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Abstract. Electrocardiogram (ECG) is a widely used diagnostic tool for
detecting heart conditions. Rare cardiac diseases may be underdiagnosed
using traditional ECG analysis, considering that no training dataset can
exhaust all possible cardiac disorders. This paper proposes using anomaly
detection to identify any unhealthy status, with normal ECGs solely
for training. However, detecting anomalies in ECG can be challenging
due to significant inter-individual differences and anomalies present in
both global rhythm and local morphology. To address this challenge, this
paper introduces a novel multi-scale cross-restoration framework for ECG
anomaly detection and localization that considers both local and global
ECG characteristics. The proposed framework employs a two-branch
autoencoder to facilitate multi-scale feature learning through a mask-
ing and restoration process, with one branch focusing on global features
from the entire ECG and the other on local features from heartbeat-level
details, mimicking the diagnostic process of cardiologists. Anomalies are
identified by their high restoration errors. To evaluate the performance on
a large number of individuals, this paper introduces a new challenging
benchmark with signal point-level ground truths annotated by experi-
enced cardiologists. The proposed method demonstrates state-of-the-art
performance on this benchmark and two other well-known ECG datasets.
The benchmark dataset and source code are available at: https://github.
com/MediaBrain-SJTU/ECGAD
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1 Introduction

The electrocardiogram (ECG) is a monitoring tool widely used to evaluate the
heart status of patients and provide information on cardiac electrophysiology.
Developing automated analysis systems capable of detecting and identifying
abnormal signals is crucial in light of the importance of ECGs in medical diagno-
sis and the need to ease the workload of clinicians. However, training a classifier
on labeled ECGs that focus on specific diseases may not recognize new abnormal
statuses that were not encountered during training, given the diversity and rar-
ity of cardiac diseases [8,16,23]. On the other hand, anomaly detection, which is
trained only on normal healthy data, can identify any potential abnormal status
and avoid the failure to detect rare cardiac diseases [10,17,21].

The current anomaly detection techniques, including one-class discriminative
approaches [2,14], reconstruction-based approaches [15,30], and self-supervised
learning-based approaches [3,26], all operate under the assumption that models
trained solely on normal data will struggle to process anomalous data and thus
the substantial drop in performance presents an indication of anomalies. While
anomaly detection has been widely used in the medical field to analyze medical
images [12,24] and time-series data [18,29], detecting anomalies in ECG data is
particularly challenging due to the substantial inter-individual differences and
the presence of anomalies in both global rhythm and local morphology. So far,
few studies have investigated anomaly detection in ECG [11,29]. TSL [29] uses
expert knowledge-guided amplitude- and frequency-based data transformations
to simulate anomalies for different individuals. BeatGAN [11] employs a genera-
tive adversarial network to separately reconstruct normalized heartbeats instead
of the entire raw ECG signal. While BeatGAN alleviates individual differences,
it neglects the important global rhythm information of the ECG.

This paper proposes a novel multi-scale cross-restoration framework for ECG
anomaly detection and localization. To our best knowledge, this is the first work
to integrate both local and global characteristics for ECG anomaly detection. To
take into account multi-scale data, the framework adopts a two-branch autoen-
coder architecture, with one branch focusing on global features from the entire
ECG and the other on local features from heartbeat-level details. A multi-
scale cross-attention module is introduced, which learns to combine the two
feature types for making the final prediction. This module imitates the diagnos-
tic process followed by experienced cardiologists who carefully examine both the
entire ECG and individual heartbeats to detect abnormalities in both the overall
rhythm and the specific local morphology of the signal [7]. Each of the branches
employs a masking and restoration strategy, i.e., the model learns how to per-
form temporal-dependent signal inpainting from the adjacent unmasked regions
within a specific individual. Such context-aware restoration has the advantage of
making the restoration less susceptible to individual differences. During testing,
anomalies are identified as samples or regions with high restoration errors.

To comprehensively evaluate the performance of the proposed method on a
large number of individuals, we adopt the public PTB-XL database [22] with
only patient-level diagnoses, and ask experienced cardiologists to provide signal
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Fig. 1. The multi-scale cross-restoration framework for ECG anomaly detection.

point-level localization annotations. The resulting dataset is then introduced as
a large-scale challenging benchmark for ECG anomaly detection and localiza-
tion. The proposed method is evaluated on this challenging benchmark as well
as on two traditional ECG anomaly detection benchmarks [6,13]. The experi-
mental results have shown that the proposed method outperforms several state-
of-the-art methods for both anomaly detection and localization, highlighting its
potential for real-world clinical diagnosis.

2 Method

In this paper, we focus on unsupervised anomaly detection and localization on
ECGs, training based on only normal ECG data. Formally, given a set of N nor-
mal ECGs denoted as {xi, i = 1, ..., N}, where xi ∈ R

D represents the vectorized
representation of the i-th ECG consisting of D signal points, the objective is to
train a computational model capable of identifying whether a new ECG is normal
or anomalous, and localize the regions of anomalies in abnormal ECGs.

2.1 Multi-scale Cross-restoration

In Fig. 1, we present an overview of our two-branch framework for ECG anomaly
detection. One branch is responsible for learning global ECG features, while the
other focuses on local heartbeat details. Our framework comprises four main
components: (i) masking and encoding, (ii) multi-scale cross-attention module,
(iii) uncertainty-aware restoration, and (iv) trend generation module. We provide
detailed explanations of each of these components in the following sections.

Masking and Encoding. Given a pair consisting of a global ECG signal xg ∈
R

D and a randomly selected local heartbeat xl ∈ R
d segmented from xg for
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training, as shown in Fig. 1, we apply two random masks, Mg and Ml, to mask
xg and xl, respectively. To enable multi-scale feature learning, Ml is applied to
a consecutive small region to facilitate detail restoration, while Mg is applied to
several distinct regions distributed throughout the whole sequence to facilitate
global rhythm restoration. The masked signals are processed separately by global
and local encoders, Eg and El, resulting in global feature f in

g = Eg(xg � Mg)
and local feature f in

l = El(xl �Ml), where � denotes the element-wise product.

Multi-scale Cross-attention. To capture the relationship between global and
local features, we use the self-attention mechanism [20] on the concatenated
feature of f in

g and f in
l . Specifically, the attention mechanism is expressed as

Attention(Q,K, V ) = softmax(QKT

√
dk

)V , where Q,K, V are identical input terms,
while

√
dk is the square root of the feature dimension used as a scaling fac-

tor. Self-attention is achieved by setting Q = K = V = concat(f in
g , f in

l ).
The cross-attention feature, fca, is obtained from the self-attention mecha-
nism, which dynamically weighs the importance of each element in the com-
bined feature. To obtain the final outputs of the global and local features, fout

g

and fout
l , containing cross-scale information, we consider residual connections:

fout
g = f in

g + φg(fca), fout
l = f in

l + φl(fca), where φg(·) and φl(·) are MLP
architectures with two fully connected layers.

Uncertainty-Aware Restoration. Targeting signal restorations, features of
fout
g and fout

l are decoded by two decoders, Dg and Dl, to obtain restored
signals x̂g and x̂l, respectively, along with corresponding restoration uncertainty
maps σg and σl measuring the difficulty of restoration for various signal points,
where x̂g, σg = Dg(fout

g ), x̂l, σl = Dl(fout
l ). An uncertainty-aware restoration

loss is used to incorporate restoration uncertainty into the loss functions,

Lglobal =
D∑

k=1

{ (x
k
g − x̂k

g)
2

σk
g

+ log σk
g}, Llocal =

d∑

k=1

{ (x
k
l − x̂k

l )
2

σk
l

+ log σk
l }, (1)

where for each function, the first term is normalized by the corresponding uncer-
tainty, and the second term prevents predicting a large uncertainty for all restora-
tion pixels following [12]. The superscript k represents the position of the k-th
element of the signal. It is worth noting that, unlike [12], the uncertainty-aware
loss is used for restoration, but not for reconstruction.

Trend Generation Module. The trend generation module (TGM) illustrated
in Fig. 1 generates a smooth time-series trend xt ∈ R

D by removing signal details,
which is represented as the smooth difference between adjacent time-series signal
points. An autoencoder (Et and Dt) encodes the trend information into Et(xt),
which are concatenated with the global feature fout

g to restore the global ECG
x̂t = Dt(concat(Et(xt), fout

g )). The restoration loss is defined as the Euclidean
distance between xg and x̂t, Ltrend =

∑D
k=1(x

k
g − x̂k

t )
2. This process guides

global feature learning using time-series trend information, emphasizing rhythm
characteristics while de-emphasizing morphological details.
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Loss Function. The final loss function for optimizing our model during the
training process can be written as

L = Lglobal + αLlocal + βLtrend, (2)

where α and β are trade-off parameters weighting the loss function. For simplic-
ity, we adopt α = β = 1.0 as the default.

2.2 Anomaly Score Measurement

For each test sample x, local ECGs from the segmented heartbeat set {xl,m,m =
1, ...,M} are paired with the global ECG xg one at a time as inputs. The anomaly
score A(x) is calculated to estimate the abnormality,

A(x) =
D∑

k=1

(xk
g − x̂k

g)
2

σk
g

+
M∑

m=1

d∑

k=1

(xk
l,m − x̂k

l,m)2

σk
l,m

+
D∑

k=1

(xk
g − x̂k

t )
2, (3)

where the three terms correspond to global restoration, local restoration, and
trend restoration, respectively. For localization, an anomaly score map is gener-
ated in the same way as Eq. (3), but without summing over the signal points.
The anomalies are indicated by relatively large anomaly scores, and vice versa.

3 Experiments

Datasets. Three publicly available ECG datasets are used to evaluate the pro-
posed method, including PTB-XL [22], MIT-BIH [13], and Keogh ECG [6].

– PTB-XL database includes clinical 12-lead ECGs that are 10 s in length for
each patient, with only patient-level annotations. To build a new challenging
anomaly detection and localization benchmark, 8167 normal ECGs are used
for training, while 912 normal and 1248 abnormal ECGs are used for testing.
We provide signal point-level annotations of 400 ECGs, including 22 differ-
ent abnormal types, that were annotated by two experienced cardiologists.
To our best knowledge, we are the first to explore ECG anomaly detection
and localization across various patients on such a complex and large-scale
database.

– MIT-BIH arrhythmia dataset divides the ECGs from 44 patients into inde-
pendent heartbeats based on the annotated R-peak position, following [11].
62436 normal heartbeats are used for training, while 17343 normal and 9764
abnormal beats are used for testing, with heartbeat-level annotations.

– Keogh ECG dataset includes 7 ECGs from independent patients, evaluating
anomaly localization with signal point-level annotations. For each ECG, there
is an anomaly subsequence that corresponds to a pre-ventricular contraction,
while the remaining sequence is used as normal data to train the model. The
ECGs are partitioned into fixed-length sequences of 320 by a sliding window
with a stride of 40 during training and 160 during testing.
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Table 1. Anomaly detection and anomaly
localization results on PTB-XL database.
Results are shown in the patient-level AUC
for anomaly detection and the signal point-
level AUC for anomaly localization, respec-
tively. The best-performing method is in
bold, and the second-best is underlined.

Method Year detection localization

DAGMM [30] 2018 0.782 0.688

MADGAN [9] 2019 0.775 0.708

USAD [1] 2020 0.785 0.683

TranAD [18] 2022 0.788 0.685

AnoTran [25] 2022 0.762 0.641

TSL [29] 2022 0.757 0.509

BeatGAN [11] 2022 0.799 0.715

Ours 2023 0.860 0.747

Table 2. Anomaly detection results on
MIT-BIH dataset, comparing with state-
of-the-arts. Results are shown in terms
of the AUC and F1 score for heartbeat-
level classification. The best-performing
method is in bold, and the second-best
is underlined.

Method Year F1 AUC

DAGMM [30] 2018 0.677 0.700

MSCRED [27] 2019 0.778 0.627

USAD [1] 2020 0.384 0.352

TranAD [18] 2022 0.621 0.742

AnoTran [25] 2022 0.650 0.770

TSL [29] 2022 0.750 0.894

BeatGAN [11] 2022 0.816 0.945

Ours 2023 0.883 0.969

Table 3. Anomaly localization results on Keogh ECG [6] dataset, comparing with
several state-of-the-arts. Results are shown in the signal point-level AUC. The best-
performing method is in bold, and the second-best is underlined.

Methods Year A B C D E F G Avg

DAGMM [30] 2018 0.672 0.612 0.805 0.713 0.457 0.662 0.676 0.657
MSCRED [27] 2019 0.667 0.633 0.798 0.714 0.461 0.746 0.659 0.668
MADGAN [9] 2019 0.688 0.702 0.833 0.664 0.463 0.692 0.678 0.674
USAD [1] 2020 0.667 0.616 0.795 0.715 0.462 0.649 0.680 0.655
GDN [4] 2021 0.695 0.611 0.790 0.674 0.458 0.648 0.671 0.650
CAE-M [28] 2021 0.657 0.618 0.802 0.715 0.457 0.708 0.671 0.661
TranAD [18] 2022 0.647 0.623 0.820 0.720 0.446 0.780 0.680 0.674
AnoTran [25] 2022 0.739 0.502 0.792 0.799 0.498 0.748 0.711 0.684
BeatGAN [11] 2022 0.803 0.623 0.783 0.747 0.506 0.757 0.852 0.724
Ours 2023 0.832 0.641 0.819 0.815 0.543 0.760 0.833 0.749

Evaluation Protocols. The performance of anomaly detection and localization
is quantified using the area under the Receiver Operating Characteristic curve
(AUC), with a higher AUC value indicating a better method. To ensure compa-
rability across different annotation levels, we used patient-level, heartbeat-level,
and signal point-level AUC for each respective setting. For heartbeat-level clas-
sification, the F1 score is also reported following [11].

Implementation Details. The ECG is pre-processed by a Butterworth filter
and Notch filter [19] to remove high-frequency noise and eliminate ECG baseline
wander. The R-peaks are detected with an adaptive threshold following [5], which
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Fig. 2. Anomaly localization visualization on PTB-XL with different abnormal types.
Ground truths are highlighted in red boxes on the ECG data, and anomaly localization
results for each case, compared with the state-of-the-art method, are attached below.
(Color figure online)

does not require any learnable parameters. The positions of the detected R-peaks
are then used to segment the ECG sequence into a set of heartbeats.

We use a convolutional-based autoencoder, following the architecture pro-
posed in [11]. The model is trained using the AdamW optimizer with an initial
learning rate of 1e-4 and a weight decay coefficient of 1e-5 for 50 epochs on a sin-
gle NVIDIA GTX 3090 GPU, with a single cycle of cosine learning rate used for
decay scheduling. The batch size is set to 32. During testing, the model requires
2365M GPU memory and achieves an inference speed of 4.2 fps.

3.1 Comparisons with State-of-the-Arts

We compare our method with several time-series anomaly detection methods,
including heartbeat-level detection method BeatGAN [11], patient-level detec-
tion method TSL [29], and several signal point-level anomaly localization meth-
ods [1,4,9,18,25,27,28,30]. For a fair comparison, we re-trained all the methods
under the same experimental setup. For those methods originally designed for
signal point-level tasks only [1,9,18,25,30], we use the mean value of anomaly
localization results as their heartbeat-level or patient-level anomaly scores.

Anomaly Detection. The anomaly detection performance on PTB-XL is sum-
marized in Table 1. The proposed method achieves 86.0% AUC in patient-level
anomaly detection and outperforms all baselines by a large margin (10.3%).
Table 2 displays the comparison results on MIT-BIH, where the proposed method
achieves a heartbeat-level AUC of 96.9%, showing an improvement of 2.4% over
the state-of-the-art BeatGAN (94.5%). Furthermore, the F1-score of the pro-
posed method is 88.3%, which is 6.7% higher than BeatGAN (81.6%).
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Table 4. Ablation studies on PTB-XL
dataset. Factors under analysis are: the
masking and restoring (MR), the multi-
scale cross-attention (MC), the uncer-
tainty loss function (UL), and the trend
generation module (TGM). Results are
shown in the patient-level AUC in % of
five runs. The best-performing method is
in bold.

MR MC UL TGM AUC

70.4±0.3

� 80.4±0.7

� 80.3±0.3

� 72.8±2.0

� 71.2±0.5

� � 84.8±0.8

� � � 85.2±0.4

� � � � 86.0±0.1

Table 5. Sensitivity analysis w.r.t. mask
ratio on PTB-XL dataset. Results are
shown in the patient-level AUC of five
runs. The best-performing method is in
bold, and the second-best is underlined.

Mask Ratio AUC

0% 80.2±0.2

10% 85.2±0.2

20% 85.5±0.3

30% 86.0±0.1

40% 84.9±0.3

50% 83.8±0.1

60% 82.9±0.1

70% 75.8±1.0

Anomaly Localization. Table 1 presents the results of anomaly localization on
our proposed benchmark for multiple individuals. The proposed method achieves
a signal point-level AUC of 74.7%, outperforming all baselines (3.2% higher than
BeatGAN). It is worth noting that TSL, which is not designed for localization,
shows poor performance in this task. Table 3 shows the signal point-level anomaly
localization results for each independent individual on Keogh ECG. Overall, the
proposed method achieves the best or second-best performance compared to
other methods on six subsets and the highest mean AUC among all subsets
(74.9%, 2.5% higher than BeatGAN), indicating its effectiveness. The proposed
method shows a lower standard deviation (±10.5) across the seven subsets com-
pared to TranAD (±11.3) and BeatGAN (±11.0), which indicates good gener-
alizability of the proposed method across different subsets.

Anomaly Localization Visualization. We present visualization results of
anomaly localization on several samples from our proposed benchmark in Fig. 2,
with ground truths annotated by experienced cardiologists. Regions with higher
anomaly scores are indicated by darker colors. Our proposed method outperforms
BeatGAN in accurately localizing various types of ECG anomalies, including
both periodic and episodic anomalies, such as incomplete right bundle branch
block and premature beats. Our method though provides narrower localization
results than ground truths, as it is highly sensitive to abrupt unusual changes in
signal values, but still represents the important areas for anomaly identification,
a fact confirmed by experienced cardiologists.

3.2 Ablation Study and Sensitivity Analysis

Ablation studies were conducted on PTB-XL to confirm the effectiveness of
individual components of the proposed method. Table 4 shows that each module
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contributes positively to the overall performance of the framework. When none
of the modules were employed, the method becomes a ECG reconstruction app-
roach with a naive L2 loss and lacks cross-attention in multi-scale data. When
individually adding the MR, MC, UL, and TGM modules to the baseline model
without any of them, the AUC values improve from 70.4% to 80.4%, 80.3%,
72.8%, and 71.2%, respectively, demonstrating the effectiveness of each module.
Moreover, as the modules are added in sequence, the performance improves step
by step from 70.4% to 86.0% in AUC, highlighting the combined impact of all
modules on the proposed framework.

We conduct a sensitivity analysis on the mask ratio, as shown in Table 5.
Restoration with a 0% masking ratio can be regarded as reconstruction, which
takes an entire sample as input and its target is to output the input sample.
Results indicate that the model’s performance first improves and then declines
as the mask ratio increases from 0% to 70%. This trend is due to the fact that a
low mask ratio can limit the model’s feature learning ability during restoration,
while a high ratio can make it increasingly difficult to restore the masked regions.
Therefore, there is a trade-off between maximizing the model’s potential and
ensuring a reasonable restoration difficulty. The optimal mask ratio is 30%, which
achieves the highest anomaly detection result (86.0% in AUC).

4 Conclusion

This paper proposes a novel framework for ECG anomaly detection, where fea-
tures of the entire ECG and local heartbeats are combined with a masking-
restoration process to detect anomalies, simulating the diagnostic process of
cardiologists. A challenging benchmark, with signal point-level annotations pro-
vided by experienced cardiologists, is proposed, facilitating future research in
ECG anomaly localization. The proposed method outperforms state-of-the-art
methods, highlighting its potential in real-world clinical diagnosis.
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