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Abstract. Unsupervised domain adaptation (UDA) has become
increasingly popular in imaging-based diagnosis due to the challenge of
labeling a large number of datasets in target domains. Without labeled
data, well-trained deep learning models in a source domain may not per-
form well when applied to a target domain. UDA allows for the use of
large-scale datasets from various domains for model deployment, but it
can face difficulties in performing adaptive feature extraction when deal-
ing with unlabeled data in an unseen target domain. To address this, we
propose an advanced test-time fine-tuning UDA framework designed to
better utilize the latent features of datasets in the unseen target domain
by fine-tuning the model itself during diagnosis. Our proposed frame-
work is based on an auto-encoder-based network architecture that fine-
tunes the model itself. This allows our framework to learn knowledge
specific to the unseen target domain during the fine-tuning phase. In
order to further optimize our framework for the unseen target domain,
we introduce a re-initialization module that injects randomness into net-
work parameters. This helps the framework to converge to a local mini-
mum that is better-suited for the target domain, allowing for improved
performance in domain adaptation tasks. To evaluate our framework, we
carried out experiments on UDA segmentation tasks using breast can-
cer datasets acquired from multiple domains. Our experimental results
demonstrated that our framework achieved state-of-the-art performance,
outperforming other competing UDA models, in segmenting breast can-
cer on ultrasound images from an unseen domain, which supports its
clinical potential for improving breast cancer diagnosis.
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1 Introduction

In recent years, deep learning (DL) methods have demonstrated remarkable
performance in detecting and localizing tumors on ultrasound images [2,27].
Compared with conventional image processing methods, DL methods provide
an accurate feature extraction capability on ultrasound images, despite their
low resolution and noise disturbance, leading to superior segmentation accu-
racy [2,5,14]. However, there are some limitations in developing a DL model in
a source domain and deploying it in an unseen target domain. The primary
limitation is that DL models require a large number of training samples to
achieve accurate predictions [8,24]. Yet, acquiring large training datasets and
their corresponding labels, especially from a cohort of patients, can be costly
or even infeasible, which poses a significant challenge in developing a DL model
with high performance [7]. Second, even when large-scale datasets are available
through collaborative research from multiple sites, DL models trained on such
datasets may yield sub-optimal solutions due to domain gaps caused by differ-
ences in images acquired from different sites [20]. Third, due to the small number
of datasets from each domain, the images for each individual domain may not
capture representative features, limiting the ability of DL models to generalize
across domains [3].

Domain adaptation (DA) has been extensively studied to alleviate the afore-
mentioned limitations, the goal of which is to reduce the domain gap caused by
the diversity of datasets from different domains [12,20,26,29,33]. Example solu-
tions include transfer learning- and style transfer-based methods. Nonetheless,
unlike natural images, generating labels can be a challenging task, making it dif-
ficult to apply general DA methods; thus bridging domain gaps by DA methods
remains limited [26,33]. This is due to sensitive privacy issues in patients’ data,
particularly in collaborative research, which restricts access to labels from differ-
ent domains. As a result, conventional DA methods cannot be easily applied [10].
More recently, unsupervised domain adaptation (UDA) has been introduced to
address this issue [16,33], aiming to generate semi-predictions (pseudo-labels)
in target domains first, followed by producing accurate predictions using the
pseudo-labels. One critical limitation of pseudo-label-based UDA is the possi-
bility of error accumulation due to mispredicted pseudo-labels. This can lead to
significant degradation of the performance of DL models, as errors can compound
and become more pronounced over time [17,25].

To alleviate the problem of pseudo-label-based UDA, in this work, we propose
an advanced UDA framework based on self-supervised DA with a test-time fine-
tuning network. Test-time adaptation methods have been developed [4,11,13,23]
to improve the learning of knowledge in target domains. The distinctive feature
of our test-time self-supervised DA is that it enables the DL network (i) to learn
knowledge about the features of target domains by fine-tuning the network itself
during the test-time phase, rather than generating pseudo-labels and then (ii) to
provide precise predictions on images in target domains, by using the fine-tuned
network. Specifically, we adopt self-supervised learning and verify the model via
thorough mathematical analysis. Our framework was tested on the task of breast
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cancer segmentation in ultrasound images, but it could also be applied to other
lesion segmentation tasks.

To summarize, our contributions are three-fold:

• We design a self-supervised DA framework that includes a parameter search
method and provide a mathematical justification for it. With our framework,
we are able to identify the best-performing parameters that result in improved
performance in DA tasks.

• Our framework is effective at preserving privacy, since it carries out DA using
only pre-trained network parameters, without transferring any patient data.

• We applied our framework to the task of segmenting breast cancer from ultra-
sound imaging data, demonstrating its superior performance over competing
UDA methods.

Our results indicate that our framework is effective in improving the accuracy of
breast cancer segmentation from ultrasound images, which could have potential
implications for improving the diagnosis and treatment of breast cancer.

2 Methodology

Algorithm 1: Test-Time Fine-Tuning Scheme

Input: E, H, C, and Dgen = Dseg
1: def Training_on_Source:

2: Sample batches of (s, s̄) ∼ S
3: Update E and Dseg via LBCE((H ◦ Dseg ◦ E)(s), s̄))

Update E and Dgen via LGAN((Dgen ◦ E)(s), s)
4: return ES and DS

seg = DS
gen

5: End

6: def Fine_Tuning_on_Target:

Sample batches of (t, ?) ∼ T
7: Update DS

gen via LGAN(DS
gen(E(t)), t), then DS→T

gen
8: Share parameters from DS→T

gen to DFT
9: return DFT = DS→T

seg
10: End

11: def Prediction_on_Target:

12: Sample batches of (t, ?) ∼ T
13: t̂ =

(
H ◦ (DS

seg ⊕ DFT) ◦ E
)
(t))

14: return ŷ
15: End

Output: Predictions (ŷ) on T

Fig. 1. Architecture of our TTFT network (Left) and its pipeline (Right).

2.1 Test-Time Fine-Tuning (TTFT) Network and Its Pipeline

Network Architecture. Our proposed TTFT network is based on self-
supervised DA [31], which is a part of UDA and can be seen as multi-task
learning, involving both the main and pretext tasks, as shown in Fig. 1. In
the main task, an encoder (E), a decoder for segmentation (Dseg), and a seg-
mentation header (H) are included. The main task is the segmentation task,
(H◦Dseg◦E)(x). In predicting segmentation labels in the target domain (T ), DFT
is also involved in the main task, and the final prediction after the fine-tuning is
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provided by
(
H ◦ (Dseg ⊕DFT) ◦E

)
(x), where ⊕ is the concatenation operation.

In the pretext task, E, a decoder for a generator, Dgen, and a discriminator, C,
are involved. The pretext task aims to generate synthetic images, (Dgen ◦ E)(t).
Note that Dgen and Dseg share the same parameters to enable knowledge trans-
fer. However, since the headers of image reconstruction and generating segmen-
tation mask are different (different output), a new header incorporating DFT

and Dseg is devised and leverages the outputs of two decoders. Besides, Dgen =
DFT is fine-tuned during the fine-tuning step, and the DFT learns the knowledge
of the input domain via image reconstruction. Two distinct knowledge (informa-
tion) from Dseg and DFT enable the network to utilize target domain knowledge
and predict precise predictions.

Pre-training in Source Domain. The model M is first trained in S in a
supervised manner with (s, s̄) ∼ S in both main and pretext tasks as below:

Θ
m
S , Θ

p
S = argmin

θm
S ,θ

p
S

∑
s

{
LBCE

(
(H ◦ Dseg ◦ E)(s), s̄

)
+ LGAN

(
(Dgen ◦ E)(s), s

)}
, (1)

where LBCE and LGAN represent the loss functions for binary cross-entropy and
generative adversarial network [6], respectively. Θm

S includes ES , DS
seg, and HS ,

while Θp
S includes ES , DS

gen, and CS . Additionally, DS
seg = DS

gen.

Fine-Tuning in Target Domain. Since the pre-trained model is likely to
produce imprecise predictions in T , the model should learn domain knowledge
about T . To this end, in the pretext task, for self-supervised learning, the model
is fine-tuned in T to generate synthetic images identical to the input images as
below:

Θ
p
T = argmin

θ
p
T

∑
t

LGAN
(
(D

S
gen ◦ E

S
)(t), t

)
⇒ Θ

p
T ⊇ E

S ∪ D
S→T
gen , (2)

where only Dgen is fine-tuned to achieve memory efficiency and to decrease the
fine-tuning time, and DS

gen is fine-tuned as DS→T
gen . Then, DS→T

gen is transferred to
DFT, and knowledge distillation via self-supervised learning is realized. Hence,
the precise predictions in T could be provided by

(
H ◦ (DS

seg ⊕ DT
FT) ◦ E

)
(x).

Benefits of Our Dual-Pipeline. Due to the symmetric property of mutual
information in information entropy (H), we have I(X;Y ) = H(X) + H(Y ) −
H(X,Y ). As a result, the predictions made by the fine-tuned network in the
target domain (T ) lead to reduced entropy, as shown below:

H
(
(H ◦ (D

S
seg ⊕ D

T
FT) ◦ E)(t), t̄

)
≤ H

(
(H ◦ D

S
seg ◦ E)(t), t̄

)
+ H

(
(H ◦ D

T
FT ◦ E)(t), t̄

)
. (3)

Since DS
seg is fully optimized for S in a supervised manner, it guarantees a

baseline segmentation performance. Furthermore, since DT
FT is fine-tuned in T
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Fig. 2. Illustration of the local minimum of the source (a) and target (b) domains and
parameter fluctuation (c)

using knowledge distillation, it can provide domain-specific information for T .
As a result, the predictions made by the fine-tuned model in T are jointly con-
strained by the expectations of DS

seg and DT
FT. This enables the final model to

provide precise predictions in T by taking into account both the source domain
and target domain information.

2.2 Parameter Fluctuation: Parameter Randomization Method

Since the loss function and its values can vary based on the distribution of inputs,
and different domains can have different distributions, the local minimum iden-
tified in the source domain (S) cannot be considered as the same local minimum
in T , as illustrated in Fig. 2. The y-axis of Fig. 2 indicates 1

|X |
∑

x L(M(x; θ), x̄),
and the local minimum is different in S and T as ΘS in Fig. 2a and ΘT in
Fig. 2c, respectively. A longer fine-tuning time is required to re-position ΘS to
ΘT as in Fig. 2c than to re-position θT to ΘT . Therefore, efficient fine-tuning is
necessary to re-position the local minimum in Fig. 2b and this process is known
as parameter fluctuation. Note that the parameter fluctuation is followed by the
fine-tuning step.

Suppose Ci be the ith convolution operator in Dseg with weight wi, then
Ci(x) = wi ·x. Since DS

seg provides the baseline segmentation performance, DT
FT

should provide similar feature maps to achieve the baseline performance. To this
end, the mid-feature maps generated should be similar, i.e., ∀iCi(Fi) ≈ C ′

i(F
′
i ),

where C ′
i represents the convolution in DT

FT , Fi represents ith feature map, and
F0 = E(x). Suppose ∀i|Ci(Fi) − C ′

i(F
′
i )| < εi � 1, such that ∀iFi ≈ F ′

i by
mathematical induction. Therefore, the sum of errors (

∑
|Ci(Fi) − C ′

i(F
′
i )|) is

approximated by
∑

|wiF0 − w′
iF0| iff ∀iFi ≈ F ′

i , which can be expressed as:
∑

|wiF0 − w
′
iF0| < ε � 1 ⇐

∑
|wiF0 − w

′
iF0| ≈ 0 ⇔

∑
|wi − w

′
i| = 0. (4)

Here, we denote wi − w′
i = fi as the fluctuation vector in the vector space, and

the condition
∑

fi = 0 indicates that the sum of the fluctuation vectors should
be zero under the condition of |fi| < r � 1. Hence, we achieve the condition for
the parameter fluctuation that the centers of parameters of ΘS and θT should
be the same in the vector space, and the length of the fluctuation vector should
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be less than a certain small threshold (0 < r � 1). Therefore, the parameter
fluctuation aims to add random vectors of which length is less than 0 < r � 1
on the parameters of ΘS , and the sum of vectors should be zero. To summarize,
the parameter fluctuation aims to add randomness on ΘS as follows:

θT = {wi + fi| wi ∈ ΘS ,
∑

fi = 0, 0 < |fi| < r � 1}. (5)

3 Experiments

3.1 Experimental Set-Ups

To evaluate the segmentation performance of our TTFT framework, we used
three different ultrasound databases: BUS [32], BUSI [1], and BUV [18], which
are considered to be different domains. All three databases contain ultrasound
imaging data and segmentation masks for breast cancer, with the masks labeled
as 0 (background) and 1 (lesion) using a one-hot encoding. The BUS database
consists of 163 images along with corresponding labels. The BUSI database con-
tains 780 images, with 133 images belonging to the NORMAL class and having
labels containing only 0 values. The BUV database originally consists of ultra-
sound videos, providing a total of 21,702 frames. While the database also provides
labels for the detection task, we processed these labels as segmentation masks
using a region growing method [15].

We employed different deep-learning models for evaluation. Specifically, U-
Net [22] and FusionNet [21] were employed as our baseline models, since U-Net
is a widely used basic model for segmentation, and FusionNet contains advanced
residual modules, compared with U-Net. Ours I and Ours II were based on
U-Net and FusionNet as the baseline network, respectively. Additionally, MIB-
Net [28], which is a state-of-the-art model for breast cancer segmentation using
ultrasound images, was employed for comparison. Furthermore, CBST [33] and
CT-Net [16] were employed as the comparison models for UDA methods. As the
evaluation metrics, dice coefficient (D. Coef), PRAUC, which is an area under a
precision-recall curve, and cohen kappa (κ) were employed [30]. Our experimen-
tal set-ups included: (i) individual databases were used to assess the baseline
segmentation performance (Appendix); (ii) the domain adaptive segmentation
performance was assessed using the three databases, where two databases were
regarded as the source domain, and the remaining database was regarded as the
target domain; and (iii) the ablation study was carried out to evaluate the pro-
posed network architecture along with the randomized re-initialization method.

3.2 Comparison Analysis

Since all compared DL models show similar D. Coef, only UDA performance is
comparable as a control in our experiments. In this experiment, two databases
were used for training, and the remaining database was used for testing. For
instance, BUS in Fig. 3 illustrates the BUS database was used for testing, and



Self-Supervised Domain Adaptive Segmentation of Breast Cancer 545

Fig. 3. Comparison analysis of our framework and comparison models: performance
comparison table (Left) and Box-and-Whisker plot (Right).

Fig. 4. Precision-Recall curves by ours and comparison models on each database. Area
under the precision-recall curve (PR-AUC) values were reported.

the other two databases of BUSI and BUV were used for training. Figs. 3 and
4 show quantitative results, and Fig. 5 shows the sample segmentation results.
Unlike the experiment using the individual database, U-Net, FusionNet, and
MIB-Net showed significantly inferior scores due to domain gaps. In contrast,
UDA methods of CBST and CT-Net showed superior scores, compared with
others, and the scores were not strongly reduced, compared with the experiment
with the single database. Note that, our TTFT framework achieved the best
performance compared with other DL models. Additionally, Ours II, based on
FusionNet, showed the best scores, potentially due to the advanced residual con-
nection module. Furthermore, as illustrated in Fig 4, our framework provides
superior precision scores in a long range of (0, 0.7), indicating that our frame-
works estimated unnecessary mispredictions but precise predictions on cancer.
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Fig. 5. Segmentation results by ours and comparison models on each database.

Fig. 6. Illustration of feature maps: style loss comparison (Left) and a T-SNE plot of
generated images by different decoders (Right)

3.3 Ablation Study

In order to assess the effectiveness of each of the proposed modules, includ-
ing the parameter fluctuation and fine-tuning methods, the ablation study was
carried out. Since our framework contains three types of decoders, including
DS

seg, Dfl
seg, and DS→T

seg for the fine-tuning, we mainly targeted those decoders
in our ablation study. Table 1 illustrates the quantitative results by different
types of decoders. The higher D. coef value (+3.4%) of Pre-train + PF than
that of Pre-train + Random Init and Pre-train + Offset confirms the effec-
tiveness of the parameter fluctuation in the UDA performance. Additionally,
the higher score (+11%) of Fine-tuning than Pre-train shows an outstanding
UDA performance of the fine-tuning pipeline. Furthermore, the simultaneous
utilization of the dual pipeline with DS

seg and DS→T
seg is justified by the scores of

Pre-train + Fine-tuning. Using dual-pipeline and parameter fluctuation yielded
the best performance. However, the utilization of ensemble pipelines of multiple
fine-tuning modules was inefficient, since negligible performance improvements
(+0.002) were observed, despite the heavy memory utilization.

Furthermore, Fig. 6 shows the effectiveness of the parameter fluctuation
and fine-tuning methods. We first compared the similarity of feature-maps by
decoders, including DS

seg, Dfl
seg, and DS→T

seg , with DS
seg and DT

seg, which was fully
optimized decoder in T . Here, a style loss [9] was employed to measure the simi-
larity of feature maps. Our framework was fine-tuned as DS

seg → Dfl
seg → DS→T

seg
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Table 1. Dice coefficients by different versions of our TTFT framework. Random Init
is DFT is randomly initialized, and Offset indicates DFT is initialized with the value
of Dseg added by the offset value.

D. Coef (95% CI) BUS BUSI BUV

Pre-train 0.664 (0.653–0.675) 0.664 (0.653–0.675) 0.664 (0.653–0.675)
Fine-tuning 0.774 (0.763–0.785) 0.774 (0.763–0.785) 0.774 (0.763–0.785)
Pre-train + Random Init 0.663 (0.653–0.673) 0.663 (0.653–0.673) 0.663 (0.653–0.673)
Pre-train + Offset 0.676 (0.668–0.684) 0.676 (0.668–0.684) 0.676 (0.668–0.684)
Pre-train + PF 0.697 (0.686–0.707) 0.697 (0.686–0.707) 0.697 (0.686–0.707)
Pre-train + Fine-tuning 0.799 (0.789–0.809) 0.799 (0.789–0.809) 0.799 (0.789–0.809)
Pre-train + PF + Fine-tuning 0.855 (0.844–0.866) 0.855 (0.844–0.866) 0.855 (0.844–0.866)
Pre-train + PF + N Fine-tuning 0.857 (0.842–0.872) 0.857 (0.842–0.872) 0.857 (0.842–0.872)

along which the similarity with DT
seg of those decoders were increasing, and

the feature-maps by DS→T
seg were similar to those of DT

seg, compared with DS
seg,

indicating UDA was successfully performed. Additionally, the generated images
by decoders, including DS

seg, Dfl
seg, and DS→T

seg in S and T are plotted with T-
SNE, where the short distance represents the similar features [19]. The generated
images became similar to T in order of DS

seg, Dfl
seg, and DS→T

seg , which confirmed
the effectiveness of the fine-tuning method in terms of knowledge distillation.
Additionally, the parameters were successfully re-positioned from the local min-
imum in S by parameter fluctuation, which was confirmed by the distances from
S to DS

gen and Dfl
gen.

4 Discussion and Conclusion

In this work, we proposed a DL-based segmentation framework for multi-domain
breast cancer segmentation on ultrasound images. Due to the low resolution of
ultrasound images, manual segmentation of breast cancer is challenging even
for expert clinicians, resulting in a sparse number of labeled data. To address
this issue, we introduced a novel self-supervised DA network for breast cancer
segmentation in ultrasound images. In particular, we proposed a test-time fine-
tuning network to learn domain-specific knowledge via knowledge distillation by
self-supervised learning. Since UDA is susceptible to error accumulation due to
imprecise pseudo-labels, which can lead to degraded performance, we employed
a self-supervised learning-based pretext task. Specifically, we utilized an auto-
encoder-based network architecture to generate synthetic images that matched
the input images. Moreover, we introduced a randomized re-initialization module
that injects randomness into network parameters to reposition the network from
the local minimum in the source domain to a local minimum that is better
suited for the target domain. This approach enabled our framework to efficiently
fine-tune the network in the target domain and achieve better segmentation
performance. Experimental results, carried out with three ultrasound databases
from different domains, demonstrated the superior segmentation performance of
our framework over other competing methods. Additionally, our framework is
well-suited to a scenario in which access to source domain data is limited, due
to data privacy protocols. It is worth noting that we used vanilla U-Net [22]
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and FusionNet [21] as baseline models to evaluate the basic performance of our
TTFT framework. However, the use of more advanced baseline models could lead
to even better segmentation performance, which is a subject for our future work.
Moreover, our proposed framework is not limited to breast cancer segmentation
on ultrasound images acquired from different domains. It can also be applied to
other disease groups or imaging modalities such as MRI or CT.
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