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Abstract. Models capable of leveraging unlabelled data are crucial
in overcoming large distribution gaps between the acquired datasets
across different imaging devices and configurations. In this regard, self-
training techniques based on pseudo-labeling have been shown to be
highly effective for semi-supervised domain adaptation. However, the
unreliability of pseudo labels can hinder the capability of self-training
techniques to induce abstract representation from the unlabeled tar-
get dataset, especially in the case of large distribution gaps. Since
the neural network performance should be invariant to image trans-
formations, we look to this fact to identify uncertain pseudo labels.
Indeed, we argue that transformation invariant detections can provide
more reasonable approximations of ground truth. Accordingly, we pro-
pose a semi-supervised learning strategy for domain adaptation termed
transformation-invariant self-training (TI-ST). The proposed method
assesses pixel-wise pseudo-labels’ reliability and filters out unreliable
detections during self-training. We perform comprehensive evaluations
for domain adaptation using three different modalities of medical images,
two different network architectures, and several alternative state-of-the-
art domain adaptation methods. Experimental results confirm the supe-
riority of our proposed method in mitigating the lack of target domain
annotation and boosting segmentation performance in the target domain.
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1 Introduction

Semantic segmentation is a prerequisite for a broad range of medical imaging appli-
cations, including disease diagnosis and treatment [13], surgical workflow anal-
ysis [6,9], operation room planning, and surgical outcome prediction [7]. While
supervised deep learning approaches have yielded satisfactory performance in
semantic segmentation [8,10], their performance is heavily limited by the labeled
training dataset distribution. Indeed, a network trained on a dataset acquired with
a specific device or configuration can dramatically underperform when evaluated
on a different device or conditions. Overcoming this entails new annotations per
device, a demand that is hard to meet, especially for semantic segmentation, and
even more so in the medical domain, where expert knowledge is essential.

Driven by the need to overcome this challenge, numerous semi-supervised
learning paradigms have looked to alleviate annotation requirements in the tar-
get domain. Semi-supervised learning refers to methods that encourage learn-
ing abstract representations from an unlabeled dataset and extending the deci-
sion boundaries towards a more-generalized or target dataset distribution. These
techniques can be categorized into (i) consistency regularization [4,15–17,19,22],
(ii) contrastive learning [2,11], (iii) adversarial learning [22], and (iv) self-training
[24–26]. Consistency regularization techniques aim to inject knowledge via penal-
izing inconsistencies for identical images that have undergone different distor-
tions, such as transformations or dropouts, or fed into networks with different
initializations [4]. Specifically, the Π model [15] penalizes differences between
the predictions of two transformed versions of each input image to reinforce
consistent and augmentation-invariant predictions. Temporal ensembling [15] is
designed to alleviate the negative effect of noisy predictions by integrating predic-
tions of consecutive training iterations. Cross-pseudo supervision regularizes the
networks by enforcing similar predictions from differently initialized networks.

More recent deep self-training approaches based on pseudo labels have emerged
as promising techniques for unsupervised domain adaptation. These techniques
assume that a trained network can approximate the ground-truth labels for unla-
beled images. Since no metric guarantees pseudo-label reliability, several meth-
ods have been developed to alleviate pseudo-label error back-propagation. To pro-
gressively improve pseudo-labeling performance, reciprocal learning [25] adopts a
teacher-student framework where the student network performance on the source
domain drives the teacher network weights updates. ST++ [24] proposes to eval-
uate the reliability of image-based pseudo labels based on the consistency of pre-
dictions in different network checkpoints. Subsequently, half of the more reliable
images are utilized to re-train the network in the first step, and the trained network
is used for pseudo-labeling the whole dataset for a second re-training step. Despite
the effectiveness of state-of-the-art pseudo-labeling strategies, we argue that one
important aspect has been underexplored: how can a trained network self-assess
the reliability of its pixel-level predictions?

To this end, we propose a novel self-training framework with a self-
assessment strategy for pseudo-label reliability. The proposed framework uses
transformation-invariant highly-confident predictions in the target dataset for
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Fig. 1. Example images from the three adopted datasets: (1) cross-device-and-center
instrument segmentation in cataract surgery videos (Cat101 vs. CaDIS), cross-device
fluid segmentation in OCT (Spectralis vs. Topcon), and cross-institution prostate seg-
mentation in MRI (BMC vs. BIDMC).

self-training. This objective is achieved by considering an ensemble of high-
confidence predictions from transformed versions of identical inputs. To validate
the effectiveness of our proposed framework on a variety of tasks, we evalu-
ate our approach on three different semantic segmentation imaging modalities,
including video (cataract surgery), optical coherence tomography (retina), and
MRI (prostate), as shown in Fig. 1. We perform comprehensive experiments to
validate the performance of the proposed framework, namely “Transformation-
Invariant Self-Training”1 (TI-ST). The experimental results indicate that TI-ST
significantly improves segmentation performance for unlabeled target datasets
compared to numerous state-of-the-art alternatives.

2 Methodology

Consider a labeled source dataset, S, with training images XS and corresponding
segmentation labels YS , while we denote a target dataset T , containing only
target images XT . We aim to train a network using XS , YS , and XT for semantic
segmentation in the target dataset.

We propose to train the model using a self-supervised approach on the images
XT by assigning pseudo labels during training. Typical pseudo labels are com-
puted from independent predictions of unlabeled images. Instead, our proposed
framework adopts a self-assessment strategy to determine the reliability of pre-
dictions in an unsupervised fashion. Specifically, we propose to target highly-
reliable predictions generated by a network aiming for transformation-invariant
confidence. Compared to self-ensembling strategies that penalize the distant pre-
dictions corresponding to the transformed versions of identical inputs, our goal
is to filter out transformation-variant predictions. Indeed, our method reinforces

1 The PyTorch implementation of TI-ST is publicly available at https://github.com/
Negin-Ghamsarian/Transformation-Invariant-Self-Training-MICCAI23.

https://github.com/Negin-Ghamsarian/Transformation-Invariant-Self-Training-MICCAI23
https://github.com/Negin-Ghamsarian/Transformation-Invariant-Self-Training-MICCAI23
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Fig. 2. Overview of the proposed semi-supervised domain adaptation framework based
on transformation-invariant self-training (TI-ST). Ignored pseudo-labels during unsu-
pervised loss computation are shown in turquoise.

the ensemble of high-confidence predictions from two versions of the same target
sample. Our proposed TI-ST framework simultaneously trains on the source and
target domains, so as to progressively bridge the intra-domain distribution gap.
Figure 2 depicts our TI-ST framework, which we detail in the following sections.

2.1 Model

At training time, images from the source dataset are augmented using spatial
g(·) and non-spatial f(·) transformations and passed through a segmentation
network, N(·), by which the network is trained using a standard supervision
loss. At the same time, images from the target dataset are also passed to the
network. Specifically, we feed two versions of each target image to the network:
(1) the original target image xT , and (2) its non-spatially transformed version,
x́T = f(xT ). Once fed through the network, the corresponding predictions can
be defined as ỹT = σ(N(xT )) and ˜́yT = σ(N(x́T )), where σ(·) is the Softmax
operation. We then define a confidence-mask ensemble as

Mcnf = Cnf(ỹT ) � Cnf( ˜́yT ), (1)

where � refers to Hadamard product used for element-wise multiplication, and
Cnf is the high confidence masking function,

Cnf∈ (W×H)(y) =

{
1, if maxC(y) > τ

0, else.
(2)

where τ ∈ (0.5, 1) is the confidence threshold, and H, W , and C are the height,
width, and number of classes in the output, respectively. Specifically, Mcnf
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encodes regions of confident predictions that are invariant to transformations.
We can then compute the pseudo-ground-truth mask for each input from the
target dataset as

ˆ́yT =

{
argmaxC( ˜́yT ), if Mcnf = 1
ignore, else.

(3)

2.2 Training

To train our model, we simultaneously consider both the source and target sam-
ples by minimizing the following loss,

Loverall = LSup(ỹS , yS) + λ
(
LPs( ˜́yT , ˆ́yT )

)
, (4)

where LSup and LPs indicate the supervised and pseudo-supervised loss func-
tions used, respectively. We set λ as a time-dependent weighing function that
gradually increases the share of pseudo-supervised loss. Intuitively, our pseudo-
supervised loss enforces predictions on transformation-invariant highly-confident
regions for unlabeled images.

Discussion: The quantity and distribution of supervised data are determin-
ing factors in neural networks’ performance. With highly distributed large-scale
supervisory data, neural networks converge to an optimal state efficiently. How-
ever, when only limited supervisory data with heterogeneous distribution from
the inference dataset are available, using more sophisticated methods to leverage
a priori knowledge is essential. Our proposed use of invariance of network pre-
dictions with respect to data augmentation is a strong form of knowledge that
can be learned through dataset-dependent augmentations. The trained network
is then expected to provide consistent predictions under diverse transformations.
Hence, the transformation variance of the network predictions can indicate the
network’s prediction doubt and low confidence correspondingly. We take advan-
tage of this characteristic to assess the reliability of predictions and filter out
unreliable pseudo-labels.

3 Experimental Setup

Datasets: We validate our approach on three cross-device/site datasets for
three different modalities:

– Cataract: instrument segmentation in cataract surgery videos [12,21]. We
set the “Cat101” [21] as the source dataset and the “CaDIS” as the target
domain dataset [12].

– OCT: IRF Fluid segmentation in retinal OCTs [1]. We use the high-quality
“Spectralis” dataset as the source and the lower-quality “Topcon” dataset as
the target domain.
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– MRI: multi-site prostate segmentation [18]. We sample volumes from “BMC”
and “BIDMC” as the source and target domain, respectively.

We follow a four-fold validation strategy for all three cases and report the
average results over all folds. The average number of labeled training images
(from the source domain), unlabeled training images (from the target domain),
and test images per fold are equal to (207, 3189, 58) for Cataract, (391, 569, 115)
for OCT, and (273, 195, 65) for MRI dataset.

Baseline Methods: We compare the performance of our proposed
transformation-invariant self-training (SI-ST) method against seven state-of-the-
art semi-supervised learning methods: Π models [15], temporal ensembling [15],
mean teacher [19], cross pseudo supervision (CSP) [4], reciprocal learning
(RL) [25], self-training (ST) [24], and mutual correction framework (MCF) [23].

Networks and Training Settings: We evaluate our TI-ST framework using
two different architectures: (1) DeepLabV3+ [3] with ResNet50 backbone [14]
and (2) scSE [20] with VGG16 backbone. Both backbones are initialized with
the ImageNet [5] pre-trained parameters. We use a batch size of four for the
Cataract and MRI datasets and a batch size of two for the OCT dataset. For all
training strategies, we set the number of epochs to 100. The initial learning rate
is set to 0.001 and decayed by a factor of γ = 0.8 every two epochs. The input
size of the networks is 512×512 for cataract and OCT and 384×384 for the MRI
dataset. As spatial transformations g(·), we apply cropping and random rotation
(up to 30 degrees). The non-spatial transformations, f(·), include color jittering
(brightness = 0.7, contrast = 0.7, saturation = 0.7), Gaussian blurring, and ran-
dom sharpening. The confidence threshold τ for the self-training framework and
the proposed TI-ST framework is set to 0.85 except in the ablation studies (See
the next section). In Eq. (4), the weighting function λ ramps up from the first
epoch along a Gaussian curve equal to exp[−5(1− current-epoch/total-epochs)].
The self-supervised loss is set to the cross-entropy loss, and the supervised loss
is set to the cross entropy log dice loss, which is a weighted sum of cross-entropy
and the logarithm of soft dice coefficient. For the TI-ST framework, we only use
non-spatial transformations for the self-training branch for simplicity.

4 Results

Table 1 compares the performance of our transformation-invariant self-training
(TI-ST) approach with alternative methods across three tasks and using two
network architectures. According to the quantitative results, TI-ST, RL, ST,
and CPS are the best-performing methods. Nevertheless, our proposed TI-ST
achieves the highest average relative improvement in dice score compared to
naive supervised learning (16.18% average improvement). Considering our main
competitor (RL), we note that our proposed TI-ST method is a one-stage frame-
work using one network. In contrast, RL is a two-stage framework (requiring a
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Table 1. Quantitative comparisons in Dice score (%) among the proposed (TI-ST)
and alternative methods for DeepLabV3+ [3] (DLV3+) and scSENet [20] and the three
datasets. Relative Dice computed over the Supervised baseline. The best results are
shown in green.

Modality Cataract Surgery OCT MRI
Avg. Rel.

Network DLV3+ scSENet DLV3+ scSENet DLV3+ scSENet

Supervised 15.42 37.67 22.87 24.08 52.39 65.93 N/A
Π Model [15] 27.55 35.56 1.12 0.00 10.00 6.87 -22.88
TE [15] 33.10 42.32 42.13 39.86 63.41 67.25 11.62
Mean Teacher [19] 11.06 39.54 19.11 4.70 64.82 66.87 -2.04
RL [25] 34.40 45.13 48.73 47.70 60.79 70.20 14.77
CPS [4] 36.24 39.40 47.31 14.71 76.00 68.80 10.68
ST [24] 34.34 41.10 36.84 33.01 68.63 71.97 11.26
MCF [23] 26.97 40.19 40.12 36.52 54.17 50.23 7.46

TI-ST 37.69 45.31 50.93 40.87 66.56 74.07 16.18
(+22.27) (+7.46) (+28.06) (+16.79) (+14.17) (+8.14)

pre-training stage) and uses a teacher-student network. Hence, TI-ST is also
more efficient than RL in terms of time and computation. Furthermore, the
proposed strategy demonstrates the most consistent results when evaluated on
different tasks, regardless of the utilized neural network architecture.

Figure 3-(a–b) demonstrates the effect of the pseudo-labeling threshold on
TI-ST performance compared with regular ST. We observe that filtering out
unreliable pseudo-labels based on transformation variance can remarkably boost
pseudo-supervision performance regardless of the threshold. Figure 3-(c) com-
pares the performance of the supervised baseline, ST, and TI-ST with respect
to the number of source-domain labeled training images. While ST performance
converges when the number of labeled images increases, our TI-ST pushes deci-

Fig. 3. Ablation studies on the pseudo-labeling threshold and size of the labeled
dataset.
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Fig. 4. Ablation study on the performance stability of TI-ST vs. ST across the different
experimental segmentation tasks.

Fig. 5. Qualitative comparisons between the performance of TI-ST and four existing
methods.

sion boundaries toward the target domain dataset by avoiding training with
transformation variant pseudo-labels. We validates the stability of TI-ST vs.
ST with different labeling thresholds (0.80 and 0.85) over four training folds in
Fig. 4, where TI-ST achieves a higher average improvement relative to supervised
learning for different tasks and network architectures. This analysis also shows
that the performance of ST is sensitive to the pseudo-labeling threshold and
generally degrades by reducing the threshold due to resulting in wrong pseudo
labels. However, TI-ST can effectively ignore false predictions in lower thresholds
and take advantage of a higher amount of correct pseudo labels. This superior
performance is depicted qualitatively in Fig. 5.
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5 Conclusion

We proposed a novel self-training framework with a self-assessment strategy
for pseudo-label reliability, namely “Transformation-Invariant Self-Training” (TI-
ST). This method uses transformation-invariant highly-confident predictions in
the target dataset by considering an ensemble of high-confidence predictions from
transformed versions of identical inputs. We experimentally show the effective-
ness of our approach against numerous existing methods across three different
source-to-target segmentation tasks, and when using different model architec-
tures. Beyond this, we show that our approach is resilient to changes in the
methods hyperparameter, making it well-suited for different applications.
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