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Abstract. The problem of particulars and universals is one of the most
essential problems in the formal philosophy of language in the sense
that it consists in a crossroads of ontology and semantics. According to
Resemblance Nominalism, resemblance relations are primitive and the
properties of a thing are defined by them. We (2020) proposed, in terms
of measurement theory, a first-order modal resemblance logic MRL that
can furnish solutions to the problems with which Resemblance Nominal-
ism is confronted. Yi (2014) raises a new version of degree of resemblance
problem with Resemblance Nominalism of Rodriguez-Pereyra (2002). We
think this problem to be a problem of multidimensionality. When we con-
sidered this problem, we realized that the model of MRL was not able to
deal appropriately with the multidimensionality of this type of problem.
The aim of this paper is to revise MRL so that the revised first-order
modal resemblance logic RMRL can solve Rodriguez-Pereyra-Yi Prob-
lem in terms of measurement-theoretic multidimensional representation.
Measurement theory makes it possible that qualitative resemblance rela-
tions can represent quantitative (numerical) functions, whereas it is not
designed to explicate the parthood between a particular and its parts
referred to for determining the raking on a resemblance relation. So, in
the construction of the multidimensional model of RMRL, we connect
measurement-theory with mereology that can explicate the parthood
between a particular and its parts referred to for determining the raking
on a resemblance relation. The punch line of Resemblance Nominalism
is the reducibility of universals into resemblance relations. The point of
formalizing Resemblance Nominalism in RMRL is to avoid the circularity
in this reduction into which it tends to slide.
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1 Motivation

The problem of particulars and universals is one of the most essential problems
in the formal philosophy of language in the sense that it consists in a cross-
roads of ontology and semantics: When we translate a natural language into
a first-order (modal) language, (though it is a problem which formal language
we should adopt in this translation), the semantic problem as to which entity
we should choose as the semantic value of a symbol in the model of first-order
modal logic depends crucially on the ontological problem as to which ontology we
should adopt. According to Rodriguez-Pereyra [5], there are at least two kinds of
Nominalism: one that maintains that there are no universals and the other that
maintains that there are no abstract objects like classes, functions, numbers and
possible worlds. On the other hand, Realism about universals is the doctrine that
there are universals, and Platonism about abstract objects is the doctrine that
there are abstract objects. The doctrines about universals and the doctrines
about abstract objects are independent. Nominalisms about universals can be
classified into at least eight types: Trope Theory, Predicate Nominalism, Con-
cept Nominalism, Ostrich Nominalism, Mereological Nominalism, Class Nomi-
nalism, Resemblance Nominalism, and Causal Nominalism.1 In this paper we
focus on Resemblance Nominalism. Rodriguez-Pereyra [4] is the most frequently
mentioned work in the field of Resemblance Nominalism. As Rodriguez-Pereyra
[5] argues, according to Resemblance Nominalism, it is not because things are
scarlet that they resemble one another, but what makes them scarlet is that they
resemble one another. Resemblance relations are primitive and the properties of
a thing are defined by resemblance relations. Resemblance Nominalism reifies
neither resemblance relations nor accessibility relations in themselves. Resem-
blance Nominalism in general is confronted with at least seven problems: Imper-
fect Community Problem, Companionship Problem, Mere Intersections Prob-
lem, Contingent Coextension Problem, Necessary Coextension Problem, Infinite
Regress Problem, and Degree of Resemblance Problem.2 We [8] proposed, in
terms of measurement theory, a first-order modal resemblance logic MRL that
can furnish solutions to all of these problems. Yi [10] raises a version of degree
of resemblance problem. Yi [10, pp.622-625] argues as follows:

(1) Carmine resembles vermillion more than it resembles triangularity.

(2) is a resemblance-nominalistic formulation that expresses what makes (1) true:

(2) Some carmine particular resembles some vermillion particular more
closely than any carmine particular resembles any triangular particular.

Rodriguez-Pereyra [4, p.65] defines the degree of resemblance as follows :

Definition 1 (Degree of Resemblance). The particulars resemble to the
degree n iff they share n properties.

1 Refer to Rodriguez-Pereyra [5] for details of these eight types.
2 Refer to Rodriguez-Pereyra [4] for details of these seven problems.
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By “properties”, Rodriguez-Pereyra means sparse properties. Rodriguez-Pereyra
[4, p.20,pp.50-52] adopts the following Lewis [2]’s distinction between abundant
and sparse properties:

[The abundant properties] pay no heed to the qualitative joints, but carve
things up every which way. Sharing them has nothing to do with similarity
[(resemblance)] . . . There is one of them for any condition we could write
down, even if we could write at infinite length and even if we could name
all those things that must remain nameless because they fall outside our
acquaintance. [They] are as abundant as the sets themselves, because for
any whatever, there is the property of belonging to that set . . . The sparse
properties are another story. Sharing of them makes for qualitative simi-
larity [(resemblance)], they carve at the joints, they are intrinsic, they are
highly specific, the sets of their instances are ipso facto not miscellaneous,
they are only just enough of them to characterise things completely sand
without redundancy.[2, pp. 59-60]

In this paper, we use “properties” in this sense of sparse properties as well as
Rodriguez-Pereyra. Under Definition 1, (2) compares the maximum degrees of
resemblance. But (2) is false because a possible carmine particular completely
resembles a possible triangular particular. For the same particular might be both
carmine and triangular. Rodriguez-Pereyra [6] responses to Yi by replacing (2)
by (3):

(3) Some carmine particular resembles some triangular particular less
closely than any carmine particular resembles any vermillion particular.

Again under Definition 1, (3) compares the minimum degrees of resemblance.
Rodriguez-Pereyra [6, p.225] argues that (3) is true because the minimum degree
to which a carmine particular can resemble a triangular particular (degree 0) is
smaller than the minimum degree to which a carmine particular can resemble
a vermillion particular (a degree greater than 0). Yi [11, p.796] criticizes this
Rodriguez-Pereyra’s response by arguing that it rests on a false assumption: the
minimum degree to which a carmine particular can resemble a vermillion par-
ticular is greater than 0. For, on Rodriguez-Pereyra’s notion of resemblance, a
carmine particular cannot resemble a vermillion particular unless they share a
sparse property, but they might not share any such property. A carmine partic-
ular and a vermillion particular might share no non-color sparse property, and
two such particulars share also no color sparse property because they have dif-
ferent determinate color properties (i.e., carminity and vermillionity). Although
they share determinable color properties (e.g., red), this does not help because,
in Rodriguez-Pereyra’s view, determinable properties are not sparse properties.
So the minimum degree to which a carmine particular can resemble a vermillion
particular might be 0. No doubt this argument by Yi needs examining in detail,
but we can safely say that the main culprit of this Rodriguez-Pereyra-Yi Problem
is Definition 1 on which both (2) and (3) are based. We consider this problem
to be a problem of multidimensionality (such three dimensionality as carminity,
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vermillionity and triangularity) that requires quantitative (numerical) represen-
tations because we cannot have computational method of aggregation only in
terms of qualitative resemblance relations. When we considered this problem,
we realized that the model of MRL was not able to deal appropriately with the
multidimensionality of this type of problem. The aim of this paper is to revise
MRL so that the revised first-order modal resemblance logic RMRL can solve
Rodriguez-Pereyra-Yi Problem in terms of measurement-theoretic multidimen-
sional representation.3 Measurement theory makes it possible that qualitative
resemblance relations can represent quantitative (numerical) functions, whereas
it is not designed to explicate the parthood between a particular and its parts
(referred to for determining the raking on a resemblance relation). So, in the
construction of the multidimensional model of RMRL, we would like to connect
measurement-theory with mereology4 that can explicate the parthood between
a particular and its parts referred to for determining the raking on a resem-
blance relation. The punch line of Resemblance Nominalism is the reducibility
of universals into resemblance relations. The point of formalizing Resemblance
Nominalism in RMRL is to avoid the circularity in this reduction into which it
tends to slide. In this paper, we try to give a solution to Rodriguez-Pereyra-
Yi Problem by defining in RMRL the degree of unresemblance (Definition 20 ),
instead of using Definition 1 (on which both (2) and (3) are based) that is the
main culprit of this problem so that, in the multidimensional comparison of
unresemblance of (1),

the weighted sum of the degrees of unresemblance of carmine particulars
to triangular particulars may be greater than that of carmine particulars
to vermillion particulars.

In so doing, RMRL obtains the capacity to deal with multidimensionality in
general beyond Rodriguez-Pereyra-Yi Problem. In the semantics of RMRL, a
resemblance relation is primitive and the degree of unresemblance is defined in
Definition 20 by it via Representation Theorem (Theorem 3) and Uniqueness
Theorem (Theorem 4).

The structure of this paper is as follows. In Subsect. 2.1, we define the lan-
guage L of RMRL. In Subsubsect. 2.2.1, we define three measurement-theoretic
concepts. In Subsubsect. 2.2.2, we prepare the seven steps to a mereological addi-
tive difference factorial proximity structured model M of RMRL. In Subsubsect.
2.2.3, we provide RMRL with a satisfaction definition relative to M, define the
truth at w ∈ W in M, define validity. In Subsubsect. 2.2.4, we show the represen-
tation and uniqueness theorems for (multidimensional) resemblance predicates.
In Sect. 3, we conclude by giving a solution to Rodriguez-Pereyra-Yi Problem by
RMRL.

3 About measurement-theoretic multidimensional representation, refer to Suppes et
al. [7].

4 About mereology, refer to Varzi [9].



Measurement Theory Meets Mereology 217

2 Measurement Theory Meets Meleology in RMRL

2.1 Language

In this paper, we focus only on the ontology ofproperties that are the sematic
values of one-place predicate symbols. So we do not introduce n-place predicate
symbols (n ≥ 2) in general into the language of RMRL the semantic values of
which are n-ary relations, though we introduce four-place resemblance predicate
symbols indexed by one-place predicate symbols. We define the language L of
revised first-order modal resemblance logic RMRL:

Definition 2 (Language).

– Let V denote a class of individual variables, C a class of individual constants,
and P a class of one-place predicate symbols.

– Let �F denote a four-place resemblance predicate symbol indexed by F .
– When n ≥ 2, let �F1×···×Fn

denote a four-place resemblance predicate symbol
indexed by F1, . . . , Fn.

– The language L of RMRL is given by the following BNF grammar:

t ::= x | a
ϕ ::= F (t) | t1 = t2 | ⊥ | ¬ϕ | ϕ ∧ ψ |
(t1, t2) �F (t3, t4) | (t1, t2) �F1×···×Fn

(t3, t4) | �ϕ | ∀xϕ,

where x ∈ V , a ∈ C , and F1, . . . , Fn ∈ P.
– �, ∨, →, ↔, <F , <F1×···×Fn

, � and ∃ are introduced by the standard defi-
nitions.

– (t1, t2) �F (t3, t4) means that t3 does not resemble t4 more than t1 resembles
t2 with respect to F -ness.

– When n ≥ 2, (t1, t2) �F1×···×Fn
(t3, t4) means that t3 does not resemble t4

more than t1 resembles t2 with respect to F1-ness and . . . and Fn-ness.
– The set of all well-formed formulae of L is denoted by ΦL .

Remark 1 (Modal Part of RMRL). In this paper, we do not deal with Con-
tingent Coextension and Necessary Coextension Problems above neither of which
relates to multidimensionality that is the main topic of this paper, though we did
in [8]. The motivation to introduce a modality � into L is only to solve Con-
tingent Coextension and Necessary Coextension Problems.

2.2 Semantics

2.2.1 Three Measurement-Theoretic Concepts Here we would like to
define such measurement-theoretic concepts as

1. scale types,
2. representation and uniqueness theorems, and
3. measurement types
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on which the argument of this paper is based: First, according to Roberts [3, pp.
64-69], we classify scale types in terms of the class of admissible transformations
ϕ:

Definition 3 (Scale Types).

– A scale is a triple (U,V, f) where U is an observed relational structure that
is qualitative, V is a numerical relational structure that is quantitative, and
f is a homomorphism from U into V.

– Sometimes we sloppily refer to f alone as a scale.
– Suppose that D is the domain of U and that D ′ is the domain of V. Suppose

that ϕ is a function that maps the range of f , the set f(D) := {f(d) : d ∈ D},
into D ′. Then the composition ϕ ◦ f is a function from D into D ′. If ϕ ◦ f is
a homomorphism from U into V, we call ϕ an admissible transformation of
scale.

– When the admissible transformations are all the functions ϕ of the form
ϕ(x) := αx;α > 0. ϕ is called a similarity transformation, and a scale with
the similarity transformations as its class of admissible transformations is
called a ratio scale.

– When the admissible transformations are all the functions ϕ of the form
ϕ(x) := αx + β;α > 0, ϕ is called a positive affine transformation, and a
corresponding scale is called an interval scale.

– When the admissible transformations are all the functions ϕ of the form
ϕ(x) := αx + β;α 
= 0, ϕ is called an affine transformation, and a corre-
sponding scale is called a quasi-interval scale.

– When a scale is unique up to order, the admissible transformations are mono-
tone increasing functions ϕ(x), that is, functions ϕ(x) satisfying the condition
that x � y iff ϕ(x) ≤ ϕ(y), where � is a binary relation on D . Such a scale
is called an ordinal scale.

Example 1 (Mass and Temperature).

– The measurement of mass is the assignment of a homomorphism f from the
observed relational structure (A,H,©) (where we judge d1 to be heavier than
d2 and the binary operation satisfies f(d1 © d2) = f(d1) + f(d2) for any
d1, d2 ∈ A) to the numerical relational structure (R, >,+). Mass is an example
of a ratio scale.

– The measurement of temperature is the assignment of a homomorphism f
from the observed relational structure (A,W ) (where A is a set of objects and
the binary relation d1Wd2 holds iff we judge d1 to be warmer than d2) to
the numerical relational structure (R, >). Temperature is an example of an
interval scale.

Second, according to Roberts [3, pp. 54-56], we define representation and
uniqueness theorems:

Definition 4 (Representation Theorem and Uniqueness Theorem).
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– The first basic problem of measurement theory is the representation prob-
lem: Given a numerical relational structure V, find conditions on an observed
relational structure U (necessary and) sufficient for the existence of a homo-
morphism f from U to V that preserves all the relations and operations in
U.

– The theorem stating conditions on U are (necessary and) sufficient for the
existence of f is called a representation theorem.

– The second basic problem of measurement theory is the uniqueness problem:
Find the transformation of the homomorphism f under which all the relations
and operations in U are preserved.

– The theorem stating the type of transformation up to which f is unique is
called a uniqueness theorem.

Third, according to Roberts [3, pp. 122-131, pp. 134-142] and Krantz et al., [1,
pp. 136-157], we classify measurement types:

Definition 5 (Measurement Types).

– Suppose D is a set, �′ is a binary relation on D , © is a binary operation on
D , � is a quaternary relation on D , and f is a real-valued function.

– Then we call the representation d1 �′ d2 iff f(d1) ≤ f(d2), for any d1, d2 ∈ D ,
and f(d1 © d2) = f(d1) + f(d2), for any d1, d2 ∈ D , extensive measurement.

– We call the representation (d1, d2) � (d3, d4) iff f(d1)−f(d2) ≤ f(d3)−f(d4),
for any d1, d2, d3, d4 ∈ D , when the direction of differences is taken into con-
sideration, positive-difference measurement, when the direction of differences
is not taken into consideration, algebraic-difference measurement.

– We call the representation (d1, d2) � (d3, d4) iff |f(d1) − f(d2)| ≤ |f(d3) −
f(d4)| for any d1, d2, d3, d4 ∈ D , absolute-difference measurement.

2.2.2 Seven Steps to Construct Model M of RMRL By using some
measurement-theoretic concepts of Krantz et al. [1] and Suppes et al. [7], we
prepare the following seven steps to construct a model M of RMRL:

2.2.2.1 First Step
The first step is a step to prepare an absolute difference structure for the seman-
tics of �F and �F1×···×Fn

. We resort to an absolute difference structure in order
to solve the problems of Resemblance Nominalism. Krantz et al. [1, pp.172-173]
define an absolute difference structure:

Definition 6 (Absolute Difference Structure). Suppose D is a nonempty
set and � a quaternary relation on D (binary relation on D ×D). (D ,�) is an
absolute difference structure iff, for any d1, d2, d3, d4, d

′
1, d

′
2, d

′
3 ∈ D , the following

six conditions are satisfied:

Condition 1 (Weak Order) � is a weak order (Connected and Transitive).
Condition 2 (Absoluteness) If d1 
= d2, then (d1, d1) ∼ (d2, d2) ≺ (d1, d2) ∼

(d2, d1), where (d1, d2) ∼ (d3, d4) := (d1, d2) � (d3, d4) and (d3, d4) � (d1, d2),
and (d1, d2) ≺ (d3, d4) := (d3, d4) 
� (d1, d2).
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Condition 3 (Betweenness)
1. If d2 
= d3, (d1, d2), (d2, d3) � (d1, d3), and (d2, d3), (d3, d4) � (d2, d4),

then (d1, d3), (d2, d4) � (d1, d4).
2. If (d1, d2), (d2, d3) � (d1, d3) and (d1, d3), (d3, d4) � (d1, d4), then

(d1, d3) � (d1, d4).
Condition 4 (Weak Monotonicity) Suppose that (d1, d2), (d2, d3) � (d1, d3).

If (d1, d2) � (d′
1, d

′
2) and (d2, d3) � (d′

2, d
′
3), then (d1, d3) � (d′

1, d
′
3). Moreover

if either (d1, d2) ≺ (d′
1, d

′
2) or (d2, d3) ≺ (d′

2, d
′
3), then (d1, d3) ≺ (d′

1, d
′
3).

Condition 5 (Solvability) If (d3, d4) � (d1, d2), then there exists d′
4 ∈ D such

that (d′
4, d2) � (d1, d2) and (d1, d′

4) ∼ (d3, d4).
Condition 6 (Archimedean Property) If d

(1)
1 , d

(2)
1 , . . . , d

(i)
1 , . . . is a strictly

bounded standard sequence (i.e., there exist d2, d3 ∈ D such that for any i =
1, 2, . . ., (d(i)1 , d

(1)
1 ) � (d(i+1)

1 , d
(1)
1 ) ≺ (d2, d3) and (d(1)1 , d

(1)
1 ) ≺ (d(2)1 , d

(1)
1 ) ∼

(d(i+1)
1 , d

(i)
1 )), then the sequence is finite.

The following definition [1, p.172] makes Conditions 3-6 easy to understand.

Definition 7 (Betweenness). Suppose (D ,�) satisfies Conditions 1 and 2 of
Definition 6. We say that d2 is between d1 and d3 (in symbols, d1|d2|d3) iff
(d1, d2), (d2, d3) � (d1, d3).

We can replace Conditions 3-6 by the following Conditions 3’-6’:

Condition 3’ (Betweenness)
1. If d2 
= d3, d1|d2|d3, and d2|d3|d4, then both d1|d2|d4 and d1|d3|d4.
2. If d1|d2|d3 and d1|d3|d4, then d1|d2|d4.

Condition 4’ (Weak Monotonicity) If d1|d2|d3, d′
1|d′

2|d′
3, and (d1, d2) ∼

(d′
1, d

′
2), then (d2, d3) � (d′

2, d
′
3) iff (d1, d3) � (d′

1, d
′
3).

Condition 5’ (Solvability) If (d3, d4) � (d1, d2) then there exists d′
4 ∈ D with

d1|d′
4|d2 and (d1, d′

4) ∼ (d3, d4).
Condition 6’ (Archimedean Property) If d(i+1)

1 |d(i)1 |d(1)1 for any i = 1, 2, . . .,
successive intervals are equal and nonnull, and (d(i)1 , d

(1)
1 ) is strictly bounded,

then the sequence is finite.

Krantz et al. [1, pp.173-177] prove the following theorems:

Fact 1 (Representation). If (D ,�) is an absolute difference structure, then
there exists a real-valued function f on D such that, for any d1, d2, d3, d4 ∈ D ,
(d1, d2) � (d3, d4) iff |f(d1) − f(d2)| ≤ |f(d3) − f(d4)|.
Fact 2 (Uniqueness). The above function f is a quasi-interval scale.

2.2.2.2 Second Step
The second step is a step to prepare a basic multidimensional structure for
�F1×···×Fn

. Suppes et al. [7, pp. 160-161] define a basic multidimensional com-
parison structure, called a factorial proximity structure:

Definition 8 (Factorial Proximity Structure).
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– (D ,�) is a proximity structure iff the following conditions are satisfied for
any d1, d2 ∈ D :

• � is a weak order.
• (d1, d1) ≺ (d1, d2) whenever d1 
= d2.
• (d1, d1) ∼ (d2, d2) (Minimality).
• (d1, d2) ∼ (d2, d1) (Symmetricity).

– The structure is called n-factorial iff D :=
n∏

i=1

Di.

– We use the expression “d1 · · · dn(∈ D)” for the n-tuple of di ∈ Di (1 ≤ i ≤ n).

Remark 2 (Motivation to Introduce Mereology into Model of RMRL).
The motivation to introduce mereology into the model M of RMRL is that the
ontological status of this n-tuple d1 · · · dn is not clear.

2.2.2.3 Third Step
In order to make each dimensional factor the absolute value of a scale difference,
we first establish decomposability of a factorial proximity structure (D ,�) into
each factor (Di,�i) where �i is an induced weak order of Definition 10 below.
To achieve it, (D ,�) must satisfy Betweenness, Restricted Solvability, and the
Archimedean Property. In order to define Betweenness, we need One-Factor Inde-
pendence. Suppes et al. [7, pp.178-181] define these concepts as follows:

Definition 9 (One-Factor Independence). A factorial proximity struc-
ture (D ,�) satisfies One-Factor Independence iff the following holds for any
d1, d

′
1, d2, d

′
2, d3, d

′
3, d4, d

′
4 ∈ D : If the two elements in each of the pairs

(d1, d′
1), (d2, d

′
2), (d3, d

′
3), (d4, d

′
4) have identical components on all but one fac-

tor, and two elements in each of the pairs (d1, d3), (d′
1, d

′
3), (d2, d4), (d

′
2, d

′
4) have

identical components on the remaining factor, then

(d1, d2) � (d′
1, d

′
2) iff (d3, d4) � (d′

3, d
′
4).

If we consider all pairs whose elements differ with respect to the i th factor
only, then one-factor independence asserts that for any i(1 ≤ i ≤ n) the induced
weak order �i on Di × Di of Definition 10 below is independent of the fixed
components of the remaining Di × Di for j 
= i.

Definition 10 (Betweenness).

– Let (D :=
∏n

i=1 Di,�) be a factorial proximity structure that satisfies One-
Factor Independence.

– Let �i denote an induced weak order on Di × Di.
– We say that d2 is between d1 and d3, denoted by d1|d2|d3, iff

(d(i)1 , d
(i)
2 ), (d(i)2 , d

(i)
3 ) �i (d(i)1 , d

(i)
3 ) for any i.

– A factorial proximity structure (D ,�) satisfies Betweenness iff the following
hold for any d1, d2, d3, d4, d

′
1, d

′
2, d

′
3 ∈ D :
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1. Suppose that d1, d2, d3, d4 differ on at most one factor, and d2 
= d3, then
(a) if d1|d2|d3 and d2|d3|d4, then d1|d2|d4 and d1|d3|d4, and
(b) if d1|d2|d3 and d1|d3|d4, then d1|d2|d4 and d2|d3|d4.

2. Suppose that d1, d2, d3, d
′
1, d

′
2, d

′
3 differ on at most one factor, d1|d2|d3,

d′
1|d′

2|d′
3, and (d2, d3) ∼ (d′

2, d
′
3), then

(d1, d2) � (d′
1, d

′
2) iff (d1, d3) � (d′

1, d
′
3).

Betweenness (Definition 10) is an extension of the one-dimensional concept of
Betweenness (Condition 3) of Definition 6 above. Betweenness (Definition 10) is
a one-dimensional property that each induced weak order �i must satisfy.

Definition 11 (Restricted Solvability). A factorial proximity structure
(D ,�) satisfies Restricted Solvability iff, for any d1, d3, d4, d5, d6 ∈ D , if
(d4, d3) � (d5, d6) � (d4, d1), then there exists d2 ∈ D such that d1|d2|d3 and
(d4, d2) ∼ (d5, d6).

Just as the role of Solvability (Condition 5) of Definition 6 above is to determine a
class of absolute difference structures of Definition 6 on the basis of which Fact
1 (Representation) above can be proved, so the role of Restricted Solvability
is to determine a class of additive difference factorial proximity structures of
Definition 15 below on the basis of which Theorem 1 (Representation) below
can be proved.

Definition 12 (Archimedean Property). A factorial proximity structure
(D ,�) satisfies the Archimedean Property iff, for any d1, d2, d3, d4 ∈ D with
d1 
= d2, any sequence {d(i)5 : d(i)5 ∈ D , i = 0, 1, . . .} that varies on at most one
factor, such that

d
(0)
5 = d3,

(d1, d2) ≺ (d(i)5 , d
(i+1)
5 ) and (d3, d

(i)
5 ) ≺ (d3, d

(i+1)
5 ) ≺ (d3, d4) for any i,

is finite.

Just as the Archimedean Property (Condition 6) of Definition 6 above is a tech-
nically necessary condition to prove Fact 1 (Representation) above and Fact 5
(Representation) below, so the Archimedean Property (Definition 12) is a tech-
nically necessary condition to prove Fact 3 (Representation) below. Suppes et
al. [7, p. 181] prove the following theorems:

Fact 3 (Representation). Suppose (D ,�) is a factorial proximity structure
that satisfies One-Factor Independence (Definition 9), Betweenness (Definition
10), Restrict Solvability (Definition 11), and the Archimedean Property (Defini-
tion 12). Then there exist real-valued functions fi defined on Di (1 ≤ i ≤ n) and
real-valued function g that increases in each of n real arguments such that

δ(d1, d2) := g(|f1(d(1)1 ) − f1(d
(1)
2 )|, . . . , |fn(d(n)1 )) − fn(d(1)2 )|)

and
(d1, d2) � (d3, d4) iff δ(d1, d2) ≤ δ(d3, d4).
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Fact 4 (Uniqueness). The above functions fi are interval scales, and the above
function g is an ordinal scale.

2.2.2.4 Fourth Step
In order to represent the sum of dimensional factors, a factorial proximity struc-
ture (D ,�) should satisfy Independence and the Thomsen Condition only for the
dimensionality n = 2. Suppes et al. [7, p. 182] define these concepts as follows:

Definition 13 (Independence). A factorial proximity structure (D ,�) sat-
isfies Independence iff the following holds for any d1, d

′
1, d2, d

′
2, d3, d

′
3, d4, d

′
4 ∈

D : If the two elements in each of (d1, d′
1), (d2, d

′
2), (d3, d

′
3), (d4, d

′
4) have

identical components on one factor, and the two elements in each of
(d1, d3), (d′

1, d
′
3), (d2, d4), (d

′
2, d

′
4) have identical components on all the remaining

factors, then
(d1, d2) � (d′

1, d
′
2) iff (d3, d4) � (d′

3, d
′
4).

Remark 3 (One-Factor Independence and Independence) Independence
(Definition 13) implies One-Factor Independence (Definition 9).

Just as One-Factor Independence (Definition 9) above is a necessary condition
to prove Fact 3 (Representation) above, so Independence (Definition 13) is a
necessary condition to prove Fact 5 (Representation) below.

Definition 14 (Thomsen Condition). A factorial proximity structure (D ,�
) with D := D1 × D2 satisfies the Thomsen Condition iff, for any
d
(i)
1 , d

(i)
2 , d

(i)
3 , d

(i)
4 , d

(i)
5 , d

(i)
6 ∈ Di (i = 1, 2),

(d(1)1 d
(2)
5 , d

(1)
2 d

(2)
6 ) ∼ (d(1)5 d

(2)
3 , d

(1)
6 d

(2)
4 )

and
(d(1)5 d

(2)
1 , d

(1)
6 d

(2)
2 ) ∼ (d(1)3 d

(2)
5 , d

(1)
4 d

(2)
6 )

imply
(d(1)1 d

(2)
1 , d

(1)
2 d

(2)
2 ) ∼ (d(1)3 d

(2)
3 , d

(1)
4 d

(2)
4 ).

Remark 4 (Thomsen Condition Only for Two Dimensionality). The
Thomsen Condition must be assumed only when the dimensionality n = 2.

Suppes et al. [7, p. 183] prove the following theorems:

Fact 5 (Representation). Suppose that (D ,�) is a factorial proximity struc-
ture that satisfies Restrict Solvability (Definition 11) and Independence (Defini-
tion 13), and that each structure (Di,�i), where �i is an induced weak order
on Di ×Di, satisfies the Archimedean Property (Condition 6 of Definition 6). If
n ≥ 3, then there exist real-valued functions fi defined on Di × Di (1 ≤ i ≤ n)
such that for any d1, d2, d3, d4 ∈ D ,

(d(1)1 · · · d(n)1 , d
(1)
2 · · · d(n)2 ) � (d(1)3 · · · d(n)3 , d

(1)
4 · · · d(n)4 )
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iff
n∑

i=1

fi(d
(i)
1 , d

(i)
2 ) ≥

n∑

i=1

fi(d
(i)
3 , d

(i)
4 ).

If n = 2, then the above assertions hold provided the Thomsen Condition (Defi-
nition 14) is also satisfied.

Fact 6 (Uniqueness). The above functions fi are interval scales.

2.2.2.5 Fifth Step
The fifth step is a step to combine the third and fourth steps. Suppes et al. [7,
p. 184] define an additive difference factorial proximity structure as follows:

Definition 15 (Additive Difference Factorial Proximity Structure).

When n ≥ 2 and the factorial proximity structure (D(:=
n∏

i=1

Di),�) satisfies

Betweenness, Restricted Solvability, the Archimedean Property, Independence,
and the Thomsen Condition, we call it an additive difference factorial proximity
structure.

By combining Facts 3–6, Suppes et al. [7, p. 185] prove the following theorems:

Fact 7 (Representation). If (D ,�) is an additive difference factorial prox-
imity structure (Definition 15), there exist real-valued functions fi defined on
Di (1 ≤ i ≤ n) such that for any d1, d2, d3, d4 ∈ D ,

(d(1)1 · · · d(n)1 , d
(1)
2 · · · d(n)2 ) � (d(1)3 · · · d(n)3 , d

(1)
4 · · · d(n)4 )

iff
n∑

i=1

gi(|fi(d(i)1 ) − fi(d
(i)
2 )|) ≤

n∑

i=1

gi(|fi(d(i)3 ) − fi(d
(i)
4 )|)

Fact 8 (Uniqueness). The above functions fi are interval scales and the above
functions gi are interval scales with a common unit.

2.2.2.6 Sixth Step
The ontological status of an n-tuple d1 · · · dn in Definition 8 is not clear. So in
order to describe the parthood between a particular and its parts referred to for
determining the raking on a resemblance relation, we would like to introduce
mereology :

Definition 16 (Mereology).

– A mereological parthood relation P (Varzi [9, p.14]) is a binary relation on
D satisfying the following properties:

• For any d ∈ D , P (d, d) (Reflexivity).
• For any d1, d2, d3 ∈ D , if P (d1, d2) and P (d2, d3), then P (d1, d3)

(Transitivity).
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• For any d1, d2 ∈ D , if P (d1, d2) and P (d2, d1), then d1 equals d2
(Antisymmetry).

– For any d1, d2 ∈ D , a mereological proper parthood relation PP (d1, d2) is
such a binary relation on D that P (d1, d2) and d1 does not equal d2.

– For any d1, d2 ∈ D , a mereological overlap relation O(d1, d2) is such a binary
relation on D that there exists d3 ∈ D such that P (d3, d1) and P (d3, d2).

– For any d1, d2 ∈ D , if PP (d1, d2), then there exists d3 ∈ D such that P (d3, d2)
and not O(d3, d1) (Supplementation) (Varzi [9, pp.51-52]).

– For any d1, d2, d3 ∈ D , a mereological product relation PR(d3, d1, d2) is such
a ternary relation on D that P (d4, d3) iff P (d4, d1) and P (d4, d2), for any
d4 ∈ D .

– For any d1, d2 ∈ D , then there exists d3 ∈ D such that PR(d3, d1, d2)
(Product).

– For any d1, d2 ∈ D , we define d1
⊗

d2 as the uniquely existential object bear-
ing the relation PR with d1 and d2, in symbols, ιd3PR(d3, d1, d2) (Varzi [9,
pp.51-52]).

Example 2 (Rodriguez-Pereyra-Yi Problem and Mereology). In Rodri-
guez-Pereyra-Yi Problem, by means of a mereological parthood function P , we
would like to describe the parthood between a particular and its parts referred
to for determining the raking on resemblance relations with respect to carminity
and vermillionity and triangularity. In this case, neither carminity, vermillionity
nor triangularity themselves is reified.

2.2.2.7 Final Step
By connecting measurement-theoretic concepts with mereological concepts, we
define a mereorogical additive difference factorial proximity structured model M
of RMRL:

Definition 17 (Mereorogical Additive Difference Factorial Proximity
Structured Model).

– The mereological additive difference factorial proximity structured frame of
RMRL is a structure

F := (W , R,D , {�F }F∈P , {D�F
}F∈P , P, {�F1×···×Fn

}F1...,Fn∈P ),

where
• W is a non-empty class of worlds,
• R a binary accessibility relation on W ,
• D a non-empty class of particulars,
• {�F }F∈P a family of such quaternary relations �F on D that (D ,�F ) is

an absolute difference structure and �F satisfies Maximality of Definition
8,

• {D�F
}F∈P a non-empty class of D�F

which is a non-empty class of the
parts of particulars referred to for determining the ranking on �F and
which postulates that there exists a unique F -part of a particular belonging
to D ,



226 S. Suzuki

• P a mereological parthood relation on D ∪
⋃

F∈P

D�F
of Definition 16

• {�F1×···×Fn
}F1...,Fn∈P a family of such quaternary relations �F1×···×Fn

on DF1 × · · · × DFn
that (DF1 × · · · × DFn

,�F1×···×Fn
) is an additive

difference factorial proximity structure.
– A function I is an interpretation of F if I

• assigns to each a ∈ C and each w ∈ W some object that is a member of
D that satisfies Transworld Identity: for any w,w′,

I(a,w) = I(a,w′),

and
• assigns to each four-place resemblance predicate symbol �F and each w ∈
W such a quaternary relation �F , and

• assigns to each four-place resemblance predicate symbol �F1×···×Fn
and

each w ∈ W such a quaternary relation �∗
F1×···×Fn

that it is defined as
follows:

if, for any particular d1, d2, d3, d4 ∈ D , ιdi+4P (di+4, d1),

ιdi+5P (di+5, d2), ιdi+6P (di+6, d3), ιdi+7P (di+7, d4) ∈ DFi
are

such uniquely existential parts of d1, d2, d3, d4 respectively, then

(d1, d2) �∗
F1×···×Fn

(d3, d4)

iff

(
n⊗

i=1

ιdi+4P (di+4, d1),
n⊗

i=1

ιdi+5P (di+5, d2))

�F1×···×Fn

(
n⊗

i=1

ιdi+6P (di+6, d3),
n⊗

i=1

ιdi+7P (di+7, d4)).

(Refer to Definition 16 for the definition of ⊗.)
– A property class I(F,w) is defined as a maximal resemblance class in terms

of a resemblance relation �F : A � D is a property class I(F,w) iff (D ,�F )
is an absolute difference structure and for any d1, d2, d3 ∈ A and for any
d4 ∈ A,

(d1, d2) ≺F (d3, d4) (Maximality).

– The mereological additive difference factorial proximity structured model of
RMRL is a structure

M := (W , R,D , {�F }F∈P , {D�F
}F∈P , P, {�F1×···×Fn

}F1...,Fn∈P , I).

Remark 5 (�∗
F1×···×Fn

and �F1×···×Fn
). In this definition, we consider the

comparison (�∗
F1×···×Fn

) of differences of resemblance between particulars with
respect to F1-ness and . . . and Fn-ness to be the comparison (�F1×···×Fn

) of
difference of resemblance between the n-tuple products of parts of a particular
referred to for determining the raking on resemblance relations with respect to
F1-ness and . . . and with respect to Fn-ness, respectively.
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Remark 6 (Not Absoluteness But Conditionality). The mereological
additive difference factorial proximity structured model of RMRL does not require
that �F should absolutely satisfy such conditions above as Betweenness and the
Archimedean Property and so on, but requires that if �F satisfies them, then
Theorems 1–4 below can be proven.

Remark 7 (Nominalism about Universals). M is nominalistic both about
such universals as properties and about �F and R neither of which are rei-
fied, whereas it is Platonistic about such abstract objects as classes, func-
tions, numbers and possible worlds. As Rodriguez-Pereyra [5] observes, Real-
ism/Nominalism about universals is independent of Platonism/Nominalism
about abstract objects.

Remark 8 (Non-Circularity of Resemblance Relation). Since a resem-
blance relation �F depends not on a property class I(F,w) defined by �F but
on a predicate symbol F , where I(F,w) is the semantic value of F . In this sense,
�F is not circular.

Remark 9 (Reducibility and Resemblance Nominalism). M is resemb-
lance-nominalistic in the sense that I(F,w) is reducible to �F .

2.2.3 Satisfaction Definition
We define an (extended) assignment as follows:

Definition 18 ((Extended) Assignment).

– We call s : V → D an assignment.
– s̃ : V ∪ C → D is defined as follows:

1. For each x ∈ V , s̃(x) = s(x),
2. For each a ∈ C and each w ∈ W , s̃(a) = I(a,w).

We call s̃ an extended assignment.

We provide MRL with the following satisfaction definition relative to M, define
the truth (at a world) in M by means of satisfaction and then define validity as
follows:

Definition 19 (Satisfaction).

– What it means for M to satisfy ϕ ∈ ΦL at w ∈ W with s, in symbols (M, w) |=
ϕ[s] is inductively defined as follows:

• (M, w) |= (t1, t2) �F (t3, t4)[s] iff (s̃(t1), s̃(t2)) �F (s̃(t3), s̃(t4)),
• (M, w) |= (t1, t2) �F1×···×Fn

(t3, t4)[s] iff (s̃(t1), s̃(t2)) �∗
F1×···×Fn

(s̃(t3), s̃(t4)),
• (M, w) |= F (t)[s] iff s̃(t) ∈ I(F,w), where I(F,w) is defined by Defi-

nition 17,
• (M, w) |= t1 = t2[s] iff s̃(t1) = s̃(t2),
• (M, w) |= �[s],
• (M, w) |= ¬ϕ[s] iff (M, w) 
|= ϕ[s],
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• (M, w) |= ϕ ∧ ψ[s] iff (M, w) |= ϕ[s] and (M, w) |= ψ[s],
• (M, w) |= �ϕ[s] iff for all w ∈ W such that R(w,w′), (M, w′) |= ϕ[s],
• (M, w) |= ∀xϕ[s] iff for any d ∈ D , M |= ϕ[s(x|d)], where s(x|d) is

the function that is exactly like s except for one thing: for the individual
variable x, it assigns the object d. This can be expressed as follows:

s(x|d)(y) :=

{
s(y) if y 
= x

d if y = x.

– If (M, w) |= ϕ[s] for all s, we write (M, w) |= ϕ and say that ϕ is true at w
in M.

– If (M, w) |= ϕ for all w ∈ W , we write M |= ϕ and say that ϕ is true in M.
– If ϕ is true in any model based on the frame of MRL, we write |= ϕ and say

that ϕ is valid.

The next corollary follows from Definitions 17 and 19:

Corollary 1 (Property Class and Resemblance Relation).

(M, w) |= F (t)[s]

iff
s̃(t) ∈ I(F,w)

iff for any d2, d3 ∈ I(F,w) and for any d3 ∈ I(F,w),

(s̃(t), d1) ≺F (d2, d3).

Remark 10 (Definability by Resemblance Relation). The satisfaction
clause of F (t) can be defined by a resemblance relation ≺F .

2.2.4 Representation and Uniqueness Theorems Then the next theo-
rems follows from Facts 1 and 2 and Definition 19.

Theorem 1 (Representation).
If (W , R,D , {�F }F∈P , {D�F

}F∈P , P, {�F1×···×Fn
}F1...,Fn∈P , I) is a mereolog-

ical additive difference factorial proximity structured model of RMRL, then there
exists a function f : D → R satisfying

(M, w) |= (t1, t2) �F (t3, t4)[s]

iff
(s̃(t1), s̃(t2)) �F (s̃(t3), s̃(t4))

iff
|f(s̃(t1)) − f(s̃(t2))| ≤ |f(s̃(t3)) − f(s̃(t4))|.
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Proof.
Suppose that (W , R,D , {�F }F∈P , {D�F

}F∈P , P, {�F1×···×Fn
}F1...,Fn∈P , I) is

a mereological additive difference factorial proximity structured model of RMRL
(Definition 17). Then because, by Definition 17, (D ,�F ) is an absolute difference
structure (Definition 6), by Fact 1, there exists a function f : D → R satisfying

(s̃(t1), s̃(t2)) �F (s̃(t3), s̃(t4))

iff
|f(s̃(t1)) − f(s̃(t2))| ≤ |f(s̃(t3)) − f(s̃(t4))|.

On the other hand, by Definition 19, we have

(M, w) |= (t1, t2) �F (t3, t4)[s]

iff
(s̃(t1), s̃(t2)) �F (s̃(t3), s̃(t4)).�

Theorem 2 (Uniqueness). The above function f is a quasi-interval scale.

By Facts 7 and 8 and Definition 19, we can prove the following representation
and uniqueness theorems for �F1×···×Fn

:

Theorem 3 (Representation).
If (W , R,D , {�F }F∈P , {D�F

}F∈P , P, {�F1×···×Fn
}F1...,Fn∈P , I) is a mereolog-

ical additive difference factorial proximity structured model of RMRL, then there
exist functions f�Fi

(1 ≤ i ≤ n) : D�Fi
→ R≥0 and monotonically increasing

functions g�Fi
(1 ≤ i ≤ n) : R≥0 → R≥0 such that

(M, w) |= (t1, t2) �F1×···×Fn
(t3, t4)[s]

iff
(s̃(t1), s̃(t2)) �∗

F1×···×Fn
(s̃(t3), s̃(t4))

iff

(4)
n∑

i=1

g�Fi
(|f�Fi

( ιdiP (di, s̃(t1))) − f�Fi
( ιdi+1P (di+1, s̃(t2)))|)

≤
n∑

i=1

g�Fi
(|f�Fi

( ιdi+2P (di+2, s̃(t3))) − f�Fi
( ιdi+3P (di+3, s̃(t4)))|),

where ιdiP (di, s̃(t1)), ιdi+1P (di+1, s̃(t2)), ιdi+2P (di+2, s̃(t3)),

ιdi+3P (di+3, s̃(t4)) ∈ D�Fi
.

Proof.
Suppose that (W , R,D , {�F }F∈P , {D�F

}F∈P , P, {�F1×···×Fn
}F1...,Fn∈P , I) is

a mereological additive difference factorial proximity structured model of RMRL
(Definition 17). Then because, by Definition 17, (DF1 × · · · × DFn

,�F1×···×Fn
)

is an additive difference factorial proximity structure (Definition 15), by Fact
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7, there exist functions f�Fi
(1 ≤ i ≤ n) : D�Fi

→ R≥0 and monotonically
increasing functions g�Fi

(1 ≤ i ≤ n) : R≥0 → R≥0 such that

(s̃(t1), s̃(t2)) �∗
F1×···×Fn

(s̃(t3), s̃(t4))

iff
n∑

i=1

g�Fi
(|f�Fi

( ιdiP (di, s̃(t1))) − f�Fi
( ιdi+1P (di+1, s̃(t2)))|)

≤
n∑

i=1

g�Fi
(|f�Fi

( ιdi+2P (di+2, s̃(t3))) − f�Fi
( ιdi+3P (di+3, s̃(t4)))|).

On the other hand, by Definition 19, we have

(M, w) |= (t1, t2) �F1×···×Fn
(t3, t4)[s]

iff
(s̃(t1), s̃(t2)) �∗

F1×···×Fn
(s̃(t3), s̃(t4)).�

Remark 11 (Mereological Parthood Relation). One of the points of this
theorem is that it is formulated by the help of a mereological parthood relation
P .

Theorem 4 (Uniqueness). The above functions f�Fi
are interval scales and

the above functions g�Fi
are interval scales with a common unit.

We define the degree of unresemblance and its weight in terms of Theorems 3
and 4:

Definition 20 (Degree of Unresemblance and Its Weight). The degrees
of unresemblance with respect to �Fi

are defined by

|f�Fi
( ιdiP (di, s̃(t1))) − f�Fi

( ιdi+1P (di+1, s̃(t2)))|

and
|f�Fi

( ιdi+2P (di+2, s̃(t3))) − f�Fi
( ιdi+3P (di+3, s̃(t4)))|

of (4), and their weights are defined by

g�Fi

of (4), where the existence and uniqueness of f�Fi
and g�Fi

are guaranteed by
Theorems 3 and 4 respectively.
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3 Concluding Remarks

Suppose that
Cx := x is carmine,
V x := x is vermillion,
Tx := x is triangular, and
(x, y) <C×V ×T (z, w) := x resembles y more than z resembles w with respect

to carminity and vermillionity and triangularity. Then the RMRL-logical form of
(1) is

∀x∀y∀z((Cx ∧ V y ∧ Tz) → (x, y) <C×V ×T (x, z)).

Its semantic value (satisfaction condition) is given by the following corollary that
follows from Theorem 3 and Definition 19:

Corollary 2 (Solution to Rodriguez-Pereyra-Yi Problem by RMRL).
If (W , R,D , {�C ,�V ,�T }, {D�C

,D�V
,D�T

}, P, {�C×V ×T }, I) is a mereolog-
ical additive difference factorial proximity structured model of RMRL, then there
exist f�C

: D�C
→ R≥0 and f�V

: D�V
→ R≥0 and f�T

: D�T
→ R≥0 and

g�C
, g�V

, g�T
: R≥0 → R≥0 such that

(M, w) |= ∀x∀y∀z((Cx ∧ V y ∧ Tz) → (x, y) <C×V ×T (x, z))[s]

iff there is no d1, d2, d3 ∈ D such that d1 ∈ I(C,w) and d2 ∈ I(V,w) and
d3 ∈ I(T,w) such that

(g�C
(|f�C

( ιd4P (d4, d1)) − f�C
( ιd5P (d5, d2))|)

+g�V
(|f�V

( ιd6P (d6, d1)) − f�V
( ιd7P (d7, d2))|)

+g�T
(|f�T

( ιd8P (d8, d1)) − f�T
( ιd9P (d9, d2))|))

≥
(g�C

(|f�C
( ιd4P (d4, d1)) − f�C

( ιd10P (d10, d3))|)
+g�V

(|f�V
( ιd6P (d6, d1)) − f�V

( ιd11P (d11, d3))|)
+g�T

(|f�T
( ιd8P (d8, d1)) − f�T

( ιd12P (d12, d3))|)).
We have the following conclusion: When we choose as the weight-assignment

functions such functions g�C
, g�V

, g�T
that the value of g�T

is much greater than
those of g�C

and g�V
, Corollary 2 can give a solution to Rodriguez-Pereyra-Yi

Problem by Definition 20 in terms of giving the satisfaction condition of (1) in
RMRL so that

the weighted sum of the degrees of unresemblance of carmine particulars
to triangular particulars may be greater than that of carmine particulars
to vermillion particulars,

instead of using Definition 1 that is the main culprit of this problem. In so doing,
RMRL obtains the capacity to deal with multidimensionality in general beyond
Rodriguez-Pereyra-Yi Problem.
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