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Abstract. In this work, I introduce the Type-Theory of Algorithms
(TTA), which is an extension of Moschovakis Type-Theory of Algorithms
and its reduction calculus, by adding logic operators and quantifiers.
The formal language has two kinds of terms of formulae, for designating
state-independent and state-dependent propositions and predications.
The logic operators include conjunction, disjunction, conditional impli-
cation, and negation. I add state-dependent quantifiers, for enhancing
the standard quantifiers of predicate logic. I provide an extended reduc-
tion calculus of the Type-Theory of Acyclic Algorithms, for reductions of
terms to their canonical forms. The canonical forms of the terms provide
the algorithmic semantics for computing the denotations.
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1 Introduction

This paper is part of the author’s work on development of a new type-theory of
the mathematical notion of algorithms, its concepts, and potentials for applica-
tions to advanced, computational technologies, with a focus on Computational
Semantics and Syntax-Semantics-Semantics Interfaces for formal and natural
languages.

For the initiation of this approach to mathematics of algorithms, see the origi-
nal work on the formal languages of recursion (FLR) by Moschovakis [15–17]. The
formal languages of recursion FLR are untyped systems. The typed version of this
approach to algorithmic, acyclic computations was introduced, for the first time,
by Moschovakis [18], with the type theory Lλ

ar. Type theory Lλ
r covers full recursion

and is an extension of type theory of acyclic recursion Lλ
ar.

For more recent developments of the language and theory of acyclic algo-
rithms Lλ

ar, see, e.g., [6–8]. The work in [11] presents an algorithmic η-rule with
the induced η-reduction acting on canonical terms in Lλ

ar, as a special case of
(γ∗). The algorithmic expressiveness of Lλ

ar has been demonstrated by its appli-
cations to computational semantics of natural language. Algorithmic semantics
of quantifier scope ambiguities and underspecification is presented in [3]. Com-
putational grammar of natural language that coveres syntax-semantics interfaces
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is presented in [5]. The work in [8] is on fundamental notions of algorithmic bind-
ing of argument slots of relations and functions, across assignments in recursion
terms. It models functional capacities of neural receptors for neuroscience of
language. A generalised restrictor operator is introduced in Lλ

ar for restricted,
parametric algorithms, e.g., in semantics of definite descriptors, by [9], which is
extended in a forthcoming publication. Currying order and limited, restricted
algorithmic β-conversion in Lλ

ar are presented by [10].
In this paper, I extend the formal language, reduction calculus, and seman-

tics of Lλ
ar and Lλ

r , by adding logic operators and logic quantifiers, with two
versions of truth values: pure truth values and state-dependent ones. I intro-
duce the logic operators of conjunction, disjunction, implication, and negation
in the formal languages of Lλ

ar and Lλ
r by categorematic, logic constants, which

have the benefits of sharing various properties and reduction rules with non-logic
constants, while maintaining their logical characteristics.

In Sect. 2, I introduce the extended type-theory Lλ
ar and Lλ

r of acyclic algo-
rithms, by its syntax and denotational semantics. The focus of the rest of the
paper is on the acyclic type-theory Lλ

ar. In Sect. 3, I present the extended system
of reduction rules and the induced γ∗-reduction calculus of Lλ

ar. The additional
reduction rule (γ∗) greatly reduces the complexity of the terms, without affecting
the denotational and algorithmic semantics of Lλ

ar, in any significant way. I pro-
vide the full, formal definition of the congruence relation between terms, which
is part of the reduction system of both Lλ

ar and Lλ
r . The reduction calculus of

Lλ
ar reduces each Lλ

ar term to its canonical form. For every term A, its canonical
form is unique modulo congruence. The canonical form of every proper Lλ

ar term
determines the algorithm for computing its denotation and saving the component
values, including functions, in memory slots for reuse. Section 4 is on the algo-
rithmic expressiveness of Lλ

ar. Theorem 2 proves that Lλ
ar is a proper extension

of Gallin TY2, see Gallin [1]. There are Lλ
ar recursion terms that are not algo-

rithmically equivalent to any explicit, λ-calculus, i.e., TY2 terms. In addition,
such Lλ

ar recursion terms, provide subtle semantic distinctions for expressions of
natural language. The focus of Sect. 5 is on the semantic and algorithmic distinc-
tions between coordinated predication and sentential conjunction. In Sect. 6, I
overview some relations between let-expressions for λ-calculus and Lλ

ar recursion
terms. I give an explanation why the Lλ

ar recursion terms are not algorithmi-
cally equivalent to λ-terms in Lλ

ar representing let-expressions. I demonstrate the
extended reduction calculus with reductions of terms to their canonical forms,
which offer distinctive, algorithmic semantics of natural language expressions.

2 Introduction to Type-Theory of Acyclic Algorithms

Type-theory of algorithms (TTA), in each of its variants of full and acyclic
recursion, Lλ

r and Lλ
ar, respectively, is a computational system, which extends

the standart, simply-typed λ-calculus in its syntax and semantics.
The basis for the formal languages of Lλ

r and Lλ
ar, and their denotational and

algorithmic semantics is a tuple Bλ
r = 〈TypeR,K,Vars,TermR,RedR〉, where:
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(1) TypeR is the set of the rules that defines the set Types
(2) K = Consts is a set of constants (2a)
(3) Vars is a set of variables (2f) of two kinds, pure and recursion (2d)–(2e)
(4) TermR is the set of the rules for the terms of Lλ

r and Lλ
ar, given in Definition 1

(5) RedR is the set of the reduction rules given in Sect. 3.2

The focus of this work is on the type-theory Lλ
ar of acyclic algorithms (TTAA).

Notation 1. We shall use the following meta-symbols (1)–(2):

(1) “≡” is used for notational abbreviations and definitions, i.e., for literal,
syntactic identities between expressions. The equality sign “=” is for the
identity relation between objects of Lλ

ar (Lλ
r )

(2) “ :≡” is for the replacement, i.e., substitution operation, in syntactic con-
structions, and sometimes for definitional constructions

2.1 Syntax

The set Types of Lλ
ar is defined recursively, e.g., in Backus-Naur Form (BNF):

τ ::= e | t | s | (τ → τ) (Types)

The type e is for basic entities and Lλ
ar terms denoting such entities, e.g.,

for animals, people, etc., animate or inanimate objects. The type s is for states
that carry context information, e.g., possible worlds, time and space locations,
speakers, listeners, etc. The denotations of some expressions of natural language,
e.g., proper names and other noun phrases (NPs), can be rendered (translated)
to Lλ

ar terms of type (s → e). The type t is for truth values. For any τ1, τ2 ∈
Types, the type (τ1 → τ2) is for functions from objects of type τ1 to objects of
type τ2, and for Lλ

ar terms denoting such functions. We shall use the following
abbreviations:

σ̃ ≡ (s → σ), for state-dependent objects of type σ̃ (1a)
ẽ ≡ (s → e), for state-dependent entities (1b)
˜t ≡ (s → t), for state-dependent truth values (1c)

(−→τ → σ) ≡ (τ1 → · · · → (τn → σ)) ∈ Types (n ≥ 1)
currying coding, for σ, τi ∈ Types, i = 1, . . . , n

(1d)

Typed Vocabulary of Lλ
ar: For every σ ∈ Types, Lλ

ar has denumerable sets of
constants, and two kinds of infinite, denumerable sets of pure and recursion
variables, all in pairwise different sets:
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Kσ = Constsσ = {cσ
0 , cσ

1 , . . . }; K = Consts =
⋃

τ∈Types Kτ (2a)

∧,∨,→ ∈ Consts(τ→(τ→τ)), τ ∈ { t, ˜t } (logical constants) (2b)

¬ ∈ Consts(τ→τ), τ ∈ { t, ˜t } (logical constant for negation) (2c)
PureVσ = {vσ

0 , vσ
1 , . . . }; PureV =

⋃

τ∈Types PureVτ (2d)

RecVσ = MemoryVσ = {pσ
0 , pσ

1 , . . . }; RecV =
⋃

τ∈Types RecVτ (2e)

PureVσ ∩RecVσ = ∅; Varsσ = PureVσ ∪RecVσ; Vars =
⋃

τ∈Types Varsσ (2f)

Pure variables PureV are used for λ-abstraction and quantification. On the other
hand, the recursion variables, which are called also memory variables, mem-
ory locations (slots, cells), or location variables, play a special role in algorith-
mic computations, for saving information. Values, which can be obtained either
directly by immediate, variable valuations, or by algorithmic computations, via
recursion or iteration, can be saved, i.e., memorised, in typed memory locations,
i.e., in memory variables, of the set RecV, by assignments. Sets of assignments
can determine mutually recursive or iterative computations.

I shall use mixed notations for type assignments, A : τ and Aτ , to express
that a term A or an object A is of type τ .

In Definition 1, I introduce the logical constants as categorematic constants
for conjunction, disjunction, implication, ∧,∨,→ ∈ Consts(τ→(τ→τ)), and nega-
tion, ¬ ∈ Consts(τ→τ), in two variants of truth values τ ∈ { t, ˜t }.

Definition 1. Terms = Terms(Lλ
ar) =

⋃

τ∈Types Termsτ is the set of the terms
of Lλ

ar, where, for each τ ∈ Types, Termsτ is the set of the terms of type τ ,
which are defined recursively by the rules TermR in (3a)–(3g), in a typed style of
Backus-Naur Form (TBNF):

A :≡ cτ : τ | xτ : τ (constants and variables) (3a)

| B(σ→τ)(Cσ) : τ (application terms) (3b)
| λ(vσ)(Bτ ) : (σ → τ) (λ-abstraction terms) (3c)
| Aσ0

0 where { pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } : σ0 (recursion terms) (3d)

| ∧(Aτ
2)(A

τ
1) : τ | ∨ (Aτ

2)(A
τ
1) : τ | → (Aτ

2)(A
τ
1) : τ

(conjunction / disjunction / implication terms)
(3e)

| ¬(Bτ ) : τ (negation terms) (3f)
| ∀(vσ)(Bτ ) : τ | ∃(vσ)(Bτ ) : τ (pure, logic quantifier terms) (3g)

given that

(1) c ∈ Kτ = Constsτ
(2) xτ ∈ PureVτ ∪RecVτ is a pure or memory (recursion) variable,

vσ ∈ PureVσ is a pure variable
(3) Aτ

1 , A
τ
2 , B,Aσi

i ∈ Terms (i = 0, . . . , n) are terms of the respective types
(4) In (3d), for i = 1, . . . , n, pi ∈ RecVσi

are pairwise different recursion (mem-
ory) variables; Aσi

i ∈ Termsσi
assigned to pi is of the same corresponding
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type; and the sequence of assignments { pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } is
acyclic, by satisfying the Acyclicity Constraint (AC) in Definition 2.

(5) In (3e)–(3g), τ ∈ { t, ˜t } are for state-independent and state-dependent truth
values, respectively

Definition 2 (Acyclicity Constraint (AC)). For any Ai ∈ Termsσi
and

pairwise different memory (recursion) variables pi ∈ RecVσi
, i ∈ { 1, . . . , n },

the sequence (4):

{ pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } (n ≥ 0) (4)

is an acyclic system of assignments iff there is a function rank

rank : {p1, . . . , pn} → N, such that, for all pi, pj ∈ {p1, . . . , pn},

if pj occurs freely in Ai, then rank(pj) < rank(pi)
(AC)

Free and Bound Variables. The sets FreeVars(A) and BoundVars(A) of the free
and bound variables of every term A are defined by structural induction on A, in
the usual way, with the exception of the recursion terms. For the full definition,
see [8]. For any given recursion term A of the form (3d), the constant where
designates a binding operator, which binds all occurrences of p1, . . . , pn in A:

For A ≡ A0 where {p1 := A1, . . . , pn := An} ∈ Terms (5a)
FreeV(A) = ∪n

i=0(FreeV(Ai)) − { p1, . . . , pn } (5b)
BoundV(A) = ∪n

i=0(BoundV(Ai)) ∪ { p1, . . . , pn } (5c)

The formal language of full recursion Lλ
r is by Definition 1 without the Acyclicity

Constraint (AC),

(A) The terms A of the form (3d) are called recursion terms. The constant where
designates a binding operator, which binds the recursion variables p1, . . . , pn

in A. Its entire scope is A called where-scope or its local recursion scope.
The sub-terms Ai, i = 0, . . . , n, are the parts of A and A0 is its head part

(B) We say that a term A is explicit iff the constant where does not occur in it
(C) A is a λ-calculus term, i.e., a term of Gallin TY2, iff it is explicit and no

recursion variable occurs in it

Definition 3 (Free Occurrences and Replacement Operation). Assume
that A,C ∈ Terms, X ∈ PureV∪RecV are such that, for some type τ ∈ Types,
X,C : τ .

(1) An occurrence of X in A is free (in A) if and only if it is not in the scope
of any binding operator (e.g., ξ ∈ {λ,∃,∀ } and where) that binds X

(2) The result of the simultaneous replacement of all free (unless otherwise
stated) occurrences of X with C in A is denoted by A{X :≡ C }
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(3) The replacement A{X :≡ C } of X with C in A is free if and only if no free
occurrence of X in A is in the scope of any operator that binds some variable
having free occurrences in C: i.e., no variable that is free in C becomes bound
in A{X :≡ C }. We also say that C is free for (replacing) X in A.

Notation 2. Often, we do not write the type assignments in the term expres-
sions.

Sometimes, we shall use different kinds of or extra parentheses, or omit such.
Application is associative to the left, λ-abstraction and quantifiers to the right.

In addition, we shall use abbreviations for sequences, e.g. (n ≥ 0):

−→p :=
−→
A ≡ p1 := A1, . . . , pn := An (n ≥ 0) (6a)

H(
−→
A ) ≡ H(A1) . . . (An) ≡ (. . . H(A1) . . . )(An) (left-association) (6b)

ξ(−→v )(A) ≡ ξ(v1) . . . ξ(vn)(A) ≡ ξ(v1)
[

. . .
[

ξ(vn)
(

A
)]]

(right-association)
ξ ∈ {λ,∃,∀ } (n ≥ 0)

(6c)

−−→
ξ(v)(A) ≡ ξ1(v1) . . . ξn(vn)(A) ≡ ξ1(v1)

[

. . .
[

ξn(vn)
(

A
)]]

,

ξi ∈ {λ,∃,∀ }, i ∈ {1, . . . , n} (n ≥ 0)
(6d)

lgh(
−→
X ) = lgh((X1) . . . (Xn)) = n, lgh(ξ(−→v )) = n, lgh(

−−→
ξ(v)) = n (6e)

2.2 Overview of Algorithmic Semantics in Lλ
ar (Lλ

r )

The syntax-semantics interface in Lλ
ar (Lλ

r ) provides the interrelations between
denotational and algorithmic semantics.

Definition 4 (Immediate and Pure Terms). The set of the immediate
terms consists of all terms of the form (7), for p ∈ RecVars, ui, vj ,∈ PureVars
(i = 1, . . . , n, j = 1, . . . , m, m,n ≥ 0), V ∈ Vars:

T :≡ V | p(v1) . . . (vm) | λ(u1) . . . λ(un)p(v1) . . . (vm), for m,n ≥ 0 (7)

Every term A that is not immediate is proper.

The immediate terms T ≡ λ(−→u )p(−→v ) have no algorithmic meanings. Their
denotational value den(T )(g) is given immediately, by the valuation functions g
for g(vi), and abstracting away from the values uj , for λ-bound pure variables
λ(−→u )p(−→v ).

For every proper, i.e., non-immediate, term A, there is an algorithm alg(A) for
computing den(A)(g). The canonical form cfγ*(A) of a proper term A determines
the algorithm for computing its denotational value den(A)(g) = den(cfγ*(A))(g)
from the components den(Ai)(g) of cfγ*(A). See γ∗-Canonical Form Theorem 1,
and [6–8,18].

– The type theories Lλ
ar have effective reduction calculi, see Sect. 3:

For every A ∈ Terms, there is a unique, up to congruence, canonical form
cfγ*(A), which can be obtained from A, by a finite number of reductions:

A ⇒∗
γ∗ cfγ*(A) (8)
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– For a given, fixed semantic structure A and valuations G, for every algo-
rithmically meaningful, i.e., proper, A ∈ Termsσ, the algorithm alg(A) for
computing den(A) is determined by cf(A), so that:

den(A)(g) = den(cf(A))(g), for g ∈ G (9)

Figure 1 depicts of the syntax-semantics relations between the syntax of Nat-
ural Language, their rendering to the terms Lλ

ar and the corresponding algorith-
mic and denotational semantics.

Syntax: NL / Lλ
ar =⇒ Algorithms for Iterative Computations: cfγ*(A)

︸ ︷︷ ︸

Canonical Computations

⇐⇒ Denotations

︸ ︷︷ ︸

Computational Syn-Sem: Algorithmic and Denotational Semantics of NL via NL render−−−−→ Lλ
ar

Fig. 1. Computational Syntax-Semantics Interface for Algorithmic Semantics of Nat-
ural Language via Compositional Rendering to Lλ

ar.

2.3 Denotational Semantics of Lλ
ar

Definition 5. A standard semantic structure of the formal language Lλ
ar(K) is

a tuple A(K) = 〈T, I(K)〉, where T is a frame of sets (or classes) T = { Tσ |
σ ∈ Types }, and the following conditions (S1)–(S3) are satisfied:

(S1) sets of basic, typed semantic objects:
– Te �= ∅ is a nonempty set (class) of entities called individuals
– Tt = { 0, 1, er } ⊆ Te, Tt is called the set of the truth values
– Ts �= ∅ is a nonempty set of objects called states

(S2) T(τ1→τ2) = { f | f : Tτ1 → Tτ2 }
(S3) The interpretation function I, I : K → ⋃

T, is such that for every constant
c ∈ Kτ , I(c) = c, for some c ∈ Tτ

Definition 6. Assume a given semantic structure A. The set GA of all variable
valuations (assignments) in A is (10a)–(10b):

GA = { g | g : (PureV∪RecV) → ∪T, (10a)
and g(x) ∈ Tτ , for all τ ∈ Type and x ∈ PureVτ ∪RecVτ } (10b)

Definition 7 (Denotation Function). A denotation function denA of the
semantic structure Lλ

ar(K), denA : Terms → (G → ⋃

T), is defined by struc-
tural recursion, for all g ∈ G:

(D1) Variables and constants:

denA(x)(g) = g(x), for x ∈ Vars; denA(c)(g) = I(c), for c ∈ K (11)
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(D2) Application:

denA(A(B))(g) = denA(A)(g)(denA(B)(g)) (12)

(D3) λ-abstraction: for all x : τ , B : σ, denA(λ(x)(B))(g) : Tτ → Tσ is the
function such that, for every t ∈ Tτ ,

[denA(λ(x)(B))(g)]
(

t
)

= denA(B)(g{x := t}) (13)

(D4) Recursion:

denA(A0 where {−→p :=
−→
A })(g) = denA(A0)(g{−→pi :=

−→
pi }) (14)

where pi ∈ Tτi
are computed by recursion on rank(pi), i.e., by (15):

pi = denA(Ai)(g{ pi,1 := pi,1, . . . , pi,ki
:= pi,ki

})

for all pi,1, . . . , pi,ki
, such that rank(pi,k) < rank(pi)

(15)

The denotation den(Ai)(g) may depend essentially on the values stored in
pj, for rank(pj) < rank(pi).

(D5) Here, for the denotations of the constants of the logic operators, we shall
present the state dependent cases, including the erroneous truth values. The
state-independent cases are simpler and straightforwardly similar.

(D5a) denA
(

A1 ∧ A2

)

(g) : Ts → Tt is the function such that, for every state
s ∈ Ts:

[denA(A1 ∧ A2)(g)](s) = V ∈ Tt, where V is as in (17a) − (17c) (16)

V =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, if [denA(Ai)(g)](s) = 1, for i = 1, 2 (17a)
0, if [denA(Ai)(g)](s) = 0, for at least one i = 1, 2 (17b)

and [denA(Ai)(g)](s) �= er, for i = 1, 2
er , otherwise, i.e., (17c)

if [denA(Ai)(g)](s) = er, for at least one i = 1, 2

(D5b) denA
(

A1 ∨ A2

)

(g) : Ts → Tt is the function such that, for every state
s ∈ Ts:

[denA(A1 ∨ A2)(g)](s) = V ∈ Tt, where V is as in (19a) − (19c) (18)

V =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, if [denA(Ai)(g)](s) = 1, for at least one i = 1, 2 (19a)
and [denA(Ai)(g)](s) �= er, for i = 1, 2

0, if [denA(Ai)(g)](s) = 0, for i = 1, 2 (19b)
er , otherwise, i.e., (19c)

if [denA(Ai)(g)](s) = er, for at least one i = 1, 2
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The definition of denA(A1 → A2)(g) is in a similar mode.
(D6) denA

(¬(A)
)

(g) : Ts → Tt is such that, for every state s ∈ Ts:

[denA(¬(A))(g)](s) =

⎧
⎪⎨

⎪⎩

1, if [denA(A)(g)](s) = 0 (20a)
0, if [denA(A)(g)](s) = 1 (20b)
er , otherwise, i.e., if [denA(A)(g)](s) = er (20c)

(D7) Pure Universal Quantifier ∀:1
(D7a) For the state-independent quantifier ∀ (τ = t), the definition is similar

to the state dependent one, and we do not present its details
(D7b) For the state-dependent quantifier ∀ (τ = ˜t), for every state s ∈ Ts:

[

denA
(∀(vσ)(Bτ )

)

(g)
]

(s) = V , where:

V =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if
[
denA

(
Bτ

)
(g{ v := a })](s) = 1, for all a ∈ Tσ (21a)

0, if
[
denA

(
Bτ

)
(g{ v := a })](s) = 0, for some a ∈ Tσ (21b)

and
[
denA

(
Bτ

)
(g{ v := b })](s) �= er, for all b ∈ Tσ

er , otherwise (21c)

(D8) Pure Existential Quantifier ∃:
(D8a) For the state-independent quantifier ∃, with τ = t, the definition is sim-

ilar to the state dependent one, and we do not present it here
(D8b) For the state-dependent quantifier ∃, (τ = ˜t), for every state s ∈ Ts:

[

denA
(∃(vσ)(Bτ )

)

(g)
]

(s) = V , where:

V =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if
[
denA

(
Bτ

)
(g{ v := a })](s) = 1, for some a ∈ Tσ (22a)

and
[
denA

(
Bτ

)
(g{ v := b })](s) �= er, for all b ∈ Tσ

0, if
[
denA

(
Bτ

)
(g{ v := a })](s) = 0, for all a ∈ Tσ (22b)

er , otherwise (22c)

Often, we shall skip the superscript in GA and denA, by writing G and den.

3 Gamma-Star Reduction Calculus of Lλ
ar

I designate the logic operators as a set of specialised, logic constants. In this
way, I classify the reduction rules for the terms formed by (3e)–(3f) as special
cases of the reduction rule for application terms.

In this section, I extend the set of the Lλ
ar-reduction rules introduced in [18],

by adding:

(1) the reduction rules (ξ) for the quantifier terms (3g) together with the λ-
abstract terms, ξ ∈ {λ,∃,∀ }

(2) an additional reduction rule, the (γ∗) rule, (30a)–(30b), which extends the
corresponding rule in [7]

1 There are other possibilities for the truth values of the erroneous truth value er for
the quantifiers, which we do not consider in this paper.
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3.1 Congruence Relation Between Terms

Definition 8. The congruence relation is the smallest equivalence relation (i.e.,
reflexive, symmetric, transitive) between terms ≡c ⊆ Terms×Terms, that is
closed under:

(1) operators of term-formation:
– application, which includes logic constants because we introduced them as

categorematic constants
– λ-abstraction and pure, logic quantifiers
– acyclic recursion

If A ≡c A′ and B ≡c B′, then A(B) ≡c A′(B′) (ap-congr)
If A ≡c B, and ξ ∈ {λ,∃,∀ }, then ξ(u)(A) ≡c ξ(u)(B) (lq-congr)

If Ai ≡c Bi, for i = 0, . . . , n, then:
A0 where { p1 := A1, . . . , pn := An }

≡c B0 where { p1 := B1, . . . , pn := Bn }
(rec-congr)

(2) renaming bound pure and recursion variables without variable collisions, by
free replacements, see Definition 3
(a) renaming pure variables bound by λ-abstraction and pure, logic quanti-

fiers

ξ(x)(A) ≡c ξ(y)(A{x :≡ y}), for x, y ∈ PureVτ , ξ ∈ {λ,∃,∀ }
assuming y ∈ FreeV(A) and y is free for (replacing) x in A

(24a)

(b) renaming memory location (variables) bound by the recursion operator
where, in assignments

A ≡ A0 where { p1 := A1, . . . , pn := An }
≡c A′

0 where { p′
1 := A′

1, . . . , p
′
n := A′

n } (25a)

assuming p′
i ∈ FreeV(A) and p′

i is free for (replacing) pi in Aj

A′
j ≡ Aj{p1 :≡ p′

1, . . . , pn :≡ p′
n} ≡ Aj{−→p :≡ −→

p′ },

i ∈ {1, . . . , n}, j ∈ {0, . . . , n}
(25b)

(3) re-ordering of the assignments within the recursion terms

for every permutation π : {1, . . . , n} 1−to−1−−−−−→
onto

{1, . . . , n}
A0 where { p1 := A1, . . . , pn := An }

≡c A0 where { pπ(1) := Aπ(1), . . . , pπ(n) := Aπ(n) }
(26)
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3.2 Reduction Rules of Extended Lλ
ar

In this section, we define the set RedR of the reduction rules of TTA, which are
the same for its variants of full and acyclic recursion Lλ

r and Lλ
ar, respectively.

Congruence If A ≡c B, then A ⇒ B (cong)
Transitivity If A ⇒ B and B ⇒ C, then A ⇒ C (trans)

Compositionality Replacement of sub-terms with correspondingly reduced
ones respects the term structure by the definition of the term syntax:

If A ⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′) (ap-comp)
If A ⇒ B, and ξ ∈ {λ,∃,∀ }, then ξ(u)(A) ⇒ ξ(u)(B) (lq-comp)

If Ai ⇒ Bi, for i = 0, . . . , n, then
A0 where { p1 := A1, . . . , pn := An }

⇒ B0 where { p1 := B1, . . . , pn := Bn }
(rec-comp)

Head Rule Given that, for all i = 1, . . . , n, j = 1, . . . , m, pi �= qj and pi does
not occur freely in Bj :

(

A0 where {−→p :=
−→
A })

where {−→q :=
−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(head)

Bekič-Scott Rule Given that, for all i = 1, . . . , n, j = 1, . . . , m, pi �= qj and
qj does not occur freely in Ai

A0 where { p :=
(

B0 where {−→q :=
−→
B })

,−→p :=
−→
A } (B-S)

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

Recursion-Application Rule Given that, for all i = 1, . . . , n, pi does not
occur freely in B

(A0 where {−→p :=
−→
A })

(B) ⇒ A0(B) where {−→p :=
−→
A } (recap)

Application Rule Given that B ∈ Terms is proper and b ∈ RecV is fresh, i.e.,
b ∈ [

RecV−(

FreeV
(

A(B)
) ∪ BoundV

(

A(B)
))]

,

A(B) ⇒ A(b) where { b := B } (ab)

λ and Quantifier Rules Let ξ ∈ {λ,∃,∀ }
ξ(u) (A0 where { p1 := A1, . . . , pn := An })

⇒ ξ(u)A′
0 where { p′

1 := λ(u)A′
1, . . . , p

′
n := λ(u)A′

n } (ξ)

given that, for every i = 1, . . . , n (n ≥ 0), p′
i ∈ RecV is a fresh recursion

(memory) variable, and A′
i (0 ≤ i ≤ n) is the result of the replacement of

all the free occurrences of p1, . . . , pn in Ai with p′
1(u), . . . , p′

n(u), respectively,
i.e.:

A′
i ≡ Ai{p1 :≡ p′

1(u), . . . , pn :≡ p′
n(u)} ≡ Ai{−→p :≡ −−−→

p′(u)} (0 ≤ i ≤ n) (29)



184 R. Loukanova

γ∗-Rule

A ≡c A0 where {−→a :=
−→
A, p := λ(−→u )λ(v)P,

−→
b :=

−→
B } (30a)

⇒γ∗ A′
0 where {−→a :=

−→
A ′, p′ := λ(−→u )P,

−→
b :=

−→
B′ } (γ∗)

≡ A0{ p(−→u )(v) :≡ p′(−→u ) } where {
−→a :=

−→
A{ p(−→u )(v) :≡ p′(−→u ) },

p′ := λ(−→u )P,
−→
b :=

−→
B{ p(−→u )(v) :≡ p′(−→u ) } }

(30b)

given that:

– the term A ∈ Terms satisfies the γ∗-condition (given in Definition 9) for the
assignment p := λ(−→u )λ(v)P : (

−→
ϑ → (ϑ → τ))

– p′ ∈ RecV
(
−→
ϑ →τ)

is a fresh recursion variable

– for each part Xi of
−→
X in (γ∗) and (30b) (i.e., for each Xi ≡ Ai in

−→
X ≡ −→

A ,
and each Xi ≡ Bi in

−→
X ≡ −→

B ), X ′
i is the result of the free replacements X ′

i ≡
Xi{ p(−→u )(v) :≡ p′(−→u ) } of all occurrences of p(−→u )(v) by p′(−→u ) (in the free
occurrences of p), modulo renaming the variables −→u , v, for i ∈ {0, . . . , nX},
i.e.:

−→
X ′ ≡ −→

X{ p(−→u )(v) :≡ p′(−→u ) } (31)

Definition 9 (γ∗-Condition). Assume that i = 1, . . . , n (n ≥ 0), τ, ϑ, ϑi ∈
Types, u, ui ∈ PureV, p ∈ RecV, P ∈ Terms, are such that u : ϑ, ui : ϑi,
p : (

−→
ϑ → (ϑ → τ)), P : τ , and thus, λ(−→u −→

ϑ )λ(vϑ)(P τ ) : (
−→
ϑ → (ϑ → τ)).

A recursion term A ∈ Terms satisfies the γ∗-condition for an assignment
p := λ(−→u −→

ϑ )λ(vϑ)(P τ ) : (
−→
ϑ → (ϑ → τ)), with respect to λ(v), if and only if A

is of the form (32)

A ≡ A0 where {−→a :=
−→
A, p := λ(−→u )λ(v)P,

−→
b :=

−→
B } (32)

with the sub-terms of appropriate types, such that the following holds:

(1) P ∈ Termsτ does not have any free occurrences of v, i.e., v �∈ FreeVars(P )
(2) All occurrences of p in A0,

−→
A , and

−→
B are free with respect to p (by renaming

bound occurrences of recursion variables) and are occurrences in sub-terms
p(−→u )(v), which are in binding scope of ξ1(u1), . . . , ξn(un), ξ(v), for ξi, ξ ∈
{λ,∃,∀ }, modulo renaming the bound variables −→u , v, i = 1, . . . , n (n ≥ 0)

Note: If we take away the second part of (2), which requires p(−→u )(v) to be within
the binding scopes of

−−→
ξ(u), ξ(v), the (γ∗) rule may remove free occurrences of

pure variables, e.g., v in p(−→u )(v), from some of the parts of the terms. This
(strong) form of the γ∗-condition is introduced in [7].
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When a recursion term A of the form (32) satisfies the γ∗-condition, given
in Definition 9, we also say that the assignment p := λ(−→u )λ(v)P satisfies the
γ∗-condition, for any term A′ such that A′ ≡c A, i.e., modulo congruence.

Definition 10 (γ∗-Rules). We shall call the set RedR of the reduction rules
(cong)–(ξ), (γ∗), γ∗-reduction rules and also, simply Lλ

ar-reduction rules.

3.3 Reduction Relation

The extended set of reduction rules of Lλ
ar, (cong)–(ξ), (γ∗), given in Sect. 3.2,

defines the extended reduction relation ⇒∗
γ∗ between Lλ

ar-terms, A ⇒∗
γ∗ B, by

the alternatively expressed, equivalent Definition 11 and Definition 12.

Definition 11. The γ∗-reduction relation ⇒∗
γ∗ between terms is the smallest

relation ⇒∗
γ∗⊆ Terms×Terms, which is the reflexive and transitive closure of the

immediate reductions by any of the reduction rules (cong)–(ξ), (γ∗).

Definition 12 (γ∗-Reduction). For all A,B ∈ Terms, A ⇒∗
γ∗ B iff there is a

sequence of consecutive, immediate reductions by (cong)–(γ∗), i.e.:

A ⇒∗
γ∗ B ⇐⇒ there exist Ai ∈ Terms, 0 ≤ i < n, such that:

A ≡ A0, An ≡ B, and (33)
Ai ⇒ Ai+1, for some of the rules (cong) − (γ∗)

⇐⇒ (abbreviated) A ≡ A0 ⇒ . . . ⇒ An ≡ B (n ≥ 0) (34)

Often, we shall write A ⇒ B instead of A ⇒∗
γ∗ B, including when applying none

or more than one rule.

Lemma 1 (γ∗-Reducing Multiple, Innessential λ-Abstractions in an
Assignment). Assume that A ∈ Terms is of the form (35a)–(35b):

A ≡ A0 where {−→a :=
−→
A, b := λ(−→u1)λ(v1) . . . λ(−→uk)λ(vk)λ(−−→uk+1)B, (35a)

−→c :=
−→
C } (35b)

such that A satisfies the γ∗-condition in Definition 9 for the assignment for b in
(35a), with respect to all λ-abstractions λ(vj), for 1 ≤ j ≤ k, k ∈ N, k ≥ 1.

Then, the following reductions (36a)– (36b) can be done:

A ⇒∗
γ∗ Ak

0 where {−→a :=
−→
Ak, bk := λ(−→u1) . . . λ(−→uk)λ(−−→uk+1)B, (36a)

−→c :=
−→
Ck } (36b)

where for each part Xi of
−→
X in (35a)–(35b) (i.e., for Xi ≡ Ai in

−→
X ≡ −→

A or

Xi ≡ Ci in
−→
X ≡ −→

C ) Xk
i in

−→
Xk is the result of the replacements (37a)–(37b),

modulo renaming the bound variables −→ul , vj, for i ∈ {0, . . . , nX}:
Xk

i ≡ Xi{ b(−→u1)(v1) . . . (−→uk)(vk)(−−→uk+1) :≡ bk(−→u1) . . . (−→uk)(−−→uk+1) }
for i ∈ {0, . . . , nX} (37a)

−→
Xk ≡

−→
Xk{ b(−→u1)(v1) . . . (−→uk)(vk)(−−→uk+1) :≡ bk(−→u1) . . . (−→uk)(−−→uk+1) } (37b)
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Proof. The proof is by induction on k ∈ N, for Lλ
ar extended by (ξ) and (γ∗)

rules, for ξ ∈ {λ,∃,∀ }. We do not provide it here, because it is long. For such a
lemma about the Lλ

ar, without logic operators and pure quantifiers, see [4,7]. ��
Lemma 2 (γ∗-Reduction of the Assignments of a Recursion Term).
For every recursion term P ≡ P0 where {−→p :=

−→
P }, (38a), there is a term Q of

the form in (38b), such that Q does not satisfy the γ∗-condition in Definition 9,
for any of its assignments qi := Qi (i = 1, . . . , n) in (38b), and P ⇒∗

γ∗ Q,
abbreviated by P ⇒ Q.

P ≡ P0 where { p1 := P1, . . . , pn := Pn } ≡ P0 where {−→p :=
−→
P } (38a)

⇒∗
γ∗ Q ≡ Q0 where { q1 := Q1, . . . , qn := Qn } ≡ Q0 where {−→q :=

−→
Q } (38b)

Proof. See [4] extended by (ξ) and (γ∗) rules, for ξ ∈ {λ,∃,∀ }. ��
Definition 13 (γ∗-Irreducible Terms). We say that a term A ∈ Terms is
γ∗-irreducible if and only if (39) holds:

for all B ∈ Terms, A ⇒∗
γ∗ B =⇒ A ≡c B (39)

3.4 Canonical Forms and γ∗-Reduction

Theorem 1 (γ∗-Canonical Form: Existence and Uniqueness of Canon-
ical Forms). See [6–8,18]. For every term A ∈ Terms, the following hold:

(1) (Existence of a γ∗-canonical form of A) There exist explicit, γ∗-irreducible
A0, . . . , An ∈ Terms (n ≥ 0), such that the term cfγ*(A) that is of the form
(40) is γ∗-irreducible, i.e., irreducible and does not satisfy the γ-condition:

cfγ*(A) ≡ A0 where { p1 := A1, . . . , pn := An } (40)

Thus, cfγ*(A) is γ∗-irreducible.
(2) A and cfγ*(A) have the same constants and free variables:

Consts(A) = Consts(cfγ*(A)) (41a)

FreeV(A) = FreeV(cfγ*(A)) (41b)

(3) A ⇒∗
γ∗ cfγ*(A)

(4) If A is γ∗-irreducible, then A ≡c cfγ*(A)
(5) If A ⇒∗

γ∗ B, then cfγ*(A) ≡c cfγ*(B)
(6) (Uniqueness of cfγ*(A) with respect to congruence) For every B ∈ Terms,

such that A ⇒∗
γ∗ B and B is γ∗-irreducible, it holds that B ≡c cfγ*(A), i.e.,

cfγ*(A) is unique, up to congruence. We write:

A ⇒cfγ∗ B ⇐⇒ B ≡c cfγ(A) (42)

Proof. The proof is by induction on term structure of A, in Definition 1, i.e.,
(3a)–(3g), using reduction rules, and properties of the extended γ∗-reduction
relation.

Note: the reduction rules don’t remove or add any constants and free
variables. ��
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Algorithmic Semantics. The algorithmic meaning of a proper A ∈ Terms, i.e., a
non-immediate, algorithmically meaningful term, is designated by alg(A) and is
determined by its canonical form cf(A).

Informally, for each proper A ∈ Terms, the algorithm alg(A) for computing
its denotation den(A) consists of computations provided by the basic parts Ai

of its canonical form cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}, according to
their structural rank, by recursive iteration.

For every A ∈ Terms, cf(A), i.e., cfγ*(A), is obtained from A by the reduction
calculus of Lλ

ar, introduced in Sect. 3.2.

Definition 14 (Algorithmic Equivalence). Assume a given semantic struc-
ture A. For all A,B ∈ Terms, A and B are γ∗-algorithmically equivalent (i.e.,
synonymous) in A, A ≈γ∗ B iff

– A and B are both immediate, or
– A and B are both proper

and, in each of these cases, there are explicit, γ∗-irreducible terms (of appropriate
types), A0, . . . , An, B0, . . . , Bn, n ≥ 0, such that:

(1) A ⇒∗
γ∗ A0 where { p1 := A1, . . . , pn := An } ≡ cfγ*(A)

(2) B ⇒∗
γ∗ B0 where { q1 := B1, . . . , qn := Bn } ≡ cfγ*(B)

(3) for all i ∈ { 0, . . . , n }:

denA(Ai)(g) = denA(Bi)(g), for every variable valuation g ∈ G (43a)

denA(Ai) = denA(Bi) (43b)

When A ≈γ∗ B, we say that A and B are algorithmically γ∗-equivalent, alter-
natively, that A and B are γ∗-synonymous. Sometimes, we skip the label γ∗.

4 Algorithmic Expressiveness of Lλ
ar

Moschovakis [18], via Theorem §3.24, proves that Lλ
ar is a proper extension of

Gallin TY2, see Gallin [1]. Gallin [1], via his Theorem 8.2, can provide an inter-
pretation of Montague IL [14] into TY2. Suitable interpretation can be given in
Lλ
ar (Lλ

r ), too. That is not our purpose in this paper.
Theorem 2, has the same formulation as Theorem §3.24 in [18]. The difference

is that Theorem 2 covers the extended Lλ
ar and its ⇒∗

γ∗ reduction.

Theorem 2 (Conditions for Explicit and Non-Explicit Terms). See The-
orem §3.24, Moschovakis [18].

(1) Necessary Condition for Explicit Terms: For any explicit A ∈ Terms, there
is no memory (recursion) location that occurs in more than one part Ai

(0 ≤ i ≤ n) of cfγ*(A)
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(2) Sufficient Condition for Non-Explicit Terms: Assume that A ∈ Terms is
such that a location p ∈ RecV occurs in (at least) two parts of cf(A), and
respectively, of cfγ*(A), and the denotations of those parts depend essentially
on p:

A ⇒∗
γ∗ cfγ*(A) ≡ A0 where { p1 := A1, . . . , pn := An } (44a)

p ∈ FreeV(Ak), p ∈ FreeV(Al) (k �= l) (44b)
den(Ak)(g{p :≡ r}) �= den(Ak)(g{p :≡ r′}), for some r, r′ ∈ Tσ (44c)
den(Al)(g{p :≡ r}) �= den(Al)(g{p :≡ r′}), for some r, r′ ∈ Tσ (44d)

Then, there is no explicit term to which A is algorithmically equivalent.

The proof of Theorem §3.24, Moschovakis [18] is extended for the logic operators,
pure quantifiers and the γ∗-reduction. ��

The extended, algorithmic expressiveness of Lλ
ar is demonstrated by the terms

in the following examples, which provide specific instantiations of algorithmic
patterns of large classes and subtle semantic distinctions.

Logic Quantifiers and Reductions with Quantifier Rules: Assume that Lλ
ar has

cube, large0 ∈ Consts(̃e→˜t), and large ∈ Consts((̃e→˜t)→(̃e→˜t)) as a modifier.

Some cube is large render−−−→ B ≡ ∃x(cube(x) ∧ large0(x)) (45a)
B ⇒ ∃x((c ∧ l) where { c := cube(x), l := large0(x) }) (45b)

2x(ab) to ∧; (lq-comp)
⇒ ∃x(c′(x) ∧ l′(x))

︸ ︷︷ ︸

B0 algorithmic pattern

where { (45c)

c′ := λ(x)(cube(x)), l′ := λ(x)(large0(x))
︸ ︷︷ ︸

instantiations of memory slots c′,l′

} (45d)

≡ cf(B) from (45b), by (ξ) to ∃
≈ ∃x(c′(x) ∧ l′(x))

︸ ︷︷ ︸

B0 algorithmic pattern

where { c′ := cube, l′ := large0
︸ ︷︷ ︸

instantiations of memory slots c′,l′

} ≡ B′ (45e)

by Definition 14 from (45c) − (45d), den(λ(x)(cube(x))) = den(cube),
den(λ(x)(large0(x))) = den(large0)

(45f)
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Repeated Calculations:

Some cube is large render−−−→ T, large ∈ Consts((̃e→˜t)→(̃e→˜t)) (46a)

T ≡ ∃x
[

cube(x) ∧ large(cube)(x)
︸ ︷︷ ︸

by predicate modification

] ⇒ . . . (46b)

⇒ ∃x
[

(c1 ∧ l) where { c1 := cube(x), l := large(c2)(x), c2 := cube }]

(46c)
(ab) to ∧; (lq-comp), (B-S)

⇒ ∃x (c′
1(x) ∧ l′(x))

︸ ︷︷ ︸

T0

where { c′
1 := λ(x)(cube(x)), (46d)

l′ := λ(x)(large(c′
2(x))(x)), c′

2 := λ(x)cube } (46e)
(46d) − (46e) is by (ξ) on (46c) for ∃

⇒γ∗ ∃x(c′
1(x) ∧ l′(x)) where { c′

1 := λ(x)(cube(x)), (46f)
l′ := λ(x)(large(c2)(x)), c2 := cube } (46g)

≡ cfγ*(T ) by (γ∗) rule to c′
2(x) for c′

2 := λ(x)cube

≈ ∃x(c′
1(x) ∧ l′(x)) where { c′

1 := cube, (46h)
l′ := λ(x)(large(c2)(x)), c2 := cube } (46i)

Proposition 1. The Lλ
ar-terms C ≈ cf(C) in (47a)–(47e), similarly to many

other Lλ
ar-terms, are not algorithmically equivalent to any explicit term.

Therefore, Lλ
ar (Lλ

r ) is a strict, proper extension of Gallin TY2.

Proof. It follows from (47a)–(47e), by Theorem 2, (2), since c′ occurs in two
parts of cf(C) in (47e):

Some cube is large render−−−→ C (47a)

C ≡ ∃x
[

c′(x) ∧ large(c′)(x)
]

︸ ︷︷ ︸

E0

where { c′ := cube } (47b)

⇒ ∃x
[(

c′(x) ∧ l
)

where { l := large(c′)(x) }]

︸ ︷︷ ︸

E1

where { c′ := cube } (47c)

from (47b), by (ab) to ∧ of E0; (lq-comp) of ∃; (rec-comp)

⇒ [∃x
(

c′(x) ∧ l′(x)
)

where { l′ := λ(x)
(

large(c′)(x)
) }

︸ ︷︷ ︸

E2

]

where {

c′ := cube } from (47c), by (ξ)to∃
(47d)

⇒ ∃x
(

c′(x) ∧ l′(x)
)

︸ ︷︷ ︸

C0: an algorithmic pattern

where { c′ := cube, l′ := λ(x)
(

large(c′)(x)
)

︸ ︷︷ ︸

instantiations of memory c′,l′

} (47e)

≡ cf(C) from (47d), by (head); (cong) of reordering assignments
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5 Expressiveness of Lλ
ar for Coordination in Natural

Language Phrases

5.1 Coordinated Predication Versus Sentential Conjunction

In this paper, we have extended the algorithmic expressiveness of Lλ
ar.

We demonstrate it by comparing natural language sentences and their ren-
derings into Lλ

ar recursion terms, which express their algorithmic meanings, e.g.,
(49c)–(49d) and (50j)–(50k). The canonical forms cf(A) in (49c)–(49d) and (50j)–
(50k) are denotationally and algorithmically equivalent to the λ-calculus term
A in (49b) and (50a).

In addition, there are Lλ
ar recursion terms that are not algorithmically equiv-

alent to any λ-calculi terms, see (A)–(C), Proposition 2, and also Sect. 6.

Coordinated Predication: a class of sentences with coordinated VPs

[Φj ]np
[

[ΘL and ΨH ] [Ww]np
]

vp

render−−−→ A0 (48a)

A0 ≡ λxj

[

λyw

(

L(xj)(yw) ∧ H(xj)(yw)
)

(w)
]

(j)
︸ ︷︷ ︸

algorithmic pattern with memory parameters L,H,w,j

(48b)

Specific Instantiations of Parametric Algorithms, e.g., (48a)–(48b) and (49c), by
(49d):

[John]j loves and honors [his]j wife. render−−−→ A (49a)

A ≡ λxj

[

λyw

(

loves(yw)(xj) ∧ honors(yw)(xj)
)

(wife(xj))
]

(john) (49b)

⇒ . . . ⇒ cf(A) ≡ λxj

[

λyw

(

L′′(xj)(yw) ∧ H ′′(xj)(yw)
)

(w′(xj))
]

(j)
︸ ︷︷ ︸

algorithmic pattern with memory parameters L′′,H′′,w′,j

(49c)

where {L′′ := λxjλyw loves(yw)(xj),
H ′′ := λxjλyw honors(yw)(xj),

w′ := λxjwife(xj), j := john
︸ ︷︷ ︸

instantiations of memory L′′,H′′,w′,j

} (49d)

The predication by the sentence (49a) is expressed denotationally by the
rendering term A in (49b). The algorithm for computing its denotation den(A)
in Lλ

ar, is determined by its canonical form cf(A) (49c)–(49d).

Reduction of Coordinated Relation to Canonical Form. A reduction of the pred-
ication term A in (49b) to its canonical form cf(A) (49c)–(49d) is provided by
(50a)–(50j):
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A ≡ λxj

[

λyw

[

love(yw)(xj) ∧ honors(yw)(xj)
]

(wife(xj))
]

(john) (50a)

⇒ λxj

[

λyw

[

(L ∧ H) where {L := love(yw)(xj),

H := honors(yw)(xj) }]

(wife(xj))
]

(john)
(50b)

(50b) is by: 2x(ab) to ∧, 2x(lq-comp), (ap-comp), from (50a)

⇒ λxj

[

[

λyw (L′(yw) ∧ H ′(yw)) where {L′ := λyw love(yw)(xj),

H ′ := λyw honors(yw)(xj) }]

(wife(xj))
]

(john)
(50c)

(50c) is by (ξ) for λyw, (ap-comp), (lq-comp), (ap-comp), from (50b)

⇒ λxj

[

[

λyw

(

L′(yw) ∧ H ′(yw)
)

(wife(xj))
]

where {L′ := λyw love(yw)(xj),

H ′ := λyw honors(yw)(xj) }
]

(john)

(50d)

(50d) is by (recap), (lq-comp), (ap-comp), from (50c)

⇒ λxj

[

[

λyw

(

L′(yw) ∧ H ′(yw)
)

(w) where {w := wife(xj) }]

where {L′ := λyw love(yw)(xj),

H ′ := λyw honors(yw)(xj) }
]

(john)

(50e)

(50e) is by (ab), (rec-comp), (lq-comp), (ap-comp), from (50d)

⇒ λxj

[

[λyw

(

L′(yw) ∧ H ′(yw)
)

(w)]
where {L′ := λyw love(yw)(xj),

H ′ := λyw honors(yw)(xj),

w := wife(xj) }]

(john)

(50f)

(50f) is by (head), (cong), (lq-comp), (ap-comp), from (50e)

⇒
[

λxj [λyw

(

L′′(xj)(yw) ∧ H ′′(xj)(yw)
)

(w′(xj))]

where {L′′ := λxjλyw love(yw)(xj),
H ′′ := λxjλyw honors(yw)(xj),

w′ := λxjwife(xj) }
]

(john)

(50g)

(50g) is by (ξ) to λxj , (ap-comp) from (50f)

⇒
[

[

λxj [λyw

(

L′′(xj)(yw) ∧ H ′′(xj)(yw)
)

(w′(xj))]
]

(john)

where {L′′ := λxjλyw love(yw)(xj),
H ′′ := λxjλyw honors(yw)(xj),

w′ := λxjwife(xj) }
]

(50h)

(50h) is by (recap), from (50g)
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⇒
[

[

[λxj [λyw

(

L′′(xj)(yw) ∧ H ′′(xj)(yw)
)

(w′(xj))]](j)

where { j := john }]

where {L′′ := λxjλyw love(yw)(xj),
H ′′ := λxjλyw honors(yw)(xj),

w′ := λxjwife(xj) }
]

(50i)

(50i) is by (ab), (rec-comp), from (50h)

⇒ [

λxj [λyw

(

L′′(xj)(yw) ∧ H ′′(xj)(yw)
)

(w′(xj))](j) where {
L′′ := λxjλyw love(yw)(xj),

H ′′ := λxjλyw honors(yw)(xj), w′ := λxjwife(xj), j := john }]

(50j)

(50j) is by (head), (cong), from (50i)

≈ [

λxj [λyw

(

L′′(xj)(yw) ∧ H ′′(xj)(yw)
)

(w′(xj))](j) where {
L′′ := λxjλyw love(yw)(xj),

H ′′ := λxjλyw honors(yw)(xj), w′ := wife, j := john }]

(50k)

(50k) is by Definition 14 and den(λxjwife(xj)) = den(wife), from (50j)

In contrast to (49a)–(49b), the propositional content of the sentence in (51a),
which is a predicative conjunction, can be represented by the following recursion
terms (51b)–(51c) of Lλ

ar. The terms in (51b)–(51c) are algorithmically equiva-
lent (synonymous), by the reduction calculus of Lλ

ar, and their head parts are
conjunction propositions, which is expressed by the sentence (51a) too:

[John]j loves [[his]j wife]w and [he]j honors [her]w (51a)
render−−−→co-indexar

[

love(w)(j) ∧ honors(w)(j)
]

where {
j := john, w := wife(j) } (51b)

⇒cfγ∗
[

L ∧ H
]

where {L := love(w)(j), H := honors(w)(j),

j := john, w := wife(j) } (51c)

Proposition 2.(1) The terms in the reduction sequence (50a)–(50j) are all
algorithmically equivalent with each other and with (50k)

(2) The terms in (50a)–(50j), (50k) are not algorithmically equivalent with the
ones in (51b)–(51c)

(3) The terms (51b)–(51c) are not algorithmically equivalent to any explicit Lλ
ar,

which are λ-calculus, i.e., Gallin TY2 terms (see (A)–(C) on page 5)
(4) The terms (51b)–(51c) are not algorithmically equivalent to any λ-calculus

terms that are interpreted IL terms into TY2

Proof. (1)–(2) follow directly from Definition 14 and (43a)–(43b). (3)–(4) follow
from Theorem 2, and also from Theorem §3.24 in [18]. This is because there is
a recursion variable (i.e., two, j and w) occurring in more than one part of the
γ∗-canonical form (51c). ��
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6 Some Relations Between Let-Expressions
and Recursion Terms

Scott [21] introduced the let-expressions by the LCF language of λ-calculus,
which has been implemented by the functional programming languages, e.g., ML,
see e.g., Milner [13], Scheme,2, Haskell,3 e.g., see Marlow [12], OCaml, etc. Classic
imperative languages, e.g., ALGOL and Pascal, implement let-expressions for the
scope of functions in their definitions.

A lambda calculus with a formal language that includes terms of let-binding
is presented by Nishizaki [19]. A constant where is used in the formation of terms
in Landin [2], which are similar to let-expressions.

The formal language of full recursion Lλ
r , see Definition 1, (3a)–(3d), with-

out the acyclicity (AC), is an extension of the language LCF introduced by
Plotkin [20]. The λ-calculus of LCF has been having a grounding significance
in Computer Science, for the distinctions between denotational and operational
semantics.

Details of possible similarities and differences between let-expressions in λ-
calculus, and the recursion Lλ

ar terms of the form (3d) (n ≥ 1), in Definition. 1,
need carefull representation, which is not in the scope of the work.

In this section, we show that, in general, the recursion Lλ
ar terms diverge

from the standard let-expressions, in the sense that the reduction calculi of Lλ
ar

provide algorithmic meanings of the Lλ
ar terms via their canonical forms cf(A)

and cfγ*(A), and the γ∗-Canonical Form Theorem 1.
The algorithmic semantics by Lλ

ar and Lλ
r is provided by the reduction sys-

tem, which includes, very importantly, division of the variables into two kinds,
proper and recursion, and also of terms as either immediate or proper. Recur-
sion variables p ∈ RecV are for assignments in the scope of the where operator.
They can not be used for λ-abstraction, which uses pure variables. To have a
correspondence of a recursion term A, e.g. as in (53a), with a let-expression via
a sequence of characteristic λ-abstractions, as in (52a), we can use one-to-one,
bijective replacements with fresh pure variables, as in (54a).

The λ-terms of the form in (52a) are characteristic for the values of the
corresponding let-expressions, and can be used as a defining representation of
let-expressions:

let x1 = D1, . . . , xn = Dn inD0 ≡ λ(x1)
(

. . . [λ(xn)(D0)](Dn) . . .
)

(D1) (52a)
if xj ∈ FreeV(Di), then j < i, i.e., den(Di) may depend on den(xj) (52b)

Assume that A ∈ Terms is a Lλ
ar term of the form (53a), for some Aj ∈ Terms,

j ∈ {0, . . . , n}, such that:

(1) Aj has no occurrences of recursion (memory) variables that are different
from pi ∈ RecV, i ∈ {1, . . . , n}

2 https://www.scheme.com/tspl4/start.html#./start:h4,.
3 https://www.haskell.org.

https://www.scheme.com/tspl4/start.html#./start:h4
https://www.haskell.org
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(2) rank is such that (53b) holds

A ≡ cfγ*(A) ≡ A0 where {p1 := A1, . . . , pn := An} (53a)

rank(pi) = i, for i ∈ {1, . . . , n} (53b)

Note: It can be proved that, for each Lλ
ar term (3d), Definition 1, there is at

least one such rank, see [6]. For any i, j, such that j < i, it is not required that
pj ∈ FreeV(Ai), but this is possible, even for more than one i, see Theorem 2,
sentences like (51a) and terms (51b)–(51c).

For the purpose of the demonstration in this section, we introduce specific
let-expressions, by the abbreviations (54a)–(54b). We focus on the special case
of n = 1, (56), in the rest of this section.

let x1 = D1, . . . , xn = Dn inD0 (54a)

≡ λ(x1)
(

. . . [λ(xn)(D0)](Dn) . . .
)

(D1) (54b)
xi ∈ PureVτi

, xi �∈ Vars(A), n ≥ 1, for i ∈ {1, . . . , n}
Dj ≡ Aj{p1 :≡ x1, . . . , pn :≡ xn}, for j ∈ {0, . . . , n}

In the special case of n = 1, with just one assignment::

A ≡ cfγ*(A) ≡ A0 where {p1 := A1}, p1 �∈ Vars(A1) for acyclicity (55)

let x1 = A1 inA0{p1 :≡ x1} ≡ λ(x1)
(

A0{p1 :≡ x1}
)

(A1) (56)

When replacing a memory variable p ∈ RecV with a pure variable x ∈ PureV, in
an explicit, irreducible term A, the result can be reducible term, by (ab). When
an immediate term of the form λ(−→u )p(−→v ), for (lgh(−→u )+ lgh(−→v )) ≥ 1, e.g., p(u),
λ(v)p, λ(v)p(u), etc., occurs in an argument position of A. After replacement,
λ(−→u )x(−→v ) is not an immediate term, by Definition 4.

Lemma 3. Assume that C ∈ Terms is explicit, irreducible, such that (1)–(2):

(1) p1 ∈ RecVτ1 ,
−→u ,−→v , z ∈ PureV, such that (lgh(−→u ) + lgh(−→v )) ≥ 1

(2) p1 �∈ FreeV(C)

Let A0 ≡ λ(z)
[

C
(

λ(−→u )p1(−→v )
)]

. Let x1 ∈ PureVτ1 and x1 be fresh for A0, i.e.,
x1 �∈ Vars(A0). Then:

C(λ(−→u )p1(−→v )) and A0 ≡ λ(z)
[

C
(

λ(−→u )p1(−→v )
)]

are explicit, irreducible (57a)
[C(λ(−→u )p1(−→v ))]{p1 :≡ x1} and A0 are reducible (57b)

Proof. By (2), C{p1 :≡ x1} ≡ C. The following reductions can be done:

[C(λ(−→u )p1(−→v ))]{p1 :≡ x1} ≡ C(λ(−→u )x1(−→v )) (58a)
⇒ C(r1) where { r1 := λ(−→u )x1(−→v ) } by (ab) from (58a) (58b)
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Then:

A0{p1 :≡ x1} ≡ λ(z)
[

C
(

λ(−→u )p1(−→v )
)]{p1 :≡ x1}

≡ λ(z)
[

C
(

λ(−→u )x1(−→v )
)] (59a)

⇒ λ(z)
[

C(r1) where { r1 := λ(−→u )x1(−→v ) }]

by (ab), (lq-comp) (59b)

⇒ λ(z)
[

C(r′
1(z))

]

where { r′
1 := λ(z)λ(−→u )x1(−→v ) } ≡ A′

0 by (ξ) for λ(z) (59c)

There are two cases:
Case 1 z ∈ FreeV(λ(−→u )p1(−→v )). Then A0{p1 :≡ x1} ⇒ A′

0 ≡ cfγ*(A′
0).

Case 2 z �∈ FreeV(λ(−→u )x1(−→v )). Then:

A′
0 ⇒(γ∗) λ(z)

[

C(r1)
]

where { r1 := λ(−→u )x1(−→v ) } ≡ cfγ*(A′
0) by (γ∗) (60a)

A0{p1 :≡ x1} ⇒ A′
0 ⇒γ∗ cfγ*(A′

0) (60b)

��
Lemma 4. Assume that A ∈ Terms is as in (61), with the variables as in
Lemma 3, Case 2, i.e., p1 ∈ RecVτ1 ,

−→u ,−→v , z ∈ PureV, for explicit, irreducible
C,A1 ∈ Terms, such that A1 is proper, and p1 �∈ FreeV(C) (p1 �∈ FreeV(A1) by
acyclicity), x1 ∈ PureVτ1 , x1 �∈ Vars(A), and z �∈ FreeV(λ(−→u )x1(−→v )):

A ≡ cfγ*(A) ≡ λ(z)
[

C
(

λ(−→u )p1(−→v )
)]

︸ ︷︷ ︸

A0

where { p1 := A1 } (61)

Then, the conversion of the assignment in A into a λ-abstract over A0, applied
to A1, results in a term, which is not algorithmically equivalent to A (similarly,
for Case 1):

A �≈γ∗A′ ≡ [

λ(x1)
(

A0{p1 :≡ x1}
)]

(A1) (62)

Proof.

A′ ≡ [

λ(x1)
(

A0{p1 :≡ x1}
)]

(A1) (63a)

≡ λ(x1)
[

[

λ(z)
[

C
(

λ(−→u )p1(−→v )
)]

︸ ︷︷ ︸

A0

]{p1 :≡ x1}
]

(A1) (63b)

⇒ λ(x1)
[

λ(z)
[

C(r1)
]

where { r1 := λ(−→u )x1(−→v ) }
]

(A1) (63c)

by (60a), (lq-comp), (ap-comp)

⇒
[

λ(x1)
[

λ(z)
[

C(r11(x1))
]]

where { r11 := λ(x1)λ(−→u )x1(−→v ) }
]

(A1) (63d)

by (ξ) for λ(x1), (ap-comp)

⇒ λ(x1)
[

λ(z)
[

C(r11(x1))
]]

(A1) where { r11 := λ(x1)λ(−→u )x1(−→v ) } (63e)
by (recap)

⇒
[

λ(x1)
[

λ(z)
[

C(r11(x1))
]]

(p1) where {p1 := A1}
]

where { r11 := λ(x1)λ(−→u )x1(−→v ) }
(63f)
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by (ab), (rec-comp)

⇒ λ(x1)
[

λ(z)
[

C(r11(x1))
]]

(p1) where

{p1 := A1, r11 := λ(x1)λ(−→u )x1(−→v ) } ≡ cfγ*(A′)
by (head) (63g)

Thus, (62) holds: A and A′ are not algorithmically equivalent, A �≈γ∗ A′, which
follows, by Definition 14, from (61) and (63g). (Similarly, for Case 1.) ��
Proposition 3. In general, the algorithmic equivalence does not hold between
the Lλ

ar recursion terms of the form (53a) and the λ-calculus terms (54a)–(54b),
which are characteristic for the corresponding let-expressions in λ-calculus.

Proof. By Lemma 4, the special set of terms in it provide counterexamples to
alleged algorithmic equality between all terms in (53a) and (54a)–(54b). ��

The let-expressions, represented by the specific, characteristic λ-terms (54a)–
(54b) in Lλ

ar, are only denotationally equivalent to the corresponding recursion
terms, but not algorithmically in the most significant cases. The full proofs are
the subject of forthcoming papers.

7 Conclusion and Outlook for Future Work

In this paper, I have presented some of the major characteristics of Lλ
ar, by also

developing it for enhancing its mathematical capacities for logic, theoretically,
by targeting applications.

Algorithmic Semantics: The essential theoretic features of Lλ
ar provide algo-

rithmic semantics of formal and natural languages. Computational semantics
by Lλ

ar has the fundamental distinction between algorithmic and denotational
semantics. The algorithms determined by terms in canonical forms compute
their denotations, see Fig. 1.

While the theory has already been quite well developed, with eyes towards
versatile applications, it is an open subject with many open and ongoing tasks
and perspectives. The greater semantic distinctions of the formal language and
calculi of Lλ

ar enhance type-theoretic semantics by traditional λ-calculi. I have
demonstrated that, by being a strict extension of Gallin TY2 [1], Lλ

ar exceeds
also the facilities of Montague [14] IL, e.g., see Sect. 4, Propositions 1–2.

Algorithmic Patterns for Computational Semantics: Memory locations, i.e.,
recursion variables in Lλ

ar terms represent parameters that can be instantiated by
corresponding canonical forms, depending on context, the specific areas of appli-
cations, and domain specific texts, e.g., as in (45c) and (47d); and (48a)–(48b),
as in (50k).

Logical Constants and Quantifiers in Lλ
ar: Canonical forms can be used for rea-

soning and inferences of semantic information by automatic provers and proof
assistants. This is a subject of future work.
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