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Abstract. In thiswork,we combined the homogenization andfinite volumemeth-
ods to predict the solid fraction and the effective thermal conductivity from 3D
real morphologies of wood, namely spruce and poplar. High resolution scans per-
formed by a nano-tomograph, together with image processing are two steps of
great importance to obtain the digital representation of the real morphology suit-
able for computation. These tools allow the generation of the 3D mesh of the
thresholded sample. The stationary diffusion model is directly considered to gain
in performance. Numerical results revealed that several minutes of CPU time are
enough to predict the values of the thermal conductivity on the representative
volumes. Compared to some of our recent works, the present methodology is not
only efficient, but also more accurate.
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1 Introduction

There is an increasing interest in using insulation materials for building constructions to
optimize the energy consumption [1]. Wood-based materials exhibit good features for
this purpose. To understand the wood characteristics and its role in the improvement
of the energy efficiency, experimental tests are often conducted. Taking advantage of
tomography technology together with high performance computing, numerical predic-
tion is also an appropriate way to estimate macroscopic properties, notably the effective
conductivities [2–5].

Synchrotron facilities enable a suitable representation of the wood anatomy [6].
However, lab-equipment tomographs are nowadays able to reproduce the digital inter-
pretation of the material structure. Scans of high resolution provide a good description
of the sample with no degradation [7–12]. From the 3D scans, image processing is
required for thresholding and to extract objective information such as the distribution
and the partition of the phases, quantifying density, or the orientation of the cell walls.

Then, the morphology is used to proceed to homogenization, using suitable compu-
tational methods, for estimating the macroscopic properties of wood. For instance, finite
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elements were investigated in [3, 13, 14] for the computation of the thermal conductivity.
A finite volume approximation was carried out in [7, 15] to predict liquid diffusivity and
thermal conductivity. The work established in [16] was devoted to the lattice Boltzmann
meshless scheme enabling the simulation of heat and moisture diffusion in spruce and
wood panels. In our recent paper [17] we developed an explicit finite volume approach
allowing the prediction of the macroscopic thermal conductivity of wood. Besides the
REV size constraint, working at the pore scale requires tiny time steps, which makes the
convergence towards the steady state too slow. To mitigate this issue, a volume reduc-
tion strategy was also proposed following the longitudinal direction. The idea yields
convenient results. However. It is based on a stronger assumption adapted to small set
of materials whose phases are in parallel in the longitudinal direction.

The core point of the present contribution is to perform computations using the
stationary model instead of the transient one. Its main assets are summarized as follows:
(i) no reduction in the volume size is required; (ii) taking into account larger REVs is
now possible (iii) spectacular gains in terms of the computational cost are reported; (iv)
accuracy is ensured. Consequently, this methodology provides a better compromise to
predict the macroscopic thermal conductivity efficiently and accurately.

2 Materials and Methods

2.1 Sample Preparation and Tomography

The wood samples come from well-identified boards available in our laboratory. They
were dried outside before storing them in air-dry conditions. The size of the spruce and
poplar species was adjusted to fit small cylindrical shapes of the order of millimeters.
This was done with the help of a wood-turning machine. Such a cut is mandatory to
achieve the high resolution. The diameter and the height of the cylinders were 5.64 and
3.11mm, respectively, for spruce and poplar. All these samples are scanned at a microm-
eter resolution thanks to a lab X-ray nanotomograph (UltraTom by RX-solutions). The
obtained 3D image of the sample is given by a heavy stack of 2D images following the
longitudinal direction. We denote by (R), (T) and (L) the natural material directions,
referred to as radial, tangential and longitudinal. The scanned samples are illustrated in
Fig. 1. Precisely, the resolution is 3 µm for spruce and poplar.

Fig. 1. Scanned sample of spruce (left) and poplar (right)
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2.2 Morphology Segmentation

The image processing procedurewas implemented in Python. High-resolution scans lead
to large sets of data. We follow a practical idea to extract the representative elementary
volume (REV) within any complex geometry. The 3D morphology is a series of 2D
images. The REV is chosen by specifying its center and size. One then crops the original
3D image and applies the global segmentation methodology thanks to Otsu’s automatic
thresholding technique [18]. Figure 2 exhibits the results of the binary morphologies.
Two phases are considered. The assigned code 255 (0) stands for the gaseous (solid)
phase. The 3Dmesh of the morphology is also generated at this stage. It can be seen that
the cell walls are more aligned in the (R,T) section for spruce than poplar. This would
have an impact on the macroscopic property.

Fig. 2. Thresholded volume of spruce 101 × 101 × 255 voxels (left) and thresholded volume of
poplar 128 × 128 × 255 voxels (right)

2.3 A Word on the Homogenization

Homogenization is a mathematical method, which consists of predicting macroscopic
properties from the microscopic structure of materials [19, 20]. In this work, we focus
on a stationary diffusion equation to derive the effective thermal conductivity. Let � be
the 3D parallelepiped � = [x0, xm] × [

y0, yn
] × [

z0, zp
]
extracted from the original

morphology. Consider the problem

− div(α∇u) = 0, (1)

where u accounts for temperature, and the parameter α = λ0
/(

ρcp
)
is the local thermal

coefficient. The number λ0 indicates the local thermal conductivity, ρ refers to density,
and cp informs the heat capacity. The boundary condition is given by uDir = 1 on the
face x = x0, and uDir = 0 on the opposite face x = xm. The remaining boundary is
adiabatic. In the numerical section, the factor ρcp can be set to unity. The local thermal
coefficient λ0 is fixed to 0.5 W/m.K in the case of the solid phase and to 0.023 W/m.K
for the gaseous phase. The problem (1) is solved owing to the finite volume method on
the mesh of �. To deduce λt of the REV material, one evaluates the ratio of the x-flux
average 〈Fx〉 to the imposed gradient δu

/
Lx; i.e. λt = 〈Fx〉Lx

/
δu.
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2.4 The Finite Volume Approximation

LetN� be the total number of degrees of freedom. Themesh� = {Ki, i = 1, . . . , N�}
is a partition of � with control volumes. Let xi denote the mass center of Ki. The set of
faces of Ki is denoted by Ei. Each interface σij = KiKj is shared by two volumes Ki and
Kj. The latter volume is identified to an edge if the interface is located on the boundary.
The unit normal to σij from Ki to Kj is expressed by nij. The two-point approximation
of the flux assumes the orthogonality condition on the mesh. This means that the line
connecting xi to xj is orthogonal to σij. This condition is fulfilled on hexahedral meshes
in 3D generated from the morphology.

Integrating the main model (1) on Ki and using the divergence theorem yields

− ∫
Ki

div(α(x)∇u(x))dx = −
∑

σij ∈Ei

∫
σij

α(s)∇u(s) · nijds = 0.

The physical quantities are supposed constants by cells. Then, the flux is approxi-
mated in only one direction provided by the unit normal vector to the face because the
other ones are orthogonal to nij. As a consequence, the numerical scheme reads

∑

σij ∈Ei

τij
(
ui − uj

) = 0, for all i = 1, . . . , N�, uj = uDirj , if σij ⊂ ∂�,

where τij refers to the transmissibility coefficient τij = αij
∣∣σij

∣∣/∥∥xi − xj
∥∥. The

coefficient αij is the harmonic average of αi = α(xi) and αj = α
(
xj

)
.

3 Computational Results

The objective of this section is to show the ability and the efficiency of the proposed
finite volume scheme to predict the macroscopic thermal conductivity. The numerical
scheme is implemented in Fortran. The linear solver is based on the conjugate gradient
method.

3.1 Solid Fraction

The data of the scanned samples are extremely big. Their size order are 1800 × 1900
× 1150 voxels, which makes the image processing as well as the macroscopic property
computations inaccessible. Then, we are led to deal with embedded volumes. For this
purpose, from the initial image, we extract the REV under the form of hexahedral subset.
Its center is denoted by (xc, yc, zc). The length, width and height are respectively given
by 2�x, 2�y, 2�z. In other words, the REV writes

REV = [xc − �x, xc + �x] × [
yc − �y, yc + �y

] × [zc − �z, zc + �z].

The center of the REV is fixed to (1155, 870, 555) in the case of spruce while the
center of the REV is set to (940, 940, 555) for poplar. To determine the considered
dimensions, we use an increasing uniform sequence of the REV sizes containing six
elements. For l = 1, . . . , 6 we consider �xl = �yl = 16l, �zl = 2�xl − 1.



Efficient Prediction of the Thermal Conductivity of Wood 7

Table 1. Solid fraction in terms of the REV size

REV number Size (voxels) ∈s Spruce ∈s Poplar

REV1 32 × 32 × 63 0.3272 0.4858

REV2 64 × 64 × 127 0.3049 0.4278

REV3 96 × 96 × 191 0.3275 0.3818

REV4 128 × 128 × 255 0.3139 0.3854

REV5 160 × 160 × 319 0.3236 0.3905

REV6 192 × 192 × 383 0.3183 0.3889

Table 1 records the results on the solid fraction of the two samples. It is observed
that the first volumes are not representative in the case of poplar because they are too
small. Also, the solid fraction occupies 32% within the whole space for spruce and 38%
for poplar.

3.2 Convergence of the Thermal Conductivity

Table 2 depicts the results on the macroscopic thermal conductivity for spruce and
poplar. They are listed following the orthotropic axes of the material and the REV size.
Compared to the work [17], the values are quite similar, especially when the volume size
is increasing. Indeed, we found that the predictive values are λtR = 0.11 W/m.K, λtT =
0.11W/m.KandλtL =0.16W/m.K for spruce. In the case of poplar,λtR =0.14W/m.K,λtT= 0.12 W/m.K and λtL = 0.2 W/m.K. This confirms that the present approach preserves
the property ranges. On the other hand, we checked that the obtained values are bounded
in their physical ranges [21]. The larger (lower) bound corresponds to phases placed in
parallel (series). It is also possible to dissociate the effect of the solid fraction from the
thermal conductivity by introducing mixtures laws, see [17] for more details.

Table 2. Thermal conductivity for each species in terms of the REV size

Sample λt (W/m.K) REV1 REV2 REV3 REV4 REV5 REV6

Spruce λtR 0.1160 0.1115 0.1131 0.1133 0.1124 0.1109

λtT 0.1194 0.1045 0.1155 0.1119 0.1139 0.1122

λtL 0.1706 0.1641 0.1714 0.1691 0.1705 0.1680

Poplar λtR 0.1767 0.1580 0.1330 0.1402 0.1415 0.1425

λtT 0.1676 0.1333 0.1226 0.1158 0.1212 0.1186

λtL 0.2487 0.2216 0.1990 0.1999 0.2024 0.2020
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3.3 Performance of the Numerical Method

We are interested in the efficiency of the proposed numerical method and its accuracy to
predict the macroscopic thermal conductivity. This can be quantified by the performance
of the solver. In Table 3, for each REV size, we display the required CPU time in minutes
as well as the maximum of the errors, over the orthotropic directions, committed in the
computation of λt . The latter was considered as the stopping criterion fixed to 2 × 10−2

in the previous works [16, 17].More importantly, it is worth underling that the last test on
the volume REV6 required exorbitant CPU time following the strategy of [17] whereas
only few minutes are needed now to get same outcomes. The results approve that the
current methodology is more accurate and very cheap. This renders it a good candidate
to handle large volumes at different positions.

Table 3. CPU time in minutes and the maximum value of residuals

Spruce Poplar

REV number CPU time (mins) Max residuals CPU time (mins) Max residuals

REV1 3.37 × 10−2 4.42 × 10−4 1.74 × 10−2 4.56 × 10−4

REV2 1.71 × 10−1 1.10 × 10−3 1.89 × 10−1 1.19 × 10−3

REV3 7.50 × 10−1 3.59 × 10−4 8.24 × 10−1 4.15 × 10−5

REV4 2.23 2.78 × 10−4 2.50 3.02 × 10−4

REV5 5.44 5.29 × 10−4 5.48 1.23 × 10−4

REV6 10.21 1.78 × 10−5 10.55 7.33 × 10−5

4 Conclusion

In this paper we made use of the homogenization and finite volume methods to compute
the thermal conductivity of spruce and poplar species in their orthotropic directions. The
samples are scanned with a lab X-ray nanotomograph to obtain the 3Dmorphology. The
latter was treated using image processing tools to retrieve the distribution of the phases
and to generate the mesh. These data become inputs of the computational algorithm.
The stationary diffusion problem is solved directly without passing through the transient
regime. The goal is to save the computational cost and to enable large-size mesh to be
treated. Numerical evidences were reported to address the effect of the representative
elementary volume (REV) on the macroscopic property.

In future contributions, we outlook to provide a deep comparison between the predic-
tive approach and the experimental measurements for several wood species including
more than two phases. This is for instance the case of materials including fibers and
binders. Because the wood is highly anisotropic, another interesting avenue is to study
the impact of the cell walls orientation on the macroscopic property.
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Nomenclature

Ki Control volume
Cp Heat capacity (J.kg−1.K−1)
L Longitudinal direction
xi Mass center
R Radial direction
REV Representative elementary volume
T Tangential direction
u Temperature (K)

Greek Symbols

∂� Boundary
σij Cell face
δ Continuous variation
ρ Density (kg.m−3)
� Discrete variation
� Domain
� Mesh
∈s Solid fraction
λ Thermal conductivity (W.m−1.K−1)
α Thermal diffusivity, (m2.s−1)
τij Transmissibility
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