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Abstract. Deep learning-based algorithms for single MR image (MRI)
super-resolution have shown great potential in enhancing the resolution
of low-quality images. However, many of these methods rely on super-
vised training with paired low-resolution (LR) and high-resolution (HR)
MR images, which can be difficult to obtain in clinical settings. This is
because acquiring HR MR images in clinical settings requires a signifi-
cant amount of time. In contrast, HR CT images are acquired in clini-
cal routine. In this paper, we propose a CT-guided, unsupervised MRI
super-resolution reconstruction method based on joint cross-modality
image translation and super-resolution reconstruction, eliminating the
requirement of high-resolution MRI for training. The proposed approach
is validated on two datasets respectively acquired from two different clin-
ical sites. Well-established metrics including Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Metrics (SSIM), and Learned Per-
ceptual Image Patch Similarity (LPIPS) are used to assess the perfor-
mance of the proposed method. Our method achieved an average PSNR
of 32.23, an average SSIM of 0.90 and an average LPIPS of 0.14 when
evaluated on data of the first site. An average PSNR of 30.58, an aver-
age SSIM of 0.88, and an average LPIPS of 0.10 were achieved by our
method when evaluated on data of the second site.

Keywords: Unsupervised image super-resolution · Cross-modality
image translation · CT-Guided · Magnetic resonance imaging

1 Introduction

High-resolution magnetic resonance (MR) images (MRI) provide a wealth of
structural details, which facilitate early and precise diagnosis [1]. However,
images obtained in clinical practice are anisotropic due to the limitation of scan
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time and signal-noise ratio [2]. In order to speed up clinical scanning procedures,
only a limited number of two-dimensional (2D) slices are acquired, despite the
fact that the interested anatomical structures are in three-dimensional (3D).
The acquired medical images have low inter-plane resolution, i.e., large spacing
between slices. Such anisotropic images will lead to misdiagnosis and can greatly
impact the performance of various clinical tasks, including computer-aided diag-
nosis and computer-assisted interventions. Therefore, we investigate the problem
of reducing the slice spacing [3] via super-resolution (SR) reconstruction. Specif-
ically, we refer to the image with large slice spacing as a low-resolution (LR)
image and the image with small slice spacing as a high-resolution (HR) image.
Our goal is to reconstruct the HR image from the LR input, which is an ill-posed
inverse problem and presents significant challenges.

Deep learning-based algorithms for single MR image super-resolution show
great potential in restoration of HR images from LR inputs [4]. Pham et al.
[5] proposed the SRCNN method, which applied convolutional neural networks
(CNN) to image super-resolution of MRI and achieved a better performance than
the conventional methods, such as B-spline interpolation and low-rank total vari-
ation (LRTV) [6] method. Chaudhariet al. [7] proposed a 3D residual network,
which learned the residual-based transformations between paired LR and HR
images for the SR reconstruction of MRI. Chen et al. [8] proposed a densely
connected super-resolution network (DCSRN), which reused the block features
through the dense connection in the SR reconstruction of MRI. Chen et al. [9]
extended this work by using generative adversarial network (GAN) [10] in SR
reconstruction of MRI in order to improve the realism of the recovered images.
Feng et al. [11,12] proposed a multi-contrast MRI SR method, which aimed to
learn clearer anatomical structure and edge information with the help of auxil-
iary contrast MRI. Despite significant progress, however, there are still spaces
for further improvement. Most networks require a large amount of paired LR
and HR MR images for training, which are unrealistic in clinical practice. To
address the challenge of organizing paired images, methods based on unpaired
images have been proposed [13,14]. However, HR MR images are still difficult
to obtain, as acquiring HR MR images in clinical settings requires a significant
amount of time. In contrast, CT images are acquired in clinical routine. There-
fore, it is of great significance to use HR CT images as a guidance to synthesize
HR MR images from LR MR images.

To this end, we propose a CT-guided, unsupervised MRI super-resolution
reconstruction method based on joint cross-modality image translation (CIT)
and super-resolution reconstruction, eliminating the requirement of HR MR
images for training. Specifically, our network design features a super-resolution
Network (SRNet) and a cross-modality image translation network (CITNet)
based on disentanged representation learning. After pretraining, the SRNet can
generate pseudo HR MR images from LR MR images. The generated pseudo
HR MR images are then taken together with the HR CT images as the input
to the CITNet, which can generate quality-improved pseudo HR MR images by
combining disentangled content code of the input CT data with the attribute
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Fig. 1. A schematic illustration of our CT-guided, unsupervised MRI super-resolution
reconstruction method. (A) Network architecture, including a SRNet and a CITNet;
(B) Pretraining the SRNet; and (C) Joint optimization of the CITNet and the SRNet.
Different colors represent different domains, i.e., orange represents the MR domain,
green represents the CT domain, and white shows the shared content space. (Color
figure online)

code of the input pseudo HR MR images. Joint optimization of the CITNet and
the SRNet leads to better and better pseudo HR MR image generation. When
converged, we can use the SRNet to generate high-quality pseudo HR MR images
from given LR MR images. The contributions of our work can be summarized
as follows:

– We propose a CT-guided, unsupervised MRI super-resolution reconstruction
method based on joint cross-modality image translation and super-resolution
reconstruction, eliminating the requirement of HR MRI for training. Our cross-
modality image translation is based on disentangled representation leanring.

– Our network design features a SRNet and a CITNet. They work jointly to gen-
erate high-quality pseudo HR MR images from given LR MR images. Con-
cretely, a better trained SRNet will help to generate a better input to the
CITNet. On the other hand, the CITNet, taking the SRNet-generated pseudo
HR MR images and the HR CT images as input, provides better supervision
of the SRNet training. Joint optimization of the CITNet and the SRNet leads
to the generation of high-quality pseudo HR MR image at the end.

– We validate the proposed method on two datasets collected from two different
clinical centers.



500 J. Wang et al.

2 Methodology

Figure 1 presents a schematic illustration of our CT-guided, unsupervised MRI
super-resolution reconstruction method. It features two networks: the SRNet and
the CITNet (Fig. 1-(A)). Figure 1-(B) shows how to pretrain the SRNet while
Fig. 1-(C) presents how to conduct joint optimization. Below we first present the
design of the SRNet and the CITNet, followed by a description of the traing
strategy.

2.1 Super-Resolution Network (SRNet)

We choose to use the residual dense network (RDN) as the SRNet. The RDN uti-
lizes cascaded residual dense blocks (RDBs), a powerful convolutional block that
leverages residual and dense connections to fully aggregate hierarchical features.
For further details on the structure of the RDN, please refer to the original
paper [15]. Mathematically, we denote the SRNet as Fs(·;Θs) with trainable
parameters Θs.

2.2 Cross-Modality Image Translation Network (CITNet)

The CITNet is inspired by MUNIT [16]. As depicted in Fig. 1-(A.2), it com-
prises two content encoders

{
EC

X , EC
Y
}
, two attribute encoders

{
EA

X , EA
Y

}
, and

two generators {GX , GY}. The encoder in each domain disentangles an input
image separately into a domain-invariant content space C and a domain-specific
attribute space A. And the generator networks combine a content code with an
attribute code to generate translated images in the target domain. For instance,
when translating CT image yH ∈ Y to MR image x

′
H ∈ X , we first randomly

sample from the prior distribution p(A′
x) ∼ N (0, I) to obtain an MRI attribute

code A′
x, which is empirically set as a 8-bit vector. We then combine A′

x with
the disentangled content code of the CT image Cy = EC

Y(yH) to generate the
translated MRI image x

′
H ∈ X through the generator GX . Similarly, we can

get the the translated CT image ỹ
′
H ∈ Y through the generator GY(Cx,A′

y),
where Cx = EC

X (Fs(xL;Θs)) and A′
y is also sampled from the prior distribution

p(A′
y) ∼ N (0, I).
Disentangled Representation Learning. Cross-modality image transla-

tion is based on disentangled representation learning, trained with self- and cross-
cycle reconstruction losses. As shown in Fig. 1-(C.1, C.2), the self-reconstruction
loss Lself is utilized to regularize the training when the content and attribute code
originate from the same domain, whereas the cross-cycle consistency loss Lcycle
is used when the content and attribute code come from different domains. The
self-reconstruction and cross-cycle reconstruction losses are defined as follows:

Lself =
∥
∥GX

(
EC

X (x̃H), EA
X (x̃H)

) − x̃H

∥
∥
1
+

∥
∥GY

(
EC

Y(yH), EA
Y (yH)

) − yH
∥
∥
1

(1)

Lcycle = ‖GX (EC
Y(ỹ

′
H), EA

X (x̃H)) − x̃H‖1 + ‖GY(EC
X (x

′
H), EA

Y (yH)) − yH‖1 (2)
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where x̃H = Fs(xL;Θs), x
′
H = GX (EC

Y(yH),A′
x), ỹ

′
H = GY(EC

X (x̃H),A′
y). Spe-

cially, in the cross-cycle translation processes, we employe a latent reconstruction
loss to maintain the invertible mapping between the image and the latent space.
In details, we have:

Llatent = ‖Ĉx − Cx‖1 + ‖Ĉy − Cy‖1 + ‖Âx − A′
x‖1 + ‖Ây − A′

y‖1 (3)

We further use pretrained vgg16 network, denoted as φ(·), to extract high-
level features for computing the perceptual loss [17]:

Lpercep =
1

CHW

∥
∥
∥φ(ỹ

′
H) − φ(x̃H)

∥
∥
∥
2

2
+

1
CHW

∥
∥
∥φ(x

′
H) − φ(yH)

∥
∥
∥
2

2
(4)

where C, H, W indicate the channel number and the image size, respectively.
Adversarial Learning. As shown in Fig. 1-(A.2), we use GAN [10] to learn

the translation between MR and CT image domains better. A GAN typically
contains a generation network and a discrimination network. We use the dis-
criminator DX to judge whether the image is from MR image domain, and the
discriminator DY to judge whether the image is from CT image domain. The
auto-encoders try to generate the image of the target domain to fool the dis-
criminators so that the distribution of the translated images can match that of
the target images. The minmax game is trained by:

LX
adv = Ex̃H∼PX (x̃H) [logDX (x̃H)] + EyH∼PY(yH)

[
log(1 − DX (x

′
H))

]
(5)

LY
adv = EyH∼PY(yH) [logDY(yH)] + Ex̃H∼PX (x̃H)

[
log(1 − DY(ỹ

′
H))

]
(6)

Joint Optimization. The SRNet and the CITNet are jointly optimized by
minimizing following loss function:

Ldisentangle =
(
LX
adv + LY

adv

)
+ λ1(Lself + Lcycle) + λ2Llatent + λ3Lpercep (7)

where λ1, λ2, and λ3 are parameters controlling the relative weights of different
losses.

2.3 Training Strategy

Empirically, we found that training the network shown in Fig. 1-(A) end to end
did not converge. We thus design the following three-stage training strategy.

Stage 1. Let’s denote the downsampling function as D(·). In this stage, we
pretrain the SRNet using the HR CT images, as shown in Fig. 1-(B.1), for T
iterations. At each iteration, we sample a batch of HR CT images. We then
downsample the sampled HR CT images yH to get the paired LR CT images
yL = D(yH). The SRNet is trained with the paired LR-HR CT images by mini-
mizing L1 loss ‖yH − Fs(D(yH);Θs)‖1. In this stage, we are aiming to train the
SRNet to learn the upsampling kernels.

Stage 2. As the SRNet is only pretrained with CT images in stage 1, we need
to generalize the learned upsampling kernels to the MR image domain. We thus



502 J. Wang et al.

Algorithm 1. Training procedure
(Stage1) Pretrain SRNet with CT based self-supervision:
GET HR CT images yH

FOR t = 1 to T
Train SRNet by minimizing ‖yH − Fs(D(yH);Θs)‖1

END FOR
(Stage2) Pretrain SRNet with pseudo MR based self-supervision:
GET LR MR images xL

FOR t = T to 2T
Train SRNet by minimizing ‖Fs(xL;Θs) − Fs(D(Fs(xL;Θs));Θs)‖1

END FOR
(Stage3) Joint optimization of CITNet and SRNet:
GET unpaired LR MR images xL and HR CT images yH

FOR t = 2T to 10T
Train DX , DY by maximizing

(
LX

adv + LY
adv

)

Train EC
X , EC

Y , EA
X , EA

Y , GX , GY and SRNet by minimizing Ldisentangle

END FOR

further pretrain the SRNet with pseudo MR images, as shown in Fig. 1-(B.2),
for another T iterations. At each iteration, we first sample a batch of LR MR
images xL and input them into the SRNet to get the pseudo HR MR images
x̃H = Fs(xL;Θs). We then downsample x̃H to get corresponding pseudo LR MR
images x̃L = D(x̃H). The SRNet is trained with the paired pseudo LR-HR MR
images by minimizing L1 loss ‖Fs(xL;Θs)− Fs(D(Fs(xL;Θs));Θs)‖1. The idea
behind such a pretraining stategy is that since both CT and MR images share
the common structural information, the model pretrained with CT images in
stage 1 facilitates the super-resolution reconstruction of pseudo HR MR images
in stage 2. On the other hand, the training done in stage 2 can help the SRNet
to learn MRI-specific domain information.

Stage 3. The MR images generated by the model pretrained at the first two
stages can be further improved. In stage 3, we conduct joint optimization of the
SRNet and the CITNet as shown in Fig. 1-(C), for another 8 × T iterations. At
each iteration, we first train DX , DY by maximizing

(
LX
adv + LY

adv

)
. We then

train EC
X , EC

Y , EA
X , EA

Y , GX , GY and the SRNet by minimizing Ldisentangle as
defined in Eq. (7).

The training procedure of our method is illustrated by Algorithm1.
Implementation Details. To train the proposed network, each training

sample is unpaired LR MRI and HR CT images. All images are normalized to
the range between -1.0 and 1.0. Optimization is performed using Adam with a
batch size of 1. The initial learning rate is set to 0.0001 and decreased by a factor
of 5 every 2 epochs. We empirically set λ1 = 10, λ2 = λ3 = 1 and T = 100, 000.
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Table 1. The mean and the standard deviation when the proposed method was com-
pared with the state-of-the-art (SOTA) unsupervised [18–20] and supervised [15,21]
methods on both datasets. Paired T-Tests of all evaluation metrics achieved by ours
and other methods are all smaller than 0.0001.

Dataset Site1 Site2

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Bicubic 30.67±1.96 0.86±0.03 0.32±0.05 28.69±1.92 0.83±0.03 0.26±0.02
TSCN [18] 29.00±2.03 0.83±0.05 0.24±0.03 28.00±1.71 0.85±0.02 0.14±0.01
ZSSR [19] 30.95±2.12 0.88±0.03 0.16±0.02 28.94±1.69 0.83±0.03 0.16±0.01
SMORE [20] 31.78±1.98 0.89±0.03 0.21±0.03 29.93±2.00 0.86±0.03 0.14±0.02
Ours 32.23±1.98 0.90±0.02 0.14±0.02 30.58±1.97 0.88±0.02 0.10±0.01
Supervised [15] 32.99±2.07 0.91±0.02 0.10±0.02 31.66±1.72 0.90±0.02 0.08±0.01
ReconResNet [21] 32.93±3.12 0.88±0.05 0.09±0.02 29.97±1.50 0.84±0.03 0.07±0.01

Table 2. Results of ablation study on dataset from Site1.

Stage 1 Stage 2 Stage 3 PSNR↑ SSIM↑ LPIPS↓
√ − − 31.01±2.18 0.87±0.03 0.20±0.03√ √ − 31.62±2.08 0.89±0.03 0.16±0.02√ √ √

32.23±1.98 0.90±0.02 0.14±0.02

Fig. 2. Visual comparison of different methods when evaluated on dataset from Site1.

Fig. 3. Visual comparison of different methods when evaluated on dataset from Site2.
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Fig. 4. Examples of cross-modality image translation between MRI and CT using data
from Site2.

3 Experiments

Dataset. We conduct experiments to evaluate the proposed method on two
datasets acquired from two different clinical centers. The dataset from HFR
Cantonal Hospital, University of Fribourg (Site1) consists of 50 paired MR-CT
volumes, which are divided into training (35 volumes), validation (5 volumes),
and testing sets (10 volumes). The HR MRI are acquired by coronal plane and
the voxel spacing of both HR CT and MRI are 1.0*1.0*1.0 mm3. We downsample
along the coronal axis with a scale factor K = 4 to generate the LR MRI with a
voxel spacing 1.0*1.0*(1.0*K) mm3. We shuffle the paired MR-CT volumes and
only use the unpaired LR MRI and HR CT for training. Then we use the HR
MRI to evaluate the reconstruction metrics. The dataset from the University
Hospital of Bern (Site2) consists of 19 unpaired MR-CT volumes, which are
divided into training (13 volumes) and testing sets (6 volumes). The HR MRI
are acquired by coronal plane and the voxel spacing of both HR CT and MRI
are 1.0*1.3*1.3 mm3. We downsample along the coronal axis by a scale factor
K = 4 to generate the LR MRI with a voxel spacing 1.0*1.3*(1.3*K) mm3.

Experimental Results. We compare our method with the conventional
algorithm bicubic interpolation, and the state-of-the-art (SOTA) unsupervised
SR methods including TSCN [18], ZSSR [19], SMORE [20] as well as the SOTA
supervised methods including RDN [15] and ReconResNet [21]. Well-established
metrics including Peak Signal-to-Noise Ratio (PSNR) [22,23], Structural Simi-
larity Index Metrics (SSIM) [24], and Learned Perceptual Image Patch Similarity
(LPIPS) [25] are used to assess the performance of different methods.

Table 1 shows the mean and the standard deviation of the evaluation results
of each method on both datasets. Figure 2 and Fig. 3 respectively show the super-
resolution results on data from Site1 and Site2, when the scale factor is set as
K = 4, as well as the corresponding LR and ground truth (GT) images. Both
qualitative and quantitative results demonstrated that our method achieved bet-
ter results than other SOTA unsupervised SR methods. It achieved comparable
performance when compared with the supervised SR methods.
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Our method is trained in two pretrain stages and one joint optimization stage.
We thus conduct ablation study on dataset from Site1 to analyze the quality
of the generated pseudo HR MR images at each stage. As shown in Table 2,
quantitatively, the quality of the generated pseudo HR MR images is become
better and better, demonstrating the effectiveness of the training strategy.

4 Conclusion

In this paper, we proposed a CT-guided, unsupervised MRI super-resolution
reconstruction method based on joint cross-modality image translation and
super-resolution reconstruction, eliminating the requirement of HR MRI for
training. We conducted experiments on two datasets respectively acquired from
two different clinical centers to validate the effectiveness of the proposed method.
Quantitatively and qualitatively, the proposed method achieved superior perfor-
mance over the SOTA unsupervised SR methods.
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