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Abstract. Direct steam generation is considered as a potential substitute for con-
ventional power generation technologies, for its advantageous characteristics. It
can be directly powered by solar radiation by concentrating it on a specific point,
besides eliminating heat exchangers and fluid refrigerant, which allows to reduce
operating costs. It is crucial, to properly grasp the two-phase flow involved in these
technologies. In this paper, we numerically explore the effect of flow strength
and wall-driven position on the flow structure and dynamic behavior of bubbles
in a square enclosure, through employing the Boltzmann pseudopotential lattice
method. The terminal position of the bubble reflects the concurrence between the
existing forces. When the value of the Reynolds number exceeds 600, the fluid
flow strength overcomes buoyancy and pushes the bubble towards the center of
the primary vortex, regardless of the wall-driven configuration. In terms of flow
structure, wall-driven flow structures dominate the square cavity in all studied
cases. The wall motion configuration affects the bubble trajectory, especially the
left wall-driven case where the bubble only reaches the second quarter of the cavity
height before being driven toward the center of the primary vortex. Note that the
wall configuration has a strong impact on bubble trajectory for equal Reynolds
values.
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1 Introduction

Given the abundance of global solar irradiation, a variety of solar energy technologies are
available, including concentrated solar power, solar water heating systems, central tower
systems, parabolic troughs, and parabolic channels [1]. The deployment of these kinds of
systems has the potential to offer pragmatic and reasonable solutions that help individuals
and their environment, by supplying an alternative to fossil energy [2]. Nevertheless, the
performance of solar-based systems is still rather low compared to fossil-based energy
sources. Therefore, several studies have focused on the enhancement and improvement
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of solar-based systems [3—5]. Nowadays, direct steam generation is considered one of the
most efficient forms of concentrated solar thermal energy exploitation, especially when
compared to linear Fresnel reflectors, central tower systems, and parabolic troughs [2,
6]. This excellent performance is related to the ability of liquid-vapor systems to operate
at very high temperatures [6, 7]. Two-phase flow is a complex phenomenon involving
multiple flow regimes ranging from bubble flow to spray flow [8]. Through optimization
the channel size and mass flow rate, it is possible to maintain the bubble flow mode,
which is sought in this system [1]. The work of Pal et al. [6] shows the ability of the
Two-Fluid Method (TFM) to handle numerically a system of this nature, despite the
presence of the Ledinegg two-phase flow instability.

In reality, two-phase flow is a widespread phenomenon, found both in nature and
in industrial processes. Understanding the behavior of two-phase flow turns complex
when multiple forces are involved [9, 10]. However, the Lattice Boltzmann pseudopo-
tential method can generate a trustworthy result under these conditions. Through its
results, control and prediction of equipment performance can be improved [11]. The
Lattice Boltzmann Method (LBM), considered as a mesoscopic approach is based on
the principle of the kinetic theory described by the original Boltzmann equation [12, 13].
The methodology used by the LBM entails the assumption that a fluid is formed by a
large number of virtual particles that have undergone repeated collisions and streaming.
Resulting in microscopic kinetic principles being conserved in a way that recovers the
macroscopic scale hydrodynamic behavior [12, 14]. Many numerical models have been
developed since the 1990s to study multiphase flows using the LBM method. One of
the robust two-phase Lattice Boltzmann models is the pseudopotential model. Shan and
Chen [15] initially formulated their two-phase model in early 90s with full discretization
and validation. Later, some improvements are made to make it in the current form named
the improved MRT pseudopotential [9, 16], the latter is used in this study. In order to
predict and control the motion of the deformable bubble, the current study describes the
motion of a buoyant bubble within a single wall-driven square cavity.

2 Methodology

2.1 Physical Model

This work consists of examining the effect of a wall-driven flow strength and placement
on the flow topology and bubble behavior. The physical domain consists of an immersed
bubble in a liquid phase of saturated water at the temperature of 0.7 T.. Initially, the
bubble center is placed in the lower part of the 2D square cavity (0.5L, 0.1L). The effect of
the Reynolds number is investigated for two configurations: the upper wall is moving in
the direction of positive x (Fig. 1a) and the left vertical wall is moving upward (Fig. 1b).
The domain was initially allowed to stabilize in a free gravity field for 10000-time steps,
then gravity and a flow motion were triggered. The gravitational acceleration is set at g
=2 x 107 lu ts~2 and the wall-driven flow is ensured by varying the Reynolds number
in the range [300, 900].
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Fig. 1. Initial configuration for the rising numerical domain L = 200 lu, d = 40 lu, (a) the upper
wall is moving, (b) the left vertical wall is moving.

2.2 The Pseudopotential Multiple-Relaxation-Time Lattice Boltzmann Model

In this work, the lattice Boltzmann method is employed for simulating the bubble motion
in a liquid with a large liquid-gas density ratio and the improved pseudopotential mul-
tiphase method is introduced in this section. Initially, the density function distribution
with MRT collision operator is given by the following equation [17]:

Fulo + €ady, 148 = folee. 1) = R (5. 0) —f59 6. 0) 8, Fue ) (1)

fa(x, t) is the density distribution function, and fﬂ(eq) (x, 1) is the equilibrium distribution

function. §; is the time step, and Xaﬁ = M~'AM is the collision matrix, in which M is

/
an orthogonal transformation matrix, and A is a diagonal relaxation matrix, and F is
the forcing term [16].
The distribution function in velocity space is related to the one in momentum space

!
through the MRT operators, m = M.f and m®! = M.f¢4. (I — %)S = M F is the total

force in the moment space. For thermodynamic consistency and mechanical stability
under high density ratio of the two-phase flow process, the improved MRT forcing
scheme is used [16].
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where S1 = (v |Fin|?) / (¥28:(ze = 0.5)), S2 = (y|Finel*) / (V8 (zc = 0.5)).

F is the total force which incorporates the inter-particle interaction force F;,; and
the gravitational force Fi.

The interparticle interaction force that is responsible for the phase separation is
defined as [18]:

Fin@) = =) Y G(x.x).y(x').(x' —x) 3)
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Y (x) represents the effective mass given as a function of local density and the following
equation of state is used [16]:

2 — o2
ot = e —0s) @

In Eq. (4), peos is the pressure calculated via Ping-Robinson equation of state [19]:
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$0(T) = [1 4 (0.37464 + 1.5422600 — 0.269920°) (1 — /T/T)]?, with w being the
acentric factor which equals 0.344 in the case of water [9].
The gravity force has different formulations the most suitable is [19]:

Fo(x) = (p(X) — pave) g (6)

where g is the gravity acceleration and pgy. is the average density over the physical
domain.

The macroscopic properties such as fluid density and velocity are obtained from [20]
as:

p= Xi:fi; pU=Xi:eiﬁ+%F (M

The boundary conditions for a mobile wall are given through Zou and He [21]
approaches, where the rigid walls are dealt through bounce back scheme.
The strength of the external fluid flow is expressed by the Reynolds number as:

_ Vig xL

v
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3 Numerical Code Validation

To validate the in-house numerical code, the classic 2D wall-driven cavity flow has
been analyzed at Reynolds 1000. The velocity profiles along the horizontal line, at y =
0.5, are presented in Fig. 2 for validation purpose and show a fair agreement with the
results by Ghia et al. [22], which underpins the applicability of the LBM model used for
investigating the other flow configurations explored. Furthermore, to assess the validity
of two-phase flow via the MRT pseudopotential lattice Boltzmann method, the Maxwell
construction curve is used, depicting the numerical results versus the analytical solution,
as shown in Fig. 3. This comparison also shows a good accord between the numerical
and the analytical results.
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Fig. 2. Comparison of the velocity profiles between the computed results, and the data from
reference [22] for Re = 1000.
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Fig. 3. Maxwell construction obtained by LBM simulation and analytical approach.

4 Result and Discussion

The time evolutions of the flow and density fields are shown in Fig. 4, where the effect
of the Reynolds number on the wall-driven flow is illustrated for both configurations.
The captures in Fig. 4-1, represent the steady state solutions in the case where the flow
is generated by the upper driven-wall. For Re = 300, the competition between the shear
and gravitational forces leads to an equilibrium state of the bubble in the upper right
side of the cavity as illustrated in Fig. 4-1-a. However, when the fluid flow magnitude
increases, the shear force outweighs the gravitational one as shown in Fig. 4-1-b and 1-c
respectively for Re = 600 and 900. For this case, the bubble settles in the central region
of the square cavity. When the wall-driven is the left vertical one, the flow field structures
are overall different from those generated by the horizontal lid-driven wall. In Fig. 4-
2-a, it can be seen that the bubble is located near the moving wall, in the upper-right
corner at Re = 300, dividing the secondary vortex into several small vortices around the
bubble interface. Note also the change in the shape of the bubble in comparison with that
described in Fig. 4-1-a. The cases with the remaining Reynolds numbers (Re = 600 and
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Re = 900), depicted in Fig. 4-2-b and 2-c, show different flow structures compared to
those of Fig. 4-1-a and 1-b generated by the driven upper wall configuration. However,
in terms of bubble position, the latter remains localized in the central part of the cavity,
i.e. its location is not very affected by the driven wall at high Reynolds numbers. It is
obvious to conclude that, the effect of the shear forces generated by the driven walls
exceeds that of the buoyant force at Reynolds 600 and 900. However, at the Reynolds
number value 300, the competition between both forces brings the bubble to equilibrium
near the upper right region for the two configurations.

To add a complement and confirm the previous results, the bubble centroid trajectory
has been used to track the bubble’s movement inside the square cavity for different
Reynolds numbers and both configurations. The effect of the flow strength on the bubble
motion is depicted in Fig. 5 where the time step between each point is 200 ts. For the
case of the upper driven wall, the bubble mostly follows similar paths with different
slopes during the rise process. Once the bubble reaches the upper right corner, it stays
there for Re = 300 but for the higher values of this parameter it is pushed downward
under the effect of the intense flow. In fact, the competition between the existed forces
leads to different terminal bubble placements. As the flow strength increases, the bubble
ends up reaching its equilibrium state near the center of the primary vortex, which is
located approximately in the center of the square cavity. In contrast, when the bubble is
subjected to the effect of the fluid flow generated by the left driven-wall at Re = 300, the
bubble is driven upward almost vertically at the beginning. Then, it is driven toward the
right upper corner by the peripheral lines of the main cell to its state of equilibrium. For
the remaining values of Re (Re = 600 and Re = 900), the slope during the rising process
is more titled and the bubble, unlike the previous case, barely exceeds the half height
of the square cavity. Moreover, the bubble quickly settles in the middle of the cavity.
Therefore, from the above results, it can be concluded that the flow strength outdoes the
gravitational acceleration by defining the bubble trajectory.

5 Conclusion

The motion of a buoyant bubble in a single wall-driven square cavity has been studied
using the Boltzmann pseudopotential lattice MRT method, where the effects of the wall-
driven configurations, and the Reynolds number are considered. The terminal position
of the bubble is defined by the interaction between the gravitational and flow strength
resulting from the moving side. At high Reynolds numbers, the flow strength overrides
buoyancy by inducing the bubble to dwell in the center of the primary vortex. At Re
= 300, the bubble reaches its equilibrium state in the upper right corner of the square
cavity. Given the results, the trajectory of the bubble’s center is found to be sensitive to
the position of the mobile wall. The movable left wall configuration reduces the effect
of gravitational forces and promotes the impact of the fluid flow strength on the bubble
trajectory.
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Fig. 4. Steady flow fields and final location of the bubble for different Reynolds numbers, and
wall-driven positions, (1) upper wall, (2) left wall: (a) Re = 300, (b) Re = 600, (c) Re = 900.
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5. Trajectories of the bubble moving in the square cavity for various Reynolds numbers: (1)

upper wall moving and (2) left wall moving.
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