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Abstract. Breast lesion segmentation in ultrasound (US) videos is essen-
tial for diagnosing and treating axillary lymph node metastasis. However,
the lack of a well-established and large-scale ultrasound video dataset
with high-quality annotations has posed a persistent challenge for the
research community. To overcome this issue, we meticulously curated a
US video breast lesion segmentation dataset comprising 572 videos and
34,300 annotated frames, covering a wide range of realistic clinical sce-
narios. Furthermore, we propose a novel frequency and localization fea-
ture aggregation network (FLA-Net) that learns temporal features from
the frequency domain and predicts additional lesion location positions to
assist with breast lesion segmentation. We also devise a localization-based
contrastive loss to reduce the lesion location distance between neighbor-
ing video frames within the same video and enlarge the location distances
between frames from different ultrasound videos. Our experiments on
our annotated dataset and two public video polyp segmentation datasets
demonstrate that our proposed FLA-Net achieves state-of-the-art perfor-
mance in breast lesion segmentation in US videos and video polyp segmen-
tation while significantly reducing time and space complexity. Our model
and dataset are available at https://github.com/jhl-Det/FLA-Net.
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1 Introduction

Axillary lymph node (ALN) metastasis is a severe complication of cancer that can
have devastating consequences, including significant morbidity and mortality.
Early detection and timely treatment are crucial for improving outcomes and
reducing the risk of recurrence. In breast cancer diagnosis, accurately segmenting
breast lesions in ultrasound (US) videos is an essential step for computer-aided
diagnosis systems, as well as breast cancer diagnosis and treatment. However,
this task is challenging due to several factors, including blurry lesion boundaries,
inhomogeneous distributions, diverse motion patterns, and dynamic changes in
lesion sizes over time [12].

Table 1. Statistics of existing breast lesion US videos datasets and the proposed
dataset. #videos: numbers of videos. #AD: number of annotated frames. BBox:
whether provide bounding box annotation. BBox: whether provide segmentation mask
annotation. BM: whether provide lesion classification label (Benign or Malignant). PA:
whether provide axillary lymph node (ALN) metastasis label (Presence or Absence).

Dataset Year # videos # AF BBox Mask BM PA

Li et al. [10] 2022 63 4,619 × � � ×
Lin et al. [12] 2022 188 25,272 � × � ×
Ours 2023 572 34,300 � � � �

The work presented in [10] proposed the first pixel-wise annotated benchmark
dataset for breast lesion segmentation in US videos, but it has some limitations.
Although their efforts were commendable, this dataset is private and contains
only 63 videos with 4,619 annotated frames. The small dataset size increases
the risk of overfitting and limits the generalizability capability. In this work, we
collected a larger-scale US video breast lesion segmentation dataset
with 572 videos and 34,300 annotated frames, of which 222 videos contain ALN
metastasis, covering a wide range of realistic clinical scenarios. Please refer to
Table 1 for a detailed comparison between our dataset and existing datasets.

Although the existing benchmark method DPSTT [10] has shown promis-
ing results for breast lesion segmentation in US videos, it only uses the ultra-
sound image to read memory for learning temporal features. However, ultrasound
images suffer from speckle noise, weak boundaries, and low image quality. Thus,
there is still considerable room for improvement in ultrasound video breast lesion
segmentation. To address this, we propose a novel network called Fre-
quency and Localization Feature Aggregation Network (FLA-Net) to
improve breast lesion segmentation in ultrasound videos. Our FLA-Net learns
frequency-based temporal features and then uses them to predict auxiliary breast
lesion location maps to assist the segmentation of breast lesions in video frames.
Additionally, we devise a contrastive loss to enhance the breast lesion location
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Fig. 1. Examples of our ultrasound video dataset for breast lesion segmentation.

similarity of video frames within the same ultrasound video and to prohibit loca-
tion similarity of different ultrasound videos. The experimental results unequiv-
ocally showcase that our network surpasses state-of-the-art techniques in the
realm of both breast lesion segmentation in US videos and two video polyp
segmentation benchmark datasets (Fig. 1).

2 Ultrasound Video Breast Lesion Segmentation Dataset

To support advancements in breast lesion segmentation and ALN metastasis
prediction, we collected a dataset containing 572 breast lesion ultrasound videos
with 34,300 annotated frames. Table 1 summarizes the statistics of existing breast
lesion US video datasets. Among 572 videos, 222 videos with ALN metastasis.
Nine experienced pathologists were invited to manually annotate breast lesions
at each video frame. Unlike previous datasets [10,12], our dataset has a reserved
validation set to avoid model overfitting. The entire dataset is partitioned into
training, validation, and test sets in a proportion of 4:2:4, yielding a total of
230 training videos, 112 validation videos, and 230 test videos for comprehensive
benchmarking purposes. Moreover, apart from the segmentation annotation, our
dataset also includes lesion bounding box labels, which enables benchmarking
breast lesion detection in ultrasound videos. More dataset statistics are available
in the Supplementary.

3 Proposed Method

Figure 2 provides a detailed illustration of the proposed frequency and localiza-
tion feature aggregation network (FLA-Net). When presented with an ultrasound
frame denoted as It along with its two adjacent video frames (It−1 and It−2), our
initial step involves feeding them through an Encoder, specifically the Res2Net50
architecture [6], to acquire three distinct features labeled as ft, ft−1, and ft−2.
Then, we devise a frequency-based feature aggregation (FFA) module to inte-
grate frequency features of each video frame. After that, we pass the output
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Fig. 2. Overview of our FLA-Net. Our network takes an ultrasound frame It and its
adjacent two frames (It−1 and It−2) as input. Three frames are first passed through
an encoder to learn three CNN features (ft, ft−1, and ft−2). Then Frequency-based
Feature Aggregation Module is then used to aggregate these features and the aggre-
gated feature map is then passed into our two-branch decoder to predict the breast
lesion segmentation mask of It, and a lesion localization heatmap. Moreover, we devise
a location-aware contrastive loss (see Lcontrastive) to reduce location distance of frames
from the same video and enlarge the location distance of different video frames.

features ot of the FFA module into two decoder branches (similar to the UNet
decoder [14]): one is the localization branch to predict the localization map of
the breast lesions, while another segmentation branch integrates the features of
the localization branch to fuse localization feature for segmenting breast lesions.
Moreover, we devise a location-based contrastive loss to regularize the breast
lesion locations of inter-video frames and intra-video frames.

3.1 Frequency-Based Feature Aggregation (FFA) Module

According to the spectral convolution theorem in Fourier theory, any modifica-
tion made to a single value in the spectral domain has a global impact on all the
original input features [1]. This theorem guides the design of FFA module, which
has a global receptive field to refine features in the spectral domain. As shown
in Fig. 2, our FFA block takes three features (ft ∈ R

c×h×w, ft−1 ∈ R
c×h×w, and

ft−2 ∈ R
c×h×w) as input. To integrate the three input features and extract rel-

evant information while suppressing irrelevant information, our FFA block first
employs a Fast Fourier Transform (FFT) to transform the three input features
into the spectral domain, resulting in three corresponding spectral domain fea-
tures (f̂t ∈ C

c×h×w, f̂t−1 ∈ C
c×h×w, and f̂t−2 ∈ C

c×h×w), which capture the
frequency information of the input features. Note that the current spectral fea-
tures (f̂t,f̂t−1, and f̂t−2) are complex numbers and incompatible with the neural



Shifting More Attention to Breast Lesion Segmentation in Ultrasound Videos 501

layers. Therefore we concatenate the real and imaginary parts of these com-
plex numbers along the channel dimension respectively and thus obtain three
new tensors (xt ∈ R

2c×h×w, xt−1 ∈ R
2c×h×w, and xt−2 ∈ R

2c×h×w) with dou-
ble channels. Afterward, we take the current frame spectral-domain features
xt as the core and fuse the spatial-temporal information from the two auxil-
iary spectral-domain features (xt−1 and xt−2), respectively. Specifically, we first
group three features into two groups ({xt, xt−1} and {xt, xt−2}) and develop
a channel attention function CA(·) to obtain two attention maps. The CA(·)
passes an input feature map to a feature normalization, two 1×1 convolution
layers Conv(·), a ReLU activation function δ(·), and a sigmoid function σ(·) to
compute an attention map. Then, we element-wise multiply the obtained atten-
tion map from each group with the input features, and the multiplication results
(see y1 and y2) are then transformed into complex numbers by splitting them
into real and imaginary parts along the channel dimension. After that, inverse
FFT (iFFT) operation is employed to transfer the spectral features back to the
spatial domain, and then two obtained features at the spatial domain are denoted
as z1 and z2. Finally, we further element-wisely add z1 and z2 and then pass it
into a “BConv” layer to obtain the output feature ot of our FFA module. Math-
ematically, ot is computed by ot = BConv(z1 + z2), where “BConv” contains a
3× 3 convolution layer, a group normalization, and a ReLU activation function.

3.2 Two-Branch Decoder

After obtaining the frequency features, we introduce a two-branch decoder con-
sisting of a segmentation branch and a localization branch to incorporate tem-
poral features from nearby frames into the current frame. Each branch is built
based on the UNet decoder [14] with four convolutional layers. Let d1s and d2s
denote the features at the last two layers of the segmentation decoder branch,
and d1l and d2l denote the features at the last two layers of the localization decoder
branch. Then, we pass d1l at the localization decoder branch to predict a breast
lesion localization map. Then, we element-wisely add d1l and d1s, and element-
wisely add d2l and d2s, and pass the addition result into a “BConv” convolution
layer to predict the segmentation map St of the input video frame It.

Location Ground Truth. Instead of formulating it as a regression problem,
we adopt a likelihood heatmap-based approach to encode the location of breast
lesions, since it is more robust to occlusion and motion blur. To do so, we compute
a bounding box of the annotated breast lesion segmentation result, and then take
the center coordinates of the bounding box. After that, we apply a Gaussian
kernel with a standard deviation of 5 on the center coordinates to generate a
heatmap, which is taken as the ground truth of the breast lesion localization.

3.3 Location-Based Contrastive Loss

Note that the breast lesion locations of neighboring ultrasound video frames are
close, while the breast lesion location distance is large for different ultrasound
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Table 2. Quantitative comparisons between our FLA-Net and the state-of-the-art
methods on our test set in terms of breast lesion segmentation in ultrasound videos.

Method image/video Dice ↑ Jaccard ↑ F1-score ↑ MAE ↓
UNet [14] image 0.745 0.636 0.777 0.043
UNet++ [19] image 0.749 0.633 0.780 0.039
TransUNet [4] image 0.733 0.637 0.784 0.042
SETR [18] image 0.709 0.588 0.748 0.045
STM [13] video 0.741 0.634 0.782 0.041
AFB-URR [11] video 0.750 0.635 0.781 0.038
PNS+ [9] video 0.754 0.648 0.783 0.036
DPSTT [10] video 0.755 0.649 0.785 0.036
DCFNet [16] video 0.762 0.659 0.799 0.037
Our FLA-Net video 0.789 0.687 0.815 0.033

videos, which are often obtained from different patients. Motivated by this, we
further devise a location-based contrastive loss to make the breast lesion loca-
tions at the same video to be close, while pushing the lesion locations of frames
from different videos away. By doing so, we can enhance the breast lesion loca-
tion prediction in the localization branch. Hence, we devise a location-based
contrastive loss based on a triplet loss [15], and the definition is given by:

Lcontrastive = max(MSE(Ht,Ht−1) − MSE(Ht, Nt) + α, 0), (1)

where α is a margin that is enforced between positive and negative pairs. Ht

and Ht−1 are predicted heatmaps of neighboring frames from the same video. Nt

denotes the heatmap of the breast lesion from a frame from another ultrasound
video. Hence, the total loss Ltotal of our network is computed by:

Ltotal = Lcontrastive + λ1LMSE(Ht, G
H
t ) + λ2LBCE(St, G

S
t ) + λ3LIoU (St, G

S
t ),
(2)

where GH
t and GS

t denote the ground truth of the breast lesion segmentation
and the breast lesion localization. We empirically set weights λ1 =λ2 =λ3 = 1.

4 Experiments and Results

Implementation Details. To initialize the backbone of our network, we pre-
trained Res2Net-50 [6] on the ImageNet dataset, while the remaining components
of our network were trained from scratch. Prior to inputting the training video
frames into the network, we resize them to 352×352 dimensions. Our network is
implemented in PyTorch and employs the Adam optimizer with a learning rate
of 5 × 10−5, trained over 100 epochs, and a batch size of 24. Training is con-
ducted on four GeForce RTX 2080 Ti GPUs. For quantitative comparisons, we
utilize various metrics, including the Dice similarity coefficient (Dice), Jaccard
similarity coefficient (Jaccard), F1-score, and mean absolute error (MAE).
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Fig. 3. Visual comparisons of breast lesion segmentation results produced by our net-
work and state-of-the-art methods. “GT” denotes the ground truth. For more visual-
ization results, please refer to the supplementary material.

Table 3. Quantitative comparison results of ablation study experiments.

FLA Loc-Branch Contrastive loss Dice ↑ Jaccard ↑ F1-score ↑ MAE ↓
Basic × × × 0.747 0.641 0.777 0.037
Basic+FLA � × × 0.777 0.669 0.806 0.035
Basic+LB × � × 0.751 0.646 0.781 0.037
Basic+FLA+LB � � × 0.780 0.675 0.809 0.034
Our method � � � 0.789 0.687 0.815 0.033

4.1 Comparisons with State-of-the-Arts

We conduct a comparative analysis between our network and nine state-of-the-
art methods, comprising four image-based methods and five video-based meth-
ods. Four image-based methods are UNet [14], UNet++ [19], TransUNet [4],
and SETR [18], while five video-based methods are STM [13], AFB-URR [11],
PNS+ [9], DPSTT [10], and DCFNet [16]. To ensure a fair and equitable compar-
ison, we acquire the segmentation results of all nine compared methods by utiliz-
ing either their publicly available implementations or by implementing them our-
selves. Additionally, we retrain these networks on our dataset and fine-tune their
network parameters to attain their optimal segmentation performance, enabling
accurate and meaningful comparisons.

Quantitative Comparisons. The quantitative results of our network and the
nine compared breast lesion segmentation methods are summarized in Table 2.
Analysis of the results reveals that, in terms of quantitative metrics, video-based
methods generally outperform image-based methods. Among nine compared
methods, DCFNet [16] achieves the largest Dice, Jaccard, and F1-score results,
while PNS+ [9] and DPSTT [10] have the smallest MAE score. More impor-
tantly, our FLA-Net further outperforms DCFNet [16] in terms of Dice, Jaccard,
and F1-score metrics, and has a superior MAE performance over PNS+ [9] and
DPSTT [10]. Specifically, our FLA-Net improves the Dice score from 0.762 to
0.789, the Jaccard score from 0.659 to 0.687, the F1-score result from 0.799 to
0.815, and the MAE score from 0.036 to 0.033.
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Table 4. Quantitative comparison results on different video polyp segmentation
datasets. For more quantitative results please refer to the supplementary material.

Metrics UNet [14] UNet++ [19] ResUNet [7] ACSNet [17] PraNet [5] PNSNet [8] Ours

CVC-300-TV Dice ↑ 0.639 0.649 0.535 0.738 0.739 0.840 0.874
IoU ↑ 0.525 0.539 0.412 0.632 0.645 0.745 0.789
Sα ↑ 0.793 0.796 0.703 0.837 0.833 0.909 0.907
Eφ ↑ 0.826 0.831 0.718 0.871 0.852 0.921 0.969
MAE ↓ 0.027 0.024 0.052 0.016 0.016 0.013 0.010

CVC-612-V Dice ↑ 0.725 0.684 0.752 0.804 0.869 0.873 0.885
IoU ↑ 0.610 0.570 0.648 0.712 0.799 0.800 0.814
Sα ↑ 0.826 0.805 0.829 0.847 0.915 0.923 0.920
Eφ ↑ 0.855 0.830 0.877 0.887 0.936 0.944 0.963
MAE ↓ 0.023 0.025 0.023 0.054 0.013 0.012 0.012

Qualitative Comparisons. Figure 3 visually presents a comparison of breast
lesion segmentation results obtained from our network and three other methods
across various input video frames. Apparently, our method accurately segments
breast lesions of the input ultrasound video frames, although these target breast
lesions have varied sizes and diverse shapes in the input video frames.

4.2 Ablation Study

To evaluate the effectiveness of the major components in our network, we con-
structed three baseline networks. The first one (denoted as “Basic”) removed the
localization encoder branch and replaced our FLA modules with a simple fea-
ture concatenation and a 1 × 1 convolutional layer. The second and third baseline
networks (named “Basic+FLA” and “Basic+LB”) incorporate the FLA module
and the localization branch into the basic network, respectively. Table 3 reports
the quantitative results of our method and three baseline networks. The supe-
rior metric performance of “Basic+FLA” and “Basic+LB” compared to “Basic”
clearly indicates that our FLA module and the localization encoder branch effec-
tively enhance the breast lesion segmentation performance in ultrasound videos.
Then, the superior performance of “Basic+FLA+LB” over “Basic+FLA” and
“Basic+LB” demonstrate that combining our FLA module and the localization
encoder branch can incur a more accurate segmentation result. Moreover, our
method has larger Dice, Jaccard, F1-score results and a smaller MAE result than
“Basic+FLA+LB”, which shows that our location-based contrastive loss has its
contribution to the success of our video breast lesion segmentation method.

4.3 Generalizability of Our Network

To further evaluate the effectiveness of our FLA-Net, we extend its application
to the task of video polyp segmentation. Following the experimental protocol
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employed in a recent study on video polyp segmentation [8], we retrain our net-
work and present quantitative results on two benchmark datasets, namely CVC-
300-TV [2] and CVC-612-V [3]. Table 4 showcases the Dice, IoU, Sα, Eφ, and
MAE results achieved by our network in comparison to state-of-the-art methods
on these two datasets. Our method demonstrates clear superiority over state-of-
the-art methods in terms of Dice, IoU, Eφ, and MAE on both the CVC-300-TV
and CVC-612-V datasets. Specifically, our method enhances the Dice score from
0.840 to 0.874, the IoU score from 0.745 to 0.789, the Eφ score from 0.921 to
0.969, and reduces the MAE score from 0.013 to 0.010 for the CVC-300-TV
dataset. Similarly, for the CVC-612-V dataset, our method achieves improve-
ments of 0.012, 0.014, 0.019, and 0 in Dice, IoU, Eφ, and MAE scores, respec-
tively. Although our Sα results (0.907 on CVC-300-TV and 0.920 on CVC-612-V)
take the 2nd rank, they are very close to the best Sα results, which are 0.909
on CVC-300-TV and 0.923 on CVC-612-V. Hence, the superior metric results
obtained by our network clearly demonstrate its ability to accurately segment
polyp regions more effectively than state-of-the-art video polyp segmentation
methods.

5 Conclusion

In this study, we introduce a novel approach for segmenting breast lesions in
ultrasound videos, leveraging a larger dataset consisting of 572 videos contain-
ing a total of 34,300 annotated frames. We introduce a frequency and location
feature aggregation network that incorporates frequency-based temporal feature
learning, an auxiliary prediction of breast lesion location, and a location-based
contrastive loss. Our proposed method surpasses existing state-of-the-art tech-
niques in terms of performance on our annotated dataset as well as two publicly
available video polyp segmentation datasets. These outcomes serve as compelling
evidence for the effectiveness of our approach in achieving accurate breast lesion
segmentation in ultrasound videos.
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