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Abstract. The process of annotating histological gigapixel-sized whole
slide images (WSIs) at the pixel level for the purpose of training a super-
vised segmentation model is time-consuming. Region-based active learn-
ing (AL) involves training the model on a limited number of annotated
image regions instead of requesting annotations of the entire images.
These annotation regions are iteratively selected, with the goal of opti-
mizing model performance while minimizing the annotated area. The
standard method for region selection evaluates the informativeness of
all square regions of a specified size and then selects a specific quan-
tity of the most informative regions. We find that the efficiency of this
method highly depends on the choice of AL step size (i.e., the combina-
tion of region size and the number of selected regions per WSI), and a
suboptimal AL step size can result in redundant annotation requests or
inflated computation costs. This paper introduces a novel technique for
selecting annotation regions adaptively, mitigating the reliance on this
AL hyperparameter. Specifically, we dynamically determine each region
by first identifying an informative area and then detecting its optimal
bounding box, as opposed to selecting regions of a uniform predefined
shape and size as in the standard method. We evaluate our method
using the task of breast cancer metastases segmentation on the public
CAMELYON16 dataset and show that it consistently achieves higher
sampling efficiency than the standard method across various AL step
sizes. With only 2.6% of tissue area annotated, we achieve full annota-
tion performance and thereby substantially reduce the costs of annotat-
ing a WSI dataset. The source code is available at https://github.com/
DeepMicroscopy/AdaptiveRegionSelection.
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1 Introduction

Semantic segmentation on histological whole slide images (WSIs) allows precise
detection of tumor boundaries, thereby facilitating the assessment of metas-
tases [3] and other related analytical procedures [17]. However, pixel-level anno-
tations of gigapixel-sized WSIs (e.g. 100, 000 × 100, 000 pixels) for training a
segmentation model are difficult to acquire. For instance, in the CAMELYON16
breast cancer metastases dataset [10], 49.5% of WSIs contain metastases that are
smaller than 1% of the tissue, requiring a high level of expertise and long inspec-
tion time to ensure exhaustive tumor localization; whereas other WSIs have large
tumor lesions and require a substantial amount of annotation time for boundary
delineation [18]. Identifying potentially informative image regions (i.e., providing
useful information for model training) allows requesting the minimum amount
of annotations for model optimization, and a decrease in annotated area reduces
both localization and delineation workloads. The challenge is to effectively select
annotation regions in order to achieve full annotation performance with the least
annotated area, resulting in high sampling efficiency.

We use region-based active learning (AL) [13] to progressively identify anno-
tation regions, based on iteratively updated segmentation models. Each region
selection process consists of two steps. First, the prediction of the most recently
trained segmentation model is converted to a priority map that reflects infor-
mativeness of each pixel. Existing studies on WSIs made extensive use of infor-
mativeness measures that quantify model uncertainty (e.g., least confidence [8],
maximum entropy [5] and highest disagreement between a set of models [19]).
The enhancement of priority maps, such as highlighting easy-to-label pixels [13],
edge pixels [6] or pixels with a low estimated segmentation quality [2], is also
a popular area of research. Second, on the priority map, regions are selected
according to a region selection method. Prior works have rarely looked into
region selection methods; the majority followed the standard approach [13] where
a sliding window divides the priority map into fixed-sized square regions, the
selection priority of each region is calculated as the cumulative informativeness
of its constituent pixels, and a number of regions with the highest priorities are
then selected. In some other works, only non-overlapping or sparsely overlapped
regions were considered to be candidates [8,19]. Following that, some works used
additional criteria to filter the selected regions, such as finding a representative
subset [5,19]. All of these works selected square regions of a manually predefined
size, disregarding the actual shape and size of informative areas.

This work focuses on region selection methods, a topic that has been largely
neglected in literature until now, but which we show to have a great impact on AL
sampling efficiency (i.e., the annotated area required to reach the full annotation
performance). We discover that the sampling efficiency of the aforementioned
standard method decreases as the AL step size (i.e., the annotated area at each
AL cycle, determined by the multiplication of the region size and the number of
selected regions per WSI) increases. To avoid extensive AL step size tuning, we
propose an adaptive region selection method with reduced reliance on this AL
hyperparameter. Specifically, our method dynamically determines an annotation
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Fig. 1. Region-based AL workflow for selecting annotation regions. The exemplary
selected regions are of size 8192 × 8192 pixels. (Image resolution: 0.25 µm

px
)

region by first identifying an informative area with connected component detec-
tion and then detecting its bounding box. We test our method using a breast
cancer metastases segmentation task on the public CAMELYON16 dataset and
demonstrate that determining the selected regions individually provides greater
flexibility and efficiency than selecting regions with a uniform predefined shape
and size, given the variability in histological tissue structures. Results show that
our method consistently outperforms the standard method by providing a higher
sampling efficiency, while also being more robust to AL step size choices. Addi-
tionally, our method is especially beneficial for settings where a large AL step
size is desirable due to annotator availability or computational restrictions.

2 Method

2.1 Region-Based Active Learning for WSI Annotation

We are given an unlabeled pool U = {X1 . . . Xn}, where Xi ∈ R
Wi×Hi denotes

the ith WSI with width Wi and height Hi. Initially, Xi has no annotation; regions
are iteratively selected from it and annotated across AL cycles. We denote the
jth annotated rectangular region in Xi as Rij = (cijx , cijy , wij , hij), where (cijx , cijy )
are the center coordinates of the region and wij , hij are the width and height of
that region, respectively. In the standard region selection method, where fixed-
size square regions are selected, wij = hij = l,∀i, j, where l is predefined.

Figure 1 illustrates the workflow of region-based AL for WSI annotation.
The goal is to iteratively select and annotate potentially informative regions
from WSIs in U to enrich the labeled set L in order to effectively update the
model g. To begin, k regions (each containing at least 10% of tissue) per WSI
are randomly selected and annotated to generate the initial labeled set L. The
model g is then trained on L and predicts on U to select k new regions from each
WSI for the new round of annotation. The newly annotated regions are added
to L for retraining g in the next AL cycle. The train-select-annotate process is
repeated until a certain performance of g or annotation budget is reached.

The selection of k new regions from Xi is performed in two steps based on the
model prediction Pi = g(Xi). First, Pi is converted to a priority map Mi using
a per-pixel informativeness measure. Second, k regions are selected based on Mi

using a region selection method. The informativeness measure is not the focus
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of this study, we therefore adopt the most commonly used one that quantifies
model uncertainty (details in Sect. 3.2). Next we describe the four region selection
methods evaluated in this work.

2.2 Region Selection Methods

Random. This is the baseline method where k regions of size l× l are randomly
selected. Each region contains at least 10% of tissue and does not overlap with
other regions. Standard [13] Mi is divided into overlapping regions of a fixed
size l× l using a sliding window with a stride of 1 pixel. The selection priority of
each region is calculated as the summed priority of the constituent pixels, and
k regions with the highest priorities are then selected. Non-maximum suppres-
sion is used to avoid selecting overlapping regions. Standard (non-square) We
implement a generalized version of the standard method that allows non-square
region selections by including multiple region candidates centered at each pixel
with various aspect ratios. To save computation and prevent extreme shapes,
such as those with a width or height of only a few pixels, we specify a set of
candidates as depicted in Fig. 2. Specifically, we define a variable region width
w as spanning from 1

2 l to l with a stride of 256 pixels and determine the corre-
sponding region height as h = l2

w . Adaptive (proposed) Our method allows for
selecting regions with variable aspect ratios and sizes to accommodate histolog-
ical tissue variability. The k regions are selected sequentially; when selecting the
jth region Rij in Xi, we first set the priorities of all pixels in previously selected
regions (if any) to zero. We then find the highest priority pixel (cijx , cijy ) on Mi;
a median filter with a kernel size of 3 is applied beforehand to remove outliers.
Afterwards, we create a mask on Mi with an intensity threshold of τ th percentile
of intensities in Mi, detect the connected component containing (cijx , cijy ), and
select its bounding box. As depicted in Fig. 3, τ is determined by performing a
bisection search over [98, 100]th percentiles, such that the bounding box size is in
range [12 l × 1

2 l, 3
2 l × 3

2 l]. This size range is chosen to be comparable to the other
three methods, which select regions of size l2. Note that Standard (non-square)
can be understood as an ablation study of the proposed method Adaptive to
examine the effect of variable region shape by maintaining constant region size.

2.3 WSI Semantic Segmentation Framework

This section describes the breast cancer metastases segmentation task we use
for evaluating the AL region selection methods. The task is performed with
patch-wise classification, where the WSI is partitioned into patches, each patch
is classified as to whether it contains metastases, and the results are assembled.
Training. The patch classification model h(x,w) : Rd×d −→ [0, 1] takes as input
a patch x and outputs the probability p(y = 1|x,w) of containing metastases,
where w denotes model parameters. Patches are extracted from the annotated
regions at 40× magnification (0.25 µm

px ) with d = 256 pixels. Following [11], a
patch is labeled as positive if the center 128 × 128 pixels area contains at least
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Fig. 2. Standard (non-
square): Region candi-
dates for l = 8192 pixels.

Fig. 3. Adaptive: (a) Priority map Mi and the highest
priority pixel (arrow). (b–c) Bisection search of τ : (b)
τ = 99th, (c) τ = 98.5th.

one metastasis pixel and negative otherwise. In each training epoch, 20 patches
per WSI are extracted at random positions within the annotated area; for WSIs
containing annotated metastases, positive and negative patches are extracted
with equal probability. A patch with less than 1% tissue content is discarded.
Data augmentation includes random flip, random rotation, and stain augmenta-
tion [12]. Inference. Xi is divided into a grid of uniformly spaced patches (40×
magnification, d = 256 pixels) with a stride s. The patches are predicted using
the trained patch classification model and the results are stitched to a probabil-
ity map Pi ∈ [0, 1]W

′
i×H′

i , where each pixel represents a patch prediction. The
patch extraction stride s determines the size of Pi (W ′

i = Wi

s ,H ′
i = Hi

s ).

3 Experiments

3.1 Dataset

We used the publicly available CAMELYON16 Challenge dataset [10], licensed
under the Creative Commons CC0 license. The collection of the data was
approved by the responsible ethics committee (Commissie Mensgebonden Onder-
zoek regio Arnhem-Nijmegen). The CAMELYON16 dataset consists of 399
Hematoxylin & Eosin (H&E)-stained WSIs of sentinel axillary lymph node sec-
tions. The training set contains 111 WSIs with and 159 WSIs without breast
cancer metastases, and each WSI with metastases is accompanied by pixel-level
contour annotations delineating the boundaries of the metastases. We randomly
split a stratified 30% subset of the training set as the validation set for model
selection. The test set contains 48 WSIs with and 80 WSIs without metastases 1.

3.2 Implementation Details

Training Schedules. We use MobileNet v2 [15] initialized with ImageNet [14]
weights as the backbone of the patch classification model. It is extended with two
1 Test 114 is excluded due to non-exhaustive annotation, as stated by data provider.
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fully-connected layers with sizes of 512 and 2, followed by a softmax activation
layer. The model is trained for up to 500 epochs using cross-entropy loss and the
Adam optimizer [7], and is stopped early if the validation loss stagnates for 100
consecutive epochs. Model selection is guided by the lowest validation loss. The
learning rate is scheduled by the one cycle policy [16] with a maximum of 0.0005.
The batch size is 32. We used Fastai v1 [4] for model training and testing. The
running time of one AL cycle (select-train-test) on a single NVIDIA Geforce
RTX3080 GPU (10GB) is around 7 h.

Active Learning Setups. Since the CAMELYON16 dataset is fully annotated,
we perform AL by assuming all WSIs are unannotated and revealing the anno-
tation of a region only after it is selected during the AL procedure. We divide
the WSIs in U randomly into five stratified subsets of equal size and use them
sequentially. In particular, regions are selected from WSIs in the first subset at
the first AL cycle, from WSIs in the second subset at the second AL cycle, and so
on. This is done because WSI inference is computationally expensive due to the
large patch amount, reducing the number of predicted WSIs to one fifth helps to
speed up AL cycles. We use an informativeness measure that prioritizes pixels
with a predicted probability close to 0.5 (i.e., Mi = 1−2|Pi −0.5|), following [9].
We annotate validation WSIs in the same way as the training WSIs via AL.

Evaluations. We use the CAMELYON16 challenge metric Free Response Oper-
ating Characteristic (FROC) score [1] to validate the segmentation framework.
To evaluate the WSI segmentation performance directly, we use mean intersec-
tion over union (mIoU). For comparison, we follow [3] to use a threshold of 0.5
to generate the binary segmentation map and report mIoU (Tumor), which is
the average mIoU over the 48 test WSIs with metastases. We evaluate the model
trained at each AL cycle to track performance change across the AL procedure.

3.3 Results

Full Annotation Performance. To validate our segmentation framework, we
first train on the fully-annotated data (average performance of five repetitions
reported). With a patch extraction stride s = 256 pixels, our framework yields
an FROC score of 0.760 that is equivalent to the Challenge top 2, and an mIoU
(Tumor) of 0.749, which is higher than the most comparable method in [3] that
achieved 0.741 with s = 128 pixels. With our framework, reducing s to 128 pixels
improves both metastases identification and segmentation (FROC score: 0.779,
mIoU (Tumor): 0.758). However, halving s results in a 4-fold increase in infer-
ence time. This makes an AL experiment, which involves multiple rounds of
WSI inference, extremely costly. Therefore, we use s = 256 pixels for all fol-
lowing AL experiments to compromise between performance and computation
costs. Because WSIs without metastases do not require pixel-level annotation,
we exclude the 159 training and validation WSIs without metastases from all
following AL experiments. This reduction leads to a slight decrease of full anno-
tation performance (mIoU (Tumor) from 0.749 to 0.722).
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Fig. 4. mIoU (Tumor) as a function of annotated tissue area (%) for four region selec-
tion methods across various AL step sizes. Results show average and min/max (shaded)
performance over three repetitions with distinct initial labeled sets. The final annotated
tissue area of Random can be less than Standard as it stops sampling a WSI if no region
contains more than 10% of tissue. Curves of Adaptive are interpolated as the annotated
area differs between repetitions.

Comparison of Region Selection Methods. Figure 4 compares the sampling
efficiency of the four region selection methods across various AL step sizes (i.e.,
the combinations of region size l ∈ {4096, 8192, 12288} pixels and the number
of selected regions per WSI k ∈ {1, 3, 5}). Experiments with large AL step sizes
perform 10 AL cycles (Fig. 4 (e), (f), (h) and (i)); others perform 15 AL cycles.
All experiments (except for Random) use uncertainty sampling.

When using region selection method Standard, the sampling efficiency advan-
tage of uncertainty sampling over random sampling decreases as AL step size
increases. A small AL step size minimizes the annotated tissue area for a certain
high level of model performance, such as an mIoU (Tumor) of 0.7, yet requires a
large number of AL cycles to achieve full annotation performance (Fig. 4 (a–d)),
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Table 1. Annotated tissue area (%) required to achieve full annotation performance.
The symbol “/” indicates that the full annotation performance is not achieved in the
corresponding experimental setting in Fig. 4.

k 1 3 5

l/pixels 4096 8192 12288 4096 8192 12288 4096 8192 12288

Random / / / / / 18.1 / / /

Standard / / / / 9.4 14.2 4.3 17.4 31.5

Standard (non-square) / / 11.0 / / 18.9 3.9 15.7 27.6

Adaptive / 3.3 5.8 3.3 6.3 8.1 2.6 / 20.0

Fig. 5. Visualization of five regions selected with three region selection methods,
applied to an exemplary priority map produced in a second AL cycle (regions were
randomly selected in the first AL cycle, k = 5, l = 4096 pixels). Region sizes increase
from top to bottom: l ∈ {4096, 8192, 12288} pixels. Fully-annotated tumor metastases
overlaid with WSI in red. (Color figure online)

resulting in high computation costs. A large AL step size allows for full anno-
tation performance to be achieved in a small number of AL cycles, but at the
expense of rapidly expanding the annotated tissue area (Fig. 4(e), (f), (h) and
(i)). Enabling selected regions to have variable aspect ratios does not substan-
tially improve the sampling efficiency, with Standard (non-square) outperforming
Standard only when the AL step size is excessively large (Fig. 4(i)). However,
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allowing regions to be of variable size consistently improves sampling efficiency.
Table 1 shows that Adaptive achieves full annotation performance with fewer
AL cycles than Standard for small AL step sizes and less annotated tissue area
for large AL step sizes. As a result, when region selection method Adaptive is
used, uncertainty sampling consistently outperforms random sampling. Further-
more, Fig. 4(e–i)) shows that Adaptive effectively prevents the rapid expansion of
annotated tissue area as AL step size increases, demonstrating greater robustness
to AL step size choices than Standard. This is advantageous because extensive
AL step size tuning to balance the annotation and computation costs can be
avoided. This behavior can also be desirable in cases where frequent interac-
tion with annotators is not possible or to reduce computation costs, because the
proposed method is more tolerant to a large AL step size.

We note in Fig. 4(h) that the full annotation performance is not achieved
with Adaptive within 15 AL cycles; in Fig. S1 in the supplementary materials
we show that allowing for oversampling of previously selected regions can be a
solution to this problem. Additionally, we visualize examples of selected regions
in Fig. 5 and show that Adaptive avoids two region selection issues of Standard :
small, isolated informative areas are missed, and irrelevant pixels are selected
due to the region shape and size restrictions.

4 Discussion and Conclusion

We presented a new AL region selection method to select annotation regions
on WSIs. In contrast to the standard method that selects regions with prede-
termined shape and size, our method takes into account the intrinsic variability
of histological tissue and dynamically determines the shape and size for each
selected region. Experiments showed that it outperforms the standard method
in terms of both sampling efficiency and the robustness to AL hyperparame-
ters. Although the uncertainty map was used to demonstrate the efficacy of our
approach, it can be seamlessly applied to any priority maps. A limitation of
this study is that the annotation cost is estimated only based on the annotated
area, while annotation effort may vary when annotating regions of equal size.
Future work will involve the development of a WSI dataset with comprehen-
sive documentation of annotation time to evaluate the proposed method and an
investigation of potential combination with self-supervised learning.
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