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Abstract. To safely deploy deep learning-based computer vision models
for computer-aided detection and diagnosis, we must ensure that they
are robust and reliable. Towards that goal, algorithmic auditing has
received substantial attention. To guide their audit procedures, exist-
ing methods rely on heuristic approaches or high-level objectives (e.g.,
non-discrimination in regards to protected attributes, such as sex, gen-
der, or race). However, algorithms may show bias with respect to various
attributes beyond the more obvious ones, and integrity issues related to
these more subtle attributes can have serious consequences. To enable
the generation of actionable, data-driven hypotheses which identify spe-
cific dataset attributes likely to induce model bias, we contribute a
first technique for the rigorous, quantitative screening of medical image
datasets. Drawing from literature in the causal inference and informa-
tion theory domains, our procedure decomposes the risks associated with
dataset attributes in terms of their detectability and utility (defined as
the amount of information the attribute gives about a task label). To
demonstrate the effectiveness and sensitivity of our method, we develop
a variety of datasets with synthetically inserted artifacts with differ-
ent degrees of association to the target label that allow evaluation of
inherited model biases via comparison of performance against true coun-
terfactual examples. Using these datasets and results from hundreds of
trained models, we show our screening method reliably identifies nearly
imperceptible bias-inducing artifacts. Lastly, we apply our method to
the natural attributes of a popular skin-lesion dataset and demonstrate
its success. Our approach provides a means to perform more systematic
algorithmic audits and guide future data collection efforts in pursuit of
safer and more reliable models. Full code is available at https://github.
com/mpavlak25/data-audit.

M. Pavlak and N. Drenkow—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-43898-1 43.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Greenspan et al. (Eds.): MICCAI 2023, LNCS 14222, pp. 442–452, 2023.
https://doi.org/10.1007/978-3-031-43898-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43898-1_43&domain=pdf
https://github.com/mpavlak25/data-audit
https://github.com/mpavlak25/data-audit
https://doi.org/10.1007/978-3-031-43898-1_43
https://doi.org/10.1007/978-3-031-43898-1_43


Data AUDIT 443

Keywords: Bias · shortcut learning · fairness · algorithmic auditing ·
datasets

1 Introduction

Continual advancement of deep learning algorithms for medical image analysis
has increased the potential for their adoption at scale. Across a wide range
of medical applications including skin lesion classification [8,31], detection of
diabetic retinopathy in fundus images [14], detection of large vessel occlusions in
CT [20], and detection of pneumonia in chest x-ray [24], deep learning algorithms
have pushed the boundaries close to or beyond human performance.

However, with these innovations has come increased scrutiny of the integrity
of these models in safety critical applications. Prior work [7,10,17] has found
that deep neural networks are capable of exploiting spurious features and other
shortcuts in the data that are not causally linked to the task of interest such as
using dermascopic rulers as cues to predict melanoma [2,35,36] or associating the
presence of a chest drain with pneumothorax in chest X-ray analysis [21]. The
exploitation of such shortcuts by DNNs may have serious bias/fairness implica-
tions [11,12] and negative ramifications for model generalization [7,21].

As attention to these issues grows, recent legislation has been proposed that
would require the algorithmic auditing and impact assessment of ML-based
automated decision systems [37]. However, without clearly defined strategies for
selecting attributes to audit for bias, impact assessments risk being constrained
to only legally protected categories and may miss more subtle shortcuts and data
flaws that prevent the achievement of important model goals [23,28]. Our goal
in this work is to develop objective methods for generating data-driven hypothe-
ses about the relative level of risk of various attributes to better support the
efficient, comprehensive auditing of any model trained on the same data.

Our method generates targeted hypotheses for model audits by assessing (1)
how feasible it is for a downstream model to detect and exploit the presence of
a given attribute from the image alone (detectability), and (2) how much infor-
mation the model would gain about the task labels if said attribute were known
(utility). Causally irrelevant attributes with high utility and detectability become
top priorities when performing downstream model audits. We demonstrate high
utility complicates attempts to draw conclusions about the detectability of
attributes and show our approach succeeds where unconditioned approaches fail.
We rigorously validate our approach using a range of synthetic artifacts which
allow us to expedite the auditing of models via the use of true counterfactuals.
We then apply our method to a popular skin lesion dataset where we identify a
previously unreported potential shortcut.

2 Related Work

Issues of bias and fairness are of increasing concern in the research community.
Recent works such as [13,29,30] identify cases where trained DNNs exhibit per-
formance disparities across protected groups for chest x-ray classification tasks.
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Of interest to this work, [22] used Mutual Information-based analysis to examine
the robustness of DNNs on dermascopy data and observed performance dispar-
ities with respect to typical populations of interest (i.e., age, sex) as well as less
commonly audited dataset properties (e.g., image hue, saturation). In addition to
observing biased performance in task models, [11,12] show that patient race (and
potentially other protected attributes) may be implicitly encoded in represen-
tations extracted by DNNs on chest x-ray images. A more general methodology
for performing algorithmic audits in medical imaging is also proposed in [18].
In contrast to our work, these methods focus on individual, biased task models
without considering the extent to which those biases are induced by the causal
structure of the training/evaluation data.

In addition to model auditing methods, a number of metrics have been pro-
posed to quantify bias [9]. A recent study [1] compared several and recommend
normalized pointwise mutual information due to its ability to measure associa-
tions in the data while accounting for chance. Also relevant to this work, [16]
provides an analysis of fairness metrics and guidelines for metric selection in
the presence of dataset bias. However, these studies focus primarily on biases
identifiable through dataset attributes alone and do not consider whether those
attributes are detectable in the image data itself.

Lastly, [28] found pervasive data cascades where data quality issues com-
pound and cause adverse downstream impacts for vulnerable groups. However,
their study was qualitative and no methods for automated dataset auditing
were introduced. Bissoto et al. [3,4] consider the impact of bias in dermatologi-
cal data by manipulating images to remove potential causally-relevant features
while measuring a model’s ability to still perform the lesion classification task.
Closest to our work, [25] takes a causal approach to shortcut identification by
using conditional dependence tests to determine whether DNNs rely on specific
dataset attributes for their predictions. In contrast, our work focuses on screening
datasets for attributes that induce bias in task models. As a result, we directly
predict attribute values to act as a strong upper bound on detectability and
use normalized, chance-adjusted dependence measures to obtain interpretable
metrics that we show correlate well with the performance of task models.

Fig. 1. Relationships assessed in the attribute screening protocol. DNNs are trained
to predict Â from X for use in estimating attribute detectability.
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3 Methods

To audit at the dataset level, we perform a form of causal discovery to identify
likely relationships between the task labels, dataset attributes represented as
image metadata, and features of the images themselves (as illustrated in Fig. 1).

We start from a set of labels {Y }, attributes {A}, and images {X}. We
assume that Y (the disease) is the causal parent of X (the image) given that
the disease affects the image appearance but not vice versa [6]. Then the dataset
auditing procedure aims to assess the existence and relative strengths of the
following two relationships: (1) Utility : A ↔ Y and (2) Detectability : A → X.
The utility measures whether a given attribute shares any relationship with the
label. The presence of this relationship for A that are not clinically relevant
(e.g., sensor type or settings) represents increased potential for biased outcomes.
However, not every such attribute carries the same risk for algorithmic bias.
Crucially, relationship (2) relates to the detectability of the attribute itself. If
our test for (2) finds the existence of relationship A → X is probable, we consider
the attribute detectable. Dataset attributes identified as having positive utility
with respect to the label (1) and detectable in the image (2) are classified as
potential shortcuts and pose the greatest risk to models trained on this dataset.

Causal Discovery with Mutual Information. Considering attributes in
isolation, we assess attribute utility and detectability from an information theo-
retic perspective. In particular, we recognize first that the presence of a rela-
tionship between A and Y can be measured via their Mutual Information:
MI(A;Y ) = H(Y )−H(Y |A). MI measures the information gained (or reduction
in uncertainty) about Y by observing A (or vice versa) and MI(A;Y ) = 0 occurs
when A and Y are independent. We rely on the faithfulness assumption which
implies that a causal relationship exists between A and Y when MI(A;Y ) > 0.
From an auditing perspective, we aim to identify the presence and relative mag-
nitude of the relationship but not necessarily the nature of it.

Attributes identified as having a relationship with Y are then assessed for
their detectability (i.e., condition (2)). We determine detectability by training
a DNN on the data to predict attribute values. Because we wish to audit the
entire dataset for bias, we cannot rely on a single train/val/test split. Instead,
we partition the dataset into k folds (typically 3) and finetune a sufficiently
expressive DNN on the train split of each fold to predict the given attribute
A. We then generate unbiased predictions for the entire dataset by taking the
output Â from each DNN evaluated on their respective test split. We measure the
Conditional Mutual Information over all predictions: CMI(Â;A|Y ) = H(Â|Y )−
H(Â|A, Y ). CMI(A, Â|Y ) measures information shared between attribute A
and its prediction Â when controlling for information provided by Y . Since
relationship A and Y was established via MI(A;Y ), we condition on label Y to
understand the extent to which attribute A can be predicted from images when
accounting for features associated with Y that may also improve the prediction
of A. Similar to MI, CMI(Â;A|Y ) > 0 implies A → Â exists.
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To determine independence and account for bias and dataset specific effects,
we include permutation-based shuffle tests from [26,27]. These approaches
replace values of A with close neighbors to approximate the null hypothesis
that the given variables are conditionally independent. By calculating the per-
centile of CMI(A; Â|Y ) among all CMI(Aπ; Â|Y ) (where Aπ are permutations
of A), we estimate the probability our samples are independent while adjusting
for estimator bias and dataset-specific effects. To make CMI and MI statistics
interpretable for magnitude-based comparison between attributes, we include
adjustments for underlying distribution entropy and chance as per [1,34] (See
supplement).

Fig. 2. Examples of synthetic artifacts with varying image effects.

4 Experiments and Discussion

To demonstrate the effectiveness of our method, we first conduct a series of exper-
iments using synthetically-altered skin lesion data from the HAM10000 dataset
where we precisely create, control, and assess biases in the dataset. After estab-
lishing the accuracy and sensitivity of our method on synthetic data, we apply
our method to the natural attributes of HAM10000 in Experiment 5 (Sect. 4.5).

Datasets: We use publicly available skin lesion data from the HAM10000 [33]
dataset with additional public metadata from [2]. The dataset consists of 10,015
dermascopic images collected from two sites, we filter so only one image per
lesion is retained, leaving 7,387 images. The original dataset has seven diagnos-
tic categories: we focus on predicting lesion malignancy as a challenging and
practical task. While we recognize the importance of demonstrating the appli-
cability of the methodology over many datasets, here we use trials where we
perturb this dataset with a variety of synthetic, realistic artifacts (e.g., Fig. 2),
and control association with the malignant target label. With this procedure, we
create multiple variants of the dataset with attributes that have known utility
and detectability as well as ground truth counterfactuals for task model evalua-
tion. Further details are available in the supplementary materials.

Training Protocol: For attribute prediction networks used by our detectability
procedure, we finetune ResNet18 [15] models with limited data augmentation.
For the malignancy prediction task, we use Swin Transformer [19] tiny models
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with RandAugment augmentation to show detectability results generalize to
stronger architectures. All models were trained using class-balanced sampling
with a batch size of 128 and the AdamW optimizer with a learning rate of 5e−5,
linear decay schedule, and default weight decay and momentum parameters. For
each trial, we use three-fold cross-validation and subdivide each training fold
in a (90:10) train:validation split to select the best models for the relevant
test fold. By following this procedure, we get unbiased artifact predictions over
the entire dataset for use by MI estimators by aggregating predictions over all
test folds. We generally measure model performance via the Receiver Operating
Characteristic Area Under the Curve (AUC).

4.1 Experiment 1: Induced Bias Versus Relationship Strength

For this experiment, we select an artifact that we are certain is visible (JPEG
compression at quality 30 applied to 1000 images), and seek to understand how
the relationship between attribute and task label influences the task model’s
reliance on the attribute. The artifact is introduced with increasing utility such
that the probability of the artifact is higher for cases that are malignant. Then,
we create a worst case counterfactual set, where each malignant case does not
have the artifact, and each benign case does. In Fig. 3a, we see performance
rapidly declines below random chance as utility increases.

4.2 Experiment 2: Detectability of Known Invisible Artifacts

In the previous section, we showed that the utility A ↔ Y directly impacts
the task model bias, given A is visible in images. However, it is not always

Fig. 3. (a) Performance of task models trained on data with known detectable arti-
facts introduced with various positive correlations to the malignant class and evaluated
on our worst-case counterfactual set. (b) Performance drop on worst-case counterfac-
tual test set of models trained with various artifacts of unknown detectability. For
each, MI(A, Y ), CMI(A, Â|Y ) values are estimated empirically with normalization
and adjustment for chance applied.
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obvious whether an attribute is visible. In Reading Race, Gichoya et al. showed
racial identity can be predicted with high AUC from medical images where this
information is not expected to be preserved. Here, we show CMI represents a
promising method for determining attribute detectability while controlling for
attribute information communicated through labels and not through images.

Specifically, we consider the case of an “invisible artifact”. We make no
changes to the images, but instead create a set of randomized labels for our non-
existent artifact that have varying correlation with the task labels (A ↔ Y ). As
seen in Fig. 4, among cases where the invisible artifact and task label have a rea-
sonable association, models tasked with predicting the invisible artifact perform
well above random chance, seemingly indicating that these artifacts are visible
in images. However, by removing the influence of task label and related image
features by calculating MI(A, Â|Y ), we clearly see that the artifact predictions
are independent of the labels, meaning there is no visible attribute. Instead, all
information about the attribute is inferred from the task label.

4.3 Experiment 3: Conditioned Detectability Versus Ground Truth

To verify that the conditional independence testing procedure does not substan-
tially reduce our ability to correctly identify artifacts that truly are visible, we
introduce Gaussian noise with standard deviation decreasing past human per-
ceptible levels. In Experiment 2 (Fig 4A) the performance of detecting artifact
presence is artificially inflated because of a relationship between disease and arti-
fact. Here the artifact is introduced at random so AUC is an unbiased measure
of detectability. In Table 1, we see the drop in CMI percentile from conditioning
is minimal, indicating sensitivity even to weakly detectable attributes.

4.4 Experiment 4: Relationship and Detectability vs Induced Bias

Next, we consider how utility and detectability together relate to bias. We intro-
duce a variety of synthetic artifacts and levels of bias and measure the drop in

Fig. 4. (A) AUC for attribute prediction vs utility (MI(A; Y )). The models learn to fit
a non-existent artifact given sufficient utility A ↔ Y . (B) CMI(A; Â|Y ) reported with
95% CIs (calculated via bootstrap) for the same models and predictions, each interval
includes zero, suggesting conditional independence. (C) CMI statistic percentile vs
1000 trials with data permuted to be conditionally independent.
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Table 1. Detectability of Gaussian noise with varying strength vs independence
testing-based percentile and CMI(A; Â|Y ), normalized and adjusted for chance. Anec-
dotally, σ = 0.05 is the minimum level that is visible (see supplement).

Noise Detectability vs Ground Truth

Metric Gaussian Noise σ

.5 .4 .3 .2 .1 .05 .01 .001 0

Attribute

Prediction AUC

1.0± 0 1.0± 0 1.0± 0 1.0± 0 1.0± 0 1.0± 0 0.71± .075 0.53± .017 0.52± .036

CMI(A; Â|Y ) 1.0 1.0 1.0 1.0 0.997 0.997 0.0496 −4.44e−4 −4.7e−5

CMI Statistic

Percentile

1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.089 0.595

AUC that occurs when evaluated on a test set with artifacts introduced in the
same ratio as training versus the worst case ratio as defined in Experiment 1.

Of 36 unique attribute-bias combinations trialed, 32/36 were correctly clas-
sified as visible via permutation test with 95% cutoff percentile. The remain-
ing four cases were all compression at quality 90 and had negligible impact
on task models (mean drop in AUC of −0.0003 ± .0006). In Fig. 3b, we see
the relative strength of the utility (A ↔ Y ) correlates with the AUC drop
observed. This implies utility represents a useful initial metric to predict the risk
of an attribute. The detectability, CMI(A; Â|Y ), decreases as utility, MI(A;Y ),
increases, implying the two are not independent. Intuitively, when A and Y are
strongly related (Utility is high), knowledge of the task label means A is nearly
determined, so learning Â does not convey much new information and detectabil-
ity is smaller. To combat this, we use a conditional permutation method [27]
for judging whether or not an artifact is present. Further, detectability among
attributes with equal utility for each level above 0 have statistically significant
correlations with drops in AUC (Kendall’s τ of 0.800, 0.745, 0.786, 0.786, 0.716
respectively). From this, we expect that for attributes with roughly equal utility,
more detectable attributes are more likely to result in biased task models.

Fig. 5. Detectability vs. utility for natural attributes in HAM10000. Attributes with
high CMI and MI which are non-causally related to the disease pose the greatest risk.



450 M. Pavlak et al.

4.5 Experiment 5: HAM10000 Natural Attributes

Last, we run our screening procedure over the natural attributes of HAM10000
and find that all pass the conditional independence tests of detectability. Based
on our findings, we place the attributes in the following order of concern: (1)
Data source, (2) Fitzpatrick Skin Scale, (3) Ruler Presence, (4) Gentian marking
presence (we skip localization, age and sex due to clinical relevance [5]). From
Fig. 5 we see data source is both more detectable and higher in utility than
other variables of interest, representing a potential shortcut. To the best of our
knowledge, we are the first to document this concern, though recent independent
work supports our result that differences between the sets are detectable [32].

5 Conclusions

Our proposed method marks a positive step forward in anticipating and detect-
ing unwanted bias in machine learning models. By focusing on dataset screening,
we aim to prevent downstream models from inheriting biases already present and
exploitable in the data. While our screening method naturally includes common
auditing hypotheses (e.g., bias/fairness for vulnerable groups), it is capable of
generating targeted hypotheses on a much broader set of attributes ranging from
sensor information to clinical collection site. Future work could develop unsu-
pervised methods for discovering additional high risk attributes without anno-
tations. The ability to identify and investigate these hypotheses provides broad
benefit for research, development, and regulatory efforts aimed at producing safe
and reliable AI models.
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