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Abstract. Thecombined impact of aLorentz force andvolumetric heat generation
on natural convection heat transfer and fluid flow in a square cavity are investigated
numerically using MRT-LBM. The cavity is filled with a non-Newtonian fluid
and submitted to a partial heating from below. The main physical parameters
controlling the problem are the Hartmann number (0 ≤ Ha ≤ 50), the external
Rayleigh number (RaE = 105), the parameter characterizing the intensity of heat
generation (R = 0 and 1), and the power-law index (0.8 ≤ n ≤ 1.2). The findings
of the present study are illustrated by presenting streamlines, isotherms, and mean
Nusselt numbers.
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1 Introduction

Heat transfer by natural MHD convection in cavities heated from below and confining
non-Newtonian fluids is an important area of research due to its involvement in many
practical and industrial domains, including the medical and chemical industries, as well
as the polymer and food processing [1]. The damping role of the magnetic field allows
to modulate the thermally generated melting front [2] and its effect is controlled by the
strength of the applied magnetic field through the Hartmann number. Many past studies
have been conducted to investigate natural convection heat transfer of non-Newtonian
fluids under the effect of an externalmagnetic field. The impact of the strength of the latter
and the tilt angle of the confining configurations on heat transfer by natural convection in
linearly heated [3], partially heated [4], and differentially heated [5] square cavities has
been examined. The results presented in these studies show a considerable impact of the
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power-law index and the Hartmann number on heat transfer. More recently, Aghakhani
et al. [6] employed the FD-LBM (Lattice Boltzmann-Finite Difference) approach to
investigate the heat transfer of a non-Newtonian fluid by natural convection in a C-
shaped enclosure submitted to the action of a horizontal magnetic field. Their findings
reveal that the influence of convection becomes more important as the Rayleigh number
increases, and that it is much more relevant for a shear-thinning fluid. However, raising
the Hartmann number has a detrimental influence on fluid flow and heat transfer for
various rheological behaviors. Similar findings have been reported by Zhang et al. [7]
in an L-shaped cavity.

The literature review shows that natural convection in enclosures heated by internal
heat sources has been the object of many studies [8–10]. This interest stems in part from
the wide variety of important applications in different fields covering among others solar
energy harvesting and operation, nuclear reactor safety, and fire prevention. The presence
of internal heat generation provides additional dynamics in convective flow systems and
may lead to unexpected behaviors. Thus, the effect of heat generation/absorption in the
presence/absence of an external magnetic field on heat transfer generated by natural
convection has been reported in some prior studies. In this frame, Khanafer et al. [11]
studied numerically the magnetic field influence on the heat transfer generated by free
convection in an inclined square cavity saturated with a porous media. Their results
confirm the attenuation of the natural convection effect that results from the increase of
Hartmann number. Recently, the Lattice Boltzmann method has been used to study the
heat generation influence on heat and mass transfer and fluid flow by Soret driven free
convection in the absence of the Lorentz force both in steady [12] and unsteady [13] flow
regimes. The results of these studies show that heat generation impacts significantly the
flow pattern, and the nature of oscillations while varying its intensity. The influence of
heat generation/absorption in the presence of uniform [14], or variable [15] magnetic
fields has been considered in the case of non-Newtonian fluids. The results obtained
indicate that the Lorentz force is a key parameter for controlling the heat transfer within
the cavity. The latter is also affected by the heat generation and decreases by raising the
power-law index.

According to this preliminary literature review, it appears that there is a lack of studies
addressing the numerical modeling in the presence of the Lorentz force and internal heat
generation and their impacts on heat transfer generated by thermal convection in confined
configurations filled with non-Newtonian fluids. Therefore, the objective of the present
investigation is to elucidate the effect of the Hartmann number (Ha = 0 to 50), the heat
generation (R = 0 and 1) and the power-law index (n = 0.8 to 1.2) on natural convection
within a square cavity partially heated from the bottom wall. The study is conducted
using the MRT-LBM for an external Rayleigh number and a Prandtl number fixed at 105

and 10, respectively.
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2 Mathematical Formulation

2.1 Physical Model

The two-dimensional physicalmodel under consideration is depicted in Fig. 1. It consists
of a square cavity partially heated from below. The heating source of length ε = w/L =
0.4 is centrally located (d/L = 0.5). The cavity is cooled from its vertical sides, while
the remaining walls (the upper horizontal wall and the non-heated elements of its lower
wall) are thermally insulated. The cavity is filled with a non-Newtonian fluid (Pr = 10)
and subject to the action of a horizontal magnetic field of intensity B0. The fluid flow is
laminar, and all thermo-physical properties of the non-Newtonian fluid are assumed to
be constant. However, the fluid density is assumed to vary linearly with temperature in
the buoyancy term in line with the Boussinesq approximation.

Fig. 1. Schematic of the studied model.

2.2 Lattice Boltzmann Method

The MRT-LBM has been used in previous studies to simulate non-Newtonian fluid
flows. Thismethod hasmany advantages in terms of accuracy, numerical stability, ease of
implementation of boundary conditions, and suitability for parallel computing. TheLBM
equations used to determine the velocity and temperature fields of the non-Newtonian
fluid in the presence of two external forces (Lorentz and buoyancy forces) are expressed
by Eqs. (1) (for flow) and (2) (for temperature) using the D2Q9 and D2Q5 models,
respectively.

f (�r + ck�t, t + �t) = f (�r, t) − M−1S
(
m(�r, t) − meq(�r, t)) + M−1(I − S/2)F (1)

g(�r + ck�t, t + �t) = g(�r, t) − N−1Q
(
n(�r, t) − neq(�r, t)) + ωk� (2)
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where f /(g) is the density/(temperature) distributions functions. The function mk /(nk )
is the moment space of density/(temperature) and meq/(neq) is its corresponding
equilibrium moment space, which is defined as follows:

meq =
⎛

⎜
⎝

ρ,−2ρ + 3ρ
(
u2 + v2

)
, ρ − 3ρ

(
u2 + v2

)
, ρu,

−ρu, ρv,−ρv, ρ
(
u2 − v2

)
, ρuv

⎞

⎟
⎠ (3)

neq = (T , uT , vT ,−2T , 0) (4)

The expressions of the force term F and the source term � in Eqs. (1) and (2) are
given as following:

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 = 0

F1 = 6ρ
(
Fxu + Fyv

)

F2 = −6ρ
(
Fxu + Fyv

)

F3 = Fx

F4 = −Fx

F5 = Fy

F6 = −Fy

F7 = 2ρ
(
Fxu − Fyv

)

F8 = ρ
(
Fyu + Fxv

)

(5)

� = α�T

L2
R (6)

The parameter R (= RaI/RaE) is the source term in the energy equation represented
by the ratio between the internal and external Rayleigh numbers and Fx and Fy are the
external forces applied in the x-direction and y-direction, respectively. In the present
study, these forces are defined as follows:

Fx = 0

Fy = α2PrRaE
�TL3

(T − T0) − Ha2k
L2nα1−n v

(7)

The physical parameters of the study are:

Pr = (μ0/ρ)L2−2n/(α2−n), RaE = gβ�TL2n+1/
(
(μ0/ρ)αn),

RaI = gβQ̇L2n+3/(λ(μ0/ρ)αn), Ha = B0L
n
√

σα1−n/(μ0)
(8)

The relaxation diagonal matrices in the Eqs. (1) and (2) are defined as follows:

S = diag(1.0, 1.4, 1.4, 1.0, 1.2, 1.0, 1.2, 1/τϑ , 1/τϑ) (9)

Q = diag(1.0, 1/τα, 1/τα, 1.0, 1.0) (10)
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The parameters τϑ and τα are the relaxation times, which are related to the dynamic
viscosity and thermal diffusivity at the mesoscopic scale through the Chapmann-Enskog
expansion analysis as follows:

τϑ = 3(μ/ρ) + 0.5 (11)

τα = 5α + 0.5 (12)

In the case of a non-Newtonian fluid, the dynamic viscosity varies locally with the
shear rate as follows:

μ = μ0|γ̇ |n−1 (13)

With

|γ̇ | = √
2SαβSαβ (14)

The parameter Sαβ is the shear stress, defined by Eq. (15) in the MRT model.

Sαβ = −3

2ρ

∑
Cα,iCβ,i

∑
M−1SM

(
f − f eq

)
(15)

Classical Bounce-Back boundary conditions have been used to evaluate the unknown
density distribution function (inside the physical domain), which is given by Eq. (16),
along the motionless cavity walls. The evaluation of the unknown thermal distribution
function g along the rigid walls, is expressed by Eq. (17).

fw,i = fw,i (16)

gw,i = Tw −
4∑

j=0,j �=i

gw,j (17)

where i is the direction of distribution function inside physical domain while i is its
opposite direction along the rigid wall, w.

Finally, the macroscopic density, velocity and temperature are deduced by the
expressions given by Eq. (18).

ρ =
8∑

k=0

fk , ρ�u =
8∑

k=0

fk�ck + �t �F/2, T =
4∑

k=0

gk (18)

The local/mean Nusselt number along the heating source are evaluated as follows:

NuL = − ∂T

∂Y

∣∣∣∣
Y=0

and Num = 1

ε

d+ε/2
∫
d−ε/2

NuLdX (19)
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2.3 Numerical Validation and Grid Size

The developed MRT-LBM code was submitted to several tests of validation. These tests
are restricted here to the case of a cavity filledwith a non-Newtonian fluid or submitted to
the effect of an external magnetic field. In the case of a non-Newtonian fluid-filled square
cavity, we used as reference the results obtained by Turan et al. [16]. The comparative
results depicted in Fig. 2 in terms of mean Nusselt number for different rheological
behaviors of the working fluid show a good agreement with a maximum difference not
exceeding 1.38%. In the presence of an external magnetic field and an internal heat
generation, the numerical results are compared to those published by Taghikhani [17]
in terms of streamlines (Fig. 3a) and isotherms (Fig. 3b). From these figures, it can be
seen that the results obtained with the MRT-LBM code are in very good qualitative and
quantitative agreements with those published by Taghikhani [17].

The mesh adopted was preceded by numerous tests to examine its effect on the
results. These tests were conducted in terms of Num variations for RaE = 105,Ha = 50,
R = 1 and various n, using the grids 100 × 100, 160 × 160, 200 × 200, 260 × 260 and
300 × 300. Based on the results presented in Table 1, the grid 200 × 200 is considered
appropriate in terms of accuracy and computation time. In fact, compared to the finest
grid of 300× 300, the maximum deviation recorded using the mesh 200× 200 is within
0.88% with a substantial gain in terms of calculation time.
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16
MRT-LBM
Turan et al. [16] (ANSYS Fluent)

Num
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Fig. 2. Validation in terms of mean Nusselt number variations vs. n for Ra = 105.

3 Results and Discussion

The combined influence of the Hartmann number (0 ≤ Ha ≤ 50), internal heat gener-
ation (R = 0 and 1) and power law index (0.8 ≤ n ≤ 1.2) on the thermal and dynamic
behaviors of the non-Newtonian fluid are described in this section for a fixed external
Rayleigh number of 105.
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Fig. 3. Validations in terms of streamlines (a) and isotherms (b) for RaE = 106, Pr = 0.733 and
R = 1.

Table 1. Sensitivity of Num to the grid size for RaE = 105, Ha = 50, R = 1 and various n.

100 × 100 160 × 160 200 × 200 260 × 260 300 × 300

n = 0.8 5.5673 5.6310 5.6597 5.6925 5.7098

n = 1.0 2.0947 2.1155 2.1243 2.1343 2.1393

n = 1.2 1.4661 1.4790 1.4843 1.4898 1.4925

3.1 Streamlines and Isotherms

The solutions being symmetrical relative to the vertical cavity’s centerline, both streams
and isotherms are exemplified in Fig. 4 to illustrate the combined effect of the parameters
Ha and n. By varying either,Ha or n, the flow symmetry relative to the vertical centerline
of the cavity is preserved but the flow intensity undergoes substantial changes. In fact,
the fluid flow is organized into two vertical counter-rotating cells of equal intensities
filling the inner space of the cavity. For R = 0, Fig. 4a shows that both in the presence
and in the absence of the Lorentz force, the increase of n reduces the flow intensity inside
the cavity. Likewise, the intensification of the magnetic field through the increase of Ha
has a damping effect leading to the attenuation of the flow intensity. Comparatively,
the drop in the intensity of the flow that accompanies the augmentation of n engenders
a slight shift downward of the center of rotation of each cell in the absence of the
magnetic field while this shift is more manifest at Ha = 30. Quantitatively, the flow
intensity for the shear-thinning/(shear-thickening) fluid is 49.40%/48.57% higher/lower
than that corresponding to the Newtonian case for Ha = 0. These percentages become
76.80%/93.07% at Ha = 30. This means that, the higher the fluid’s apparent kinematic
viscosity, the more it is affected by the Lorentz force. For R = 1, value expressing the
equality between the internal and external Rayleigh numbers, limited changes (small
reductions) are observed while comparing the results to those obtained without internal
heat generation (R = 0). In fact, the intensification/reduction observed in the flow
intensity in comparison with the Newtonian case is reduced to 48.22%/47.95% for a
shear-thinning/(shear-thickening) fluid at Ha = 0 and 68.05%/92.95% at Ha = 30.
From another perspective, increasing R has a limited impact on the flow intensity for n =
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1.2. Quantitatively, for Ha = 0, the flow intensity decreases by about 3.37%/1.11% for
n = 0.8/1.0 by increasing R from 0 to 1. However, the effect of heat generation becomes
increasingly important for the shear-thinning fluid in the presence of the magnetic field
since the same increase of R leads to a decay of the flow intensity by about 27% for
n = 0.8 at Ha = 30.

The thermal aspect of the problem, illustrated in Fig. 4 in terms of isotherms, shows
that in the absenceofmagneticfield, the increase ofn induces a relaxationof the isotherms
next to the top sides of the heat evacuating walls and accentuates the length of thermal
plume above the heated element. Also, as a result of convection attenuation accompa-
nying the increase of n and Ha, the thermal plume and the vertical thermal boundary
layers observed next to the cold walls increase in thickness with such parameters. The
important transformations engendered by increasing n and Ha are observed in the case
of shear-thickening fluid which almost recovers the diffusive regime at Ha = 30. Glob-
ally, the lower the consistency index, the less the temperature distribution is impacted by
the intensification of Ha. At R = 1, a trend towards temperature uniformity within the
cavity is observed for the different rheological behaviors of the fluid and the distortion
of the isotherms is increasingly attenuated by increasing Hartmann number.

3.2 Heat Transfer

The effect of Hartmann number on the mean Nusselt number is illustrated in Fig. 5
in the absence and in the presence of internal heat generation and various values of n
characterizing the change in the non-Newtonian behavior of the fluid. The analysis of
the results presented in this figure shows different behaviors (depending on the nature
of the fluid) resulting from the variation of Ha. In fact, for the shear-thinning index, the
effect of Ha stays limited and leads to a slight decrease of Num for both values of R.
Comparatively, the Newtonian fluid is shown to be more sensitive to the variation ofHa.
The increase of the latter parameter engenders a degradation of Num with a quasi-linear
trend and an important decay slope. Despite the weakening of the intensity of the flow
caused by the rise of Ha, the maximum value considered in this study for this parameter
(Ha = 50) does not bring the fluid back to rest. Finally, the most important effect of
Ha is observed in the case of shear-thickening index; the mean Nusselt number decay is
drastic by increasing Ha from 0 to 10 (the presence of heat generation accentuates Num
attenuation for the latter increase ofHa) and the diffusive regime prevails fromHa = 20
for both values of R.

4 Conclusion

Natural convection heat transfer in a square enclosure locally heated by a heating sink
symmetrically located on the bottom wall and cooled from the vertical sides has been
investigated numerically using the MRT-LBM. The working fluid has a non-Newtonian
behavior obeying a power law (or Ostwald) model. The study has focused mainly on the
effect of the magnetic field (Ha), the rheological behavior of fluid (n), and in a lesser
extent on the internal heat generation whose intensity was varied in a short range. The
results presented show that the effect of natural convection is intensified by decreasing
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Fig. 4. Streamlines/Isotherms for (a) R = 0 and (b) R = 1 and various Ha and n.

n. The greatest attenuation rate accompanying the increase of Hartmann number, in
terms of flow intensity and mean Nusselt number, is observed in the case of shear-
thickening fluid. Globally, the internal heat generation has preserved the trends of Num
in their variations vs. Ha with a perceptible decay compared to R = 0. For n = 1.2, the
presence of heat generation accentuates heat transfer drop when Ha goes from 0 to 10.
Finally, the symmetry exhibited by the flow structure and the isotherms relative to the
vertical cavity’s centerline has been preserved while varying the controlling parameters
in their respective ranges.
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Fig. 5. Variations of the mean Nusselt number vs. Ha for various n and R = 0 and 1.
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Nomenclature

B0 Magnetic field strength, [T]
ck Discrete velocity
fk/gk Density/temperature distribution function
f eqk /geqk Equilibrium density/temperature distribution function
g Gravitational acceleration,

[
m s−2

]
.

Ha Hartmann number
RaE/RaI External/internal Rayleigh number
T Dimensionless temperature, (T − T0)/(TH − TC)

Greek Symbols

α Thermal diffusivity,
[
m2s−1

]

ε Length of heating source
μ0 Consistency,

[
m Pa sn

]

ν Apparent kinematic viscosity,
[
m2 s−1

]

ρ Density,
[
Kg m−3

]

� Stream function
w Weighting factor

Index

H Hot
C Cold
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