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Abstract. Diffusion MRI is commonly performed using echo-planar
imaging (EPI) due to its rapid acquisition time. However, the reso-
lution of diffusion-weighted images is often limited by magnetic field
inhomogeneity-related artifacts and blurring induced by T2- and T ∗

2 -
relaxation effects. To address these limitations, multi-shot EPI (msEPI)
combined with parallel imaging techniques is frequently employed. Nev-
ertheless, reconstructing msEPI can be challenging due to phase variation
between multiple shots. In this study, we introduce a novel msEPI recon-
struction approach called zero-MIRID (zero-shot self-supervised learn-
ing of Multi-shot Image Reconstruction for Improved Diffusion MRI).
This method jointly reconstructs msEPI data by incorporating deep
learning-based image regularization techniques. The network incorpo-
rates CNN denoisers in both k- and image-spaces, while leveraging vir-
tual coils to enhance image reconstruction conditioning. By employing a
self-supervised learning technique and dividing sampled data into three
groups, the proposed approach achieves superior results compared to the
state-of-the-art parallel imaging method, as demonstrated in an in-vivo
experiment.

Keywords: Self-supervised learning · Multi-shot echo planar
imaging · diffusion MRI

1 Introduction

Magnetic resonance imaging (MRI) is widely used for diagnosis and treatment
monitoring as it provides structural and physiological information related to dis-
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ease progression. Diffusion MRI (dMRI) measures molecular diffusion in biolog-
ical tissues and provides microscopic details of tissue architecture, as molecules
interact with many different obstacles while diffusing throughout tissues [16].
However, dMRI requires repeated acquisitions with different diffusion directions.
Echo-planar imaging (EPI), which enables fast encoding per imaging slice, is
commonly used for dMRI due to its fast acquisition time. However, single-shot
(ss-) EPI is susceptible to severe susceptibility-induced geometric distortion and
T2- and T ∗

2 -induced voxel blurring. These artifacts worsen at higher in-plane
resolutions as the time required to acquire each line of k-space increases approx-
imately linearly.

Multi-shot (ms-) acquisition is an effective approach to mitigate EPI-related
artifacts, which segments k-space into multiple portions covered across multiple
repetition times (TRs) to reduce the effective echo spacing. However, potential
shot-to-shot phase variations across multiple EPI shots can introduce additional
artifacts. Recent algorithms, such as low-rank prior methods like low-rank mod-
eling of local k-space neighborhoods (LORAKS) [7,8,14,15,17,18], and multi-
shot sensitivity encoded diffusion data recovery using structured low-rank matrix
completion (MUSSELS) [19], have successfully addressed this challenge by jointly
reconstructing msEPI images through a low-rank constraint applied across the
EPI shots.

In recent years, deep learning has emerged as a promising approach for image
reconstruction, offering potential solutions to the challenges of existing tech-
niques, including long reconstruction times, residual artifacts at high acceleration
factors, and over-smoothing [6,9,10]. One notable development is model-based
deep learning (MoDL), which leverages an unrolled convolutional neural net-
work (CNN) and a parallel imaging (PI) forward model to denoise and unalias
undersampled data [1]. MoDL has also been applied to multi-shot diffusion-
weighted echo-planar imaging, known as MoDL-MUSSELS, effectively replacing
MUSSELS and significantly reducing reconstruction times while achieving com-
parable results to state-of-the-art methods [2]. MoDL-MUSSELS includes CNN
denoisers in both image- and k-spaces, as recent work has demonstrated that
utilizing both domains has yielded improvement in performance based on met-
rics such as PSNR and SSIM [6]. However, it is worth noting that existing deep
learning networks for dMRI have typically been trained in a supervised manner,
which requires a significant amount of ground truth images that are not easily
acquired in EPI acquisitions.

In contrast, self-supervised learning [3,24,25] does not rely on external train-
ing data and can be used in denoising, reconstruction, quantitative mapping,
and other applications. Recent advancements in zero-shot self-supervised learn-
ing (ZS-SSL) have demonstrated successful scan-specific network training with-
out any external database [24]. This approach has shown comparable or supe-
rior results to supervised networks. However, in dMRI, where the same vol-
ume is repeatedly acquired while changing diffusion directions, ZS-SSL typically
requires training separate networks for different directions, which can be imprac-
tical.
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The virtual coil (VC) approach is a highly effective technique for enhanc-
ing the performance of parallel MRI [5], particularly in the case of EPI that
utilizes partial Fourier acquisition. VC generates virtual coils by incorporating
conjugate symmetric k-space signals from actual coils. This integration provides
supplementary information for missing data points in k-space, further being use-
ful when combined with partial Fourier acquisition. Conceptually, the utilization
of VC consistently ensures an image quality equivalent to or exceeds that of the
image reconstructed without VC.

In this study, we propose a novel msEPI reconstruction method called zero-
MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction
for Improved Diffusion MRI). Our method jointly reconstructs msEPI data by
incorporating zero-shot self-supervised learning-based image reconstruction. Our
key contributions are as follows:

– We jointly reconstruct multiple-shot images using self-supervised learning.
– We train one network for all diffusion directions, which accelerates training

speed and improves performance.
– We used network denoisers in both k- and image-space and employed the VC

[5] to improve the conditioning of the reconstruction.
– In the in-vivo experiment, the proposed method demonstrates more robust

images and better diffusion metrics than the state-of-art PI technique for
dMRI.

– To our best knowledge, this study proposes the first self-supervised learning
reconstruction for dMRI.

Overall, our zero-MIRID method offers a promising approach to enhance
msEPI reconstruction in dMRI, providing improved image quality and diffusion
metrics through the integration of self-supervised learning techniques.

2 Method

2.1 PI Techniques for dMRI

For msEPI data, SENSE is commonly used for image reconstruction. SENSE
individually reconstructs each shot’s data using the spatial variation of the coil
sensitivity profile. The mth shot image in the dth diffusion direction, xd,m, can
be reconstructed as follow.

xd,m = argmin
xd,m

‖FmCxd,m − bd,m‖22 (1)

where Fm is the undersampled Fourier transform for the mth shot, C is the coil
sensitivity map, and bd,m is the acquired k-space data of dth direction and mth

shot.
On the other hand, MUSSELS and LORAKS jointly reconstruct multiple-

shot images using the low-rank property among msEPI data. The images in the
dth diffusion direction can be reconstructed using LORAKS as follows.



460 J. Cho et al.

xd = argmin
xd

M∑

m=0

‖FmCxd,m − bd,m‖22 + λJ (Fxd) (2)

where J is the LORAKS regularization. In this work, we utilized S-LORAKS,
which employs phase information and k-space symmetry [14,15].

2.2 Network Design

Fig. 1. The proposed image reconstruction diagram of zero-MIRID. The virtual coil
(VC) layer was used to efficiently reconstruct the data accelerated by partial Fourier.
The network denoisers in both the k-space and image domain were used. The DC layer
enforces the consistency between the acquired data and the reconstructed images.

Figure 1 shows the proposed network diagram of zero-MIRID. The input of
the network is AT

mbd, where Am = FmC. The network consists of two CNNs in
the k- and image-spaces. The VC was added and removed before and after the
denoising CNNs, respectively. The images in the dth diffusion direction can be
jointly reconstructed using zero-MIRID as follows.

xd =argmin
xd

M∑

m=0

‖FmCxd,m − bd,m‖22

+ λ1

∥∥VH
C NiVCxd

∥∥2

2
+ λ2

∥∥VH
C FHNkFVCxd

∥∥2

2

(3)

where VC is the VC operator, and Ni and Nk are denoising CNNs in the image-
and k-space, respectively. We define Nx = x − Dx, where D is the CNN net-
work, and modified the alternating minimization-based solution in [2] to get the
solutions of equation (3), as follows.

xn+1 =(AHA + λ1I + λ2I)(AHb + λ1ηn + λ2ζn)

ζn+1 =VH
C FHDkFVCxn+1

ηn+1 =VH
C DiVCxn+1

(4)
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where n is the optimization step (iteration) number, η and ζ is the network
denoising terms in k- and image-space, and A = FC.

2.3 Zero-Shot Self-supervised Learning

Fig. 2. The masks used for training, validation, and inference phases. The sampling
mask was split into three different masks.

As proposed in the recent ZS-SSL study [24], we split the sampling mask
into three different groups, as shown in Fig. 2, where g3 is the entire sampling
mask and g3 ⊃ g2 ⊃ g1. In the training phase, g1 was used for network input,
while g2 was used to calculate training losses. In the validating phase, g2 was
used for network input, while g3 was used to calculate validating losses. In the
inferencing phase, g3 was used for network inputs. The loss in the dth direction
in the training phase can be described as follows.

L(g2 · bd, g2 · Af(g1 · bd; θ)) (5)

where L is the loss function, f is the zero-MIRID reconstruction, and θ is the
trainable network parameters. Similarly, the loss in the dth direction in the val-
idating phase can be described as follows.

L(g3 · bd, g3 · Af(g2 · bd; θ)) (6)

In this study, we used the normalized root mean square error (NRMSE) and
normalized mean absolute error (NMAE) as the loss functions.

2.4 Experiment Details

In-vivo experiments were conducted on a 3T Siemens Prisma system with a
32-channel head coil. For dMRI, we acquired the diffusion-weighted data in 32
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different directions using 2-shot EPI, with each shot accelerated by 5-fold (R=5)
and employing 75% Partial Fourier, resulting in 15% coverage of the k-space in
each shot relative to a fully-sampled readout. Imaging parameters are; field of
view (FOV)=224 × 224 × 128 mm3, voxel size =1 × 1 × 4 mm3, TR=3.5 s, and
effective echo time (TE) =59 ms.

SENSE and S-LORAKS reconstructions were performed with MATLAB
R2022a using Intel Xeon 6248R and 512 GB RAM. All neural network imple-
mentations were conducted with Python, using the Keras library in Tensorflow
2.4.1. NVIDIA Quadro RTX 8000 (RAM: 48 GB) was used to train, validate, and
test the network. The denoising CNNs consist of 16 layers of which the depth
is 46. For the 16 layer-CNN, we employed a filter size of 3× 3. The depth of
our network is 46, resulting in a total of 583,114 trainable parameters. The DC
layer takes ten conjugate gradient steps, and the reconstruction block iterates
ten times, where the MoDL paper [1] has demonstrated the saturated perfor-
mance. For training the model, the Adam optimizer is used with a learning rate
of 1e-3. Leaky ReLU was used as the activation function. For every diffusion
direction, one g2 and 50 cases of g1 were generated. The ratio of the number of
k-space points of g3:g2:g1 = 1.00:0.80:0.48. We trained a single network for 32
diffusion directions and used that network to reconstruct all directions. For com-
parison, we trained two separate networks for the individual reconstruction for
each shot (zero-SIRID, single-shot image reconstruction). We used the FSL tool-
box for diffusion analysis [13,22,23]. To estimate multiple fiber orientations, we
used the Bayesian Estimation of Diffusion Parameters Obtained using Sampling
Techniques (BEDPOSTX) [4,11,12].

Example data and code can be found in the following link:
https://github.com/jaejin-cho/miccai2023

3 Results

Figure 3 the reconstructed diffusion-weighted images at 5-fold acceleration per
shot in the selected diffusion directions. The reference images were obtained from
5-shot EPI data that covers complementary k-space lines to each other with
the S-LORAKS constraint. While SENSE shows severe noise amplification and
remaining folding artifacts, zero-SIRID was able to partially mitigate the noise
amplification. S-LORAKS jointly reconstructed two shots, considerably reduced
noise, and improved the signal-to-noise ratio (SNR). Nonetheless, in the selected
diffusion directions, folding artifacts were amplified, and the center of the image
shows a dropped signal (pointed by yellow arrows). In contrast, zero-MIRID
demonstrated robust image reconstruction even with a high reduction factor
per shot. The NRMSE and NAE across the diffusion direction are provided in
the supplementary material, demonstrating notable reductions in NRMSE and
NMAE when the proposed method is compared to S-LORAKS.

Figure 4 presents the average diffusion-weighted image (DWI), fractional
anisotropy (FA) map, and 2nd crossing fiber image calculated from the recon-
structed images. S-LORAKS and zero-MIRID produced high-fidelity average

https://github.com/jaejin-cho/miccai2023
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Fig. 3. The reconstructed diffusion-weighted images at R=5 per shot. Selected dif-
fusion directions were shown. Reference images were obtained from 5-shot EPI data
with S-LORAKS reconstruction. SENSE and zero-SIRID individually reconstruct each
shot image, whereas S-LORAKS and zero-MIRID jointly reconstruct two shot images.
NRMSE was shown at the bottom of each image.

Fig. 4. Average DWI, FA map, and 2nd crossing fiber image from the reconstructed
images in Fig. 3. The number of 2nd crossing fibers was shown at the bottom of each
column.
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DWIs, whereas SENSE and zero-SIRID show remaining artifacts. SENSE, zero-
SIRID, and S-LORAKS show amplified noise in the center of the FA maps,
whereas zero-MIRID effectively mitigated the noise. Furthermore, zero-MIRID
well preserved the number of 2nd crossing fibers, often considered a crucial factor
in evaluating successful dMRI acquisition [4,12].

4 Discussion and Conclusion

In this study, we proposed an improved image reconstruction method for msEPI
and dMRI in a self-supervised deep learning manner. In-vivo experiment demon-
strates the proposed method outperformed S-LORAKS, the state-of-art PI
method for dMRI.

Acquiring reference images of msEPI can be challenging because each shot
is typically highly accelerated and shot-to-shot phase variation prevents jointly
reconstructing multiple shots efficiently. Advanced PI techniques that jointly
reconstruct many EPI shots can improve the PI condition and provide high-
fidelity images, but using a PI method may induce bias to that particular
method. Therefore, supervised learning might not be an ideal solution for msEPI.
On the other hand, self-supervised learning, which does not require reference
images, could be a more suitable approach for msEPI. Due to the difficulty in
obtaining reliable ground truth data, conventional quantitative metrics such as
SSIM and NRMSE may be less reliable for evaluation. In dMRI, FA maps and
2nd crossing fibers could be used for obtaining more suitable metrics.

We trained a single network for all diffusion directions, which improved per-
formance and reduced training time (please see the supplementary material).
NRMSE and NMAE were reduced from 14.69% to 13.61% and from 15.73% to
14.41%, respectively. The training time for the proposed network was 22:30 min
per diffusion direction/slice (on GPU). This is expected to be reduced by trans-
fer learning. Inference took approximately 1 s per direction/slice, and 2-shot
LORAKS took approximately 20 s per direction/slice (on CPU). Since the images
are highly similar across diffusion directions, training on the entire diffusion
direction has a similar effect to increasing the size of the training database,
thereby enhancing network training. Moreover, using a single network for all
directions reduces training time compared to training separate networks for each
direction, from 40:01 min to 22:30 min per diffusion direction and slice.

As a future work, the simultaneous multi-slice (SMS) technique [21], which
is often used for further acceleration, can be easily incorporated into the cur-
rent network (please see the preliminary images in the supplementary mate-
rial). At Rsms=5 × 2-fold acceleration, NRMSE and NMAE were significantly
reduced compared with SENSE, from 22.91% to 9.07% and from 26.09% to
11.12%, respectively. g-Slider could be a good application as well [20], because
RF-encoded images also have highly similar image features.

Acknowledgment. This work was supported by research grants NIH R01 EB028797,
R01 EB032378, R01 HD100009, R03 EB031175, U01 EB026996, U01 DA055353, P41
EB030006, and the NVidia Corporation for computing support.



Zero-MIRID: Improved Multi-shot Diffusion MRI Reconstruction 465

References

1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning archi-
tecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019)

2. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL-MUSSELS: model-based deep
learning for multishot Sensitivity-Encoded diffusion MRI. IEEE Trans. Med. Imag-
ing 39(4), 1268–1277 (2020)
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