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Abstract. Interpretability is a key issue when applying deep learning
models to longitudinal brain MRIs. One way to address this issue is by
visualizing the high-dimensional latent spaces generated by deep learn-
ing via self-organizing maps (SOM). SOM separates the latent space into
clusters and then maps the cluster centers to a discrete (typically 2D) grid
preserving the high-dimensional relationship between clusters. However,
learning SOM in a high-dimensional latent space tends to be unstable,
especially in a self-supervision setting. Furthermore, the learned SOM
grid does not necessarily capture clinically interesting information, such
as brain age. To resolve these issues, we propose the first self-supervised
SOM approach that derives a high-dimensional, interpretable representa-
tion stratified by brain age solely based on longitudinal brain MRIs (i.e.,
without demographic or cognitive information). Called Longitudinally-
consistent Self-Organized Representation learning (LSOR), the method
is stable during training as it relies on soft clustering (vs. the hard cluster
assignments used by existing SOM). Furthermore, our approach gener-
ates a latent space stratified according to brain age by aligning trajec-
tories inferred from longitudinal MRIs to the reference vector associated
with the corresponding SOM cluster. When applied to longitudinal MRIs
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI, N = 632),
LSOR generates an interpretable latent space and achieves comparable
or higher accuracy than the state-of-the-art representations with respect
to the downstream tasks of classification (static vs. progressive mild cog-
nitive impairment) and regression (determining ADAS-Cog score of all
subjects). The code is available at https://github.com/ouyangjiahong/
longitudinal-som-single-modality.

1 Introduction

The interpretability of deep learning models is especially a concern for applica-
tions related to human health, such as analyzing longitudinal brain MRIs. To
avoid interpretation during post-hoc analysis [6,14], some methods strive for
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an interpretable latent representation [9]. One example is self-organizing maps
(SOM) [5], which cluster the latent space so that the SOM representations (i.e.,
the ‘representatives of the clusters) can be arranged in a discrete (typically 2D)
grid while preserving high-dimensional relationships between clusters. Embed-
ded in unsupervised deep learning models, SOMs have been used to generate
interpretable representations of low-resolution natural images [3,8].

Intriguing as it sounds, we found their application to (longitudinal) 3D brain
MRIs unstable during training and resulted in uninformative SOMs. These mod-
els get stuck in local minima so that only a few SOM representations are updated
during backpropagation. The issue has been less severe in prior applications [3,8]
as their corresponding latent space is of much lower dimension than the task at
hand, which requires a high dimension latent space so that it can accurately
encode the fine-grained anatomical details in brain MRIs [12,17]. To ensure all
SOM representations can be updated during backpropagation, we propose a soft
weighing scheme that not only updates the closest SOM representation for a
given MRI but also updates all other SOM representations based on their dis-
tance to the closest SOM representation [3,8]. Moreover, our model relies on a
stop-gradient operator [16], which sets the gradient of the latent representation
to zero so that it only focuses on updating the SOM representations. It is espe-
cially crucial at the beginning of the training when the (randomly initialized)
SOM representations are not good representatives of their clusters. Finally, the
latent representations of the MRIs are updated via a commitment loss, which
encourages the latent representation of an MRI sample to be close to its nearest
SOM representation. In practice, these three components ensure stability during
the self-supervised training of the SOM on high-dimensional latent spaces.

To generate SOMs informative to neuroscientists, we extend SOMs to the
longitudinal setting such that the latent space and corresponding SOM grid
encode brain aging. Inspired by [12], we encode pairs of MRIs from the same
longitudinal sequence (i.e., same subject) as a trajectory and encourage the
latent space to be a smooth trajectory (vector) field. We enforce smoothness
by computing for each SOM cluster a reference trajectory, which represents
the average aging of that cluster with respect to the training set. The reference
trajectories are updated by the exponential moving average (EMA) such that, in
each iteration, it aggregates the average trajectory of a cluster with respect to the
corresponding training batch (i.e., batch-wise average trajectory). In doing so,
the model ensures longitudinal consistency as the (subject-specific) trajectories
of a cluster are maximally aligned with the reference trajectory of that cluster.

Named Longitudinally-consistent Self-Organized Representation learning
(LSOR), we evaluate our method on a longitudinal T1-weighted MRI dataset
of 632 subjects from ADNI to encode the brain aging of Normal Controls (NC)
and patients diagnosed with static Mild Cognitive Impairment (sMCI), progres-
sive Mild Cognitive Impairment (pMCI), and Alzheimer’s Disease (AD). LSOR
clusters the latent representations of all MRIs into 32 SOM representations. The
resulting 4-by-8 SOM grid is organized by both chronological age and cognitive
measures that are indicators of brain age. Note, such an organization solely relies
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Fig. 1. Overview of the latent space derived from LSOR. All trajectories (Δz) form
a trajectory field (blue box) modeling brain aging. SOM representations in G (orange
star) are organized as a 2D grid (orange grid). As shown in the black box, reference
trajectories ΔG (collection of all Δg, green arrow) are iteratively updated by EMA using
the aggregated trajectory Δh (purple arrow) across all trajectories of the corresponding
SOM cluster within a training batch. (Color figure online)

on longitudinal MRIs, i.e., without using any tabular data such as age, cogni-
tive measure, or diagnosis. To visualize aging effects on the grid, we compute
(post-hoc) a 2D similarity grid for each MRI that stores the similarity scores
between the latent representation of that MRI and all SOM representations. As
the SOM grid is an encoding of brain aging, the similarity grid indicates the
likelihood of placing the MRI within the “spectrum” of aging. Given all MRIs
of a longitudinal scan, the change across the corresponding similarity grids over
time represents the brain aging process of that individual. Furthermore, we infer
brain aging on a group-level by first computing the average similarity grid for
an age group and then visualizing the difference of those average similarity grids
across age groups. With respect to the downstream tasks of classification (sMCI
vs. pMCI) and regression (i.e., estimating the Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog) on all subjects), our latent representa-
tions of the MRIs is associated with comparable or higher accuracy scores than
representations learned by other state-of-the-art self-supervised methods.

2 Method

As shown in Fig. 1, the longitudinal 3D MRIs of a subject are encoded as a
series of trajectories (blue vectors) in the latent space. Following [12,17], we
consider a pair of longitudinal MRIs (that corresponds to a blue vector) as a
training sample. Specifically, let S denote the set of image pairs of the training
cohort, where the MRIs xu and xv of a longitudinal pair (xu, xv) are from the
same subject and xv was acquired Δt years after xu. For simplicity, × refers
to u or v when a function is separately applied to both time points. The MRIs
are then mapped to the latent space by an encoder F , i.e., z× := F (x×). On
the latent space, the trajectory of the pair is denoted as Δz := (zv − zu)/Δt,
which represents morphological changes. Finally, decoder H reconstructs the
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input MRI x× from the latent representation z×, i.e., x̃× := H(z×). Next, we
describe LSOR, which generates interpretable SOM representations, and the
post-hoc analysis for deriving similarity grids.

2.1 LSOR

Following [3,8], SOM representations are organized in a Nr by Nc grid (denoted
as SOM grid) G = {gi,j}Nr,Nc

i=1,j=1, where gi,j denotes the SOM representation on
the i-th row and j-th column. This easy-to-visualize grid preserves the high-
dimensional relationships between the clusters as shown in by the orange lines
in Fig. 1. Given the latent representation z×, its closest SOM representation is
denoted as gε× , where ε× := argmin(i,j) ‖ z× − gi,j ‖2 is its 2D grid index in
G and ‖ · ‖2 is the Euclidean norm. This SOM representation is also used to
reconstruct the input MRI by the decoder, i.e., x̃×

g = H(gε×). To do so, the
reconstruction loss encourages both the latent representation z× and its closet
SOM representation gε× to be descriptive of the input MRI x×, i.e.,

Lrecon := E(xu,xv)∼S

⎛
⎝ ∑

×∈{x,v}
‖ x× − x̃× ‖22 + ‖ x× − x̃×

g ‖22

⎞
⎠ , (1)

where E defines the expected value. The remainder describes the three novel
components of our SOM representation.

Explicitly Regularizing Closeness. Though Lrecon implicitly encourages
close proximity between z× and gε× , it does not inherently optimize gε× as z×

is not differentiable with respect to gε× . Therefore, we introduce an additional
‘commitment’ loss explicitly promoting closeness between them:

Lcommit := E(xu,xv)∼S
(‖ zu − gεu ‖22 + ‖ zv − gεv ‖22

)
.

Soft Weighting Scheme. In addition to update z×’s closest SOM represen-
tation gε× , we also update all SOM representations gi,j by introducing a soft
weighting scheme as proposed in [10]. Specifically, we design a weight w×

i,j to
regularize how much gi,j should be updated with respect to z× based on its
proximity to the grid location ε× of gε× , i.e.,

w×
i,j := δ

(
e− ‖ε×−(i,j)‖2

1
2τ

)
, (2)

where δ(w) := w∑
i,j wi,j

ensures that the scale of weights is constant during
training and τ > 0 is a scaling hyperparameter. Now, we design the following
loss Lsom so that SOM representations close to ε× on the grid are also close to
z× in the latent space (measured by the Euclidean distance ‖ z× − gi,j ‖2):

Lsom := E(xu,xv)∼S

⎛
⎝ ∑

gi,j∼G

(
wu

i,j · ‖ zu − gi,j ‖22 +wv
i,j · ‖ zv − gi,j ‖22

)
⎞
⎠ . (3)
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To improve robustness, we make two more changes to Eq. 3. First, we account
for SOM representations transitioning from random initialization to becom-
ing meaningful cluster centers that preserve the high-dimensional relationships
within the 2D SOM grid. We do so by decreasing τ in Eq. 2 with each iteration
so that the weights gradually concentrate on SOM representations closer to gε×

as training proceeds: τ(t) := Nr · Nc · τmax

(
τmin

τmax

)t/T

with τmin being the min-
imum and τmax the maximum standard deviation in the Gaussian kernel, and t
represents the current and T the maximum iteration.

The second change to Eq. 3 is to apply the stop-gradient operator sg[·] [16]
to z×, which sets the gradients of z× to 0 during the backward pass. The stop-
gradient operator prevents the undesirable scenario where z× is pulled towards
a naive solution, i.e., different MRI samples are mapped to the same weighted
average of all SOM representations. This risk of deriving the naive solution is
especially high in the early stages of the training when the SOM representations
are randomly initialized and may not accurately represent the clusters.

Longitudinal Consistency Regularization. We derive a SOM grid related to
brain aging by generating an age-stratified latent space. Specifically, the latent
space is defined by a smooth trajectory field (Fig. 1, blue box) characterizing the
morphological changes associated with brain aging. The smoothness is based on
the assumption that MRIs with similar appearances (close latent representations
on the latent space) should have similar trajectories. It is enforced by modeling
the similarity between each subject-specific trajectory Δz with a reference tra-
jectory that represents the average trajectory of the cluster. Specifically, Δgi,j

is the reference trajectory (Fig. 1, green arrow) associated with gi,j then the
reference trajectories of all clusters GΔ = {Δgi,j}Nr,Nc

i=1,j=1 represent the average
aging of SOM clusters with respect to the training set. As all subject-specific
trajectories are iteratively updated during the training, it is computationally
infeasible to keep track of GΔ on the whole training set. We instead propose
to compute the exponential moving average (EMA) (Fig. 1, black box), which
iteratively aggregates the average trajectory with respect to a training batch to
GΔ:

Δgi,j ←

⎧⎪⎨
⎪⎩

Δhi,j t = 0
Δgi,j t > 0 and |Ωi,j | = 0
α · Δgi,j + (1 − α) · Δhi,j t > 0 and |Ωi,j | > 0

with Δhi,j :=
1

|Ωi,j |
Nbs∑
k=1

1[εu
k = (i, j)] · Δzk and |Ωi,j | :=

Nbs∑
k=1

1[εu
k = (i, j)].

α is the EMA keep rate, k denotes the index of the sample pair, Nbs symbol-
izes the batch size, 1[·] is the indicator function, and |Ωi,j | denotes the number
of sample pairs with εu = (i, j) within a batch. Then in each iteration, Δhi,j

(Fig. 1, purple arrow) represents the batch-wise average of subject-specific tra-
jectories for sample pairs with εu = (i, j). By iteratively updating GΔ, GΔ then
approximate the average trajectories derived from the entire training set. Lastly,
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inspired by [11,12], the longitudinal consistency regularization is formulated as

Ldir := E(xu,xv)∼S (1 − cos(θ[Δz, sg[Δgεu ]])) ,

where θ[·, ·] denotes the angle between two vectors. Since Δg is optimized by
EMA, the stop-gradient operator is again incorporated to only compute the
gradient with respect to Δz in Ldir.

Objective Function. The complete objective function is the weighted combi-
nation of the prior losses with weighing parameters λcommit, λsom, and λdir:

L := Lrecon + λcommit · Lcommit + λsom · Lsom + λdir · Ldir

The objective function encourages a smooth trajectory field of aging on the
latent space while maintaining interpretable SOM representations for analyzing
brain age in a pure self-supervised fashion.

2.2 SOM Similarity Grid

During inference, a (2D) similarity grid ρ is computed by the closeness between
the latent representation z of an MRI sample and the SOM representations:

ρ := softmax(− ‖ z − G ‖22 /γ) with γ := std(‖ z − G ‖22)

std denotes the standard deviation of the distance between z to all SOM rep-
resentations. As the SOM grid is learned to be associated with brain age (e.g.,
represents aging from left to right), the similarity grid essentially encodes a “like-
lihood function” of the brain age in z. Given all MRIs of a longitudinal scan, the
change across the corresponding similarity grids over time represents the brain
aging process of that individual. Furthermore, brain aging on the group-level
is captured by first computing the average similarity grid for an age group and
then visualizing the difference of those average similarity grids across age groups.

3 Experiments

3.1 Experimental Setting

Dataset. We evaluated the proposed method on all 632 longitudinal T1-
weighted MRIs (at least two visits per subject, 2389 MRIs in total) from ADNI-1
[13]. The data set consists of 185 NC (age: 75.57 ± 5.06 years), 193 subjects diag-
nosed with sMCI (age: 75.63 ± 6.62 years), 135 subjects diagnosed with pMCI
(age: 75.91 ± 5.35 years), and 119 subjects with AD (age: 75.17 ± 7.57 years).
There was no significant age difference between the NC and AD cohorts (p =
0.55, two-sample t-test) as well as the sMCI and pMCI cohorts (p = 0.75). All
MRI images were preprocessed by a pipeline including denoising, bias field cor-
rection, skull stripping, affine registration to a template, re-scaling to 64 × 64
× 64 volume, and transforming image intensities to z-scores.
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Fig. 2. The color at each SOM representation encodes the average value of (a) chrono-
logical age, (b) % of AD and pMCI, and (c) ADAS-Cog score across the training
samples of that cluster; (d) Confined to the last row of the grid, the average MRI of 20
latent representations closest to the corresponding SOM representation. (Color figure
online)

Implementation Details. Let Ck denote a Convolution(kernel size of 3 ×
3 × 3, Convk)-BatchNorm-LeakyReLU(slope of 0.2)-MaxPool(kernel size of 2)
block with k filters, and CDk an Convolution-BatchNorm-LeakyReLU-Upsample
block. The architecture was designed as C16-C32-C64-C16-Conv16-CD64-CD32-
CD16-CD16-Conv1, which results in a latent space of 1024 dimensions. The
training of SOM is difficult in this high-dimensional space with random ini-
tialization in practice, thus we first pre-trained the model with only Lrecon for
10 epochs and initialized the SOM representations by doing k-means of all train-
ing samples using this pre-trained model. Then, the network was further trained
for 40 epochs with regularization weights set to λrecon = 1.0, λcommit = 0.5,
λsom = 1.0, λdir = 0.2. Adam optimizer with learning rate of 5 × 10−4 and
weight decay of 10−5 were used. τmin and τmax in Lsom were set as 0.1 and
1.0 respectively. An EMA keep rate of α = 0.99 was used to update reference
trajectories. A batch size Nbs = 64 and the SOM grid size Nr = 4, Nc = 8 were
applied.

Evaluation. We performed five-fold cross-validation (folds split based on sub-
jects) using 10% of the training subjects for validation. The training data was
augmented by flipping brain hemispheres and random rotation and translation.
To quantify the interpretability of the SOM grid, we correlated the coordinates of
the SOM grid with quantitative measures related to brain age, e.g., chronological
age, the percentage of subjects with severe cognitive decline, and Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). We illustrated the
interpretability with respect to brain aging by visualizing the changes in the
SOM similarity maps over time. We further visualized the trajectory vector field
along with SOM representations by projecting the 1024-dimensional represen-
tations to the first two principal components of SOM representations. Lastly,
we quantitatively evaluated the quality of the representations by applying them
to the downstream tasks of classifying sMCI vs. pMCI and ADAS-Cog predic-
tion. We measured the classification accuracy via Balanced accuracy (BACC)
and Area Under Curve (AUC) and the prediction accuracy via R2 and root-
mean-square error (RMSE). The classifier and predictor were multi-layer per-
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Fig. 3. The average similarity grid ρ over subjects of a specific age and diagnosis (NC
vs AD). Each grid encodes the likelihood of the average brain age of the corresponding
sub-cohort. Cog denotes the average ADAS-Cog score.

ceptrons containing two fully connected layers of dimensions 1024 and 64 with
a LeakyReLU activation. We compared the accuracy metrics to models using
the same architecture with encoders pre-trained by other representation learn-
ing methods, including unsupervised methods (AE, VAE [4]), self-supervised
method (SimCLR [1]), longitudinal self-supervised method (LSSL [17]), and lon-
gitudinal neighborhood embedding (LNE [12]). All comparing methods used the
same experimental setup (e.g., encoder-decoder, learning rate, batch size, epochs,
etc.), and the method-specific hyperparameters followed [12].

3.2 Results

Interpretability of SOM Embeddings. Fig. 2 shows the stratification of
brain age over the SOM grid G. For each grid entry, we show the average value
of chronological age (Fig. 2(a)), % of AD & pMCI (Fig. 2(b)), and ADAS-Cog
score (Fig. 2(c)) over samples of that cluster. We observed a trend of older brain
age (yellow) from the upper left towards the lower right, corresponding to older
chronological age and worse cognitive status. The SOM grid index strongly cor-
related with these three factors (distance correlation of 0.92, 0.94, and 0.91
respectively). Figure 2(d) shows the average brain over 20 input images with
representations that are closest to each SOM representation of the last row of
the grid (see Supplement Fig. S1 for all rows). From left to right the ventricles
are enlarging and the brain is atrophying, which is a hallmark for brain aging
effects.

Interpretability of Similarity Grid. Visualizing the average similarity grid
ρ of the NC and AD at each age range in Fig. 3, we observed that higher simi-
larity (yellow) gradually shifts towards the right with age in both NC and AD
(see Supplemental Fig. S2 for sMCI and pMCI cohorts). However, the shift is
faster for AD, which aligns with AD literature reporting that AD is linked to
accelerated brain aging [15]. Furthermore, the subject-level aging effects shown
in Supplemental Fig. S3 reveal that the proposed visualization could capture
subtle morphological changes caused by brain aging.

Interpretability of Trajectory Vector Field. Fig. 4 plots the PCA projec-
tions of the latent space in 2D, which shows a smooth trajectory field (gray
arrows) and reference trajectories GΔ (blue arrows) representing brain aging.
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Fig. 4. 2D PCA of the LSOR’s latent
space. Light gray arrows represent Δz.
The orange grid represents the rela-
tionships between SOM representa-
tions and associated reference trajec-
tory ΔG (blue arrow). (Color figure
online)

Table 1. Supervised downstream tasks using
the learned representations z (without fine-
tuning the encoder). LSOR achieved compara-
ble or higher accuracy scores than other state-
of-the-art self- and un-supervised methods.

Methods sMCI/pMCI ADAS-Cog

BACC AUC R2 RMSE

AE 62.6 65.4 0.26 6.98

VAE [4] 61.3 64.8 0.23 7.17

SimCLR [1] 63.3 66.3 0.26 6.79

LSSL [17] 69.4 71.8 0.29 6.49

LNE [12] 70.6 72.1 0.30 6.46

LSOR 69.8 72.4 0.32 6.31

This projection also preserved the 2D grid structure (orange) of the SOM repre-
sentations suggesting that aging was the most important variation in the latent
space.

Downstream Tasks. To evaluate the quality of the learned representations, we
froze encoders trained by each method without fine-tuning and utilized their rep-
resentations for the downstream tasks (Table 1). On the task of sMCI vs. pMCI
classification (Table 1 (left)), the proposed method achieved a BACC of 69.8 and
an AUC of 72.4, a comparable accuracy (p > 0.05, DeLong’s test) with LSSL [17]
and LNE [12], two state-of-the-art self-supervised methods on this task. On the
ADAS-Cog score regression task, the proposed method obtained the best accu-
racy with an R2 of 0.32 and an RMSE of 6.31. It is worth mentioning that an
accurate prediction of the ADAS-Cog score is very challenging due to its large
range (between 0 and 70) and its subjectiveness resulting in large variability
across exams [2] so that even larger RMSEs have been reported for this task [7].
Furthermore, our representations were learned in an unsupervised manner so
that further fine-tuning of the encoder would improve the prediction accuracy.

4 Conclusion

In this work, we proposed LSOR, the first SOM-based learning framework for
longitudinal MRIs that is self-supervised and interpretable. By incorporating
a soft SOM regularization, the training of the SOM was stable in the high-
dimensional latent space of MRIs. By regularizing the latent space based on
longitudinal consistency as defined by longitudinal MRIs, the latent space formed
a smooth trajectory field capturing brain aging as shown by the resulting SOM
grid. The interpretability of the representations was confirmed by the correlation
between the SOM grid and cognitive measures, and the SOM similarity map.
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When evaluated on downstream tasks sMCI vs. pMCI classification and ADAS-
Cog prediction, LSOR was comparable to or better than representations learned
from other state-of-the-art self- and un-supervised methods. In conclusion, LSOR
is able to generate a latent space with high interpretability regarding brain age
purely based on MRIs, and valuable representations for downstream tasks.
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8. Manduchi, L., Hüser, M., Vogt, J., Rätsch, G., Fortuin, V.: DPSOM: deep proba-
bilistic clustering with self-organizing maps. In: Conference on Neural Information
Processing Systems Workshop on Machine Learning for Health (2019)

9. Molnar, C.: Interpretable machine learning (2020)
10. Mulyadi, A.W., Jung, W., Oh, K., Yoon, J.S., Lee, K.H., Suk, H.I.: Estimat-

ing explainable Alzheimer’s disease likelihood map via clinically-guided prototype
learning. Neuroimage 273, 120073 (2023)

11. Ouyang, J., Zhao, Q., Adeli, E., Zaharchuk, G., Pohl, K.M.: Self-supervised learn-
ing of neighborhood embedding for longitudinal MRI. Med. Image Anal. 82, 102571
(2022)

12. Ouyang, J., et al.: Self-supervised longitudinal neighbourhood embedding. In: de
Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 80–89. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-87196-3 8

13. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical
characterization. Neurology 74(3), 201–209 (2010)

14. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-030-87196-3_8


LSOR 289

15. Toepper, M.: Dissociating normal aging from Alzheimer’s disease: a view from
cognitive neuroscience. J. Alzheimers Dis. 57(2), 331–352 (2017)

16. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. Adv.
Neural Inf. Process. Syst. 30 (2017)

17. Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: Longitudinal self-supervised learning.
Med. Image Anal. 71, 102051 (2021)


	LSOR: Longitudinally-Consistent Self-Organized Representation Learning
	1 Introduction
	2 Method
	2.1 LSOR
	2.2 SOM Similarity Grid

	3 Experiments
	3.1 Experimental Setting
	3.2 Results

	4 Conclusion
	References




