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Abstract. Self-supervised learning (SSL) has led to important break-
throughs in computer vision by allowing learning from large amounts
of unlabeled data. As such, it might have a pivotal role to play in
biomedicine where annotating data requires a highly specialized exper-
tise. Yet, there are many healthcare domains for which SSL has not been
extensively explored. One such domain is endoscopy, minimally inva-
sive procedures which are commonly used to detect and treat infections,
chronic inflammatory diseases or cancer. In this work, we study the use of
a leading SSL framework, namely Masked Siamese Networks (MSNs), for
endoscopic video analysis such as colonoscopy and laparoscopy. To fully
exploit the power of SSL, we create sizable unlabeled endoscopic video
datasets for training MSNs. These strong image representations serve
as a foundation for secondary training with limited annotated datasets,
resulting in state-of-the-art performance in endoscopic benchmarks like
surgical phase recognition during laparoscopy and colonoscopic polyp
characterization. Additionally, we achieve a 50% reduction in annotated
data size without sacrificing performance. Thus, our work provides evi-
dence that SSL can dramatically reduce the need of annotated data in
endoscopy.

Keywords: Artificial intelligence · Self-Supervised Learning ·
Endoscopy Video Analysis

1 Introduction

Endoscopic operations are minimally invasive medical procedures which allow
physicians to examine inner body organs and cavities. During an endoscopy,
a thin, flexible tube with a tiny camera is inserted into the body through a
small orifice or incision. It is used to diagnose and treat a variety of conditions,
including ulcers, polyps, tumors, and inflammation. Over 250 million endoscopic
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procedures are performed each year globally and 80 million in the United States,
signifying the crucial role of endoscopy in clinical research and care.

A cardinal challenge in performing endoscopy is the limited field of view which
hinders navigation and proper visual assessment, potentially leading to high
detection miss-rate, incorrect diagnosis or insufficient treatment. These limita-
tions have fostered the development of computer-aided systems based on artificial
intelligence (AI), resulting in unprecedented performance over a broad range of
clinical applications [10,11,17,23–25]. Yet the success of such AI systems heavily
relies on acquiring annotated data which requires experts of specific knowledge,
leading to an expensive, prolonged process. In the last few years, Self-Supervised
Learning (SSL [5–8]) has been shown to be a revolutionary strategy for unsu-
pervised representation learning, eliminating the need to manually annotate vast
quantities of data. Training large models on sizable unlabeled data via SSL leads
to powerful representations which are effective for downstream tasks with few
labels. However, research in endoscopic video analysis has only scratched the
surface of SSL which remains largely unexplored.

This study introduces Masked Siamese Networks (MSNs [2]), a prominent
SSL framework, into endoscopic video analysis where we focus on laparoscopy
and colonoscopy. We first experiment solely on public datasets, Cholec80 [32] and
PolypsSet [33], demonstrating performance on-par with the top results reported
in the literature. Yet, the power of SSL lies in large data regimes. Therefore,
to exploit MSNs to their full extent, we collect and build two sizable unlabeled
datasets for laparoscopy and colonoscopy with 7, 700 videos (>23M frames) and
14, 000 videos (>2M frames) respectively. Through extensive experiments, we
find that scaling the data size necessitates scaling the model architecture, lead-
ing to state-of-the-art performance in surgical phase recognition of laparoscopic
procedures, as well as in polyp characterization of colonoscopic videos. Fur-
thermore, the proposed approach exhibits robust generalization, yielding better
performance with only 50% of the annotated data, compared with standard
supervised learning using the complete labeled dataset. This shows the potential
to reduce significantly the need for expensive annotated medical data.

2 Background and Related Work

There exist a wide variety of endoscopic applications. Here, we focus on
colonoscopy and laparoscopy, which combined covers over 70% of all endo-
scopic procedures. Specifically, our study addresses two important common
tasks, described below.

Cholecystectomy Phase Recognition. Cholecystectomy is the surgical
removal of the gallbladder using small incisions and specialized instruments.
It is a common procedure performed to treat gallstones, inflammation, or other
conditions affecting the gallbladder. Phase recognition in surgical videos is an
important task that aims to improve surgical workflow and efficiency. Apart
from measuring quality and monitoring adverse event, this task also serves in
facilitating education, statistical analysis, and evaluating surgical performance.
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Furthermore, the ability to recognize phases allows real-time monitoring and
decision-making assistance during surgery, thus improving patient safety and
outcomes. AI solutions have shown remarkable performance in recognizing sur-
gical phases of cholecystectomy procedures [17,18,32]; however, they typically
require large labelled training datasets. As an alternative, SSL methods have
been developed [12,28,30], however, these are early-days methods that based
on heuristic, often require external information and leads to sub-optimal perfor-
mance. A recent work [27] presented an extensive analysis of modern SSL tech-
niques for surgical computer vision, yet on relatively small laparoscopic datasets.

Optical Polyp Characterization. Colorectal cancer (CRC) remains a critical
health concern and significant financial burden worldwide. Optical colonoscopy
is the standard of care screening procedure for preventing CRC through the
identification and removal of polyps [3]. According to colonoscopy guidelines, all
identified polyps must be removed and histologically evaluated regardless of their
malignant nature. Optical biopsy enables practitioners to remove pre-cancerous
adenoma polyps or leave distal hyperplastic polyps in situ without the need for
pathology examination, by visually predicting histology. However, this technique
is highly dependent on operator expertise [14]. This limitation has motivated the
development of AI systems for automatic optical biopsy, allowing non-experts to
also effectively perform optical biopsy during polyp management. In recent years,
various AI systems have been developed to this end [1,19]. However, training such
automatic optical biopsy systems relies on a large body of annotated data, while
SSL has not been investigated in this context, to the best of our knowledge.

3 Self-supervised Learning for Endoscopy

SSL approaches have produced impressive results recently [5–8], relying on two
key factors: (i) effective algorithms for unsupervised learning and (ii) training
on large-scale datasets. Here, we first describe Masked Siamese Networks [2],
our chosen SSL framework. Additionally, we present our large-scale data collec-
tion (see Fig. 2). Through extensive experiments in Sect. 4, we show that training
MSNs on these substantial datasets unlocks their potential, yielding effective rep-
resentations that transfer well to public laparoscopy and colonoscopy datasets.

3.1 Masked Siamese Networks

SSL has become an active research area, giving rise to efficient learning methods
such as SimCLR [7], SwAV [5] and DINO [6]. Recently, Masked Siamese Net-
works [2] have set a new state-of-the-art among SSL methods on the ImageNet
benchmark [29], with a particular focus on the low data regime. This is of great
interest for us since our downstream datasets are typically of small size [32,33].
We briefly describe MSNs below and refer the reader to [2] for further details.

During pretraining, on each image xi ∈ R
n of a mini-batch of B ≥ 1 samples

(e.g. laparoscopic images) we apply two sets of random augmentations to gen-
erate anchor and target views, denoted by xa

i and xt
i respectively. We convert
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each view into a sequence of non-overlapping patches and perform an additional
masking (“random” or “focal” styles) step on the anchor view by randomly dis-
carding some of its patches. The resultant anchor and target sequences are used
as inputs to their respective image encoders fθa and fθt . Both encoders share
the same Vision Transformer (ViT [16]) architecture where the parameters θt of
the target encoder are updated via an exponential moving average of the anchor
encoder parameters θa. The outputs of the networks are the representation vec-
tors za

i ∈ R
d and zt

i ∈ R
d, corresponding to the [CLS] tokens of the networks.

The similarity between each view and a series of K > 1 learnable prototypes
is then computed, and the results undergo a softmax operation to yield the
following probabilities pa

i = softmax
(

Qza
i

τa

)
and pt

i = softmax
(

Qzt
i

τt

)
where

0 < τ t < τa < 1 are temperatures and Q ∈ R
K×d is a matrix whose rows are

the prototypes. The probabilities are promoted to be the same by minimizing
the cross-entropy loss H(pt

i, p
a
i ), as illustrated in Fig. 1.

In practice, a sequence of M ≥ 1 anchor views are generated, leading to multi-
ple probabilities {pa

i,m}M
m=1. Furthermore, to prevent representation collapse and

encourage the model to fully exploit the prototypes, a mean entropy maximiza-
tion (me-max) regularizer [2,22] is added, aiming to maximize the entropy H(p̄a)
of the average prediction across all the anchor views p̄a � 1

MB

∑B
i=1

∑M
m=1 p

a
i,m.

Thus, the overall training objective to be minimized for both θa and Q is where
λ > 0 is an hyperparameter and the gradients are computed only with respect
to the anchor predictions pa

i,m (not the target predictions pt
i). Applying MSNs

on the large datasets described below, generates representations that serve as a
strong basis for various downstream tasks, as shown in the next section.

3.2 Private Datasets

Laparoscopy. We compiled a dataset of laparoscopic procedures videos exclu-
sively performed on patients aged 18 years or older. The dataset consists of 7,877
videos recorded at eight different medical centers in Israel. The dataset predom-
inantly consists of the following procedures: cholecystectomy (35%), appendec-
tomy (20%), herniorrhaphy (12%), colectomy (6%), and bariatric surgery (5%).
The remaining 21% of the dataset encompasses various standard laparoscopic
operations. The recorded procedures have an average duration of 47min, with
a median duration of 40min. Each video recording was sampled at a rate of 1
frame per second (FPS), resulting in an extensive dataset containing 23.3 million
images. Further details are given in the supplementary materials.

Colonoscopy. We have curated a dataset comprising 13,979 colonoscopy videos
of patients aged 18 years or older. These videos were recorded during standard
colonoscopy procedures performed at six different medical centers between the
years 2019 and 2022. The average duration of the recorded procedures is 15min,
with a median duration of 13min. To identify and extract polyps from the videos,
we employed a pretrained polyp detection model [21,25,26]. Using this model,
we obtained bounding boxes around the detected polyps. To ensure high-quality
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data, we filtered out detections with confidence scores below 0.5. For each frame,
we cropped the bounding boxes to generate individual images of the polyps. This
process resulted in a comprehensive collection of 2.2 million polyp images.

Fig. 1. Schematic of Masked Siamese Networks.

Fig. 2. Data Samples. Top: Laparoscopy. Bottom: Colonoscopy.

4 Experiments

In this section, we empirically demonstrate the power of SSL in the context
of endoscopy. Our experimental protocol is the following: (i) first, we perform
SSL pretraining with MSNs over our unlabeled private dataset to learn infor-
mative and generic representations, (ii) second we probe these representations
by utilizing them for different public downstream tasks. Specifically, we use the
following two benchmarks. (a) Cholec80 [32]: 80 videos of cholecystectomy pro-
cedures resulting in nearly 200k frames at 1 FPS. Senior surgeons annotated
each frame to one out of seven phases. (b) PolypsSet [33]: A unified dataset of
155 colonoscopy videos (37,899 frames) with labeled polyp classes (hyperplastic
or adenoma) and bounding boxes. We use the provided detections to perform
binary classification.
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Downstream Task Evaluation Protocols. (a) Linear evaluation: A standard
protocol consisting in learning a linear classifier on top of frozen SSL features [6,
20]. (b) Temporal evaluation: A natural extension of the linear protocol where we
learn a temporal model on top of the frame-level frozen features. We specifically
use Multi-Stage Temporal Convolution Networks (MS-TCN) as used in [13,27].
This incorporates the temporal context which is crucial for video tasks such as
phases recognition. (c) Fine-tuning: An end-to-end training of a classification
head on top of the (unfrozen) pretrained backbone. We perform an extensive
hyperparameter grid search for all downstream experiments and report the test
results for the models that exceed the best validation results. We report the
Macro F1 (F-F1) as our primary metric. For phase recognition we also report the
per-video F1 (V-F1), computed by averaging the F1 scores across all videos [27].

Implementation Details. For SSL we re-implemented MSNs in JAX using
Scenic library [15]. As our image encoders we train Vision Transformer (ViT [16])
of different sizes, abbreviated as ViT-S/B/L, using 16 TPUs. Downstream exper-
iments are implemented in TensorFlow where training is performed on 4 Nvidia
Tesla V100 GPUs. See the supplementary for further implementation details.1

4.1 Results and Discussion

Scaling Laws of SSL. We explore large scale SSL pretraining for endoscopy
videos. Table 1 compares the results of pretraining with different datasets (pub-
lic and private) and model sizes. We pretrain the models with MSN and then
report their downstream performances. We present results for the cholecystec-
tomy phase recognition task based on fine-tuned models and for the optical
polyp characterization task based on linear evaluation, due to the small size of
the public dataset. As baselines, we report fully-supervised ResNet50 results,
trained on public datasets. We find that replacing ResNet50 with ViT-S, despite
comparable number of parameters, yields sub-optimal performance.

SSL pretraining on public datasets (without labels) provides comparable or
better results than fully supervised baselines. The performance in per-frame
phase recognition is comparable with the baseline. Phase recognition per-video
results improve by 1.3 points when using the MSN pretraining, while polyp char-
acterization improve by 2.2 points. Importantly, we see that the performance gap
becomes prominent when using the large scale private datasets for SSL pretrain-
ing. Here, per-frame and per-video phase recognition performances improve by
6.7% and 8.2%, respectively. When using the private colonoscopy dataset the
Macro F1 improves by 11.5% compared to the fully supervised baseline. Notice
that the performance improves with scaling both model and private data sizes,
demonstrating that both factors are crucial to achieve optimal performance.

Low-Shot Regime. Next, we examine the benefits of using MSNs to improve
downstream performance in a low-shot regime with few annotated samples.

1 For reproducibility purposes, code and model checkpoints are available at https://
github.com/RoyHirsch/endossl.

https://github.com/RoyHirsch/endossl
https://github.com/RoyHirsch/endossl
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Table 1. Comparing the downstream F1 performances of: (i) Models trained on the
private (Pri) and public (Pub) datasets using SSL. (ii) Fully supervised baselines pre-
trained on ImageNet-1K (IN1K). Best results are highlighted.

Method Arch Pretrain Cholec80 frame
Cholec80 temporal

PolypsSet
F-F1 V-F1

Fully Supervised
FS [27] RN50 IN1K 71.5 - 80.3 72.1
TeCNO RN50 IN1K – 83.3 – –
OperA RN50 IN1K - 84.4 – –
Self Supervised
DINO ViT-S IN1K 64.9 77.4 72.4 61.0
DINO [27] RN50 Pub 71.1 - 81.6 72.4
MSN ViT-S Pub 65.0 83.4 80.9 70.6
MSN ViT-B Pub 71.2 82.6 82.9 74.6
MSN ViT-L Pub 65.6 84.0 82.0 73.6
MSN ViT-S Pri 70.7 87.0 84.3 78.5
MSN ViT-B Pri 73.5 87.3 85.8 78.2
MSN ViT-L Pri 76.3 89.6 86.9 80.4

Fig. 3. Low-shot evaluation comparing MSN to fully supervised baselines.

Note that MSNs have originally been found to produce excellent features for
low data regime [2]. We train a linear classifier on top of the extracted fea-
tures and report the test classification results. Figure 3 shows the low-shot
performance for the two endoscopic tasks. We report results using a fraction
k = {12%, 25%, 50%, 75%, 100%} of the annotated public videos. We also report
results for fully-supervised baselines trained on the same fraction of annotated
samples. Each experiment is repeated three times with a random sample of train
videos, and we report the mean and standard deviation (shaded area).

As seen, SSL-based models provide enhanced robustness to limited annota-
tions. When examining the cholecystectomy phase recognition task, it is evident
that we can achieve comparable frame-level performance by using only 12% of
the annotated videos. Using 25% of the annotated videos yields comparable
results to the fully supervised temporal models. Optical polyp characterization
results show a similar trend, but with a greater degree of variability. Using
small portions of PolypSet (12% and 25%) hindered the training process and
increased sensitivity to the selected portions. However, when using more than
50% of PolypSet, the training process stabilized, yielding results comparable to
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the fully supervised baseline. This feature is crucial for medical applications,
given the time and cost involved in expert-led annotation processes.

4.2 Ablation Study

Table 2 details different design choices regarding our SSL pretraining. Ablations
are done on ViT-S trained over the public Cholec80. We report results on the
validation set after linear evaluation. In Table 2a), we see that the method is
robust to the number of prototypes, though over-clustering [4] with 1k proto-
types is optimal. In Table 2b) and Table 2c), we explore the effect of random and
focal masking. We see that 50% random masking (i.e. we keep 98 tokens out of
196 for the global view) and using 4 local views gives the best of performance. In
Table 2d) we study the effect of data augmentation. SSL augmentation pipelines
have been developed on ImageNet-1k [7], hence, it is important to re-evaluate
these choices for medical images. Surprisingly, we see that augmentations primar-
ily found to work well on ImageNet-1k are also effective on laparoscopic videos
(e.g. color jiterring and horizontal flips). In Table2e), we look at the effect of
the training length when starting from scratch or from a good SSL pretrained
checkpoint on ImageNet-1k. We observe that excellent performance is achieved
with only 10 epochs of finetuning on medical data when starting from a strong
DINO checkpoint [6]. Table 2g) shows that ImageNet-1k DINO is a solid starting
point compared to other alternatives [9,20,31,34]. Finally, Table2f) confirms the
necessity of regularizing with Sinkhorn-Knopp and me-max to avoid representa-
tion collapse by encouraging the use of all prototypes.

Table 2. Ablation study of different design choices (default setting is highlighted).

a) Number of prototypes d) Data augmentation f) Avoiding collapse.

K 101 102 103 104 color jit flip (hor) blur val SK+me-max SK ∅
val 65.4 67.8 69.8 69.1 � � � 69.8 69.8 67.7 34.0

b) Effect of random masking � � 69.8 g) ImNet-1k initialization

% 0 50 70 90 � � 68.6 weights. (ViT-B/16) val

val 69.1 69.8 68.4 68.2 � � 67.4 MAE [20] 53.5

c) Local crops (focal masking) e) Training length Supervised [31] 63.1

# 0 2 4 8 epochs 10 100 200 500 MoCo-v3 [9] 63.3

scratch 33.8 63.3 65.5 66.5 iBOT [34] 65.7
val 67.7 69.1 69.8 68.1

SSL init 68.2 69.3 69.8 68.4 DINO [6] 65.9

5 Conclusion

This study showcases the use of Masked Siamese Networks to learn informative
representations from large, unlabeled endoscopic datasets. The learnt representa-
tions lead to state-of-the-art results in identifying surgical phases of laparoscopic
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procedures and in optical characterization of colorectal polyps. Moreover, this
methodology displays strong generalization, achieving comparable performance
with just 50% of labeled data compared to standard supervised training on
the complete labeled datasets. This dramatically reduces the need for annotated
medical data, thereby facilitating the development of AI methods for healthcare.
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