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Abstract. Construct a generalizable model for the diagnosis of
Alzheimer’s disease (AD) is an important task in medical imaging.
While deep neural networks have recently advanced classification perfor-
mance for various diseases using structural magnetic resonance imaging
(sMRI), existing methods often provide suboptimal and untrustworthy
results because they do not incorporate domain-knowledge and global
context information. Additionally, most state-of-the-art deep learning
methods rely on multi-stage preprocessing pipelines, which are ineffi-
cient and prone to errors. In this paper, we propose a novel domain-
knowledge-constrained neural network for automatic diagnosis of AD
using multi-center sMRI. Specifically, we incorporate domain-knowledge
into a ResNet-like architecture. We explicitly enforce the network to learn
domain invariant and domain specific features by jointly training multiple
weighted classifiers, so that pixel-wise predictive performance generalizes
to unseen images. In addition, the network directly takes segmentation-
free and patch-free images in original resolution as input, which offers
accurate inference with global context information and accurate indi-
vidualized abnormalities to further refines reproducible predictions. The
framework was evaluated on a set of sMRI collected from 7 indepen-
dent centers. The proposed approach identifies important discriminative
brain abnormalities associated with AD. Experimental results demon-
strate superior performance of our method compared to state-of-the-art
methods.
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magnetic resonance imaging (sMRI) · Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD) is one of the most pervasive neurodegenerative disor-
ders, causing an increasing morbidity burden that may outstrip diagnosis and
management capacity with the population ages. The assessment of AD usually
involves the acquisition of structural magnetic resonance imaging (sMRI) images,
since it offers accurate visualization of the anatomy and pathology of the brain.
Brain abnormalities (e.g., atrophy, enlargement, malformation) are known to be
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the most discriminative and reliable biomarkers [1] of AD that can be observed
and analyzed through sMRI. However, automatic and reproducible identification
of AD remains challenging due to heterogeneous of sMRI collected from different
centers.

Recently, convolutional neural networks (CNN) have been used for automatic
classification of AD from sMRI. Many methods [2,3] use a bag of patches selected
from the skull-stripped brain region, which ignores global context information
that can play a significant role in identifying lesions for accurate inference [4].
Many studies [5–8] proposed to characterize AD using segmented anatomies
(e.g., gray matter or hippcampus). These methods rely on the accurate seg-
mentation of the anatomies which is usually performed in a multi-stage data
processing pipeline with the help of third-party softwares (e.g., FreeSurfer [9])
driven by a prior template. However, template-driven methods depend on vari-
able image registration accuracy and highly affected by the anatomical variabil-
ity between subjects, introducing errors to the characterization of individualized
abnormalities. Similarly, methods (e.g., [10]) use detected landmarks also depend
on a template-driven pipeline. Taking advantage of attention mechanism, some
methods [5] proposed to diagnose AD using sMRI images from multiple centers.
However, the classification performance is either hardly reproducible or difficult
to compare across studies. One of the major reasons is that existing methods
are often trained with samples from the same training (source) domain, while
testing samples come from an independent new (target) domain with a different
feature distribution. In the literature, this situation relates to domain adapta-
tion [11–16] or domain generalization [17–19]. A widely used solution for the
problem is to learn a domain-invariant latent feature space [20]. Unfortunately,
there is no guarantee that the target samples’ features will fall into the shared
source domain-invariant representation, and in practice it is that new domains
typically do not.

In this paper, we propose a novel domain-knowledge-constrained neural net-
work for the diagnosis of AD using sMRI from multiple source domains. We
designed a new domain-knowledge encoding module into a ResNet-like architec-
ture for feature learning that yields a latent feature space with domain specific
and domain shared information. In addition, we propose to use segmentation-
free, resampling-free, patch-free 3D sub-images, which offers global context infor-
mation and subject-level abnormalities to further refines generalizable and repro-
ducible predictions.

2 Methods

We propose to design and implement an end-to-end neural network (Fig. 1) for
automatic, robust, and reproducible diagnosis of AD using sMRI images, with
the hope to identify and understand the most discriminative anatomical regions
associate with AD. The model operates in 3 major steps: a) crop the input
sMRI image to keep a sub-region (red rectangle), containing relevant anatomy
structures (e.g., hippocampus, caudate, ventricles) associate with AD; b) extract
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features shared by all training sources based on ResNet [21]; c) design a domain-
knowledge encoding module and a set of label predictors to constrain the feature
learning process for better generalization.

Fig. 1. Schematic of the proposed generalizable classification model. Feature extrac-
tor is a ResNet18-like 3D network that extracts high-dimensional features from MRI
images for classification using 3D convolution and residual connection. Basic block is
the basic component of the feature extractor and consists of two 3D convolutional lay-
ers, two BatchNorm layers, a ReLu layer and residual connection. Classifier is a mul-
tilayer perceptron (MLP), consisting of two linear layers and a ReLu layer. Domain-
Knowledge Encoding captures domain invariant features and domain-specific fea-
tures and generates weights for classifiers based on domain similarity. Label Predictor
specifies that our model has multiple mutually independent classifiers, and the predic-
tions of all classifiers are weighted and summed to obtain the final output. (Color figure
online)

2.1 Patch-Free 3D Feature Extractor

We first estimate a bounding box around relevant anatomical objects in the
input sMRI. The objects are automatically identified by affine registration, which
transforms the reference template to each image in the dataset to estimate label
for the image. We note that, the estimated labels are only used to locate the
bounding box, it has no effect on the individual’s atrophy since we pad extra
space to ensure the cropped image contain all interested objects with respect to
registration errors. Then, we crop the input image using the located bounding
box to obtain the sub-image as input to our network. It need to be clarified that
the cropping size is a fixed tuple determined by the maximum bounding box
containing informative anatomical objects associated with AD.
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To encode global context information, we propose a patch-free 3D feature
extractor for different source domains, which is expected to learn domain-
invariant features while not eliminating domain-specific features. Each domain
has a unique label classifier, allowing adjustments for domain differences. Based
on ResNet, we design our feature extractor as shown in Fig. 1. Each basic block
consists of two convolutional layers. Each convolutional layer is followed by a
batch normalization and a nonlinear activation function LeakyReLU. The basic
block can be wrote as:

Xl+1 = F (Wi,Xl) + WsXl, (1)

where Xl and Xl+1 are the input and output of the basic block and F (Wi,Xl)
denotes the nonlinear mapping in the basic block. Since the dimensions of X
and F (Wi,X) must be the same for summation, we use the linear mapping Ws

to adjust the dimensions of X in the shortcut connection.
In the proposed method, we use global average pooling function which is more

suitable for disease classification, because the global average pooling operation
reflects the information of gray matter volume in brain regions and preserves the
relative position relationship between different channels of the feature map.

In the output layer, we use a softmax classifier based on cross-entropy loss
to calculate the loss between the predicted and true labels.

L = cross-entropy(̂Yi(Xi ∈ Ds;ω), Yi) (2)

2.2 Global Average Pooling

Global average pooling solves the problem of excessive image feature dimensions.
If the feature maps of 3D images are directly expanded for classification, it will
significantly increase the number of classifier parameters and increase the time
and space complexity of training. Global average pooling averages the 3D fea-
ture maps in the channel dimension, preserving the relative position relationship
between channels and reducing the resources required for model training.

The dimension change in the global average pooling is [B,C,D,H,W ] →
[B,C, 1, 1, 1], where B denotes the batch-size and C denotes the channel number.

GAP (δ) =
1

D × H × W

D
∑

i=1

H
∑

j=1

W
∑

k=1

δi,j,k (3)

where δ denotes the image feature extracted by ResNet, and D, H, W denote
the three dimensions of the feature.

Since global average pooling has fewer parameters, it can prevent over-fitting
to some extent, further more, global average pooling sums out the spatial infor-
mation, thus it is more robust to spatial translation of the input.
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2.3 Domain-Knowledge Encoding

The domain-knowledge encoding module is designed to give relative similarity
weights to source domains from a new sample. The weights reflect the similarity
between the testing sample and source domains, allowing the module to share
strength only between similar domains.

Our model uses multiple classifiers for prediction from the features extracted
by the feature extractor. The classifiers are independent from each other. We feed
the image features to different classifiers and generate weights to each classifier,
summing the predictions of each classifier according to the weights as the final
output.

̂Y =
c_num
∑

j=1

ωij · classifierj(δ(X ∈ Di), θj) (4)

where ̂Y denotes the prediction result of X, c_num denotes the number of
classifiers, Di denotes the center which X belongs, δ denotes the extracted fea-
ture from X, classifierj denotes one classifier and θj are the parameters in
classifierj .

Multiple classifiers can capture the invariant and specific feature distribu-
tions between different domains, comparing the similarity of feature distribu-
tions between training source and unseen target domains by a joint training of
the admixture classifiers, generating weights to integrate the feature distribu-
tions of known domains to fit the unknown domain feature distributions.

3 Experiments and Results

3.1 Data Description

Structural T1-weighted brain MRI data of 809 subjects (468 male, 341 female,
age 68.16± 8.12 years, range 42–89 year) were acquired from 7 in-house indepen-
dent multiple centers as detailed in [5,22]. In total, 552 subjects (295 of normal
control (NC), 257 of AD) were used for leave-center-out training. The rest 257
subjects with mild cognitive impairment (MCI) were used as an independent
dataset for evaluation and compared with clinical diagnosis metrics.

3.2 Implementation Details

We first evaluated the model using leave-center-out cross-validation, where one
center was selected for testing at a time and all remaining centers were used for
training. Then, we applied the trained model on an independent validation set of
unseen images for subjects with MCI. All images were cropped to have the same
size of [80, 128, 72]. Image features were extracted with 3 × 3 × 3 convolution in
the network and 2× 2× 2 convolution with a stride of 2 replacing the maximum
pooling. The extracted features were passed through a global average pooling
layer (Sect. 2.1). N = 6 independent classifiers were used.
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During training, we sorted all training centers and feed the image features
from sitei to all classifiers, and set the weight of classifierj(j=i) to 1 and the
weight of the rest classifiers to 0. We used cross-entropy to calculate the predic-
tion error and update the parameters of the feature extractor and classifierj
by backpropagation. In testing stage, we feed the image features from the test
center to all classifiers, and the final prediction was used the weighted average
of predicted probability over all classifiers as the final prediction.

We used SGD algorithm to optimize the model coefficients, and set the initial
learning rate to 0.001 and reduce the learning rate to one-tenth of the previous
value every 50 epochs. The method was implemented using PyTorch 1.1 with
Python 3.7. The experiments were run on an Intel Xeon CPU with 16 cores,
43 GB. RAM and a NVIDIA A5000 GPU with 24 GB memory. The code and
model are available at https://github.com/Yanjie-Z/DomainKnowledge4AD.

Fig. 2. First row: the left panel evaluates the AUC-ROC curve for each domain
through leave-center-out cross validation, and the right panel investigates the asso-
ciation between the predicted probabilities and clinical measure (MMSE) in subjects
with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and healthy controls
(NC). Second row: attention map for an arbitrary example sMRI of a subject with AD,
illustrating the most discriminative features learnt from the proposed approach.

3.3 Performance Evaluation

To evaluate the proposed approach, we feed 2 different types of input to the
conventional 3D-ResNet [21] and each obtains a models: 1) ResNet, which use the

https://github.com/Yanjie-Z/DomainKnowledge4AD
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original image as input, and 2) Baseline, which use the bounding box cropping
strategy as proposed in Sect. 2.1. In addition, we incorporated the patch-free
cropping strategy inspired by [4] to crop the middle-half sub-region of the original
input sMRI image of the brain, and feed to ResNet, which we denote as ResNet-
PF. The prediction performance are compared in Table 1.

Table 1. Comparisons among different methods with leave-center-out cross-validation.
Abbreviations: ACC= accuracy, AUC= area under the curve of the receiver operating
characteristic, AVG= average performance over centers. ACC in percentage.

S0 S1 S2 S3 S4 S5 S6 AVG

ResNet LOSS 0.90 0.53 0.35 1.34 0.53 0.38 0.56 0.66
ACC 87.05 88.31 90.83 72.14 79.39 87.57 87.71 84.71
AUC 0.91 0.91 0.96 0.83 0.86 0.94 0.94 0.91

ResNet-PF LOSS 0.79 0.53 0.39 1.76 0.64 0.38 0.45 0.71
ACC 84.00 86.67 88.89 72.63 82.86 95.56 89.78 85.77
AUC 0.91 0.90 0.94 0.83 0.86 0.95 0.94 0.90

Baseline LOSS 0.47 0.50 0.37 1.37 0.72 0.24 0.42 0.58
ACC 87.66 87.03 88.36 71.40 82.85 95.40 89.00 85.95
AUC 0.93 0.86 0.95 0.83 0.92 0.95 0.93 0.91

Proposed LOSS 0.32 0.39 0.34 0.85 0.34 0.20 0.33 0.39
ACC 90.79 88.88 88.33 74.28 91.42 97.77 93.33 89.25
AUC 0.94 0.92 0.94 0.84 0.93 0.94 0.93 0.92

Our model achieves an average classification accuracy of 89.25% on all test
centers during cross-validation, compared to the average classification accuracy
of 85.95% with baseline (without the use of domain knowledge encoding module).

We used AUC-ROC curves to evaluate the classification effectiveness [13,17,
23] of the model on the test centers, and we counted the AUC-ROC curves for
seven centers and compared them accordingly in Fig. 2.

To evaluate the interpretability of the model, we used Grad-CAM [24] to
analyze the sensitive regions of the model in discriminating AD. We found that
the model focused on the hippocampus in the images during prediction, which
confirms that AD and the hippocampus have a significant correlation. We also
find that the model pays more attention to the hippocampus in discriminating
AD than healthy controls. Figure 3 compares the 3D attention map between
a subject with AD and a healthy subject who never has AD, demonstrating
obvious higher values in hippocampus region.

4 Discussion

We proposed a novel reproducible and generalizable neural network to assist
the automatically diagnosis of AD that benefits from domain knowledge and
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Fig. 3. 3D attention maps for a healthy subject (first row) and a subject with AD
(second row) in 4 different views (column). The bottom row shows a visual navigator.

global contextual information with the help of segmentation-free, resampling-
free, patch-free sub-image. The model was evaluated with leave-center-out cross-
validation and with an independent set of unseen images for subjects with MCI
(Fig. 2). It obtains an average accuracy of 89.25%, loss of 0.39 and AUC of 0.92
comparing with 85.95%, 0.58 and 0.91 using ResNet. We apply the proposed
model to images from a new domain (never used during training), demonstrating
promising results.

We did ablation studies to evaluate the proposed method (Table 1), unsurpris-
ingly, the cropped images obtain the best performance. Figures 2 and 3 evaluated
the explainability of the proposed neural network. The results suggest that the
hippocampus and ventricles regions suffer the most in AD, which are consis-
tent with multi-stage segmentation-based methods [5], and clinical measures (in
terms of MMSE) on an independent dataset (Fig. 2).

Our results and all comparative frameworks tend to predict worse for cen-
ter 3, probably because it has some subjects with AD who have higher MMSE
(Fig. 2) making the diagnosis challenging. As opposite, all models provide the
best accuracy for center 5. We will further explore possible reasons of this cen-
ter imbalance in future work. Another limitation of the presented study is the
empirical estimation of early stop strategy during leave-center-out cross valida-
tion based on the observed loss ranges. In future work, we will also explore a
more automated mechanism to increase model robustness for images from more
center.
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5 Conclusion

We proposed a novel end-to-end domain-knowledge constrained neural network
for automatic and reproducible diagnosis of AD using sMRI images. We pro-
posed a new domain-knowledge encoding module that learn simultaneously with
a ResNet-like feature extractor for domain specific and domain shared represen-
tations. The network directly takes the segmentation-free, patch-free images in
original resolution as input, which is able to learn with global contextual infor-
mation for subject-level pathological brain dysmorphologies features to further
refines reproducible predictions. Our experiments demonstrate superior perfor-
mance and generalize well to completely unseen domain.
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