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Abstract. This paper provides a proof-theoretic analysis of the meaning
of a formula in a combination of intuitionistic and classical propositional
logic, based on the analysis proposed by Restall (2009). Restall showed
that his analysis is applicable to both intuitionistic and classical propo-
sitional logic separately, but this paper shows that it is also applicable
to a combination of the two logics called C + J. In addition, two points
of improvement of Restall’s analysis are mentioned, and they are over-
come by employing the method provided by Takano (2018). Moreover,
this paper explains how the analysis of C + J, which is based on Restall’s
analysis and improved by Takano’s method, is related to the bilateralism-
unilateralism debate. It is shown that a unilateral approach is possible
for C + J, although Restall’s original analysis is based on bilateralism.
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1 Introduction and Motivation

1.1 Introduction

This paper provides a proof-theoretic analysis of the meaning of a formula in a com-
bination of intuitionistic and classical propositional logic. A proof-theoretic anal-
ysis of meaning is an analysis explaining the meaning of a formula by the notion of
arguments, proofs, or inference rules, not by the notion of truth, models, or valid-
ity. Such analyses are studied in, for example, [15,30,34,38,39,43]. The analysis
presented in this paper is based on the one proposed by Restall [39], which uses a
sequent calculus. A sequent calculus is a proof theory dealing with an object called
“a sequent,” which has the following form: Γ ⇒ Δ, where Γ and Δ are finite sets
of formulas. The derivability of Γ ⇒ Δ is usually interpreted as follows: if all of
the formulas in Γ hold, then some of the formulas in Δ hold. The central idea of
Restall’s analysis is to interpret inference rules in a sequent calculus by the notions
of assertion and denial and to obtain a model from the admissibility of these infer-
ence rules. Accordingly, in addition to the usual interpretation described above,
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Restall [38,39] provides the following interpretation of the derivability of a sequent
by the notions of assertion and denial: it is incoherent to assert all the formulas in
Γ and to deny all the formulas in Δ. Corresponding to this interpretation of the
derivability of a sequent, inference rules in a sequent calculus are also interpreted
by the notions of assertion and denial. Based on these interpretations, the notion
of a model is obtained successfully in Restall’s analysis.

On the other hand, various combinations of intuitionistic and classical logic
are studied in [6,8–11,18,21,22,25,26,31–33,35,49,50]. In this paper, we regard
a logic as a combination of intuitionistic and classical logic if the language of
the logic has both intuitionistic and classical operators and if it is a conservative
extension of both logics. Although various combinations of intuitionistic and
classical logic exist, this paper analyzes the one studied in [10,11,18,22,49,50],
because for this logic a sequent calculus using an ordinary notion of a sequent was
already proposed in [49,50]. As is noted above, since Restall’s original analysis
employs a sequent calculus, the existence of a sequent calculus enables us to
apply the analysis straightforwardly. In the following, this combination and the
sequent calculus for this combination are called C + J and G(C+J), respectively.
The idea of constructing C + J is easy to see in the Kripke semantics provided
in [11,18]. This Kripke semantics is obtained by adding to the Kripke semantics
for intuitionistic propositional logic the satisfaction relation for a formula whose
main connective is classical negation, denoted by “¬c”, described as follows:

w |=M ¬cA iff w �|=M A,

where M = 〈W,R, V 〉 is a Kripke model for intuitionistic propositional logic
and w is a state in W . The sequent calculus for C + J is proposed in [49].
This calculus is obtained by adding the right and left rules for intuitionistic
implication, denoted by “→i,” to the propositional fragment of the classical
sequent calculus LK. The left rule for “→i” added to the propositional fragment
of LK is the one in the intuitionistic multi-succedent sequent calculus mLJ,
proposed by Maehara [23], but the right rule should be restricted as follows:

A,C1→iD1, . . . , Cm→iDm, p1, . . . , pn ⇒ B

C1→iD1, . . . , Cm→iDm, p1, . . . , pn ⇒ A→iB
(⇒ →i).

The sequent calculus G(C + J) is sound and complete to the Kripke semantics
described above, which was shown in [50].

This paper basically applies Restall’s analysis to C + J in terms of G(C+J).
However, two points of improvement and one open problem exist in Restall’s
analysis. The first point of improvement concerns the relationship between the
admissibility of an inference rule and the corresponding satisfaction relation. The
second point of improvement concerns the admissibility of the rule (Cut). These
two points are overcome by employing the method provided by Takano [48] for
fifteen modal logics. The open problem is the following one: is it possible to
analyze the meaning of a formula in a combination of intuitionistic and classical
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propositional logic? This paper solves this open problem positively by showing
that Restall’s analysis, improved by Takano’s method, is applicable to C + J.

It is also shown that an analysis based on unilateralism, which is the opposite
position of bilateralism, is possible for C + J. Bilateralism is a position claim-
ing that two linguistic acts are primitive when the meaning of a formula or a
statement is considered, whereas unilateralism is a position claiming that only
one linguistic act is primitive. Since Restall’s analysis introduces the notions
of assertion and denial as primitive, it is categorized as bilateralism, and the
analysis improved by Takano’s method may also be categorized as bilateralism.
However, this paper shows that a unilateral approach is also possible for C + J.

The outline of this paper is as follows. Section 2 and Sect. 3 review Restall’s
analysis andC + J, respectively. Section 4 applies Takano’s [48] method toC + J.
Section 5 explains how the analysis in this paper is related to the bilateralism-
unilateralism debate and shows that unilateral analysis is possible for C + J.

1.2 Motivation for Analyzing the Meaning of a Formula
in a Combination of Intuitionistic and Classical Logic

Before proceeding to Sect. 2, let us see why an analysis of the meaning of a for-
mula in a combination of intuitionistic and classical logic should be provided.
Since Restall’s analysis is possible for both intuitionistic and classical proposi-
tional logic separately, it may be thought that giving the meaning of a formula
in a combination of both logics is not needed. This section provides an argu-
ment claiming that an analysis of the meaning of a formula in a combination of
intuitionistic and classical logic is necessary.

By combining intuitionistic and classical logic, we can tackle the following ques-
tion: how do advocates of intuitionistic/classical logic understand the meaning of
a formula in the other logic?1 As Quine [37] pointed out, intuitionistic and classical
connectives can be regarded as denoting different subjects. By analyzing the mean-
ing of a formula in a combination of intuitionistic and classical logic, in which con-
nectives of both logics exist, we can codify how advocates of intuitionistic/classical
logic understand the meaning of a formula in the other logic. For example, we can
explain how an advocate of intuitionistic logic understands the meaning of a for-
mula ¬cp ∨ p, where “¬c” denotes classical negation. Being an advocate of intu-
itionistic logic, he/she basically uses negation in the intuitionistic way. However,
in order to give the analysis of the meaning of ¬cp ∨ p as Restall did for classical
and intuitionistic logic, the advocates of intuitionistic logic also need to appeal to
the inference rules for the classical negation, since Restall’s analysis is based on
the inference rules for a connective. Therefore, in order to explain how the advo-
cates of intuitionistic logic understand the meaning of ¬cp ∨ p, we should provide
an analysis of the meaning of a formula in a combination of intuitionistic and clas-
sical logic whose proof theory contains the inference rules for both intuitionistic
and classical connectives.2

1 This question is not a new one. Similar questions were already mentioned in [26,35].
2 Some may consider ordinary intuitionistic logic itself to be a combination, since

Kolmogorov-Gödel-Gentzen translation exists. A combination based on this view is
studied in [31–33,35]. However, such a view is criticized in [12].
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Some may disagree with this argument claiming that there is no need to
codify how advocates of intuitionistic/classical logic understand the meaning of
a formula in the other logic, since they understand the meaning of a formula
in the other logic by seeing a proof theory or semantics for it. For example,
they may claim that advocates of classical logic understand the meaning of a
formula in intuitionistic logic by seeing Kripke semantics for intuitionistic logic,
and there is no need to appeal to a logic having both intuitionistic and classical
connectives.

However, the codification is necessary. If we accept Quine’s view that intu-
itionistic and classical connectives denote different subjects, it is admitted that
the discussion between advocates of intuitionistic logic and those of classical logic
is not about a valid logical law but about the use of connectives. For example,
advocates of intuitionistic logic do not accept law of excluded middle. They do
not accept ¬iA ∨ A generally, where “¬i” denotes intuitionistic negation. On
the other hand, advocates of classical logic accept law of excluded middle. They
accept ¬cA∨A generally. There is no disagreement about law of excluded middle
between advocates of intuitionistic logic and those of classical logic, since it is
possible that ¬cA∨A is valid while ¬iA∨A is not. Thus, the discussion between
advocates of intuitionistic logic and those of classical logic is the following one:
how should negation be used?, or what kind of meaning should be attached
to negation? In this discussion, advocates of intuitionistic/classical logic should
take a connective in the other logic into consideration. For example, if advocates
of classical logic attempt to claim that negation should be used as in classical
logic and that the use of law of excluded middle should be permitted, they must
give an argument claiming that a formula containing intuitionistic implication,
such as ¬c(p→iq)∨ (p→iq), is also to be admitted. The reason for this is that if
an argument does not take such a formula into consideration, it is clearly begging
the question. In order to formulate the discussion between advocates of intuition-
istic and those of classical logic in this way, a formula such as ¬c(p→iq)∨(p→iq)
should be expressed and considered. Therefore, the explanation of the meaning
of a formula consisting of intuitionistic and classical connectives is necessary.

Some may think that a combination does not contribute to such an argu-
ment, because since a combination of intuitionistic and classical logic is a con-
servative extension of both intuitionistic and classical logic, all the theorems
in the ordinary intuitionistic and classical logics are also theorems in the com-
bination. However, it is not guaranteed that all the theorems in the ordinary
intuitionistic and classical logics are also theorems in a combination by the fact
that it is a conservative extension of both logics. For example, A→i(B→iA) is
no longer a theorem in C + J, the combination dealt with in this paper, since
¬cp→i(q→ip) is not derivable. This may imply that advocates of intuitionistic
logic cannot claim that all of the intuitionistic theorems should be admitted.
This is because the addition of classical negation in the way of C + J leads to
an instance of this theorem that is not derivable in a proof theory of C + J.3

3 It is noted that the results in C + J may not be conclusive for deciding whether
an intuitionistic or classical theorem should be admitted. The results in another
combination also need to be considered.
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2 Restall’s Analysis, Two Points of Improvement,
and One Open Problem

2.1 Restall’s Analysis

This section reviews Restall’s analysis proposed in [39]. As is noted in Sect. 1.1,
the central idea of this analysis is to interpret inference rules in a sequent calcu-
lus by the notions of assertion and denial and to obtain the notion of a model
from the admissibility of these inference rules. Restall regards inference rules in
a sequent calculus as “normative constraints” on assertion and denial. Although
this analysis is applied to classical propositional logic, intuitionistic proposi-
tional logic, and modal logic S5, only the case of classical propositional logic is
described here.

We define the syntax of classical logic as consisting of a countably infinite
set of propositional variables and the following logical connectives: falsum ⊥,
conjunction ∧, disjunction ∨, and negation ¬c.4 As far as classical propositional
logic is concerned, the subscript “c” for the negation is not necessary, but since
intuitionistic negation is introduced in Sect. 3, we use this subscript from this
section onward to avoid confusion. Classical implication →c is not introduced as
a primitive symbol, since it can be defined as follows: A→cB := ¬cA∨B. When
classical propositional logic is analyzed, the propositional fragment of the sequent
calculus LK is used. In the rest of this paper, the expression LK denotes only the
propositional fragment. This calculus deals with an object called “a sequent,”
which has the following form: Γ ⇒ Δ, where Γ and Δ are finite sets of formulas.
The sequent calculus LK consists of the axioms and rules in Table 1.5

Table 1. Sequent Calculus LK

Axioms

A ⇒ A
(Id) ⊥ ⇒ (⊥)

Structural Rules

Γ ⇒ Δ
Γ ⇒ Δ, A

(⇒ w) Γ ⇒ Δ
A, Γ ⇒ Δ

(w ⇒)
Γ ⇒ Δ, A A, Γ ⇒ Δ

Γ ⇒ Δ
(Cut)

Propositional Logical Rules

Γ ⇒ Δ, A Γ ⇒ Δ, B

Γ ⇒ Δ, A ∧ B
(⇒ ∧) A, Γ ⇒ Δ

A ∧ B, Γ ⇒ Δ
(∧ ⇒1)

B, Γ ⇒ Δ

A ∧ B, Γ ⇒ Δ
(∧ ⇒2)

Γ ⇒ Δ, A

Γ ⇒ Δ, A ∨ B
(⇒ ∨1)

Γ ⇒ Δ, B

Γ ⇒ Δ, A ∨ B
(⇒ ∨2)

A, Γ ⇒ Δ B, Γ ⇒ Δ

A ∨ B, Γ ⇒ Δ
(∨ ⇒)

A, Γ ⇒ Δ

Γ ⇒ Δ, ¬cA
(⇒ ¬c)

Γ ⇒ Δ, A

¬cA, Γ ⇒ Δ
(¬c ⇒)

4 Note that ⊥ is not considered in [39], because ⊥ is definable by negation and
conjunction. However, the addition of ⊥ as a primitive symbol creates no problem.

5 Since the antecedent and succedent of a sequent are defined as sets, contraction and
exchange rules are not necessary. It is noted that although a sequent calculus that
does not contain (w ⇒) or (⇒ w) is used in [39], this difference creates no problem.
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The derivability of a sequent Γ ⇒ Δ in LK is defined by the existence of a finite
tree consisting only of axioms and rules in LK whose root is the sequent. The
derivability of Γ ⇒ Δ is usually interpreted as follows: if all of the formulas in
Γ hold, then some of the formulas in Δ hold.

Restall starts his analysis by defining the notion of a “position.”

Definition 1 (Position [39, Definition 1].) A pair (Γ : Δ) of finite sets of
formulas is a position if Γ ⇒ Δ is not derivable in LK.

In the rest of this paper, (Γ ∪{A} : Δ∪{B}) is abbreviated as (Γ,A : Δ,B), for
any finite sets Γ ∪ {A},Δ ∪ {B} of formulas. The antecedent and succedent of
a position are regarded as the set of asserted and denied formulas, respectively.
A position expresses a coherent situation with respect to assertion and denial.
Consider the pairs (p : p ∧ q) and (p : p ∨ q). The former is a position, since
p ⇒ p ∧ q is not derivable in LK. This implies that to assert p and to deny
p ∧ q is coherent in classical logic. However, the latter is not a position, since
p ⇒ p ∨ q is derivable in LK. This implies that to assert p and to deny p ∨ q is
incoherent in classical logic. Accordingly, the derivability of Γ ⇒ Δ is interpreted
by the notions of assertion and denial, as follows: it is incoherent to assert all
the formulas in Γ and to deny all the formulas in Δ. An inference rule in LK is
also interpreted by the notions of assertion and denial. For example, (∧ ⇒1) is
interpreted by reading the rule from the lower sequent to the upper sequent, as
follows: if it is coherent to assert A ∧ B and all the formulas in Γ and to deny
all the formulas in Δ, then it is also coherent to assert A and all the formulas in
Γ and to deny all the formulas in Δ. The other rules in LK are interpreted in
the same way. Since inference rules in LK govern assertion and denial, they are
considered to be “normative constraints” on assertion and denial.

Based on the notion of a position, the notion of a “limit position” is defined.

Definition 2 (Limit Position [39, Definition 4]). A pair (Γ : Δ) of sets of
formulas is a limit position if it satisfies the following:

– For any finite sets Γ ′ ⊆ Γ , Δ′ ⊆ Δ of formulas, the pair (Γ ′ : Δ′) is a
position.

– The union of Γ and Δ contains all the formulas in classical logic,

A limit position expresses an ideal situation with respect to assertion and denial,
in which any formula in classical logic is either asserted or denied. Thus, a limit
position does not express the actual linguistic situation, as was noted in [39, pp.
249-252]. Technically, the antecedent of a limit position corresponds to the notion
of a maximal consistent set, the notion used to show the semantic completeness
(cf. [5, Definition 4.15]).

Fact 1. [39, Fact 4] For any position (Γ : Δ), there is a limit position (Γ ∗ :
Δ∗) such that Γ ⊆ Γ ∗ and Δ ⊆ Δ∗.

This fact is shown by making use of (Cut). This rule ensures the following: if
(Γ : Δ) is a position, then either (Γ : Δ,A) or (A,Γ : Δ) is also a position. The
proof is almost the same as the one of extension lemma, the lemma used to show
the semantic completeness (cf. [5, Lemma 4.17]).
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Fact 2. [39, Fact 5] For any limit position (Γ : Δ), all of the following hold:

1. A ∧ B ∈ Γ iff A ∈ Γ and B ∈ Γ ,
2. A ∧ B ∈ Δ iff A ∈ Δ or B ∈ Δ,
3. A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ ,
4. A ∨ B ∈ Δ iff A ∈ Δ and B ∈ Δ,

5. ¬cA ∈ Γ iff A ∈ Δ,

6. ¬cA ∈ Δ iff A ∈ Γ ,

7. ⊥ ∈ Δ.

This fact is shown by reading the rules in LK from the lower sequent to the
upper sequent(s) and by appealing to the fact that the union of Γ and Δ is the
set of all the formulas in classical logic. As is seen in Fact 2, if the formulas in
the antecedent of a limit position are regarded as true, the truth conditions are
obtained, while if the formulas in the succedent of a limit position are regarded as
false, the false conditions are obtained. Therefore, starting from the admissibility
of the inference rules in LK, the notion of a model for classical logic is obtained.
Although the notion of a model is considered, it is not introduced as given but
obtained by analyzing the rules in LK.6 Thus, this analysis is proof-theoretic.

2.2 Two Points of Improvement and One Open Problem

Although Restall’s analysis is very refined and explains the relationship between
an inference rule in a sequent calculus and the corresponding satisfaction relation
for a formula, two points of improvement and one open problem exist.

The first point of improvement concerns on the relationship between the
admissibility of an inference rule and the corresponding satisfaction relation for
a formula. Restall’s analysis obtains the satisfaction relation for a formula from
the admissibility of the corresponding inference rule. In other words, Restall’s
analysis explains the following: if an inference rule is admissible in a sequent cal-
culus, then the corresponding satisfaction relation for a formula will be obtained.
However, in addition to this, if it is possible to establish the other direction, the
tighter relation between the admissibility of an inference rule and the corre-
sponding satisfaction relation for a formula is obtained. The other direction tells
us what kind of inference rule is admissible if we choose some satisfaction rela-
tion for a formula, which enables us to describe in detail the relation between
the admissibility of an inference rule and the corresponding satisfaction relation
for a formula.

The second point of improvement concerns the rule (Cut). Restall’s analysis,
especially Fact 1, depends on this rule. In terms of assertion and denial, (Cut)
expresses the following normative constraint: if it is coherent to assert all the
formulas in Γ and to deny all the formulas in Δ, then either the assertion of A
or the denial of A is also coherent. However, it is far from trivial to accept this
normative constraint, and some may refuse to accept this normative constraint.7

6 Proof-theoretic semantics, the representative of the proof-theoretic analyses of mean-
ing, explains the meaning of a formula by using purely syntactical objects, such as
arguments or proofs directly (cf. [15,34,43]). On the other hand, Restall’s analysis
introduces the notion of a model. Thus, these two analyses are different on this point.

7 For example, Ripley [40, Section 3.2] argues that there is no reason to postulate it.
Even Restall [38, footnote 5] himself admits that the account of assertion and denial



A Proof-Theoretic Analysis of the Meaning of a Formula 107

If an analysis with no dependence on (Cut) is obtained, such an analysis will be
acceptable for those who refuse to accept the normative constraint expressed by
(Cut). Moreover, if the semantic condition corresponding to (Cut) is obtained,
we can treat this rule in the same way as the rules for connectives, not as given.

The open problem is whether Restall’s analysis is possible for a combination
of intuitionistic and classical propositional logic. Although Restall’s analysis is
applicable to both of intuitionistic and classical propositional logic separately,
this does not imply that it is applicable to a combination of both logics.

In Sect. 4, these two points of improvement are overcome by employing the
method proposed by Takano [48]. Moreover, the open problem is solved positively
by carrying out the analysis on a combination C + J of intuitionistic and classical
propositional logic. It should be noted that the analysis of this paper, which
is based on Takano’s method, does not appeal to König’s infinite lemma or
Zorn’s lemma, the latter being appealed to in Restall’s analysis. As noted in [1],
it is controversial whether the axiom of choice is acceptable for advocates of
intuitionistic logic. Since Zorn’s lemma is equivalent to the axiom of choice and
König’s infinite lemma is weaker than Zorn’s lemma, the fact that these lemmas
are dispensable implies that our analysis does not presuppose any position about
whether advocates of intuitionistic logic accept the axiom of choice. Thus, our
analysis is acceptable for an advocate of intuitionistic logic, independently of
whether he/she admits the axiom of choice.8 Before proceeding to Takano’s
method, the combination C + J is reviewed briefly in Sect. 3.

3 Combination of Intuitionistic and Classical
Propositional Logic C + J

The combination C + J is provided by Humberstone [18], and he proposed a
natural deduction system. A Hilbert system for this logic was first proposed
by del Cerro and Herzig [11], and De and Omori [10] proposed another Hilbert
system by expanding a subintuitionistic logic. The single-succedent structured
sequent calculus for this logic was proposed by Lucio [22]. The multi-succedent
sequent calculus G(C + J) was provided in [49,50]. A first-order expansion of
C + J was studied in [22,50]. Although many proof theories exist for C + J, we
use the sequent calculus G(C+ J), because Restall’s original analysis employs a
sequent calculus.

The syntax of C + J is obtained by adding intuitionistic implication to that
of classical logic. Intuitionistic negation ¬i can be defined as follows: ¬iA :=
A→i⊥. Since “→c” is definable, C + J has two types of implication and negation.

recorded in (Cut) is a subtle one for advocates of intuitionistic logic. This paper does
not discuss whether the normative constraint expressed by (Cut) is acceptable. Thus,
this paper does not claim that it is unacceptable. What is shown in this paper is that
it is not necessary to postulate the rule (Cut) in order to carry out a proof-theoretic
analysis of the meaning of a formula.

8 Clearly, this point holds only in the propositional setting. Therefore, if we try to
expand the analysis in this paper to the first-order setting, we need to appeal to
either König’s infinite lemma or Zorn’s lemma.
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Let us proceed to the semantics for C + J. We introduce a Kripke semantics
for C + J, provided in [11,18]. The Kripke semantics is obtained by adding the
satisfaction relation for a formula whose main connective is classical negation to
the Kripke semantics for intuitionistic propositional logic (cf. [7, Section 6.3]).

Definition 3 (Kripke Model [11]). A Kripke model is a tuple M =
〈W,R, V 〉, where

– W is a non-empty set of states,
– R is a preorder on W , i.e., R satisfies reflexivity and transitivity,9

– V : Prop → P(W ) is a valuation function satisfying the following heredity
condition: w ∈ V (p) and wRv jointly imply v ∈ V (p) for all states w, v ∈ W .

Definition 4. [11] Given a Kripke model M = 〈W,R, V 〉, a state w ∈ W , and
a formula A, the satisfaction relation w |=M A is defined inductively as follows:

w |=M p iff w ∈ V (p),
w �|=M ⊥,
w |=M A ∧ B iff w |=M A and w |=M B,
w |=M A ∨ B iff w |=M A or w |=M B,
w |=M ¬cA iff w �|=M A,
w |=M A→iB iff for all v ∈ W,wRv and v |=M A jointly imply v |=M B.

The notion of a semantic consequence is defined by the truth preservation on an
arbitrary state w ∈ W . A formula A is valid if A is a semantic consequence of ∅.

Let us proceed to the sequent calculus G(C + J) for C + J.

Definition 5 (Sequent Calculus G(C+J) [49]). The sequent calculus G(C+
J) is obtained by adding to LK, consisting of the rules in Table 1, the right and
left rules for intuitionistic implication, formulated as follows:

A,C1→iD1, . . . , Cm→iDm, p1, . . . , pn ⇒ B

C1→iD1, . . . , Cm→iDm, p1, . . . , pn ⇒ A→iB
(⇒ →i)

Γ ⇒ Δ,A B,Γ ⇒ Δ

A→iB,Γ ⇒ Δ
(→i ⇒)

.

The left rule is the same as the one in the intuitionistic multi-succedent sequent
calculus mLJ, proposed by Maehara [23]. However, the right rule should be
restricted to the form described above. If this restriction were not imposed on the

9 Although R is defined as a preorder on W in [11], it is defined as a partial order
on W in the Kripke semantics provided in [18]. It is noted that both definitions are
possible for a Kripke semantics for C + J (cf. [5, Section 4.5]).
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right rule for intuitionistic implication, intuitionistic implication would collapse
into classical implication, as was pointed out in [4,17,38,52].10

Fact 3 (Soundness and Completeness [50, Theorems 1 and 3]). The
sequent calculus G(C+J) is sound and complete to the Kripke semantics, defined
in Definitions 3 and 5.

Fact 4 (Cut-Elimination and Subformula Property [50, Theorem 2]).
The sequent calculus G(C + J) is cut-free and satisfies the subformula property.

4 Applying Takano’s Method to C + J

This section applies the method proposed by Takano [48] to C + J and overcomes
two points of improvement of Restall’s original analysis. As a result, the open
problem is solved positively.

Stipulation 1 (Sequent Calculus [48, Stipulation 1]). A sequent calculus
is a calculus having A ⇒ A as an axiom for any A and having weakening rules.

By Stipulation 1, a sequent calculus that has only some rules in C + J can be
discussed. Note that the existence of (Cut) is not assumed in this stipulation.
In the following, let GL be a sequent calculus in the sense of Stipulation 1.

Definition 6. Let Γ be a finite set of formulas. Then, we define Sub(Γ ) as the
set of all subformulas of some formulas in Γ . A set Γ of formulas is subformula-
closed (sf-closed) if Sub(Γ ) ⊆ Γ and ⊥ ∈ Γ .

In this paper, the definition of an sf-closed set of formulas is slightly different
from the ordinary definition, since the condition ⊥ ∈ Γ is required in Definition
6. This condition is necessary for dealing with the rule (⊥).

In the following, an sf-closed finite set Ξ of formulas is considered, while it
is not considered in [48]. However, such a set is considered in [20,28,42,47], and
a finite model will be obtained by considering it. The notion of derivability can
be defined relative to Ξ.

Definition 7 (Ξ-derivability). Let Ξ be an sf-closed finite set of formulas
and Γ ∪ Δ ⊆ Ξ. A sequent Γ ⇒ Δ is Ξ-derivable in GL if it has a derivation
in GL consisting solely of formulas in Ξ.

In the following, when it is said that a sequent Γ ⇒ Δ is Ξ-derivable or Ξ-
underivable, it is presupposed that Γ ∪ Δ ⊆ Ξ holds.
10 The reason why this restriction on the right rule for intuitionistic implication enables

us to avoid collapsing is explained in [50]. Since the right rule for intuitionistic impli-
cation is restricted compared with the original rule in mLJ, some might wonder
whether the semantic completeness of C + J fails. However, the semantic complete-
ness holds, and the detailed proof is described in [50, Section 4]. Moreover, the rule
(⇒ →i) in G(C + J) can be regarded as the core of the ordinary right rule for
implication in mLJ, as noted in [50, p.32].
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Definition 8 (Ξ-underivable pair). Let Ξ be an sf-closed finite set of for-
mulas. A pair (Γ : Δ) of finite sets of formulas is a Ξ-underivable pair in a
sequent calculus GL if Γ ⇒ Δ is not derivable in GL.

The notion of a Ξ-underivable pair plays almost the same role as the notion of
a position in Restall’s analysis. It is noted that in Definition 8, the notion of
derivability is defined relative to an sf-closed set Ξ and a sequent calculus GL.
The antecedent and succedent of a Ξ-underivable pair can be regarded as the
set of asserted and denied formulas, respectively, as is done in Restall’s analysis.
In the following, instead of the notion of a limit position, the notion of a Ξ-
analytically saturated pair is introduced. This notion is obtained by modifying
the notion of an analytically saturated sequent, defined in [48, Definition 1.1].

Definition 9 (Ξ-analytically saturated pair). Let Ξ be an sf-closed finite
set of formulas. A pair (Γ : Δ) of finite sets of formulas is Ξ-analytically satu-
rated in a sequent calculus GL if it satisfies all of the following:

1. Γ ⇒ Δ is not Ξ-derivable in GL.
2. For any formula A ∈ Ξ,

– A ∈ Γ if A,Γ ⇒ Δ is not Ξ-derivable in GL,
– A ∈ Δ if Γ ⇒ Δ,A is not Ξ-derivable in GL,

The first condition of this definition is almost the same as the first condition of
the definition of a limit position (Definition 2). The important difference from
the notion of a limit position is contained in the second condition. In the second
condition of the definition of a limit position (Definition 2), any formula A must
be an element of either Γ or Δ. However, in the second condition of the definition
of a Ξ-analytically saturated pair (Definition 9), this is not required.

Lemma 1. Let Ξ be an sf-closed finite set of formulas and (Γ : Δ) be a Ξ-
underivable pair in GL. Then, there exists a Ξ-analytically saturated pair (Γ ∗ :
Δ∗) in GL such that Γ ⊆ Γ ∗, Δ ⊆ Δ∗, and Γ ∗ ∪ Δ∗ ⊆ Ξ.

This lemma is shown in almost the same way as [48, Lemma 1.3]. Lemma 1
ensures that any Ξ-underivable pair of sets of formulas in GL can be extended to
some Ξ-analytically saturated pairs in GL. This lemma corresponds to extension
lemma of cut-free semantic completeness (cf. [27, Lemma 10]).

Definition 10. For any sf-closed finite set Ξ of formulas, WΞ is defined as the
set of all Ξ-analytically saturated pairs in GL.

Definition 11. For any (Γ : Δ), (Π : Σ) ∈ WΞ , (Γ : Δ)RΞ(Π : Σ) if the
following hold:

– For any propositional variable p ∈ Ξ, if p ∈ Γ , then p ∈ Π,
– For any formulas A→iB ∈ Ξ, if A→iB ∈ Γ , then A→iB ∈ Π.

This definition of RΞ is imported from [50, Definition 11].
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Definition 12. A valuation V Ξ is defined as follows for any propositional vari-
able p ∈ Ξ and any (Γ : Δ) ∈ WΞ :

(Γ : Δ) ∈ V Ξ(p) iff p ∈ Γ.

The obtained tuple 〈WΞ , RΞ , V Ξ〉 is a well-defined Kripke model described in
Sect. 3. Since Ξ is finite, WΞ is finite. Thus, 〈WΞ , RΞ , V Ξ〉 is a finite model.

Based on the notion of Ξ-derivability, we define the notion of Ξ-admissibility,
the notion of admissibility relative to an sf-closed finite set Ξ of formulas.

Definition 13 (Ξ-admissibility). An inference rule is Ξ-admissible in GL if
whenever all of the upper sequents are Ξ-derivable in GL, then the lower sequent
is also Ξ-derivable in GL.

Definition 14. If the side condition A ∈ Sub(Γ ∪ Δ) is imposed on (Cut), the
restricted rule is defined as (Cut)a.

Theorem 1. For any sf-closed finite set Ξ of formulas, all of the following hold:

1. The left rule for “∧” is Ξ-admissible in GL iff A ∧ B ∈ Γ implies A ∈ Γ
and B ∈ Γ for any (Γ : Δ) ∈ WΞ ,

2. The right rule for “∧” is Ξ-admissible in GL iff A ∧ B ∈ Δ implies A ∈ Δ
or B ∈ Δ for any (Γ : Δ) ∈ WΞ ,

3. The left rule for “∨” is Ξ-admissible in GL iff A ∨ B ∈ Γ implies A ∈ Γ
or B ∈ Γ for any (Γ : Δ) ∈ WΞ ,

4. The right rule for “∨” is Ξ-admissible in GL iff A ∨ B ∈ Δ implies A ∈ Δ
and B ∈ Δ for any (Γ : Δ) ∈ WΞ ,

5. The left rule for “¬c” is Ξ-admissible in GL iff ¬cA ∈ Γ implies A ∈ Δ
for any (Γ : Δ) ∈ WΞ ,

6. The right rule for “¬c” is Ξ-admissible in GL iff ¬cA ∈ Δ implies A ∈ Γ
for any (Γ : Δ) ∈ WΞ ,

7. The left rule for “→i” is Ξ-admissible in GL iff for any (Γ : Δ) ∈ WΞ ,
A→iB ∈ Γ implies A ∈ Σ or B ∈ Π for any (Π : Σ) ∈ WΞ such that
(Γ : Δ)RΞ(Π : Σ),

8. The right rule for “→i” is Ξ-admissible in GL iff for any (Γ : Δ) ∈ WΞ ,
A→iB ∈ Δ implies A ∈ Π and B ∈ Σ for some (Π : Σ) ∈ WΞ such that
(Γ : Δ)RΞ(Π : Σ),

9. The rule for “⊥” is Ξ-admissible in GL iff ⊥ �∈ Γ for any (Γ : Δ) ∈ WΞ ,
10. The rule (Cut) is Ξ-admissible in GL iff A ∈ Ξ implies A ∈ Γ or A ∈ Δ

for any (Γ : Δ) ∈ WΞ ,
11. The rule (Cut)a is Ξ-admissible in GL iff A ∈ Sub(Γ ∪ Δ) implies A ∈ Γ

or A ∈ Δ for any (Γ : Δ) ∈ WΞ .

Proof. We show only (8) and (10) here. Fix any sf-closed finite set Ξ of formulas.

(8)(⇒) Fix any (Γ : Δ) ∈ WΞ and suppose A→iB ∈ Δ. Our goal is to show
that there is some (Π : Σ) ∈ WΞ such that (Γ : Δ)RΞ(Π : Σ), A ∈ Π
and B ∈ Σ. Let Θ = {p | p ∈ Γ}∪{C→iD | C→iD ∈ Γ}. By the first
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condition of the definition of a Ξ-analytically saturated pair (Definition
9), Γ ⇒ Δ,A→iB is not Ξ-derivable in GL. Thus, Θ ⇒ A→iB is also
not Ξ-derivable in GL. By the Ξ-admissibility of (⇒ →i), A,Θ ⇒ B
is not Ξ-derivable in GL. By Lemma 1, there is (Π : Σ) ∈ WΞ such
that Θ ∪ {A} ⊆ Π, {B} ⊆ Σ, and Π ∪ Σ ⊆ Ξ. It suffices to show
(Γ : Δ)RΞ(Π : Σ), but this is ensured by Θ ⊆ Π, the construction of
Θ, and the definition of RΞ (Definition 11).

(⇐) Let Θ be a finite set of propositional variables and formulas whose
main connective is “→i”. Suppose Θ ⇒ A→iB is not Ξ-derivable in
GL. Our goal is to show that A,Θ ⇒ B is not Ξ-derivable in GL. By
Lemma 1, there is (Γ : Δ) ∈ WΞ such that Θ ⊆ Γ , {A→iB} ⊆ Δ, and
Γ ∪ Δ ⊆ Ξ. By the assumed semantic condition, there is (Π : Σ) ∈
WΞ such that (Γ : Δ)RΞ(Π : Σ), A ∈ Π, and B ∈ Σ. By the first
condition of the definition of a Ξ-analytically saturated pair (Definition
9), A,Π ⇒ B,Σ is not Ξ-derivable in GL. By Θ ⊆ Γ , ΓRΞΠ, and
the definition of RΞ (Definition 11), Θ ⊆ Π. Therefore, A,Θ ⇒ B is
not Ξ-derivable in GL.

(10)(⇒) Fix any (Γ : Δ) ∈ WΞ and any A ∈ Ξ. Our goal is to show A ∈ Γ
or A ∈ Δ. By the first condition of the definition of a Ξ-analytically
saturated pair (Definition 9), Γ ⇒ Δ is not Ξ-derivable in GL. By
the Ξ-admissibility of (Cut), either A,Γ ⇒ Δ or Γ ⇒ Δ,A is not
Ξ-derivable in GL. By the second condition of the definition of a Ξ-
analytically saturated pair (Definition 9), A ∈ Γ or A ∈ Δ, as desired.

(⇐) Suppose Γ ⇒ Δ is not Ξ-derivable in GL. Our goal is to show that
either Γ ⇒ Δ,A or A,Γ ⇒ Δ is not Ξ-derivable in GL. By Lemma 1,
there is (Γ ∗ : Δ∗) ∈ WΞ such that Γ ⊆ Γ ∗, Δ ⊆ Δ∗, and Γ ∗∪Δ∗ ⊆ Ξ.
By the assumed semantic condition, A ∈ Δ∗ or A ∈ Γ ∗. By the first
condition of the definition of a Ξ-analytically saturated pair (Definition
9), Γ ∗ ⇒ Δ∗, A or A,Γ ∗ ⇒ Δ∗ is not Ξ-derivable in GL. Since Γ ⊆ Γ ∗

and Δ ⊆ Δ∗, either Γ ⇒ Δ,A or A,Γ ⇒ Δ is not Ξ-derivable in GL.

This theorem shows that the two points of improvement of Restall’s analysis are
overcome. Firstly, in this theorem, the equivalence between the admissibility of
an inference rule in GL and the corresponding satisfaction relation for a formula
is shown. Secondly, the admissibility of (Cut) or (Cut)a is not presupposed in
this analysis, and the semantic conditions corresponding to the admissibility of
(Cut) and (Cut)a are identified.

Theorem 2. Let Ξ be an sf-closed finite set of formulas and WΞ
C+J be the set

of all Ξ-analytically saturated pairs in G(C+J). Then, for any (Γ : Δ) ∈ WΞ
C+J

and any formula C ∈ Ξ, the following holds:

C ∈ Γ implies (Γ : Δ) |= C and C ∈ Δimplies (Γ : Δ) �|= C.

Theorem 2 is shown by induction on the construction of a formula C, as is
done in [48]. This theorem corresponds to a lemma called “partial truth lemma”
(cf. [27, Lemma 11]), which is established to show cut-free semantic completeness.



A Proof-Theoretic Analysis of the Meaning of a Formula 113

Theorem 2 ensures that Restall’s analysis, improved by Takano’s method, is
carried out successfully for C + J. This is because the formulas in the antecedent
and succedent of a Ξ-analytically saturated pair can be regarded as true and
false in the state described by the pair. Thus, as is done in Sect. 2, the notion of
a Kripke model is obtained from the admissibility of inference rules in G(C+J).
This means that the open problem of Restall’s analysis is solved positively.

5 Analysis of C + J Based on Unilateralism

This section explains how the analysis presented in Sect. 4 is connected to the
bilateralism-unilateralism debate and shows that a unilateral approach is also
possible for C + J. As far as the author knows, the bilateralism-unilateralism
debate occurs mainly in the field of philosophy of logic and philosophy of lan-
guage. Bilateralism is the position claiming that two linguistic acts are primitive
when the meaning of a formula or a statement is considered, whereas unilat-
eralism is the position claiming that only one linguistic act is primitive. The
representatives of unilateralism are Frege [16] and Dummett [13,14], while bilat-
eralism is studied in [3,19,36,41,44].11 Since the notions of assertion and denial
are used, both Restall’s analysis and the analysis presented in Sect. 4 are based
on bilateralism.12 In the following, it is argued that an analysis based on unilat-
eralism is also possible for C + J. Classical negation plays a central role in this
analysis.

The most straightforward way to choose unilateralism is to interpret the
derivability of a sequent Γ ⇒ Δ only by the notion of assertion, as follows: it
is incoherent to assert all the formulas in Γ but to assert no formulas in Δ.
However, as was pointed out by Restall [38, pp. 4-5], this interpretation contains
a too strong requirement.13 Generally, we do not know every consequence of the
assumptions. Therefore, if we assert some formulas, there is a possibility of not
asserting a consequence of the formulas. Thus, when we interpret the derivability
of a sequent in terms of linguistic acts, the notion of denial seems necessary.

11 It is usually said that unilateralism fits intuitionistic logic (cf. [15]) and bilateralism
fits classical logic (cf. [41]). The reason why unilateralism seems to fit intuitionistic
logic but does not seem to fit classical logic lies in the fact that standard proof-
theoretic semantics seems possible for the former but impossible for the latter. The
reason why bilateralism seems to fit classical logic lies in the fact that by introducing
the notion of denial, proof-theoretic semantics for classical logic seems possible, as
Rumfitt [41] did.

12 It is noted that Steinberger [45] claims that Restall’s position is crucially different
from the positions of Smiley [44] and Rumfitt [41].

13 In [38], Restall argues against the following view: if A entails B, then it ought to be
the case that if you accept A, then you accept B. If we consider an interpretation
of the derivability of Γ ⇒ Δ based on this view, we can obtain the following inter-
pretation: it ought to be the case that if you accept all the formulas in Γ , then you
accept some formulas in Δ. It is noted that if this interpretation is employed, the
argument described here also works.
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Another way of defending unilateralism is to claim that the notion of denial
is not primitive, although it is necessary. In other words, it is claimed that the
notion of denial is conceptually reduced to that of assertion. The most basic
strategy of doing this is to define the denial of a formula as the assertion of the
negation of the formula. However, this strategy does not work for every logic,
since the denial of a formula and the assertion of the negation of a formula seem
different in some logics, as was already pointed out in [38, pp. 2-3].

However, this strategy of defending unilateralism works for classical logic.
The reason why this strategy works is the formulation of rules for classical nega-
tion in LK (cf. Table 1). The rules (⇒ ¬c) and (¬c ⇒) imply that the denial
and the assertion of ¬cA can be replaced with the assertion and the denial of A,
respectively. By these rules, we can regard the denial of a formula as the asser-
tion of the classical negation of the formula. This fact implies that advocates
of classical logic who defend unilateralism can make use of the notion of denial,
since it can be reduced to that of assertion.

On the other hand, this strategy does not work for intuitionistic logic. The
reason for this is that the denial of A cannot be replaced with the assertion of
¬iA, since the right rule for the intuitionistic multi-succedent sequent calculus
mLJ is restricted to the following one:

A,Γ ⇒
Γ ⇒ ¬iA .

Thus, the notion of denial cannot be reduced to that of assertion by using only
intuitionistic negation. This implies that advocates of intuitionistic logic who
defend unilateralism, such as Dummett [13,14], face a difficulty. Since they can-
not use the notion of denial, they have to interpret the derivability of a sequent
Γ ⇒ Δ only by the notion of assertion, but the resulting interpretation contains
a too strong requirement, as noted above.14

As noted above, advocates of classical logic who defend unilateralism do not
fall into this problem, since they can use the strategy of reducing the notion
of denial to that of assertion because of the existence of “¬c.” However, this
strategy is possible not only in classical logic but also in C + J. This implies that
advocates of classical logic can view intuitionistic logic based on unilateralism.
The rest of this section briefly sketches the unilateral analysis for C + J based
on this strategy.

Proposition 1. For any formula A and any set Γ ∪ Δ of formulas, Γ ⇒ Δ,A
is derivable in G(C + J) iff ¬cA,Γ ⇒ Δ is derivable in G(C + J).
14 This problem also holds when another proof theory is considered. For example, if

a natural deduction system is considered, an interpretation of the derivability of a
formula from a set of assumptions using only the notion of assertion should contain a
too strong requirement. Thus, advocates of intuitionistic logic who defend unilater-
alism should propose an interpretation of the derivability that does not contain a too
strong requirement, although it is usually said that unilateralism fits intuitionistic
logic and bilateralism fits classical logic, as noted in footnote 11.
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The direction from the left to the right of this proposition is shown by apply-
ing (¬c ⇒). The other direction is shown by induction on the construction of a
derivation, as is done in [24,51].15 Note that this proposition no longer holds if
classical negation is replaced with intuitionistic negation. Based on this equiva-
lence, we can transform G(C+J) to a one-sided calculus by transmitting succe-
dent to antecedent.16 For example, (Id), (Cut), and (→i ⇒) are transformed to
the following rules, respectively:

A,¬cA ⇒
Γ,¬cA ⇒ A,Γ ⇒

Γ ⇒
Γ,¬cA ⇒ B,Γ ⇒

A→iB,Γ ⇒ .

A finite set Γ of formulas expresses a coherent situation with respect to assertion
if Γ ⇒ is not derivable in this one-sided calculus. Thus, the derivability of Γ ⇒ is
interpreted as follows: it is incoherent to assert all the formulas in Γ . The notion
of denial does not exist in this interpretation. Accordingly, inference rules in
the one-sided calculus are regarded as normative constraints on assertion. In the
following, this one-sided calculus is called GS(C + J). In order to carry out the
analysis presented in Sect. 4, the notion of a subformula should be expanded to
that of an extended subformula.

Definition 15. The set Esub(A) of all extended subformulas of a formula A is
defined inductively as follows:

– Esub(p) := {p},
– Esub(⊥) := {⊥},
– Esub(A�B) := {A�B} ∪ Esub(A) ∪ ESub(B)(� ∈ {∧,∨}),
– Esub(A→iB) := {A→iB} ∪ Esub(¬cA) ∪ Esub(B),
– Esub(¬cp) := {¬cp},
– Esub(¬c⊥) := {¬c⊥},
– Esub(¬c(A�B)) := {¬c(A�B)} ∪ Esub(¬cA) ∪ ESub(¬cB)(� ∈ {∧,∨}),
– Esub(¬c(A→iB)) := {¬c(A→iB)} ∪ Esub(A) ∪ Esub(¬cB).

Definition 16. Let Γ be a finite set of formulas. Then, we define ESub(Γ ) as
the set of all extended subformulas of some formulas in Γ . A set Γ of formulas
is extended subformula-closed (esf-closed) if ESub(Γ ) ⊆ Γ and ⊥ ∈ Γ .

We can define the notion of Ξ-derivability in the one-sided calculus G(C + J)
as in Definition 7. Based on this notion and the notion of an extended subfor-
mula, we can define the notion of a Ξ-analytically saturated set in the one-sided
calculus GS(C + J), which plays the same role as the notion of a Ξ-analytically
saturated pair in the bilateral analysis provided in Sect. 4.
15 The direction from the right to the left of Proposition 1 is the inversion of (¬c ⇒).

Inversion of rules for logical connectives is shown by induction on the construction
of a derivation in [24, Theorem 3.1.1] and [51, Proposition 3.5.4]. Although rules for
classical negation are not dealt with in [24,51], we can apply this induction to show
this direction. Note that although the height-preserving inversion is shown in [24,51],
the direction from the right to the left of Proposition 1 is not height-preserving.

16 Similar transformations are carried out in [2,29,46,51], but one-sided calculi in [2,
29,46,51] are obtained by transmitting antecedent to succedent. Thus, the directions
of transformation are different.
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Definition 17 (Ξ-analytically saturated set). Let Ξ be an esf-closed finite
set of formulas. A finite set Γ of formulas is Ξ-analytically saturated in the
one-sided calculus GS(C + J) if it satisfies all of the following:

1. Γ ⇒ is not Ξ-derivable in GS(C + J).
2. For any formula A ∈ Ξ, if A,Γ ⇒ is not Ξ-derivable in GS(C + J), A ∈ Γ ,

By this definition, the unilateral analysis becomes available by almost the same
method as presented in Sect. 4, employing the one-sided calculus GS(C + J).

Once C + J is explained, this result may not be very surprising, because
in G(C + J), the left and right rules for classical negation are formulated as
in LK. However, it is far from trivial that this unilateral approach is possible
not only for ordinary classical logic but also for a combination of intuitionistic
and classical logic, since this approach is impossible for ordinary intuitionistic
logic. This result implies that advocates of classical logic can obtain the meaning
of not only formulas in classical logic but also formulas in intuitionistic logic,
based on unilateralism. This is because, once classical negation is accepted, the
analysis of C + J is possible independently of the choice between bilateralism
and unilateralism. On the other hand, advocates of intuitionistic logic cannot
carry out the analysis for C + J based on unilateralism. Thus, they have to
accept classical negation in some way if they intend to give a unilateral analysis
of the meaning of a formula. Finally, it should be noted that it is not ensured
that this unilateral analysis is possible for another combination of intuitionistic
and classical logic.
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Beklemishev, L., Demri, S., Máté, A. (eds.) Advances in Modal Logic, vol. 11, pp.
217–235. College Publications (2016)

11. del Cerro, L. F., Herzig, A.: Combining classical and intuitionistic logic or: Intu-
itionistic implication as a conditional. In: Badder, F., Schulz, K. U. (eds.) Frontiers
of Combining Systems: FroCoS 1996, pp. 93–102. Springer, Cham (1996). https://
doi.org/10.1007/978-94-009-0349-4 4

12. Dowek, G.: On the definition of the classical connectives and quantifiers. In:
Haeusler, E.H., Campos Sanz W.d., Lopes, B. (eds.) Why is this a Proof?, pp.
228–238. College Publications (2015)

13. Dummett, M.: Truth. In: Truth and Other Enigmas, pp. 1–24. Harvard University
Press (1959)

14. Dummett, M.: What is a theory of meaning? II. In: The Seas of Language (
Reprinted Version), pp. 34–93. Oxford University Press (1976)

15. Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press,
Reprinted edition (1991)

16. Frege, G.: Logische Untersuchungen: Die Verneinung. In Beitr age zur Philosophie
des deutschen Idealismus I, 143–157 (1918)

17. Gabbay, D. M.: An overview of fibered semantics and the combination of logics.
In Badder, F., Schulz, K. U. (eds.) Frontiers of Combining Systems: FroCoS 1996.
Applied Logic Series ( APLS), vol. 3, pp. 1–55. Springer (1996). https://doi.org/
10.1007/978-94-009-0349-4 1

18. Humberstone, L.: Interval semantics for tense logic: Some remarks. J. Philos. Log.
8, 171–196 (1979). https://doi.org/10.1007/BF00258426

19. Humberstone, L.: The revival of rejective negation. J. Philos. Log. 29, 331–381
(2000). https://doi.org/10.1023/A:1004747920321

20. Kowalski, T., Ono, H.: Analytic cut and interpolation for bi-intuitionistic
logic. Rev. Symbolic Logic 10(2), 259–283 (2017). https://doi.org/10.1017/
S175502031600040X

21. Liang, C., Miller, D.: Kripke semantics and proof systems for combining intuitionis-
tic logic and classical logic. Ann. Pure Appl. Logic 164(2), 86–111 (2013). https://
doi.org/10.1016/j.apal.2012.09.005

22. Lucio, P.: Structured sequent calculi for combining intuitionistic and classical first-
order logic. In: Kirchner, H., Ringeissen, C. (eds.) Frontiers of Combining Sys-
tems, FroCoS 2000, pp. 88–104. Springer, Cham (2000). https://doi.org/10.1007/
10720084 7

23. Maehara, S.: Eine Darstellung der intuitionistischen Logik in der klassischen.
Nagoya Math. J. 7, 45–64 (1954)

24. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press
(2001)

https://doi.org/10.1007/978-3-540-74621-8_8
https://doi.org/10.1007/s12136-011-0138-9
https://doi.org/10.1007/s12136-011-0138-9
https://doi.org/10.1007/978-94-009-0349-4_4
https://doi.org/10.1007/978-94-009-0349-4_4
https://doi.org/10.1007/978-94-009-0349-4_1
https://doi.org/10.1007/978-94-009-0349-4_1
https://doi.org/10.1007/BF00258426
https://doi.org/10.1023/A:1004747920321
https://doi.org/10.1017/S175502031600040X
https://doi.org/10.1017/S175502031600040X
https://doi.org/10.1016/j.apal.2012.09.005
https://doi.org/10.1016/j.apal.2012.09.005
https://doi.org/10.1007/10720084_7
https://doi.org/10.1007/10720084_7


118 M. Toyooka

25. Niki, S., Omori, H.: A note on Humberstone’s constant Ω. Rep. Math. Logic 56,
75–99 (2021). https://doi.org/10.4467/20842589RM.21.006.14376

26. Niki, S., Omori, H.: Another combination of classical and intuitionistic condition-
als. In: Indrzejczak, A., Zawidzki, M. (eds.) Proceeding of the 10th International
Conference on Non-Classical Logics. Theory and Applications, Electronic Proceed-
ings in Theoretical Computer Science (EPTCS), vol. 358, pp. 174–188 (2022).
https://doi.org/10.4204/EPTCS.358.13

27. Ono, H.: Semantical approach to cut elimination and subformula property in modal
logic. In: Yang, S.C.M., Deng, D.M., Lin, H. (eds.) Structural Analysis of Non-
Classical Logics: The Proceedings of the Second Taiwan Phiosophical Logic Collo-
quium, part of Logic in Asia: Studia Logica Library (LIAA), pp. 1–15. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-48357-2 1

28. Ono, H., Sano, K.: Analytic cut and Mints’ symmetric interpolation method for
bi-intuitionistic tense logic. In: Fernández-Duque, D., Palmigiano, A., Pinchinat,
S. (eds.) Advances in Modal Logic, vol. 14, pp. 601–623 (2022)
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