
Events and Relative Clauses

Oleg Kiselyov(B) and Haruki Watanabe

Tohoku University, Sendai, Japan

oleg@okmij.org

Abstract. This work is the continuation of the development of poly-
nomial event semantics (a dialect of Neo-Davidsonian event semantics),
using the FraCaS textual entailment corpus as a whetstone. This time
we grapple with various, often complicated, relative clauses.

Relative clauses have hardly been analyzed before in event seman-
tics. Although simple cases are straightforward, challenges arise when a
clause contains quantification, coordination or negation. We deal with
such complications in the present paper, focusing on entailments.

1 Introduction

This work is the continuation of [5–7] on polynomial event semantics and textual
entailment.

Deciding entailments ‘by pure logic’ – without resorting to meaning postu-
lates – is one of the most attractive features of event semantics. However, beyond
the classical “Brutus stabbed Caesar violently”, one quickly runs into problems.
One is quantification, described and dealt with in [5,7]; another is negation [6].
Then there are relative clauses, which are rarely considered in event semantics. In
fact, the recent survey [10] and the extensive study [3] give, among the multitude
of examples, not a single analysis of a sentence with a relative clause.

A relative clause appears already in the very first problem in the FraCaS
textual inference problem set [4,9]:

There was an Italian who became the world’s greatest tenor.

Such a simple case was analyzed in [7]. But even a slightly more complicated
problem 018 below requires quite a non-trivial entailment reasoning involving
the relative clause.

Every European has the right to live in Europe.(1)
Every European is a person.(2)
Every person who has the right to live in Europe

can travel freely within Europe.(3)
Every European can travel freely within Europe.(4)

As in all FraCaS problems, the goal is to determine the entailment of the last
sentence (in our case, (4)) from the others. We must stress that FraCaS collects
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Bekki et al. (Eds.): LENLS 2019, LNCS 14213, pp. 18–30, 2023.
https://doi.org/10.1007/978-3-031-43977-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43977-3_2&domain=pdf
http://orcid.org/0000-0002-2570-2186
https://doi.org/10.1007/978-3-031-43977-3_2

Events and Relative Clauses 19

not only positive examples of expected entailments, but also negative examples
where entailment does not hold – and also “yes and no” cases where entailment
comes through only on some readings. Our goal is hence not only to derive
entailments where expected, but also to explain why entailment does not hold
in negative examples, as well as to reproduce several readings where present.

FraCaS has quite a few problems similar to the above, with copula relative
clauses (problems 005, 006, 028) and quantifiers like ‘most’ (problem 074). Object
relative clauses also appear (e.g., problems 133 and 344):

There is someone whom Helen saw answer the phone.
ITEL maintains all the computers that GFI owns.

There are further complications, with quantified or coordinated relative
clauses:

There was one auditor who signed all the reports.(5)
There is a car that John and Bill own.(6)
There is a representative that Smith wrote to every week.(7)

We take FraCaS as a whetstone of a semantic theory, as a necessary appli-
cation – but by no means sufficient. For example, NPs of the following form are
quite common, but do not appear in FraCaS:

two students who skipped three classes(8)
every student who skipped no classes(9)
a student who didn’t skip all classes(10)

One should be able to analyze them and derive entailments. A reviewer has
pointed further interesting examples, such as

land he had created and lived in(11)

The present paper gives analysis of all such sentences and NPs, focusing on
entailments.

2 Background

First a brief reminder of polynomial event semantics. It deals with events,
notated e, such as ‘having become the world’s greatest tenor’ or ‘being Ital-
ian’ or ‘having the right to live in Europe’ (we denote the latter set of events
as RtlE). It should be clear that we take events in a broad sense (as detailed
in [10]): associated not only with actions but also states. Besides events, there
are also individuals, notated i, such as john, and relations between events and
individuals (written as rel′) such as

subj′ = {(e, i) | ag(e) = i} ob1′ = {(e, i) | th(e) = i}

20 O. Kiselyov and H. Watanabe

where ag and th are thematic functions (for subjects and direct objects, resp.).
Their names are mere the nod to the tradition in the event semantics literature
(see §7).

If rel′ is a relation of events to individuals,

rel′/ i � {e | (e, i) ∈ rel′}
is the set of events related to i. In particular,

subj′/ john = {e | (e, john) ∈ subj′} = {e | ag(e) = john}
is the set of events whose subject is john. The semantics of a simple sentence
such as “John has the right to live in Europe” is given compositionally as

[[John has the right to live in Europe]] =
subj′/ john ∩ RtlE(12)

Subject, predicate, complements all denote event sets, and the whole sentence
is their intersection. In particular, our sentence denotes – or, is witnessed by –
the events of having the right to live in Europe whose subject is John. The
denotation is hence an event set – or the formula representing it, as (12), which
one may think of as a query of the record of events in the world. A sentence is
true in that world just in case the result of the query is a non-empty event set.

The denotation of the subject is also determined compositionally, by applying
subj′ to the denotation of NP, in our case, john.

If d1 and d2 are two denotations (queries), we say d1 entails d2 (in symbols:
d1 =⇒ d2) just in case for any record of events (for any world), whenever d1
delivers a non-empty set of witnessing events, so does d2. If d1 and d2 entail
each other, they are called equivalent.

2.1 Coordination and Quantification

We often deal not with individuals but with sets of individuals such as Student or
European, which are the denotations of common nouns. Determiners pick which
individuals from this set to consider. Correspondingly, they call for generaliza-
tion: the introduction of (internal) choice � (for narrow-scope existentials and
indefinites), external choice ⊕ (wide-scope ones) and grouping ⊗. Thus john�bill
is a choice between John and Bill, whereas john⊗bill is a group of John and Bill:
both have to be involved, not necessarily in the same action however. Likewise,
event sets are generalized to polyconcepts, such as d1 ⊗ d2 for two disjoint event
sets d1 and d2, which specifies that an event from d1 and an event from d2 must
have transpired. Grouping is quite different from intersection ∩ (generalized to
� for polyconcepts), which describes common events. In particular, if d is a
singleton event set, then d ⊗ d = ⊥ (the empty polyconcept), but d � d = d.

We define for convenience

Ec = �j∈c j Ic = ⊕j∈c j Ac = ⊗j∈c j

Events and Relative Clauses 21

The meaning of “All Europeans/Every European” is then AEuropean; on the
other hand, [[A European]] (narrow scope) is E European. Therefore, (1), repeated
below

Every European has the right to live in Europe.(1)

has as its denotation

(subj′/AEuropean) � RtlE

= A(subj′/European) � RtlE

=
⊗

i∈European
(subj′/ i ∩ RtlE)(13)

where � is the generalization of set intersection ∩ to polyconcepts; subj′/ is
likewise generalized to apply to sets of individuals and poly-individuals – as
homomorphism.

The distribution laws detailed in [7] lead to (13), which asserts there is a
group of non-empty events of having right to live in Europe, and each European
is a subject of some event in that group.

The notion of entailment extends to polyconcepts: The polyconcept d1 entails
d2 just in case d1
= ⊥ =⇒ d2
= ⊥. For example, [7] described several equational
laws of polyconcepts, among whose is

x ⊗ ⊥ = ⊥ ⊗ x = ⊥
from which it logically follows that

x ⊗ y
= ⊥ =⇒ x
= ⊥(14)

That is, (13) entails subj′/ i ∩ RtlE for any individual i ∈ European. In other
words, if John is European, (1) entails that “John has the right to live in Europe”.

2.2 Negation

The central idea of polynomial event semantics is that the sentence denotation is
a query (formula), which when applied to the record of events in a world, selects
the events that support, or witness, the sentence. If that set of events turns out
empty, the sentence is not supported (in that world). Negation hence presents a
problem: what is the witness for the absence of support?

Our resolution [6] is to consider counter-examples. The denotation of a sen-
tence with negation or negative quantification is also a query, but what it selects
is interpreted as counter-examples. If the set of counter-examples is empty, the
corresponding sentence is not contradicted. To distinguish counter-example–
selecting queries and polyconcepts, they are marked with the ¬ sign.

For example, the denotation of (15) below is (16), which can be re-written
to (17) according to the laws of [6].

John didn’t skip the PE class.(15)
subj′/ john � ¬Skip � ob1′/ peClass(16)

= ¬ (subj′/ john � Skip � ob1′/ peClass)(17)

22 O. Kiselyov and H. Watanabe

Likewise, the denotation for (18) is (19):

John didn’t skip every class.(18)

¬
⊗

i∈Class
(subj′/ john � Skip � ob1′/ i)(19)

Indeed, the counter-example for (18) would be a group of John skipping class
events, for each class.

Negation calls for further generalization of entailment. If d1 and d2 are poly-
concepts marked as negative, d1 =⇒ d2 just in case d2
= ⊥̄ =⇒ d1
= ⊥̄:
whenever d2 is contradicted, then so is d1. We thus obtain that (15) entails (18).

Suppose that Attend and Skip are disjoint event sets. Then if “John attended
the PE class” is supported, “John didn’t skip the PE class” cannot be contra-
dicted. For the sake of such entailments, we introduce (see [6,7])

justified(d) =

{
d = ⊥̄ if d is marked as negative
d
= ⊥ if d is not negatively marked

(20)

which lets us define entailment most generally: d1 entails d2 just in case
justified(d1) logically entails justified(d2). For example, we may now derive that
“John attended the PE class” entails (18).

3 Subject Relative Clauses

The problem is hence determining the meaning of “who has the right to live in
Europe.” If RtlE is the set of events of having the right to live in Europe, then
who has that right is the subject of these events. Thus the denotation of our
subject relative clause, to be notated as subj

′
/RtlE, is the set of individuals

subj
′
/RtlE � {ag(e) | e ∈ RtlE}(21)

Then (3), recalled below,

Every person who has the right to live in Europe(3)
can travel freely within Europe.

has as its denotation

subj′/A
(
Person ∩ (subj

′
/RtlE)

)
� CtfE(22)

where CtfE is the set of events of having the possibility to freely travel within
Europe. This analysis is more or less what was described in [7], but recast now
in simpler terms. It takes us quite far: many more FraCaS problems can be
analyzed similarly.

Events and Relative Clauses 23

However, relative clauses with quantifiers, coordination or negation present
a problem. Again we need to generalize. Remembering the definition of the subj′

relation, we may re-write (21) as

subj
′
/RtlE � {ag(e) | e ∈ RtlE}
= {i | e ∈ RtlE , (i, e) ∈ subj′}
= {i | subj′/ i ∩ RtlE
= ∅}

One may notice that subj′/ i ∩ RtlE is exactly the meaning of “i has the right
to live in Europe”. That is, “who has the right to live in Europe” is the set of
those i in the domain of the subj′ who make the sentence true (in the world of
the discourse). The denotation of a subject relative clause “who C” may hence
be defined as

[[who C]] � subj
′
/ [[C]] = {i | subj′/ i ∩ [[C]]
= ∅}(23)

This is already helpful, to solve FraCaS 018, which is, recall

Every European has the right to live in Europe.(1)
Every European is a person.(2)
Every person who has the right to live in Europe

can travel freely within Europe.(3)
Every European can travel freely within Europe.(4)

For (1) we have earlier obtained the denotation (13), which says that
subj′/ i ∩ RtlE is non-empty for all i ∈ European. Then (23) immediately
gives European ⊂ subj

′
/RtlE; in words: the set of who has the right to live in

Europe includes all Europeans. Likewise, (2) gives European ⊂ Person, leading
to European ⊂ (Person ∩ subj

′
/RtlE). Then, by monotonicity of A, (22) entails

subj′/ (AEuropean) � CtfE, which is the denotation of (4). The entailment of (4)
from the other sentences of the problem indeed holds.

Definition (23), unlike (21), now easily generalizes to the case when the deno-
tation of the rest of the clause d is not an event set but a polyconcept with choice
or grouping:

[[who C]] � subj
′
/ [[C]] = {i | subj′/ i � [[C]]
= ⊥}(24)

The generalization lets us analyze quantified and coordinated relative clauses
such as (5)-(7). For example, for (5), repeated below,

There was one auditor who signed all the reports.(5)

we obtain the denotation (EBe is an existence event, see [7])

subj′/ E
(
Auditor ∩ subj

′
/ (Sign � ob1′/AReport)

)
� E Be

24 O. Kiselyov and H. Watanabe

where, to remind, subj
′
/ (Sign � ob1′/AReport) is a set of those individuals i such

that
[[i signed all the reports]] = subj′/ i � Sign � ob1′/AReport

is justified. By the very construction, the scope of the universal does not extend
past its clause. We return to this example in §5 and show a more intuitive, and
useful for entailment, analysis.

4 Other Relative Clauses

The approach introduced in §3 easily extends to object, locative, etc. relative
clauses. A good example to illustrate is as follows, also containing an interesting
case of coordination:1

The land over which he sped was
the land he had created and lived in: his valley.

We concentrate on one constituent:

land he had created and lived in(25)

Section 2 already introduced the relation ob1′ between an action and its direct
object; analogous to it is the relation inloc′ between an action and an individual
denoting location. Let Land be the set of such location-individuals. Similarly to
(24) we may then define

[[which C]] � ob1
′
/ [[C]] � {i | ob1′/ i � [[C]]
= ⊥}(26)

[[in which C]] � inloc
′
/ [[C]] � {i | inloc′/ i � [[C]]
= ⊥}(27)

which gives us

[[land he had created]] = Land ∩ ob1
′
/ (subj′/He � Created)

= Land ∩ {i | subj′/He � Created � ob1′/ i
= ⊥}(28)

[[land he had lived in]] = Land ∩ inloc
′
/ (subj′/He � Lived)

= Land ∩ {i | subj′/He � Lived � inloc′/ i
= ⊥}(29)

where He is a particular individual to which the pronoun “he” is resolved. The
repetitiveness and boilerplate are apparent: generalization is in order.

We have been assigning the denotation to a sentence in a surface form –
at least, how it appeared so far. In reality, we take as input a parse tree, with
Penn-treebank–like annotations (see [2]). For example, “land he had created”
and “land he had lived in” are represented as:

landN [IP-REL [NP-SBJ hePRO] hadHVD [NP-OB1T] createdVVN](30)
landN [IP-REL [NP-SBJ hePRO] hadHVD livedVVN [PP-LOC inP-ROLE[NP T]]](31)

1 from Clifford Irving, The Valley (1961) – sentence 170 of susanne N02 included in
[2].

Events and Relative Clauses 25

where T is the trace. Denotations (28) and (29) then clearly correspond to the
annotated trees (30) and (31), resp. In fact, they are built as follows:

[[landN]] = Land [[createdVVN]] = Created [[livedVVN]] = Lived

[[[NP-SBJ hePRO]]] = subj′/ [[hePRO]] = subj′/He
[[[NP-OB1 i]]] = ob1′/ i [[[PP-LOC inP-ROLE [NP i]]]] = inloc/ i

[[[IP-REL C]]] = {i | [[C/i]]
= ⊥}(32)

where C/i means replacing the trace with i. (Aspect/tense is out of scope, and
the auxiliary hadHVD is ignored.) Connections of any constituents are uniformly
represented as the intersection (∩ or �) of their denotations. Therefore, for the
original clause (25) we have:2

[[(25)]] = Land ∩ {i | subj′/He �(33)
((Created � ob1′/ i) ⊗ (Lived � inloc/ i))
= ⊥}

which lets us do entailments. For example, from (28) and (14), we obtain that

[[(25)]] ⊂ [[the land he created]]

There remains a puzzle, however: (32) seems postulated, with the operation
C/i of trace substitution coming out of the blue. It is also hardly compositional.
We now describe how (32) comes about, and how to derive denotations (28),
(29) and (33) and others like them rigorously and compositionally. We will also
see what is the denotation of trace after all.

4.1 Relative Algebra

Recall, to give denotations in the polynomial event semantics we use the algebra
of polyconcepts (denoted by the metavariable d) with the operations ⊥, ⊕, ⊗,
� and �. Strictly speaking, there are two algebras: their operations are the
same, but generators differ: individuals vs. event sets. The two algebras are
homomorphic: the operations subj′/ ·, ob1′/ ·, etc. are the homomorphisms.

We now introduce yet another algebra – called relative algebra – whose carrier
are relations between individuals and polyconcepts: sets of pairs (i, d) where i
is an individual ranging over I, the set of all individuals. The operations of the
relative algebra are the lifted operations on polyconcepts: ⊥ of relative algebra
is {(i,⊥) | i ∈ I}, and

{(i, d1) | i ∈ I} � {(i, d2) | i ∈ I} = {(i, d1 � d2) | i ∈ I}
and similarly for the other operations. Relative algebra is clearly homomorphic
to a polyconcept algebra: for each polyconcept d there is a corresponding (we
say, ‘lifted’) element of the relative algebra:

d → {(i, d) | i ∈ I}
2 The annotated form is https://oncoj.orinst.ox.ac.uk/cgi-bin/tspc.sh?tree=170 susa

nne N02@21\&mode=clip.

https://oncoj.orinst.ox.ac.uk/cgi-bin/tspc.sh?tree=170_susanne_N02@21\&mode=clip
https://oncoj.orinst.ox.ac.uk/cgi-bin/tspc.sh?tree=170_susanne_N02@21\&mode=clip

26 O. Kiselyov and H. Watanabe

with the algebra operations commuting with lifting, as we already observed.
Relative algebra also has elements that are not lifted polyconcepts. Among them
is so-called tr:

tr � {(i, i) | i ∈ I}
Let [[C]]rel be the denotation of a clause/constituent C in terms of relative

algebra. It is built compositionally, mostly from the lifted denotations of its sub-
constituents; the exception is the denotation of trace, which is tr. The denotation
of a relative clause is then

[[[IP-REL C]]] � {i | (i, d) ∈ [[C]]rel, d
= ⊥}(34)

This is the compositional analogue of (32): with it and the denotation of trace
as tr, we may build denotations of arbitrary relative clauses. In particular, the
denotation of (25) works out to be exactly (33).

5 Relative Clauses, Database Joins, and Trace
as a Wide-Scope Indefinite

We now show two other, related, points of view on relative clauses. One treats
relative clauses as database joins. The other regards trace as a wide-scope indefi-
nite, and separates out the relative clause into an independent sentence, to which
the original sentence anaphorically refers.

Relative clauses are NP modifiers: for example, in “land (that) he created”,
the relative clause modifies the common noun “land”. As described earlier, poly-
nomial event semantics derives the compositional denotation

[[landN [IP-REL he created T]]] = [[landN]] ∩ [[[IP-REL he created T]]](35)

(The denotation of the relative clause is also derived compositionally per (34).)
Since the trace is related to “land”, one may wonder about a way to reflect
that relation in the denotation. Although this breaks compositionality to some
(small) extent, the insight seems worth it.

Among operations of the (relative) polyconcept algebra, ⊕ stands out: it
distributes across/commutes with any other operation. For example, letting dhc
be subj′/He � Created,

[[He created aW land]] = dhc � ob1′/ ILand(36)

≡ dhc � ob1′/ (
⊕

j∈Land
j) =

⊕
j∈Land

(dhc � ob1′/ j)

where aW is a wide-scope indefinite. Let

δij =
{
i if i = j

⊥ otherwise
= i � j

which is a bona fide polyconcept. Let us introduce a ‘lifted’ I:

IrS � {(i,
⊕

j∈S
δij) | i ∈ I}

Events and Relative Clauses 27

and note that

{(i, dhc) | i ∈ I} � ob1′/ IrLand(37)

= {(i,
⊕

j∈Land
(dhc � ob1′/ δij)) | i ∈ I}

looks like a relative algebra denotation of some clause, which we call Chcal for
the time being. Treating it as if it were a relative clause

[[[IP-REL Chcal]]] = {i | (i, d) ∈ [[Chcal]]rel, d
= ⊥}
= {i |

⊕
j∈Land

(dhc � ob1′/ δij)
= ⊥}
= {i | i ∈ Land , dhc � ob1′/ i
= ⊥}
= Land ∩ [[[IP-REL he created T]]]

gives an interesting result: on one hand, the denotation of “land he created” may
be computed compositionally per (35), from [[landN]] and the denotation of the
proper relative clause (with trace interpreted as tr). On the other hand, the entire
[[landN [IP-REL he created T]]] can be computed in one scoop, as the denotation of a
“relative clause” Chcal, as we have just shown. What is Chcal then? Comparing
(37) with (36) we notice they are almost the same: only the former uses relative
algebra, and instead of aW , denoted by I, we have something else, denoted by
Ir. One may call it arW : a wide scope indefinite to which one may refer to. We
thus obtained that “land he created” – the relative clause together with the
modified noun – is related to an independent sentence “he created arW land”. In
fact, it is a set of referents created by the indefinite arW of that sentence.

Hence, speaking in database terms, relative clause is a join. Using a FraCaS
example, the denotation of (3) may be regarded as a database join, of “A per-
son has the right to live in Europe.” with “can travel freely within Europe” on
subject. Such database join may be illustrated by a (bit contrived) paraphrase:
“Some people have the right to live in Europe. Every one of them can travel
freely within Europe.” That is, the relative clause is moved out into a separate
sentence, with the trace filled with a (wide-scope) indefinite. The original sen-
tence anaphorically refers to that indefinite. One can generalize: “It builds up
muscles people thought didn’t exist.” to paraphrase as “People thought some
muscles didn’t exists. It builds up them.”

This replacement of trace with the indefinite leads to a variety of analyses.
Returning to (5), repeated below,

There was one auditor who signed all the reports.(5)

we obtain the denotation

subj′/ E [[auditor who signed all the reports]] � E Be

where EBe is an existence event (see [7]). This denotation is equivalent to
[[auditor who signed all the reports]], which is equivalent to [[arW auditor signed
all the reports]]. In other words, (5) is equivalent to, or mutually entails, “One

28 O. Kiselyov and H. Watanabe

particular auditor/the same auditor signed all the reports” – which is what FraCaS
problem 196 is all about.

Similarly, we obtain that (6) is equivalent to “John and Bill own the same
car”. For problem 308, we obtain (7) is equivalent to “Smith wrote to a rep-
resentative every week.” on the wide-scope reading of the indefinite – with no
entailment for the narrow-scope reading.

6 Negation in Relative Clauses

Negation calls for one more generalization of (24) and related denotations:

[[who C]] � subj
′
/ [[C]] = {i | justified(subj′/ i � [[C]])}

We calculate, for example

[[student who didn’t skip all classes]]

= Student ∩ subj
′
/ [[didn’t skip all classes]]

= Student ∩ {i | justified(subj′/ i � (¬Skip � ob1′/AClass))}
= Student ∩ {i | justified(¬(subj′/ i � Skip � ob1′/AClass))}
= Student ∩ {i | ¬(subj′/ i � Skip � ob1′/AClass) = ⊥̄}
= Student ∩ {i | subj′/ i � Skip � ob1′/AClass) = ⊥}

by unrolling definitions and applying the distributive laws of negation touched
upon in Sect. 2.2. Comparing with

[[students who skipped all classes]]
= Student ∩ {i | justified(subj′/ i � Skip � ob1′/AClass)}
= Student ∩ {i | subj′/ i � Skip � ob1′/AClass
= ⊥}

we easily see that the two sets are complementary. Likewise, “student who
skipped no classes” is the complement of the set of students who skipped a
class.

7 Related Work, Discussion and Conclusions

Semantic and syntactic analyses are often tightly coupled: e.g., lexical entries
are assigned syntactic categories or features, as well as semantic interpretations
(often as lambda-terms). Examples include various categorial-grammar–based
analyses (see [8] for the latest example), minimalist grammars ([12] for the
latest), etc. As a result, semantic analysis is coupled to a particular parsing
technique. In contrast, we, like Butler’s Treebank semantics [1], start with an
already parsed sentence: to be precise, Penn-treebank–like annotated tree (see
[2] for details on annotations). The annotations can be assigned manually or

Events and Relative Clauses 29

by any appropriate parser (e.g., Stanford CoreNLP [1]). Starting from an anno-
tated sentence is also common in dependency-tree–based approaches, see [11].
(Our approach can also be adapted to dependency trees).

Closest to our work is the dependency-tree semantics of Tian et al. [11],
who also represent the meaning of a sentence as an abstract query. The paper
[11] briefly mentions relative clauses, analyzed along the lines of (21). Our and
dependency-tree semantics diverge when it comes to quantification and coordi-
nation: we depart relational algebra for polyconcepts, expressing grouping and
choice.

Analyses of relative clauses in event semantics are rare. One of the few is the
relatively recent [12, §4.2.1 and §6], which uses Minimalist Grammar coupled
with a continuation-based approach (in the spirit of [3]).

As a nod to the tradition, Sect. 2 mentioned thematic functions ag and th
when defining the subj′ and ob1′ relations. These relations are meant to be
grammatical subject and object relations, with ag specifying the grammatical
subject of an action carried by a verb, rather than the semantic agent. After
all, event semantics is widely praised for avoiding meaning postulates as far as
possible and deriving entailments from the structure alone. Likewise, the focus
of FraCaS is textual entailment without relying on world knowledge. We, too,
concentrate on the structure: Just as verbs have arguments, events – records in
a world database – have attributes. The functions ag and th, etc. merely refer to
these attributes. As a consequence, we treat active and passive VP as completely
separate, and do not consider entailments between active and passive forms of the
same verb. In the future, we may introduce a postulate that, say, for any event
e ∈ See there exists an event e′ ∈ BeSeen such that ag(e′) = th(e) and intstr(e′) =
ag(e). One may also deal with passive constructions syntactically: convert passive
construction to active at parsing time (see Prithiviraj Damodaran’s Styleformer
based on Stanford CoreNLP.)

In conclusion, we demonstrated handling of relative clauses in polynomial
event semantics, from simple to coordinated and quantified. The approach han-
dles the subject, object, locative, etc. relative clauses. Extension to tense/time is
straightforward. Future work is the mechanical implementation of the approach
to derive the entailments automatically.

Acknowledgments. We are very grateful to the reviewers and the participants of
LENLS19 for their insightful comments and questions. We particularly appreciate the
interesting examples to analyze (Sect. 4) pointed out by a reviewer. This work was
partially supported by a JSPS KAKENHI Grant Number 17K00091.

References

1. Butler, A.: From discourse to logic with stanford CoreNLP and treebank semantics.
In: Sakamoto, M., Okazaki, N., Mineshima, K., Satoh, K. (eds.) JSAI-isAI 2019.
LNCS (LNAI), vol. 12331, pp. 182–196. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-58790-1 12

https://doi.org/10.1007/978-3-030-58790-1_12
https://doi.org/10.1007/978-3-030-58790-1_12

30 O. Kiselyov and H. Watanabe

2. Butler, A.: The treebank semantics parsed corpus (TSPC). https://entrees.github.
io (2022)

3. Champollion, L.: The interaction of compositional semantics and event semantics.
Linguist. Philos. 38(1), 31–66 (2015)

4. Cooper, R., et al.: Using the framework. Deliverable D16, FraCaS Project (1996)
5. Kiselyov, O.: Polynomial event semantics. In: Kojima, K., Sakamoto, M.,

Mineshima, K., Satoh, K. (eds.) JSAI-isAI 2018. LNCS (LNAI), vol. 11717, pp.
313–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31605-1 23

6. Kiselyov, O.: Polynomial event semantics: negation. In: Okazaki, N., Yada, K.,
Satoh, K., Mineshima, K. (eds.) JSAI-isAI 2020. LNCS (LNAI), vol. 12758, pp.
82–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79942-7 6

7. Kiselyov, O., Watanabe, H.: QNP textual entailment with polynomial event seman-
tics. In: Yada, K., Takama, Y., Mineshima, K., Satoh, K. (eds.) JSAI-isAI 2021.
LNCS (LNAI), vol. 13856, pp. 198–211. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-36190-6 14

8. Kubota, Y., Levine, R.D.: Type-Logical Syntax. The MIT Press, Cambridge, MA
(2020)

9. MacCartney, B.: The FRACAS textual inference problem set. https://nlp.stanford.
edu/∼wcmac/downloads/fracas.xml

10. Maienborn, C.: Event semantics, chap. 8, pp. 232–266. Semantics - Theories, De
Gruyter Mouton (2019). https://doi.org/10.1515/9783110589245-008

11. Tian, R., Miyao, Y., Matsuzaki, T.: Logical inference on dependency-based com-
positional semantics. In: ACL (1), pp. 79–89. The Association for Computer Lin-
guistics (2014). http://aclweb.org/anthology/P/P14/

12. Tomita, Y.: Solving event quantification and free variable problems in semantics
for minimalist grammars. In: Proceedings of the 30th Pacific Asia Conference on
Language, Information and Computation, PACLIC 30: Oral Papers, pp. 219–227.
ACL, Seoul, South Korea (2016), https://aclanthology.org/Y16-2020/

https://entrees.github.io
https://entrees.github.io
https://doi.org/10.1007/978-3-030-31605-1_23
https://doi.org/10.1007/978-3-030-79942-7_6
https://doi.org/10.1007/978-3-031-36190-6_14
https://doi.org/10.1007/978-3-031-36190-6_14
https://nlp.stanford.edu/~wcmac/downloads/fracas.xml
https://nlp.stanford.edu/~wcmac/downloads/fracas.xml
https://doi.org/10.1515/9783110589245-008
http://aclweb.org/anthology/P/P14/
https://aclanthology.org/Y16-2020/

	Events and Relative Clauses
	1 Introduction
	2 Background
	2.1 Coordination and Quantification
	2.2 Negation

	3 Subject Relative Clauses
	4 Other Relative Clauses
	4.1 Relative Algebra

	5 Relative Clauses, Database Joins, and Trace as a Wide-Scope Indefinite
	6 Negation in Relative Clauses
	7 Related Work, Discussion and Conclusions
	References

