least two letters with S′

i, i = 1..3. We
show that LMtPS of three strings S1, S2 and S3 is polynomially solv-
able, while if we require additionally that all letters in Σ appear in the
solution T then it becomes NP-complete, via a reduction to a new SAT
instance called Even-(3,B2)-SAT.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 367–380, 2023.
https://doi.org/10.1007/978-3-031-43980-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_30&domain=pdf
http://orcid.org/0000-0002-4344-8791
http://orcid.org/0000-0002-3929-4128
https://doi.org/10.1007/978-3-031-43980-3_30

368 L. Wang and B. Zhu

Keywords: Longest common subsequence · Longest cubic
subsequence · NP-completeness · Polynomial-time algorithms

1 Introduction

Computing global patterns in a sequence is a fundamental problem with appli-
cations. For example, it is known that plants have undergone up to three rounds
of whole genome duplications, resulting in a number of duplicates bounded by
8 [19]. In this case, given an extant plant chromosome C, even if some minor
mutations occur in between or even after the whole genome duplications, the
longest sequences of C in the form of X2, X4 and X8 would give us quite some
information about the original chromosome before any whole genome duplica-
tion.

In fact, given a sequence S of length n, in 2004 Kosowski already considered
the longest square subsequence (LSS, i.e., longest and also in the form of XX)
of S, for which he gave an O(n2) time solution [12]. About 10 years later, Tiskin
improved it slightly to O(n2(log log n)2/ log2 n), using a method called semi-local
string comparison [17]. Shortly after that, Bringmann and Künnemann proved
that LSS cannot be solved in time O(n2−ε) unless SETH is false [4]. As a matter
of fact, Inoue et al. considered solving the problem by introducing the parameters
r∗ (the length of the optimal LSS) and R (the number of matching pairs in S),
when r∗ = o(n) and R = o(n2) the LSS can be computed in o(n2) time [10].

Recently, Lafond et al. considered the longest subsequence-repeated subse-
quence problem of a given sequence S (which models a singleton genome) [13],
aiming at retrieving some tandem duplication history, where they need to use
Longest Cubic Subsequence (LCubS) as a subroutine. They pointed out that the
problem can be trivially solved in O(n5) time (with two cuts cutting S into
three substrings, then use the standard dynamic programming algorithm for
three sequences). Surprisingly, this trivial solution is the best solution known for
LCubS up to this point. The first motivation of this research is to try to solve
LCubS faster by considering the complementary version of the problem — delete
a minimum number of k letters in S such that the resulting sequence is a cube.
We first give a simple O(k2n3) time algorithm using some basic observations.

Then, to improve the running time further to O(k3n2), we have to come back
to the fundamental problem of computing the longest common subsequence of
three strings (LCS-3). It turns out that we could extend the solution by Nakatsu
et al. for LCS-2 [15] to have a solution running in O(n2δ) time, where n is maxi-
mum length of the three input strings, and δ is the number of strings one has to
be deleted from the shortest input string — to solve LCS-3. In the past, most of
research on LCS has been focused on LCS-2 (see [5] for a comprehensive review),
although in 1978 Maier already proved that LCS-p (LCS for p sequences, with
p unbounded) is NP-hard [14]. In fact, in 1995 Jiang and Li further proved that
LCS-p is as hard to approximate as the Maximum Clique problem [11]. (It was
noted that Maier’s reduction in fact implies that LCS-p is as hard as the Max-
imum Independent Set problem [20]. With Hästad’s stronger inapproximability

LCS of Three Strings and Related Problems 369

result, LCS-p hence cannot be approximated within a factor n1−ε [8]; and this
was in fact used in showing that aligning many polygonal chains in 3D, model-
ing protein backbones, is equally hard to approximate [20].) In 2015, Abboud,
Backurs and Williams proved that LCS for d strings (d is bounded) cannot be
solved in O(nd−ε) time unless SETH is false [1], which gives a conditional lower
bound close to Ω(n3) for LCS-3. For convenience, we just say loosely that this
is a cubic lower bound for LCS-3 henceforth.

With the above discussion, we then present another algorithm for LCS-3
parameterized by R, the number of matching triple (i, j, k)’s in the input, i.e.,
triples satisfying S1[i] = S2[j] = S3[k]. Let the lengths of Si, i = 1..3, be m ≤
n1 ≤ n2(= n) respectively. Our algorithm runs in O(n + R log log n + R2) time.
This algorithm can be used in a scenario when R is small, for instance, when
each letter (gene) appears a constant number of times (say, in a plant genome).
To be more precise, if R = o(n1.5) then the algorithm would run in o(n3) time,
beating the cubic lower bound for LCS-3 by Abboud, Backurs and Williams
[1]. The algorithm uses the fundamental data structure by van Emde Boas on
maintaining a sorted list of integers in the range [1..n] in O(log log n) time per
insertion and deletion [18], plus the classic algorithm of computing a longest
path in a DAG in linear time.

Finally, we propose a new variation of LCS-3. We first define the t-pseudo-
subsequence of S under an integer parameter t, which is a string Z containing a
subsequence S′ of S and S′ can be obtained from Z by deleting at most t letters
in Z. S′ is called the t-host of Z in S. For example, let S = 123432451, then
Z = 4243415 is a 2-pseudo-subsequence of S with S′ = 24341 being the 2-host
of Z in S — S′ is obtained from Z by deleting the first and last letters in Z. (It
should be easily verified that S′ is a subsequence of both S and Z.)

Subsequently, we study the longest majority t-pseudo-subsequence (LMtPS)
of S1, S2 and S3, which is a t-pseudo-subsequence T = t1t2 · · · tK of Si, i = 1..3,
with the maximum length K; moreover, when T is aligned with three subse-
quences S′

i of length K in Si, i = 1..3, each tj matches at least two letters in
S′

i, i = 1..3. (Note that such a definition on “majority” is only meaningful when
the input contains at least three sequences.) This LMtPS problem is motivated by
the fact that in many applications we should tolerate a small amount of errors.
In fact, even in string algorithms this idea was not completely new. For example,
in 2022 Bhuiyan et al. studied computing the longest common almost-increasing
subsequence [3], where the alphabet is a set of comparable items (e.g., integers).

We show that LMtPS of three strings S1, S2 and S3 is polynomially solvable
in O(n8) time. However, if we require additionally that all letters in Σ must
appear in the solution T , which we call the problem LMtPS+, then we prove that
it is NP-complete. The reduction is indirectly from the NP-complete problem
MAX-(3,B2)-SAT, in which each clause has exactly 3 literals and each variable
occurs exactly twice in its positive and twice in the negative form [2]. We require
additionally that the number of variables assigned true and false are the same,
for which we define a new SAT instance called Even-(3,B2)-SAT and show that
it is NP-complete by a reduction from MAX-(3,B2)-SAT.

370 L. Wang and B. Zhu

This paper is organized as follows. In Sect. 2, we give basic definitions. In
Sect. 3, we present improved algorithms for the longest cubic subsequence prob-
lem, which uses some algorithm for LCS-3. In Sect. 4, we present another algo-
rithm for LCS-3, parameterized by the number of matching triples in the three
input strings. In Sect. 5, we prove that LMtPS+ is NP-complete while LMtPS
is polynomially solvable. We conclude the paper in Sect. 6.

2 Preliminaries

We first give some basic definitions. Throughout the paper, Σ is a finite alphabet.
We use [n] to denote an integer set {1, 2, 3, · · · , n}. Let S = s1s2s3 · · · sn be a
string (or sequence) of length |S| = n over an alphabet Σ. When we partition
S into S = S1S2...Sm, the position between the last letter of Si and first letter
of Si+1, i = 1..m − 1, is simply called a cutting point. A subsequence S′ of S
is a sequence obtained from S by deleting some letters; and, conversely, S is a
supersequence of S′. A sequence W is a square (resp. cube) if it can be written
as XX = X2 (resp. XXX = X3). For example, abc · abc is a square while
abc · abc · abc is a cube.

The longest square (resp. cubic) subsequence of S is a subsequence of S which
is a square (resp. cube). For instance, let S = ACGTAGCTCAGT then ACGT · ACGT
is the longest square subsequence of S, while AGT · AGT · AGT is the longest cubic
subsequence of S.

Given m strings of the same length n, say Ai = ai,1ai,2 · · · ai,n, i = 1..m, an
alignment of Ai’s is composed of n vertical multi-sets Vj = {a1,j , a2,j , ..., am,j},
j = 1..n. Intuitively Vj is the multi-set of letters at the j-th column among all
Ai’s. Note that our definition of alignment here is stronger than the traditional
alignment — in our case, no blank symbols can be used.

The following definitions are somehow covered in the introduction already,
we present them here for the reader’s convenience. The t-pseudo-subsequence of
S under an integer parameter t is a string Z which is a supersequence of S′,
where S′ is a subsequence of S and S′ can be obtained from Z by deleting at
most t letters in Z. We say that S′ is the t-host of Z in S. As another example,
let S = CAGCGATG, then Z = GCAGCAG is a 1-pseudo-subsequence of S with
S′ = CAGCAG being the 1-host of Z in S.

The decision version of the longest majority t-pseudo-subsequence problem
(LMtPS) is defined as follows:
INPUT: Three sequences S1, S2 and S3 over Σ, positive integers t and K.
QUESTION: Is there a t-pseudo-subsequence T = t1t2 · · · tK of Si, i = 1..3, with
length K; moreover, when T is aligned with three subsequences S′

i of length K
in Si, i = 1..3, each tj matches at least two letters in S′

i, i = 1..3?
For the optimization version, certainly the goal is to maximize K. Note that

when T is aligned with S′
1, S

′
2 and S′

3, each tj matches at least two letters in
S′

i(i = 1..3) also means that the vertical multi-set Vj (of size 4) contains at least
three letters equal to tj .

LCS of Three Strings and Related Problems 371

We define the problem LMtPS+ by adding an additional constraint that T
must contain all the letters in Σ. Later in Sect. 5 we would prove that LMtPS+
is NP-complete while LMtPS is polynomially solvable.

In the next section, we would first present some improved algorithms for the
longest cubic subsequence (LCubS) problem, given an input string S of length
n.

3 Improved Algorithms for Longest Cubic Subsequence

As mentioned earlier, the best known algorithm for LCubS runs in O(n5) time.
Here we would try to improve the running time by looking at the complementary
problem of LCubS.

3.1 The Complementary Problem

We define the complementary problem of LCubS formally as follows: given a
sequence S of length n, delete a minimum number of k letters from S such that
the resulting sequence is a cube.

Lemma 1. Let S = s1s2...sn, and assume that the complementary longest cubic
subsequence problem on S has a solution of size at most k, then there are at most
4k cutting points in S to decompose S into three substrings.

Proof. Suppose a cutting point in S is between S1, S2 or S3, i.e., S = S1S2S3;
moreover, the final cubic solution is S′

1S
′
2S

′
3 with S′

1 = S′
2 = S′

3 and S′
i is obtained

from Si (i = 1..3) after deleting at most k letters in total. Then n/3−k ≤ |S′
i| ≤

n/3, i = 1, 2, 3. Consequently, S1, S2 and S3 can be obtained by adding at most
k deleted letters back to S′

i’s. Hence n/3 − k ≤ |Si| ≤ n/3 + k, i = 1, 2, 3. In
other words, there are at most 2k cuts needed between S1, S2 and S2, S3. ��
Corollary 1. One could list O(k2) number of partitions 〈S′′

1 , S′′
2 , S′′

3 〉 such that
S = S′′

1S′′
2 S′′

3 and an optimal partition S = S1S2S3 must be among one of these
O(k2) partitions.

Proof. Even though we have 2k cutting points for each Si, we could make use of
the linearity of S. We could first list the cutting points for S1 (each corresponds
to a candidate S1), there are at most 2k of them. Then we repeat the process to
cut for a candidate of S2, again, there are at most 2k of them. After S1 and S2

are obtained, S3 is certainly obtained. ��
We then have the following theorem.

Theorem 1. The longest cubic subsequence (also the complementary longest
cubic subsequence) problem can be solved in O(k2n3) time, where k is the mini-
mum number of letters deleted in S to obtain a feasible solution.

It turns out that we could improve this algorithm further to O(k3n2), which
means that when k = O(n1/3), the improved algorithm in fact runs in O(n3)
time (very much matching the best lower bound). To achieve this, we need a
new algorithm for the longest common subsequence problem on three strings.
We achieve that by extending the algorithm by Nakatsu et al. for LCS-2 [15].

372 L. Wang and B. Zhu

3.2 Extending the LCS-2 Algorithm by Nakatsu et al. to LCS-3

We briefly review the algorithm of Nakatsu et al. for LCS-2, i.e., we are given
two strings σ and τ with lengths m and n1 (m ≤ n1) respectively. (For reader’s
convenience, we very much adopt the same notations by Nakatsu et al. [15], i.e.,
we use σ and τ to represent input strings S1 and S2.) Let σ = σ(1)σ(2) · · · σ(m)
and τ = τ(1)τ(2) · · · τ(n1). Moreover, let σ(i..m) = σ(i)σ(i + 1) · · · σ(m) and
τ(h..n1) = τ(h)τ(h + 1) · · · τ(n1). The key idea of Nakatsu et al. is defining a
concept Li(k), which is the largest h such that σ(i..m) and τ(h..n1) has an LCS
of length k. Clearly, we have the observation [15].

Observation 1. Li(1) > Li(2) > Li(3) > · · · , for all i ∈ [m].

Then a table M is defined as M [i, j] = Lj(i), and the remaining task is
to fill the table M [−,−]. The tricky part is that we only need a part of the
upper triangular region of M [−,−] (otherwise, the algorithm would certainly
take O(mn1) time and space). The filling stops when j equals the length p of an
LCS, i.e., L1(p) �= 0 (while L1(p + 1) = 0). The running time is analyzed to run
in O(n1(m − p)) time.

The generalization of the above algorithm is quite straightforward. Suppose
we are given three strings σ, τ and π with lengths m,n1 and n2 respectively. (we
can assume π = π(1)π(2) · · · π(n2) and m ≤ n1 ≤ n2). Then we could define
Li,j(k) as the largest h such that σ(i..m), τ(j..n1) and π(h..n2) has an LCS of
length k. Again, we have the following observation.

Observation 2. When j is fixed, Li,j(1) > Li,j(2) > Li,j(3) > · · · , for all
i ∈ [m].

Then we could define a similar table M [i, j, k] = Lj,k(i), which can be filled
by adding an outermost loop on k ∈ [n2]. Hence we have the following theorem.

Theorem 2. Given three strings σ, τ and π with lengths m ≤ n1 ≤ n2

respectively, a longest common subsequence of length p can be computed in
O(n1n2(m − p)) time.

Following the discussion in the previous subsection, we have O(k2) pairs of
cuts to obtain S1, S2 and S3. After each pair of these cuts is fixed, we run the
algorithm in Theorem 2, which takes O(n2k) time. Hence the total running time
to compute a longest cubic subsequence of S is O(k2 · n2k) = O(k3n2).

Theorem 3. The longest cubic subsequence (also the complementary longest
cubic subsequence) problem can be solved in O(k3n2) time, where k is the mini-
mum number of letters deleted in S to obtain a feasible solution.

In the next section, we investigate LCS-3 by considering another parameter
— the number of matching triples in the input strings σ, τ and π.

LCS of Three Strings and Related Problems 373

4 LCS-3 Parameterized by the Number of Matching
Triples

Given three strings σ, τ and π with lengths m,n1 and n2 respectively, with
m ≤ n1 ≤ n2(= n), a matching triple (i, j, k) is defined as a triple satisfying that
σ(i) = τ(j) = π(k). Let R = {(i, j, k)|(i, j, k) is a matching triple of σ, τ and π},
and let R = |R|. Clearly, R = Θ(n3) in the worst case — just make three strings
of length n using only one single letter in the alphabet.

However, in many applications R could be potentially small. For instance,
plant genomes go over at most three rounds of whole genome duplications [19],
hence it is safe to say that a gene in a plant genome is repeated at most 8 times.
Consequently, if we take the chromosome of a plant genome as a sequence over
its gene set, three such chromosomes from three different plant genomes would
incur a value R which is linear in the length of these chromosomes. Therefore,
it makes sense to compute LCS-3 by looking at this important parameter R.

Our initial idea is similar to that of Illiopoulos and Rahman [9], which is
to use the data structure by van Emde Boas [18] to maintain a list of integers
in the range of [1..n] with a cost of O(log log n) per update (i.e., insertion and
deletion); in addition, given any element e in the list, Next(e) (successor of e)
can be returned in O(1) time.

For each letter e ∈ Σ, we build three lists Lσ(e), Lτ (e) and Lπ(e). Lσ(e)
stores the (sorted) positions of e in σ. Lτ (e) and Lπ(e) can be similarly defined.
With a linear scan, the three lists for all e ∈ Σ can be computed in O(n) time.

With these lists, we can construct a van Emde Boas (VEB) data structure
D(σ, τ, π) on triple (i, j, k)’s, with i ∈ Lσ(e), j ∈ Lτ (e) and k ∈ Lπ(e). Since
D(σ, τ, π) must be linearly ordered, we map (i, j, k) uniquely to a number

i + (n + 1)j + (n + 1)2k.

Each of these mapped values is obviously of value O(n3). Hence, each insertion
and deletion in D(σ, τ, π) takes O(log log n3) = O(log log n) time. All triples in
the set R can be computed with three nested loops, first on the lists Lσ(−)’s,
then the lists Lτ (−)’s, and finally the lists Lπ(−)’s. (Note that we have a total
of 3 × |Σ| such lists across the three input strings.) Consequently, R can be
computed in O(n + R log log n) time.

In [9], the remaining steps to obtain a fast algorithm for LCS-2, to avoid
a trivial O(n2) implementation, is to make use of a fast Range Maxima Query
on a linear array of numbers (which could be dynamic). However, in our case
such a query is not quite possible for a two-dimensional array (in fact, even
for a static two-dimensional array there is a lower bound for Range Maxima
Query [6,7]). Hence, we need to use a different method. It turns out that we
could make use of the linear time algorithm to compute the longest path in a
directed acyclic graph (DAG) [16]. Then, the remaining parts are easy to wrap
up. Given the data structure D(σ, τ, π), we first compute R. We then build a
graph GR whose vertices are all the triples in R. Then for each pair of triples
t1 = (i1, j1, k1) and t2 = (i2, j2, k2) we test if t1 is strictly before (or, precedes) t2,

374 L. Wang and B. Zhu

i.e., if i1 < i2, j1 < j2 and k1 < k2; if so, we have a directed edge from t1 to t2. (It
is easily seen that this graph is acyclic as the precedence relation is transitive: if
t1 precedes t2 and t2 precedes t3, then t1 must precede t3. Moreover, inserting a
source s and a sink t to GR is a standard practice.) Finally, it is easily seen that
the longest path from s to t in GR gives us the longest common subsequence
of σ, τ and π. Note that GR could have O(R2) edges, leaving the total cost at
O(R2) for this step. We summarize with the following theorem.

Theorem 4. Given three strings σ, τ and π with lengths m,n1 and n2 respec-
tively, and m ≤ n1 ≤ n2(= n), let M be the number of matching triples in
σ, τ and π, a longest common subsequence of σ, τ and π can be computed in
O(n + R log log n + R2) time.

When R is relatively small, this algorithm could potentially run below the
cubic lower bound for LCS-3. For instance, it could run in o(n3) time if R =
o(n1.5).

In the next section, we consider the longest majority t-pseudo-subsequence
(LMtPS) problem for three strings and its relative, LMtPS+.

5 Algorithm and Hardness Result for Longest Majority
t-Pseudo-Subsequence and Its Relative

In this section, we prove that LMtPS+ is NP-complete while LMtPS is in P.
We focus on the NP-completeness of LMtPS+ first. Recall that in LMtPS+ we
require additionally that all letters in Σ must appear in the solution.

5.1 LMtPS+ is NP-Complete

We first review MAX-(3,B2)-SAT, which is a 3SAT instance φ1 with n variables
x1, x2, · · · , xn and m clauses F1, F2, · · · , Fm, and with the additional condition
that each clause contains exactly three literals and each xi appears exactly twice
and each x̄i also appears twice in φ. Berman et al. proved that MAX-(3,B2)-SAT
is NP-complete [2].

Theorem 5. MAX-(3,B2)-SAT is NP-complete [2].

To prove the NP-completeness for LMtPS+, we need a new variation of
MAX-(3,B2)-SAT of 2n variables and 2m+2n clauses (n and m are the variables
and clauses in an instance of MAX-(3,B2)-SAT respectively), where the truth
assignment has the property that exactly n variables are assigned TRUE and
exactly n variables are assigned FALSE. Such a truth assignment is called an
even truth assignment. We call this version Even-(3,B2)-SAT. We first show that
Even-(3,B2)-SAT is NP-complete.

Theorem 6. Even-(3,B2)-SAT is NP-complete.

LCS of Three Strings and Related Problems 375

Proof. It is obvious that Even-(3,B2)-SAT is in NP. Hence we focus on showing
that Even-(3,B2)-SAT is NP-hard next.

As noted earlier, we reduce from MAX-(3,B2)-SAT, where the input φ1 is a
conjunction of m disjunctive clauses over n variables and each clause contains
exactly three literals; moreover, a variable and its negation both appear twice in
φ1. It is obvious that a valid truth assignment for a clause, say (ai,1 ∨ai,2 ∨ai,3),
is preserved, if we make another copy of the clause (possibly with some name
changing).

Follow this idea, a simple method is to construct a new variable yi for each
variable xi in φ such that they are complementary to each other, i.e., their values
satisfy that yi = x̄i and ȳi = xi. There is a standard way for doing this and we
show that in Fig. 1.

Fig. 1. The negation of g, h, can be enforced by 2SAT clauses (g ∨ h) ∧ (ḡ ∨ h̄).

After introducing a conjunction of 2n 2SAT clauses φ3, two for each variable
xi in φ (as in Fig. 1), the next step to construct additional m clauses is as
follows. For each clause (ai,1 ∨ ai,2 ∨ ai,3) in φ1, we construct (ai,1 ∨ ai,2 ∨ ai,3).
Then we do a name changing in the second clause with xi → ȳi and x̄i → yi.
Let φ2 be the conjunction of these m new 3SAT clauses involving only with
yj , ȳj . The instance for Even-(3,B2)-SAT is then φ = φ1 ∧ φ2 ∧ φ3. It is clear
that this construction takes linear time and φ obviously has 2n variables and
2m+2n clauses. Moreover, it is easy to see the following relation: φ1 has a truth
assignment if and only if φ has an even truth assignment. ��

Let φ be an instance of Even-(3,B2)-SAT, constructed directly from an
instance of MAX-(3,B2)-SAT in the above theorem, which is a conjunction of
2m + 2n disjunctive clauses over 2n variables; moreover, each clause contains at
most three literals. Let the 2n variables be x1, x2, · · · , xn, y1, y2, · · · , yn and let
the 2m + 2n clauses of φ be F1, F2, · · · , F2m+2n.

We define L(i) as the list of clauses containing xi and L(i) as the list of
clauses containing xi (ordered by the indices of Fk’s). Let gj , j = 1..2n − 1, be

376 L. Wang and B. Zhu

the peg letters each appearing once in a given string. We define three sequences
as follows.

S1 = L(1)L(1)g1 · L(2)L(2)g2 · · · L(2n − 1)L(2n − 1)g2n−1 · L(2n)L(2n),

S2 = L(1)g1 · L(2)g2 · · · L(2n − 1)g2n−1 · L(2n),

and
S3 = L(1)g1 · L(2)g2 · · · L(2n − 1)g2n−1 · L(2n).

We claim that φ has an even truth assignment if and only if the LMtPS+
instance has a solution T of length 6n + (2n − 1) = 8n − 1 and T is a majority
t-pseudo-subsequence of Si, i = 1..3, with t = 3n.

Since the “only-if” part is easy, we only focus on the “if” part. If the LMtPS+
instance has a solution T of length 8n − 1 which forms a majority (3n)-pseudo-
subsequence of S1, S2 and S3, the first thing we note is that |S1| = 12n + (2n −
1) = 14n − 1 and |S2| = |S3| = 6n + (2n − 1) = 8n − 1 and all the Fi’s and gj ’s
must appear in S. Moreover, by our construction, each L(i) (and L̄(i)) must be
of length 3. The reason is that each xi (and x̄i) appears twice in a 3SAT clause
in φ1 and each appears once in a 2SAT clause in φ3. Similarly, each yj (and ȳj)
appears twice in a 3SAT clause in φ2 and each appears once in a 2SAT clause
in φ3. By the construction of 2SAT clauses, xi and yi must have complementary
values (or, xi and ȳi must have the same T/F value).

Now, it is noted that between gi−1 and gi, we have L(i)L(i) in S1, L(i) in
S2 and L(i) in S3. Since we must put gi−1 and gi in T , for a majority solution
we must choose to put either L(i) or L(i) in T . Consequently, we set the truth
assignment as follows: if L(i) is chosen in T , then set xi ← TRUE; if L(i) is
chosen in T , then set xi ← FALSE. Since xi and ȳi must have the same T/F
value, this assignment is obviously a truth assignment as all Fj ’s must appear
in T — meaning that they are satisfied. Clearly, this truth assignment of xi’s
and yi’s form an even truth assignment; moreover, since exactly one of L(i) and
L(i) is selected for T , T is a (3n)-pseudo-subsequence of S1, S2 and S3.

For the membership in NP, it is easily seen that when T and the three
subsequences S′

i, i = 1..3, are given, it is easy to verify whether they form a valid
solution in polynomial time. Therefore we have the following theorem.

Theorem 7. The decision version of LMtPS+ is NP-complete.

Note that we could make gi’s arbitrarily long, hence t could be arbitrarily
small relative to the length of S1, S2 and S3, while the NP-hardness proof still
holds. Formally, if N = max{|S1|, |S2|, |S3|} then the NP-hardness result holds
even if limN→+∞ t

N = 0. (We did not use n here as in this subsection n represents
the number of variables in φ1.)

An example of this reduction can be given as follows:

φ1 = (x1∨x2∨x3)∧(x1∨x̄2∨x̄3)∧(x̄1∨x2∨x̄3)∧(x̄1∨x̄2∨x3) = F1∧F2∧F3∧F4,

φ2 = (ȳ1∨ ȳ2∨ ȳ3)∧(ȳ1∨y2∨y3)∧(y1∨ ȳ2∨y3)∧(y1∨y2∨ ȳ3) = F5∧F6∧F7∧F8,

LCS of Three Strings and Related Problems 377

φ3 = (x1∨y1)∧(x̄1∨ȳ1)∧(x2∨y2)∧(x̄2∨ȳ2)∧(x3∨y3)∧(x̄3∨ȳ3) = F9∧F10∧· · ·∧F14.

Note that we have m = 4 and n = 3. So φ (= φ1 ∧φ2 ∧φ3) has 2m+2n = 14
clauses. Note that they are labelled as they appear in sequence in φi, i = 1..3,
as F1, F2, · · · , F14. Then S1, S2 and S3 can be constructed as follows.

S1 = F1F2F5F3F4F6 · g1 · F1F3F7F2F4F8 · g2 · F1F4F9F2F3F10 · g3

F5F13F14F6F11F12 · g4 · F7F12F14F8F11F13 · g5 · F9F12F13F10F11F14.

S2 = F1F2F5 ·g1 ·F1F3F7 ·g2 ·F1F4F9 ·g3 ·F5F13F14 ·g4 ·F7F12F14 ·g5 ·F9F12F13.

S3 = F3F4F6 ·g1 ·F2F4F8 ·g2 ·F2F3F10 ·g3 ·F6F11F12 ·g4 ·F8F11F13 ·g5 ·F10F11F14.

Corresponding to the even truth assignment x1 = TRUE, x2 = FALSE, x3 =
FALSE, y1 = FALSE, y2 = TRUE and y3 = TRUE, the LMtPS+ solution is

T = F1F2F5 ·g1 ·F2F4F8 ·g2 ·F2F3F10 ·g3 ·F6F11F12 ·g4 ·F7F12F14 ·g5 ·F9F12F13,

and
S′
1 = T, S′

2 = S2, S
′
3 = S3.

Note that |S1| = 12n + (2n − 1) = 41, |S2| = |S3| = |T | = 6n + (2n − 1) = 23,
but T has 14 matches with both S2 and S3. Hence t = 3n = 23 − 14 = 9. The
t-hosts of T in Si’s are: the subsequence equal to T in S1, F1F2F5 ·g1 ·g2 ·g3 ·g4 ·
F7F12F14 ·g5 ·F9F12F13 in S2, and g1 ·F2F4F8 ·g2 ·F2F3F10 ·g3 ·F6F11F12 ·g4 ·g5
in S3.

The above reduction breaks for LMtPS in which not all the letters in Σ need
to appear in the solution T . It turns out that LMtPS is in fact polynomially
solvable.

5.2 LMtPS is Polynomially Solvable

To solve LMtPS, we use a variation of the longest path algorithm for a DAG
[16]; namely, deciding if a colored path in a vertex-colored DAG, with at least
a certain length and satisfying some constraint on the nodes, exists. The details
to solve the problem are as follows.

1. Enumerate all triples (i, j, k) such that S1[i], S2[j] and S3[k] have at least
two matches, call them valid triples. Construct a DAG G with valid triples
as vertices and there is an edge from a valid triple (i1, j1, k1) to another one
(i2, j2, k2) if i1 < i2, j1 < j2 and k1 < k2. Add a source r going to all the
other nodes and a sink s coming from all the other nodes (including r), with
directed edges.

2. Color the triple nodes sequentially as follows: given (i, j, k), if S1[i] = S2[j] =
S3[k], then color it white; if S1[i] = S2[j] then color it red; if S2[j] = S3[k]
then color it yellow; and if S1[i] = S3[k] then color it blue.

378 L. Wang and B. Zhu

3. Each node v stores a set Sv of 5-vectors in the form 〈vK , vw, vr, vy, vb〉, where
vK represents the length of a path from r to v, vw (resp. vr, vy, vb) represents
the number of white (resp. red, yellow, blue) nodes on this path. Initialize
this set Sv by considering the directed path (edge) from r to v. For instance,
if v is white, then Sv ← {〈1, 1, 0, 0, 0〉}.

4. Fix any topological ordering of the DAG G. We can update the 5-vectors
of a node v as follows. For each incoming neighbor u (i.e., (u, v) ∈ E(G)),
update Sv from Su as follows: for any 5-vector (uK , uw, ur, uy, ub) in Su, if v
is white, then Sv ← Sv ∪ {〈uK + 1, uw + 1, ur, uy, ub〉} (if v is of a different
color, update accordingly). The sink s has no color, hence the 5-vectors in Ss

are only updated in the length component.
5. At the end, check if there is a path from r to s with length at least K +1 and

with at most t nodes in each of the red, yellow and blue colors. If so, return
the corresponding solution; otherwise, report no valid solution exists.

Let n be the maximum length of three input strings S1, S2 and S3. The
algorithm obviously runs in O(n8) time as, (1) G could have O(n3) vertices and
O(n6) edges; and (2) |Sv| = O(n5) in the worst case (though we could set a bar
that once a value in vr, vy and vb, components of a 5-vector in Sv, reaches t + 1
then we prune the corresponding path from r to v, which could reduce the cost
for storing Sv to O(n2t3) — if t = O(1) then the running time of the algorithm
can be reduced to O(n6)). It should be noted that we are not storing all the
paths from r to v, whose number could certainly be exponential.

Theorem 8. LMtPS can be solved in O(n8) time, where n is the maximum
length of three input strings S1, S2 and S3.

6 Concluding Remarks

An interesting question is for the second LCS-3 algorithm, after R is computed,
can we compute GR more carefully so that the number of edges is also linear (or
almost linear)? (A similar question can be asked on the algorithm in Sect. 5.2,
even though the worst-case running time might not be improved with an affirma-
tive answer.) Obviously, the transitivity property holds in GR, but the current
algorithm does not make use of it to reduce the number of edges in GR. To
be more precise, suppose that there are three directed edges 〈t1, t2〉, 〈t2, t3〉 and
〈t1, t3〉 in GR, by transitivity, the third edge between the triples t1 and t3 is
implied by the first two and hence is redundant. The current algorithm would
include such a redundant edge.

Acknowledgments. This research is supported by a grant from National Science
Foundation of China (NSFC: 61972328) and GRF grants for Hong Kong Special Admin-
istrative Region (CityU 11206120, CityU 11210119).

LCS of Three Strings and Related Problems 379

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: IEEE 56th Annual Symposium on Foundations
of Computer Science (FOCS’15), pp. 59–78. IEEE Computer Society (2015)

2. Berman, P.R., Scott, A.D., Karpinski, M.: Approximation hardness and satisfi-
ability of bounded occurrence instances of SAT. Electron. Colloquium Comput.
Complex., TR03-022 (2003)

3. Bhuiyan, M.T.H., Alam, M.R., Rahman, M.S.: Computing the longest common
almost-increasing subsequence. Theor. Comput. Sci. 930, 157–178 (2022)

4. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: Proceedings of the 56th Annual Sympo-
sium on Foundations of Computer Science (FOCS’15), pp. 79–97. IEEE Computer
Society (2015)

5. Bringmann, K., Künnemann, M.: Multivariate fine-grained complexity of longest
common subsequence. In: Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’18), pp. 1216–1235. SIAM (2018)

6. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

7. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range min-
imum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02927-1 29

8. Hästad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182, 105–142
(1999)

9. Iliopoulos, C.S., Rahman, M.S.: A new efficient algorithm for computing the longest
common subsequence. Theory Comput. Syst. 45(2), 355–371 (2009)

10. Inoue, T., Inenaga, S., Bannai, H.: Longest square subsequence problem revisited.
In: Boucher, C., Thankachan, S.V. (eds.) SPIRE 2020. LNCS, vol. 12303, pp. 147–
154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59212-7 11

11. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

12. Kosowski, A.: An efficient algorithm for the longest tandem scattered subse-
quence problem. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol.
3246, pp. 93–100. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30213-1 13

13. Lafond, M., Lai, W., Liyanage, A., Zhu, B.: The longest subsequence-repeated
subsequence problem. arXiv:2302.03797 (2023)

14. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

15. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Informatica 18, 171–179 (1982)

16. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)
17. Tiskin, A.: Semi-local string comparison: algorithmic techniques and applications.

arXiv:0707.3619 (2013)
18. Peter van Emde Boas: Preserving order in a forest in less than logarithmic time

and linear space. Inf. Process. Lett. 6(3), 80–82 (1977)

https://doi.org/10.1007/978-3-642-02927-1_29
https://doi.org/10.1007/978-3-030-59212-7_11
https://doi.org/10.1007/978-3-540-30213-1_13
https://doi.org/10.1007/978-3-540-30213-1_13
http://arxiv.org/abs/2302.03797
http://arxiv.org/abs/0707.3619

380 L. Wang and B. Zhu

19. Zheng, C., Kerr Wall, P., Leebens-Mack, J., de Pamphilis, C., Albert, V.A., Sankoff,
D.: Gene loss under neighborhood selection following whole genome duplication and
the reconstruction of the ancestral Populus genome. J. Bioinform. Comput. Biol.
7(03), 499–520 (2009)

20. Zhu, B.: Protein local structure alignment under the discrete Fréchet distance. J.
Comput. Biol. 14(10), 1343–1351 (2007)

Binary Mixed-Digit Data Compression
Codes

Igor Zavadskyi(B) and Maksym Kovalchuk

Taras Shevchenko National University of Kyiv, 2d Glushkova ave, Kyiv, Ukraine

ihorzavadskyi@knu.ua, max.koval4uk@ukr.net

Abstract. One of the most important trade-offs in data compression
is between the compression ratio and decoding speed. The latter can
be increased due to a step structure of a codeword length distribution.
E.g., in byte-aligned codes (ETDC, SCDC, or RPBC), codewords are
composed of whole bytes and thus can be processed easily and quickly.
However, this is achieved at the cost of compression ratio. We investigate
a new family of data compression codes with codewords composed of
digits of different bit lengths. Thus we called them mixed-digit codes.
Their codeword length distribution is agile, allowing us to outperform the
byte-aligned, Fibonacci, and some other recently invented variable-length
codes both in compression ratio and decoding speed. We developed and
tested the encoding, fast decoding, and optimal code search algorithms.

Keywords: Codes · Compression · Fast decoding · Decoding in parts

1 Introduction

Two main characteristics of lossless data compression methods are the compres-
sion ratio and decoding speed. In statistic compression, the compression ratio
is theoretically upper-bounded by the Shannon entropy, and codes approaching
this bound are well known. They are arithmetic encoding, codes based on Asym-
metric Numeration Systems [1], and to some extent, Huffman codes [2]. However,
all these codes are not so good in terms of the decoding speed as they require
processing the encoded bitstream in a bit-by-bit manner. That is why in recent
two decades, special attention was paid to modifying Huffman codes to process
the whole bytes of a code or whole codewords. For example, in byte-aligned
codes such as Tagged Huffman [3], End Tagged Huffman [4], more advanced
(s, c)-dense codes [4] (SCDC) and Byte Codes with Restricted Prefix Properties
(RPBC) [5] codewords consist of a whole number of bytes only. This accelerates
the decoding significantly at the cost of compression ratio. In word-based text
compression (one of the main applications of the above codes), the SCDC and
RPBC produce archives 11–16% bigger than Huffman codes.

Another approach to fast decoding relies on using lookup tables consisting of
necessary decoding information for all possible values of a bit block. It assumes no
limitations regarding an integral number of bytes in a codeword, which improves
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 381–392, 2023.
https://doi.org/10.1007/978-3-031-43980-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43980-3_31&domain=pdf
http://orcid.org/0000-0002-4826-5265
http://orcid.org/0009-0002-8450-905X
https://doi.org/10.1007/978-3-031-43980-3_31

382 I. Zavadskyi and M. Kovalchuk

the compression ratio compared to byte-aligned codes. An algorithm runs signif-
icantly faster if its data fits into the cache memory (preferably L1 cache, which
typical size is about 24–128 KB). As a lookup table for n-bit blocks consists of
about 2n elements, several bytes each, blocks should be short enough, prefer-
ably at most 12–15 bits. If any codeword fits into a block, the decoding can be
extremely simple and fast as, for instance, shown in [6] for no longer than 11 bits
Huffman codewords. We need to store the decoded values in one lookup table
and the codeword lengths in another and perform only two operations at each
iteration of the decoding loop: output the decoded value and shift the encoded
bitstream by the codeword length. Of course, this approach is applicable only
when the input data dictionary is short, e.g., in character-based text compres-
sion. However, in that case, statistic compression often is not efficient enough
and gives way to other methods, such as coding of Lempel-Ziv type. For longer
alphabets, a problem of efficient decoding of codewords consisting of several bit
blocks arises, which is one of the main subjects of this research.

This problem can be solved if a code agrees with the ‘decoding in parts’
principle formulated in [7]. Let us split the bit representation of a codeword into
parts P1, . . . , Pm. Let D(P1), . . . , D(Pm) be the results of independent decoding
or other independent transformations of these parts. A code can be decoded in
parts if any codeword can be split into parts such that its decoded value is equal
to f(D(P1), . . . , D(Pm)), where f is some easily computed function. Let us note
that this is not the case for Huffman codes, as a prefix of a Huffman codeword
determines how the following bits should be handled. Thus, every value of a
prefix corresponds to a separate decoding table for the suffix, and the total size
of the tables grows exponentially depending on the length of a codeword.

Other variable length codes may better correspond to the ‘decoding in parts’
principle. In [8], the fast decoding method based on lookup tables was devel-
oped for the Fibonacci code Fib3, which, applied for natural language texts,
under-performs Huffman codes by 4.5–7% in compression ratio. The total size
of the Fib3 decoding lookup tables is few megabytes, and the decoding is found
to be 2 times slower than for SCDC. The Reverse Multidelimiter Codes (RMD)
proposed in [9] outperform the Fib3 both in compression ratio and decoding
speed (2–3.5% worse compression than Huffman and up to 30% slower decoding
than SCDC/RPBC). The lookup tables for every next part of an RMD code-
word depend only on a few rightmost bits of the previous part and the length
of a decoded prefix, occupying hundreds of kilobytes of memory in total. The
improved version of the RMD fast decoding algorithm given in [10] uses the
lookup tables of approximately the same size but performs the decoding 10–15%
faster.

The first code fully supporting the ‘decoding in parts’ principle was proposed
in [7]. It is based on the binary-coded ternary number representation (BCT). All
codewords have an even bit length as they are composed of trits, i.e., ternary
digits 00, 01, and 10, while the pair of bits 11 represents the delimiter. Assume
a codeword is split into parts P1, . . . , Pm consisting of t1, . . . , tm trits. Then
the decoded value can be calculated using a simple recursive formula D(P1) +
3t1(D(P2)+ · · ·+3tm−2(D(Pm−1)+3tm−1D(Pm))), where D(P1), . . . , D(Pm) are

Binary Mixed-Digit Data Compression Codes 383

Table 1. The first 24 codewords of the code M34

number codeword number codeword number codeword number codeword

0 111 6 101 1111 12 100 0000 11 18 011 0001 11

1 000 1111 7 110 1111 13 101 0000 11 19 100 0001 11

2 001 1111 8 000 0000 11 14 110 0000 11 20 101 0001 11

3 010 1111 9 001 0000 11 15 000 0001 11 21 110 0001 11

4 011 1111 10 010 0000 11 16 001 0001 11 22 000 0010 11

5 100 1111 11 011 0000 11 17 010 0001 11 23 001 0010 11

the results of parts independent decoding. This principle allows us to construct
a high-speed decoding algorithm running more than twice faster than SCDC or
RPBC decoding, while the compression ratio of the BCT code is on the level
with the Fib3 code. (We assume that the decoding is finding of the index of a
codeword in the length-ordered codeword set. Then the decompressed value can
be taken as the dictionary element with that index).

Naturally, the question arises whether analogs of the BCT code with different
digit bit lengths perform better. Experiments show that the code with 3-bit
digits may outperform the BCT code in compression of huge textual databases
only, starting from few gigabytes in size. But what if the bit length of a digit
depends on its position? Investigating this question, we developed a new, more
general code family introduced in Sect. 2, the binary coded mixed-digit codes
(BCMix). Their codewords are composed of digits, just like in BCT. However,
the bitlengths of different digits can differ. Thus, we obtain a flexible code, which
can be adjusted to the distribution of source symbol frequencies more tightly
by varying the bit lengths of code’s digits. We describe the efficient algorithm
for finding the optimal code for a given source in Sect. 3 and the fast decoding
method in Sect. 4. The results of experiments on compression ratio and decoding
speed we discuss in Sect. 5 and make conclusions in Sect. 6.

2 Codes Definition. Straightforward Decoding
and Encoding

Let us describe the construction of BCMix codewords. Let bi be the bit length
of the i-th digit and maski = 2bi − 1 is the number of possible values of this
digit (the bi-bit value 1 . . . 1 = maski is reserved to be the delimiter). We define
an n-digit BCMix codeword as x0, x1, . . . , xn−1(maskn), where x0, . . . , xn−1 are
digits, i.e. bit sequences of lengths b0, . . . , bn−1.

We denote a particular mixed code by the letter M and the bit lengths of
several leftmost digits. For example, M3242 denotes a code in which the leftmost
digit consists of 3 bits, the second digit of 2 bits, the third digit of 4 bits, and the
fourth and all higher digits consist of 2 bits. All digits whose size is not specified
in the code name have a length of 2 bits. Thus, M3222 and M3 denote the same
code. As an example, the first 24 codewords of code M34 are listed in Table 1.

384 I. Zavadskyi and M. Kovalchuk

In a BCMix code, digits have almost the same meaning as in any positional
number system. However, the least significant digit is the leftmost digit - this
principle allows us to make the left-to-right decoding faster1.

Let us also define two variables Powi and Prefi denoting the number of
i-digit codewords and the number of codewords consisting of less than i digits
respectively (excluding the 1-digit delimiter):

Powi =
{

1, i = 0
Powi−1 · maski−1, i > 0

Prefi =
{

0, i = 0
Prefi−1 + Powi−1, i > 0

To decode the BCMix-codeword x0, x1, . . . , xn−1(maskn) one can use the Eq.
(1). For example, for code M34 Pow0 = 1, Pow1 = 7, P ref0 = 0, P ref1 =
1, P ref2 = 8, and the last codeword in Table 1 can be decoded as (001)2 ·Pow0+
(0010)2 · Pow1 + Pref2 = 1 · 1 + 2 · 7 + 8 = 23.

x =
n−1∑
i=0

(xi · Powi) + Prefn (1)

Quite straightforward Algorithm 1 implements the Eq. (1) to decode a
BCMix-encoded bitstream. Let i be the index of the current digit xi within
a codeword. The function GetDigit(bitstream, i) in line 3 reads bi bits from
the bitstream, aligns them to the right edge of a machine word, and shifts the
bitstream accordingly. Then we save the obtained value xi in the variable digit
and analyze it. If it is a delimiter, we calculate the +Prefn part of the Eq. (1) in
line 5 and output the decoded number in line 6; otherwise, we add the summand
xi · Powi to the result and increase i (lines 9–10).

Algorithm 1: Decoding the BCMix bitstream
input : Encoded bitstream
output: Sequence of numbers

1 x, i ← 0;
2 while bitstream is not empty do
3 digit ← GetDigit(bitstream, i);
4 if digit = mask[i] then
5 x ← x + Pref [i];
6 output x;
7 x, i ← 0;
8 else
9 x ← x + digit · Pow[i];

10 i ← i + 1;

1 If we do not know the number digit length in advance, it is easier to calculate
the numerical value from the least significant digit to the most significant. The
conventional ‘least significant to the right’ digit order seems to be borrowed from
the right-to-left Arabic script, where it is natural.

Binary Mixed-Digit Data Compression Codes 385

The BCMix encoding algorithm is similar to getting digits of a value in any
positional number system. The difference is that powers of a number system
base are replaced with the array Pow, and the encoded value x is replaced with
the position of x-th codeword in the group of codewords of the same digit length
(i.e., with x − Prefi, where Prefi is the largest prefix value that is equal to
or less than x). However, to encode a sequence of integers, it would be more
time-efficient to store both codewords and their lengths for all numbers up to
some value n into two arrays and then get them from those arrays.

Generation of all codewords and their lengths, up to n-th codeword, is given
in Algorithm 2. Iterating i from 0 to n, in variable curNum, we store the position
of the i-th codeword in the group of codewords of digit length digitN . In lines
6–13, the i-th codeword is calculated in the i-th element of the array codes, and
its length - in the i-th element of the array codeLen.

Algorithm 2: Generation of all codewords up to some number
input : Maximal number n
output: Codewords codes and their lengths codeLen

1 digitN, curNum ← 0;
2 for i ← 0 to n do
3 if curNum = Pow[digitN] then
4 digitN ← digitN + 1; // digit length increases
5 curNum ← 0; // position among the digitN-integers

6 codes[i] ← 0;
7 codeLen[i] ← b[digitN];
8 t ← curNum;
9 for j ← 0 to digitN − 1 do

10 codes[i] ← (codes[i] | (t mod mask[j])) << b[j + 1];
11 t ← t div mask[j];
12 codeLen[i] ← codeLen[i] + b[j];
13 codes[i] ← codes[i] | mask[digitN];
14 curNum ← curNum + 1;

3 Searching the Optimal Code

By adjusting the bitlengths of different digits, we can align BCMix codes more
tightly to the distribution of source symbol frequencies than BCT or byte-aligned
codes. However, we need an efficient algorithm that finds the best code for a
given text. The lengths of digits fully determine a BCMix-code. Experiments
show that in natural language text compression, it is enough to test 3 possible
digit bitlength: 2, 3, and 4 bits. Assuming the biggest codeword consists of 10
digits, there are 310 = 59 049 different codes. Taking each of them separately and
scanning the whole text to compute the compressed size is impractical. Knowing
symbol frequencies is enough to iterate over unique symbols instead of iterating
over full text. Nonetheless, the search continues to be relatively slow, taking
O(|Σ| · |C|) time, where |Σ| is the size of an alphabet and |C| is the number

386 I. Zavadskyi and M. Kovalchuk

of codes. Below we construct the algorithm that finds the optimal code in just
O(|Σ| + |C|) time, given the ordered frequencies of symbols in the text.

Let us call the rank of a symbol its position in the sequence of symbols
sorted by descending frequencies. Calculate prefix sums PSum[i] of the array
of descending frequencies. Then, in O(1) time, we can answer how many times
symbols with ranks from the segment [l : r] occur in the text just by calculating
PSum[r] − PSum[l − 1] and assuming PSum[0] = 0.

This is the key formula in the optimal code search Algorithm 3 represented
as a recursive function BCS with six arguments described in the pseudocode.
For a given text, it calculates the compression ratios of all possible BCMix codes,
starting with codes consisting of one digit x0. Apart from arguments and prefix
sums array PSum, the following constants are used in the function: |Σ| is the
alphabet size, minDigitLen and maxDigitLen are minimal and maximal bit
lengths of code digits, respectively (usually 2 and 4).

At each step of recursion, a new digit is added to a code (dN +1 argument in
line 7). fullN denotes the number of full codewords consisting of not more than
dN digits, including the delimiter, while incN denotes the number of ‘incom-
plete’ codewords of length dN , i.e., left parts of longer codewords. A code is
constructed when fullN becomes greater or equal to |Σ|. Then we compare the
compressed text size fullSz with the best result among all codes and update
this result if needed (line 2). Otherwise, for all possible bit lengths of a new digit,
we add it to the code and call the function recursively (lines 4–7).

Let us discuss what happens when the sequence of digits of a code is appended
with a new i-bit digit xdN . First, this means adding all (dN + 1)-digit full
codewords to the set of code’s full codewords. Since any incomplete dN -digit
codeword can be appended with the delimiter digit xdN , there are incN full
codewords ending with xdN . That is why we assign fullN+incN to the argument
fullN at the next level of recursion (line 7). Second, the compressed text size is
increased by the total length of all new full codewords presented in the text. This
value is calculated as the product in line 6: cLen+i is the bit length of a new full
codeword, while the function GetSum(fullN, fullN +incN) calculates the total
number of words in the text with ranks in the range [fullN +1; fullN +incN]. It
is equal to PSum[min(fullN+incN, |Σ|)]−PSum[fullN]. Third, if we append a
dN -digit incomplete codeword with any of 2i−1 possible values of a non-delimiter
digit xdN , we get the (dN +1)-digit incomplete codeword, which implies passing
the value incN · (2i − 1) to the argument incN at the next level of recursion. At
last, as the bitlength of a code is increased by i, we increase the cLen by i at
the next level (line 7).

Initially, the algorithm is invoked as BCS([], 0, 0, 1, 0, 0). This means that
we start from the digit x0; there are no full codewords with 0 digits; the length
of a 0-digit codeword is 0, as well as the size of a compressed text. However, we
assume there is one incomplete codeword of zero length, which will be appended
with a delimiter to create a full 1-digit codeword and with all other digits to
create incomplete 1-digit codewords.

Binary Mixed-Digit Data Compression Codes 387

Obviously, Algorithm 3 has O(|C|) time complexity, where |C| is the number
of codes consisting of |Σ| codewords. Also, O(|Σ|) time is needed to compute the
prefix sums, which gives O(|Σ| + |C|) time in total. According to experimental
results, for all tested texts, it is enough to brute force the lengths of the leftmost
four digits. All other digits always consist of 2 bits. Thus, it is enough to test only
81 different codes, which improves the optimal code search time even more. Of
course, we also have to calculate and sort the symbol frequencies. However, this
is a standard preliminary procedure performed before any statistical encoding.

Algorithm 3: Effective search of the best BCMix code BCS(b, dN,
fullN, incN, cLen, fullSz)
input :
– array of digit lengths, b;
– index of the rightmost digit, dN;
– number of dN -digit or shorter codewords with a delimiter, fullN;
– number of dN -digit incomplete codewords, incN;
– bit length of dN -digit codewords, cLen;
– size of the compressed text with full codewords only, fullSz.

output: Digit lengths of the optimal BCMix code
1 if fullN ≥ |Σ| then
2 updateTheBestCode(b, dN, fullSz);
3 return;
4 for i ← minDigitLen to maxDigitLen do
5 b[dN] ← i;
6 newSz ← fullSz + (cLen + i) · GetSum(fullN, fullN + incN);
7 BCS(b, dN + 1, fullN + incN, incN · (2i − 1), cLen + i, newSz);

4 Fast Decoding

Let us explain how the ‘decoding in parts’ principle mentioned in the Introduc-
tion can be applied to BCMix codes. A BCMix-codeword can be split into parts
on digit boundaries, and different lookup tables should be used to decode dif-
ferent parts. Assume the part P of a codeword consists of digits xk, . . . , xk+j .
Consider the function Dec(P) calculating the sum

∑k+j
i=k (xi · Powi) (the part

of formula 1). Then, if an l-digit codeword is split into parts P1, . . . , Pm with
l1, . . . , lm digits in each, to decode the whole codeword, we need to calculate the
sum

Dec(P1) + . . . + Dec(Pm) + Prefl (2)

The main disadvantage of this approach is that we need to use MaxLen
instances of lookup tables, where MaxLen is the maximum possible number
of digits in a codeword. However, suppose we always start the decoding from
the beginning of a codeword, and the lengths of codeword parts are known. In
that case, it is enough to store only Pmax instances of lookup tables where

388 I. Zavadskyi and M. Kovalchuk

Pmax is the maximum number of codeword parts. This idea is implemented in
Algorithm 4.

In the outer loop of Algorithm 4 (lines 4–15), we read an 8-byte word from
the bitstream, starting from the byte position inputPos, and assign it to the
variable word64. Then we process part of its 64 bits in the inner loop (lines
9–15), but u leftmost bits remain unprocessed. Thus, at the next iteration of
the outer loop, we shift the next 8-byte word by u bits to the left and append
it with the unprocessed u bits from the previous iteration (line 5). Therefore,
�(64−u)/8� new full bytes will be processed at the current iteration of the outer
loop. This value is calculated in line 6, while values u and inputPos are adjusted
accordingly in lines 7 and 8.

Algorithm 4: BCMix code fast decoding algorithm
input :
– encoded bitstream;
– pointer to the lookup tables structure, tb;
– byte length of the encoded bitstream, codeLen;
– bit length of a codeword part, blockLen.

output: Array of decoded numbers out
1 microIters ← �55/blockLen�;
2 blockMask ← 2blockLen − 1;
3 inputPos, outPos, u, word64, out[0..codeLen] ← 0;
4 while inputPos < codeLen do
5 word64 ← word64 | (*(uint64 t*)(inputPos) << u);
6 newBytes ← �(64 − u)/8�;
7 u ← u + 8 · newBytes;
8 inputPos ← inputPos + newBytes;
9 for i ← 0 to microIters do

10 block ← word64 & blockMask;
11 word64 ← word64 >> tb.shift[block];
12 u ← u − tb.shift[block];
13 out[outPos] ← out[outPos] + tb.L[block];
14 outPos ← outPos + tb.n[block];
15 tb ← tb.nextTable[block];

At each iteration of the inner loop, the longest remaining part of the cur-
rent codeword that consists of the whole number of digits and does not exceed
blockLen bits is processed. This is done in the following way. In line 10, we assign
to variable block the rightmost blockLen bits of a 64-bit word. All other values
we need are taken from lookup tables by index block. These tables are combined
into a structure referred to by variable tb:

– tb.shift - number of bits to be processed;
– tb.n - number of decoded results (0 or 1);
– tb.L - the decoded value of a codeword part;
– tb.nextTable - link to the tables for the next part (or the first part if codeword

processing is finished at the current iteration).

Binary Mixed-Digit Data Compression Codes 389

In lines 11 and 12, we shift the 64-bit word by tb.shift[block] bits to the
right and decrease the u respectively. Then in line 13, the ‘decoding in parts’
principle is implemented. We increase the current output by tb.L[block], which is
the decoded value of the current part of a codeword (Dec(Pi) or Dec(Pm)+Prefl
in formula 2). If the processing of a codeword has been finished at the current
iteration, the output position is incremented in line 14, and lookup tables for the
first part of the next codeword are selected in line 15. Otherwise, tb.n[block] = 0,
the output position remains the same, and tb is assigned with lookup tables for
the next part of the current codeword.

5 Experimental Results

We conduct experiments on compression ratio and decoding time for three texts
of different sizes in English. The word-level compression schema is applied. For
each text, the dictionary is composed of unique words, ordered by descending
frequencies. A word is assumed as a string between two whitespace characters,
uppercase and lowercase letters are considered distinct. E.g., ‘word’, ‘word.’, and
‘Word’ are different words. Then we replaced each word with its index in the
dictionary and compressed the sequence of indices. Dictionaries are not included
in compressed files. Texts parameters are the following:

– Small - The Bible, King James version, 4,047,392 bytes, 766,111 words in
total, 28,659 unique words, 9.48 bits per word entropy.

– Middle-sized - 200 MB English text from Pizza&Chilie corpus, 209,715,200
bytes, 37,003,242 words in total, 836,002 unique words, 11.416 bits per word
entropy (http://pizzachili.dcc.uchile.cl/texts/nlang/).

– Large - enwik9, English Wikipedia articles collection, 1,000,000,000 bytes,
129,347,859 words in total, 8,859,143 unique words, 13.734 bits per word
entropy (https://archive.org/details/enwik9).

The results of text compression are shown in Table 2 together with code
parameters and the excess over the entropy in percentage. For every parameter-
ized code family, we choose the code with the best compression ratio (BCMix,
SCDC, RPBC, and RMD).

Decoding tests were provided on a PC with an i7-7700HQ processor, 32× 4
KB L1 cache, 256 × 4 KB L2 cache, 6 MB L3 cache, 16 GB RAM, OS Windows
10, Visual Studio 2022 compiler with full optimization. The program code can
be found in [11]. The average times of 5000 decodings of the small text, 1000 of
the middle-sized, and 200 of the large one are given in Table 3. Only the time
of decoding itself, i.e., obtaining the array of word indices in the dictionary, was
measured. We did not restore the full text since converting numbers to strings
and their concatenation is quite time-consuming and neutralizes the difference
between methods’ performance.

Codes with parameters giving the best compression ratio (shown in Table 2)
were used in decoding benchmark experiments. For BCMix codes, the optimal

http://pizzachili.dcc.uchile.cl/texts/nlang/
https://archive.org/details/enwik9

390 I. Zavadskyi and M. Kovalchuk

Table 2. Empirical comparison of the compression ratio (bytes)

Text\Code Huffman BCT BCMix SCDC RPBC RMD

Small 911,093 956,580 938,709 1,055,686 1,049,003 933,621

0.35% 5.37% 3.4% 16.28% 15.55% 2.44%

- - M3 S = 198 (191,63,1) R2−∞
Middle-sized 52,919,565 55,459,308 53,994,533 59,857,909 59,259,232 53,879,073

0.22% 5.03% 2.25% 13.36% 12.22% 2.03%

- - M4 S = 180 (151,91,13) R2,4−∞
Large 222,505,605 235,624,268 226,788,813 249,945,055 246,840,330 228,112,827

0.19% 6.11% 2.13% 12.56% 11.16% 2.72%

- - M423 S = 147 (122,98,35) R2,4−∞

block length of 10 bits was determined experimentally (the blockLen parame-
ter in Algorithm 4). For Huffman codes, we implemented a bit-by-bit decoding
algorithm, where the Huffman tree is represented as an array of pairs, each pair
indicating 0-bit and 1-bit links to descendant nodes in the tree. Non-leaf and
leaf nodes correspond to array elements with non-negative and negative indexes,
respectively. If a negative array index is encountered by the decoder, its absolute
value is taken as a decoding result. This decoding method appears to be faster
than using the canonical Huffman code.

Table 3. Empirical comparison of the decoding time, in milliseconds

Text\Code Huffman BCT BCMix SCDC RPBC RMD

Small 21.02 1.52 3.23 3.71 3.65 4.25

Middle-sized 1684.55 94.43 162.82 212.86 211.71 290.39

Large 13424 372 747.9 801.2 787.1 1292.1

From the information in Tables 2 and 3, also shown in Fig. 1, the following
conclusions can be drawn.

1. Digit-based BCMix codes with different digit lengths significantly improve
the compression ratio of the BCT code having 2-bit digits.

2. In terms of compression ratio, BCMix codes are outperformed by RMD codes
on small and middle-sized texts but compress the large text better. This is
because codes with high parameterization need large alphabets to show their
advantage. Both BCMix and RMD codes compress any text much better than
byte-aligned SCDC or RPBC.

3. BCMix codes can be decoded 25–40% faster than RMD codes and 5–24%
faster than byte-aligned codes. In general, BCMix codes occupy a more attrac-
tive position on the (compression ratio, decoding speed) plane than both
RMD- and byte-aligned codes.

Binary Mixed-Digit Data Compression Codes 391

Fig. 1. Compression ratio vs. decoding time.

6 Conclusions

A new class of data compression codes has been investigated. They can be called
digit-aligned or mixed digit codes since each codeword consists of a whole number
of digits of different bit lengths. Varying these digit lengths, we can tightly align
a code to the source symbols’ distribution. As experiments show, mixed digit

392 I. Zavadskyi and M. Kovalchuk

codes can compress large natural language texts about 2–2.5% away from the
theoretical limit. We have built the algorithm to efficiently search the optimal
code for a given source symbols distribution.

The remarkable property of these codes is supporting the ‘decoding in parts’
principle, which means the possibility to decode parts of a codeword indepen-
dently and combine the results with a simple arithmetic formula. This prin-
ciple allows us to build a very fast decoding algorithm. As a result, in the
word-based natural language text compression, the mixed-digit codes outper-
form byte-aligned codes both in compression ratio and decoding speed, compress
texts with about the same ratio as Reverse Multidelimiter codes while can be
decoded significantly faster. Our codes can be considered a generalization of the
binary-coded ternary code, which has a worse compression ratio but a higher
decoding speed. In general, the investigated codes are promising for data com-
pression from the perspective of the trade-off between compression ratio and
decoding speed.

References

1. Duda, J., Tahboub, K., Gadgil, N., Delp, E.: The use of asymmetric numeral sys-
tems as an accurate replacement for Huffman coding. 2015 Picture Coding Sym-
posium (PCS), pp. 65–69 (2015)

2. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc.
IRE 40, 1098–1101 (1952)

3. Silva de Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible
word searching on compressed text. ACM Trans. Inf. Syst. 18(2), 113–119 (2000)

4. Brisaboa, N.R., Fariña, A., Navarro, G., Esteller, M.F.: (S,C)-dense coding: an
optimized compression code for natural language text databases. In: Nascimento,
M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp.
122–136. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39984-
1 10

5. Culpepper, J.S., Moffat, A.: Enhanced byte codes with restricted prefix proper-
ties. In: Consens, M., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11575832 1

6. Giesen, F.: Entropy decoding in Oodle data: Huffman decoding on the jaguar.
https://fgiesen.wordpress.com/2022/04/04/entropy-decoding-in-oodle-data-
huffman-decoding-on-the-jaguar/

7. Zavadskyi, I.O.: Binary-coded ternary number representation in natural language
text compression. In: 2022 Data Compression Conference, pp. 419–428 (2022)

8. Klein, S.T., Ben-Nissan, M.: On the usefulness of Fibonacci compression codes.
Comput. J. 53(6), 701–716 (2010)

9. Zavadskyi, I.O., Anisimov, A.V.: Reverse multi-delimiter compression codes. In:
2020 Data Compression Conference, pp. 173–182 (2020)

10. Anisimov, A., Zavadskyi, I., Chudakov, T.: Practical word-based text compression
using the reverse multi-delimiter codes. In: Information Technology and Implemen-
tation (IT&I-2022), CEUR Workshop Proceedings, pp. 175–183 (2022)

11. Zavadskyi, I., Kovalchuk, M.: The binary mixed digit codes in C programming
language. https://github.com/zavadsky/BCMix

https://doi.org/10.1007/978-3-540-39984-1_10
https://doi.org/10.1007/978-3-540-39984-1_10
https://doi.org/10.1007/11575832_1
https://fgiesen.wordpress.com/2022/04/04/entropy-decoding-in-oodle-data-huffman-decoding-on-the-jaguar/
https://fgiesen.wordpress.com/2022/04/04/entropy-decoding-in-oodle-data-huffman-decoding-on-the-jaguar/
https://github.com/zavadsky/BCMix

Author Index

A
Alanko, Jarno N. 1
Amir, Amihood 14
Arimura, Hiroki 28
Arroyuelo, Diego 35
Auvray, Bastien 49

B
Bannai, Hideo 331
Becker, Ruben 62
Biagi, Elena 1
Blin, Guillaume 75
Bonizzoni, Paola 89
Boucher, Christina 89
Brisaboa, Nieves R. 310

C
Cáceres, Manuel 353
Carfagna, Lorenzo 102
Cenzato, Davide 62
Cicherski, Adam 114
Conte, Alessio 129
Cotumaccio, Nicola 143
Cozzi, Davide 89

D
David, Julien 49
Díaz-Domínguez, Diego 157
Dojer, Norbert 114

E
Ellert, Jonas 171, 188

F
Ferragina, Paolo 203
Fischer, Johannes 188
Fusy, Éric 218

G
Gagie, Travis 89, 143, 233, 246
Gawrychowski, Paweł 253
Gibney, Daniel 260
Gómez-Brandón, Adrián 35
Grossi, Roberto 129
Groult, Richard 49
Gutiérrez-Asorey, Pablo 310

H
He, Meng 233
Hendrian, Diptarama 271

I
Ideguchi, Haruki 271
Inenaga, Shunsuke 28, 284, 331

K
Kashgouli, Sana 246
Kim, Sung-Hwan 62
Kishi, Kaisei 284
Kobayashi, Yasuaki 28
Kodric, Bojana 62
Kondraciuk, Łukasz 297
Kondratovsky, Eitan 14
Köppl, Dominik 89, 143
Kosche, Maria 253
Kovalchuk, Maksym 381
Kucherov, Gregory 218

L
Lecroq, Thierry 49
Letelier, Benjamín 310
Levy, Avivit 14
Lipták, Zsuzsanna 323
Liu, Chang 345
Loukides, Grigorios 345

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
F. M. Nardini et al. (Eds.): SPIRE 2023, LNCS 14240, pp. 393–394, 2023.
https://doi.org/10.1007/978-3-031-43980-3

https://doi.org/10.1007/978-3-031-43980-3

394 Author Index

M
Macnichol, Paul 260
Mäkinen, Veli 353
Manea, Florin 253
Manzini, Giovanni 102
Masillo, Francesco 323
Mieno, Takuya 331

N
Nakashima, Yuto 28, 284, 331
Navarro, Gonzalo 35, 246, 323

O
Okabe, Kouta 331

P
Paramá, José R. 310
Pedersen, Max Rishøj 188
Pissis, Solon P. 345
Policriti, Alberto 62
Popa, Alexandru 75
Prezza, Nicola 62, 143
Puglisi, Simon J. 1

R
Raffinot, Mathieu 75
Rizzo, Nicola 353
Rodeiro, Tirso V. 310
Rossi, Massimiliano 89

Rotundo, Mariagiovanna 203
Rucci, Davide 129

S
Salmela, Leena 157
Shekelyan, Michael 345
Shinohara, Ayumi 271
St Denis, Michael 233
Sue, Mizuki 28

T
Thankachan, Sharma V. 260

U
Uricaru, Raluca 75

V
Vinciguerra, Giorgio 203

W
Wang, Lusheng 367
Williams, Aaron 323

Y
Yoshinaka, Ryo 271

Z
Zavadskyi, Igor 381
Zhu, Binhai 367

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Information Retrieval Needs More Theoreticians
	 Regular Expression Matching
	 Recent Results on the Longest Common Substring Problem
	 Contents

	Longest Common Prefix Arrays for Succinct k-Spectra
	1 Introduction
	2 Preliminaries
	3 Basic O(nk)-Time LCS Array Construction
	4 Faster Construction via Super-Alphabet Techniques
	5 Construction in Linear Time
	5.1 Correctness

	6 Experimental Evaluation
	7 Concluding Remarks
	References

	On Suffix Tree Detection
	1 Introduction
	2 Preliminaries
	3 Periodic Strings Suffix Tree Detection
	4 Necessary Conditions on a Binary String Suffix Tree
	5 Conclusion and Open Problems
	References

	Optimally Computing Compressed Indexing Arrays Based on the Compact Directed Acyclic Word Graph
	1 Introduction
	2 Preliminaries
	3 Techniques
	4 Computing Run-Length BWT
	5 Computing Irreducible GLPF Arrays
	References

	Evaluating Regular Path Queries on Compressed Adjacency Matrices
	1 Introduction and Related Work
	2 Basic Concepts
	2.1 Labeled Graphs and Regular Path Queries (RPQs)
	2.2 An Algebra on Boolean Matrices
	2.3 K2-Trees

	3 Evaluating RPQs Through the Boolean Matrix Algebra
	4 Implementation of the Boolean Matrix Algebra
	4.1 Transposition
	4.2 Boolean Sum
	4.3 Boolean Multiplication
	4.4 Closure
	4.5 Restrictions
	4.6 Query Plan

	5 Experimental Results
	5.1 A Baseline
	5.2 Benchmark

	6 Conclusions
	References

	Approximate Cartesian Tree Matching: An Approach Using Swaps
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 Cartesian Tree Matching
	2.3 Approximate Cartesian Tree Matching

	3 Characterization of the Parent-Distance Tables When a Swap Occurs
	4 Swap Graph of Cartesian Trees
	5 Algorithms
	5.1 An Algorithm Using the Parent-Distance Tables
	5.2 An Aho-Corasick Based Algorithm

	6 Perspectives
	References

	Optimal Wheeler Language Recognition
	1 Introduction
	2 Preliminaries
	2.1 Infima and Suprema Strings

	3 Recognizing Wheeler Languages
	4 The Algorithm
	4.1 A Parameterized Algorithm

	5 A Matching Conditional Lower Bound
	References

	Approximation and Fixed Parameter Algorithms for the Approximate Cover Problem
	1 Introduction
	2 Preliminaries and Problem Definitions
	3 NP-Hardness of the ACP
	4 A Polynomial-Time Approximation Algorithm for the ACP
	5 An FPT Algorithm for the ACP
	6 Conclusions and Future Work
	References

	Data Structures for SMEM-Finding in the PBWT
	1 Introduction
	2 Preliminaries
	3 Building Blocks for a PBWT Data Structure
	3.1 Queries Needed to Support SMEM-Finding
	3.2 Top Level: Mapping Structure
	3.3 Second Level: Start Support
	3.4 Third Level: Extend Support
	3.5 -Encoded Divergence Array

	4 Composite Data Structures for the PBWT
	5 Experiments and Discussion
	5.1 Comparison of Data Structures
	5.2 Comparison of Methods on 1000 Genomes Project Data

	6 Conclusions
	References

	Compressibility Measures for Two-Dimensional Data
	1 Introduction
	2 Two-Dimensional Compressibility Measures
	2.1 The Measure 2D

	3 Space Bounds for Two-Dimensional Block Trees
	References

	From de Bruijn Graphs to Variation Graphs – Relationships Between Pangenome Models
	1 Introduction
	2 Representing String Collections with Graphs
	2.1 String Graphs
	2.2 Representations of Collections of Strings
	2.3 De Bruijn Graphs
	2.4 Variation Graphs

	3 Graph Transformation
	3.1 Transition Graphs
	3.2 Transformation 1: Split
	3.3 Transformation 2: Merge
	3.4 Transformation 3: Collapse
	3.5 Correctness of the Algorithm

	4 Conclusion
	References

	CAGE: Cache-Aware Graphlet Enumeration
	1 Introduction
	1.1 Results

	2 Baseline Algorithm
	3 The CAGE Algorithm
	3.1 Addressing a Hard Combinatorial Limit
	3.2 Pseudocode
	3.3 Exploiting What is Already Cached
	3.4 Remarks

	4 Experimental Results
	4.1 Environment and Dataset
	4.2 CAGE Implementation and Comparison Methodology
	4.3 Cache Analysis
	4.4 Running Time Analysis

	5 Conclusions
	References

	Space-Time Trade-Offs for the LCP Array of Wheeler DFAs
	1 Introduction
	2 Definitions
	3 Wheeler DFAs
	4 A Space-Time Trade-Off for the LCP Array
	5 Applications
	References

	Computing All-vs-All MEMs in Grammar-Compressed Text
	1 Introduction
	2 Preliminaries
	3 Definitions
	4 Overview of Our Algorithm
	5 Building the Fix-Free Grammar
	6 Computing prMEMs in the Fix-Free Grammar
	7 Positioning MEMs in the Text
	8 Concluding Remarks
	References

	Sublinear Time Lempel-Ziv (LZ77) Factorization
	1 Introduction
	2 Preliminaries
	3 Algorithm for 3-Approximate LZ-Like Factorization
	3.1 Computing Longest Previous Factors of Sample Positions
	3.2 Computing a Gapped Factorization

	4 Algorithm for Exact LZ Factorization
	4.1 Computing the Exact LZ Factorization

	5 Computing the Non-overlapping LZ Factorization
	References

	New Advances in Rightmost Lempel-Ziv
	1 Introduction
	2 Preliminaries
	3 Computing Rightmost LZ-End Parsings
	4 Partially Solving Rightmost LZ-Like Parsings
	4.1 Long Phrases
	4.2 Arbitrary Subsets of Phrases
	4.3 Infrequent Phrases
	4.4 Close Phrases

	References

	Engineering a Textbook Approach to Index Massive String Dictionaries
	1 Introduction
	2 Background
	3 Our Two-Level Approach
	3.1 Storage Level
	3.2 Indexing Level

	4 Experiments
	4.1 Indexing Level Evaluation
	4.2 Two-Level Approach Evaluation

	5 Conclusions and Future Work
	References

	Count-Min Sketch with Variable Number of Hash Functions: An Experimental Study
	1 Introduction
	2 Background and Related Work
	2.1 Conservative Count-Min: Definitions
	2.2 Analysis of Conservative Count-Min: Prior Works
	2.3 Hash Hypergraph
	2.4 Hypergraph Peelability and Phase Transition of Error
	2.5 Variable Number of Hash Functions: Mixed Hypergraphs

	3 Results
	3.1 Uniform Distribution
	3.2 Step Distribution
	3.3 Zipf's Distribution

	4 Conclusions
	References

	Dynamic Compact Planar Embeddings
	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Dynamic Bitvectors
	3.3 Planar Graph Traversal
	3.4 Dynamic Succinct Euler-Tour Trees

	4 Data Structure and the Marker Model
	4.1 Data Structure
	4.2 The Marker Model
	4.3 Navigation

	5 Dynamization
	5.1 Inserting an Edge
	5.2 Deleting an Edge

	References

	A Simple Grammar-Based Index for Finding Approximately Longest Common Substrings
	1 Introduction
	2 Preliminaries
	3 Data Structure
	4 Queries
	5 Faster Queries
	References

	On the Number of Factors in the LZ-End Factorization
	1 Introduction
	2 Preliminaries
	3 Our Result
	References

	Non-overlapping Indexing in BWT-Runs Bounded Space
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Rank and Select
	2.2 Suffix Array
	2.3 Burrows–Wheeler Transform
	2.4 The r-Index and Some Related Results

	3 The Data Structures
	3.1 An O(rlog(n/r)) Space Solution
	3.2 An O(r+rR) Space Solution
	3.3 Our Final O(r) Space Solution

	4 Open Problems
	References

	Efficient Parameterized Pattern Matching in Sublinear Space
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Matching Problem
	2.2 Periodicity of Parameterized Strings

	3 Properties of Parameterized Periods
	3.1 Alternative Periodicity Lemma
	3.2 Prefix Periods

	4 Proposed Algorithm
	4.1 Pattern Preprocessing
	4.2 Searching for Parameterized Matches

	5 Conclusion and Future Work
	References

	Largest Repetition Factorization of Fibonacci Words
	1 Introduction
	2 Preliminaries
	3 Candidate of Largest Factorizations
	4 Maximality of Candidate Repetition Factorizations
	4.1 Upper Bound of the Length of Factors
	4.2 Analysis of Candidate Factorizations

	References

	String Covers of a Tree Revisited
	1 Introduction
	2 Preliminaries
	3 Directed Tree Cover
	3.1 Gaps
	3.2 Binarisation and Path Compaction
	3.3 Updates

	4 Undirected Tree Cover
	4.1 Match Tables
	4.2 Complexity and Correctness

	References

	Compacting Massive Public Transport Data
	1 Introduction
	2 Background
	3 Previous Concepts on Transport Networks
	4 Our Proposal
	5 Improving Our Proposal
	6 Supported Queries
	6.1 Obtaining the Types of Trips to Travel from the Origin Stop So to the Destination Stop Sd (getTrips)
	6.2 Obtaining the Total Number of People Who Made a Trip Starting at So and Ending at Sd (getPeople)
	6.3 Obtaining All the Origin and Destination Stops that Uses St as Transfer Stop (getOriginDestinations)

	7 Experimental Evaluation
	7.1 Input Data
	7.2 Used Methods
	7.3 Results

	8 Conclusions and Future Work
	References

	Constant Time and Space Updates for the Sigma-Tau Problem
	1 Introduction
	2 Constant Time Successor Rule for Hamilton Paths
	3 Constant Time Successor Rule for Hamilton Cycles
	4 Simpler Rule for Hamilton Paths and Termination
	References

	Linear-Time Computation of Generalized Minimal Absent Words for Multiple Strings
	1 Introduction
	2 Preliminaries
	3 The DAWG Data Structure
	4 Algorithm Overview for k = 2
	5 Skip Links for k = 2
	5.1 When B= 10
	5.2 When B= 11
	5.3 Our Main Result for k = 2

	6 Algorithm for Arbitrary k > 2
	7 Discussions
	References

	Frequency-Constrained Substring Complexity
	1 Introduction
	2 The Data Structure
	References

	Chaining of Maximal Exact Matches in Graphs
	1 Introduction
	2 Preliminaries
	3 Finding MEMs in Labeled DAGs
	4 Symmetric Co-Linear Chaining in Labeled DAGs
	4.1 DAG Chaining with Node MEMs
	4.2 Revisiting Symmetric String-to-string Chaining with MEMs
	4.3 Integration of Symmetry to DAG Chaining

	5 Discussion
	References

	Algorithms and Hardness for the Longest Common Subsequence of Three Strings and Related Problems
	1 Introduction
	2 Preliminaries
	3 Improved Algorithms for Longest Cubic Subsequence
	3.1 The Complementary Problem
	3.2 Extending the LCS-2 Algorithm by Nakatsu et al. to LCS-3

	4 LCS-3 Parameterized by the Number of Matching Triples
	5 Algorithm and Hardness Result for Longest Majority t-Pseudo-Subsequence and Its Relative
	5.1 LMtPS+ is NP-Complete
	5.2 LMtPS is Polynomially Solvable

	6 Concluding Remarks
	References

	Binary Mixed-Digit Data Compression Codes
	1 Introduction
	2 Codes Definition. Straightforward Decoding and Encoding
	3 Searching the Optimal Code
	4 Fast Decoding
	5 Experimental Results
	6 Conclusions
	References

	Author Index

