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Abstract 

7-Ketocholesterol and 7β-hydroxycholesterol 
are most often derived from the autoxidation 
of cholesterol. Their quantities are often 
increased in the body fluids and/or diseased 
organs of patients with age-related diseases 
such as cardiovascular diseases, Alzheimer’s 
disease, age-related macular degeneration, and 
sarcopenia which are frequently associated 
with a rupture of RedOx homeostasis leading 
to a high oxidative stress contributing to cell 
and tissue damages. On murine cells from the 
central nervous system (158N 
oligodendrocytes, microglial BV-2 cells, and 
neuronal N2a cells) as well as on C2C12 
murine myoblasts, these two oxysterols can 
induce a mode of cell death which is 
associated with qualitative, quantitative, and 
functional modifications of the peroxisome. 
These changes can be revealed by fluorescence 
microscopy (apotome, confocal microscopy), 
transmission electron microscopy, flow 
cytometry, quantitative reverse transcription 
polymerase chain reaction (RT-qPCR), and 
gas chromatography-coupled with mass spec-
trometry (GC-MS). Noteworthy, several natu-
ral molecules, including ω3 fatty acids, 
polyphenols, and α-tocopherol, as well as sev-
eral Mediterranean oils [argan and olive oils, 
Milk-thistle (Sylibum marianum) and Pistacia 
lenticus seed oils], have cytoprotective 
properties and attenuate 7-ketocholesterol-
and 7β-hydroxycholesterol-induced peroxi-
somal modifications. These observations led 
to the concept of pexotherapy. 
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Abbreviations 

7KC 7-Ketocholesterol 
7β-OHC 7β-Hydroxycholesterol 
Abcd 
transporter 

ATP-binding cassette sub-type D 
transporter 

Acox1 Acyl-CoA oxidase 1 
AMD Age-related macular degeneration 
AO Argan oil 
DHA Docosahexaenoic acid 
DHAP-AT Dihydroxyacetone-phosphate 

acyltransferase 
ELOVL Fatty acid elongase 
GC-MS Gas chromatography-coupled 

with mass spectrometry 
GPx Glutathione peroxidase 
Mfp2 Peroxisomal multifunctional 

protein-2 
PLSO Pistacia lenticus seed oil 
RT-qPCR Quantitative reverse transcription 

polymerase chain reaction 
SOD Superoxide dismutase 
TEM Transmission electron 

microscopy 
VLCFA Very-long chain fatty acid 

21.1 Introduction 

Oxysterols are bioactive lipids that result from the 
oxidation of cholesterol, which can be formed 
either by auto-oxidation or enzymatically, or by 
both processes (Mutemberezi et al. 2016). They 
are involved in numerous diseases, in particular, 
those linked to age-related diseases, due to their 
increase or decrease (Zarrouk et al. 2014; Testa 
et al. 2018; De Medina et al. 2022). The 
biological activities of oxysterols, which are 
constituents of the oxysterome (set of oxysterols 
present at a given time) (Guillemot-Legris and



Muccioli 2022), are therefore the resultant of the 
oxysterols simultaneously present. However, this 
aspect does not exclude the study of their highly 
variable individual biological activities over a 
wide range of concentrations. 7-Ketocholesterol 
(7KC) and 7β-hydroxycholesterol (7β-OHC), 
mainly formed by cholesterol auto-oxidation 
(Anderson et al. 2020; Ghzaiel et al. 2022b), 
were among the first oxysterols studied because 
of their well-established involvement in cardio-
vascular diseases (Vejux et al. 2008; Vejux and 
Lizard 2009). These two oxysterols are indeed 
present in increased quantities in oxidized LDL 
(oxLDL) and in atheromatous lesions (Samadi 
et al. 2021). Their oxidative and inflammatory 
activities as well as their capacity to induce 
cell death by apoptosis in the cells of the vascu-
lar wall (endothelial cells, smooth muscle cells 
and macrophages) widely contribute to the 
development of the atheromatous plaque with 
often a fatal issue. At the moment, histological 
analogies have been highlighted between the 
appearance of atheromatous lesions and the 
drusen (localized between the Bruch membrane 
and the basement membrane of retinal pigment 
epithelial cells), which contain high 7KC levels, 
and which are identified in patients with 
age-related macular degeneration (AMD) 
(Malvitte et al. 2006). The high level of 7KC in 
drusen suggests an involvement of this oxysterol 
in the development of AMD (Pariente et al. 
2019). Furthermore, in advanced Alzheimer’s 
disease, enhanced levels of 7KC and 7β-OHC 
have also been observed in plasma as well as 
post-mortem in brain lesions (Testa et al. 2016). 
In addition, increases in 7KC and 7β-OHC have 
been found in the plasma of sarcopenic patients 
aged over 65 years (Ghzaiel et al. 2021). It is 
important to note that during lipid peroxidation, 
cholesterol oxidation occurs chronologically 
after fatty acid oxidation (Noguchi et al. 1998). 
Therefore, increased levels of 7KC and 7β-OHC 
indicate significant oxidative stress. Therefore, 
the prevention of oxidative stress at the systemic 
and/or local level in cardiovascular disease, 
AMD, and sarcopenia seems to be essential to 
treat these diseases. In this context, the targets on 
which it is necessary to act are multiple and 

include: (1) the inhibition of pro-oxidant 
enzymes such as NADPH oxidase which exist 
under several isoforms (Pedruzzi et al. 2004); 
(2) the activation of pro-oxidant enzymes [super-
oxide dismutase (SOD), glutathione peroxidase 
(GPx), catalase] (Nury et al. 2020); and (3) the 
prevention of mitochondrial and peroxisomal 
activities, whose dysfunctions participate in the 
disruption of the RedOx balance (Trompier et al. 
2014; Leoni et al. 2017). 
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Thanks to the use of several cellular models, it 
is now well demonstrated that 7KC and 7β-OHC 
act on these different targets by promoting oxida-
tive stress by increasing the overproduction of 
superoxide anions (O2

•-) via NADPH oxidase, 
by decreasing the efficiency of the antioxidant 
system and by disturbing mitochondrial and per-
oxisomal activity (Vejux et al. 2020; Nury et al. 
2021a). While the effects of 7KC and 7β-OHC 
are well established at the mitochondrial level 
(reduction of glycolysis and the citric acid/Krebs 
cycle, decrease in oxidative phosphorylation and 
ATP production, fall in mitochondrial potential 
(ΔΨm), contribution to apoptosis by the release 
of cytochrome c, overproduction of O2

•-, and 
decrease in the expression and activity of antioxi-
dant enzymes), the effects of these two oxysterols 
at the peroxisomal level are still little explored 
and therefore not well known whereas their 
involvement is suspected in cardiovascular 
diseases and Alzheimer’s disease (Lizard et al. 
2012; Zarrouk et al. 2020). The peroxisome is a 
mostly circular organelle (0.1–1 μM in diameter), 
devoid of DNA, formed by protein import from 
the endoplasmic reticulum and closely linked to 
the mitochondria both topographically and func-
tionally (Schrader and Fahimi 2008; Lismont 
et al. 2015). Indeed, many of the membrane 
transporters of the peroxisome are ABCD 
transporters (ATP-binding cassette sub-type D) 
and require ATP to function (Kemp et al. 2011; 
Morita and Imanaka 2012). The peroxisome is 
involved in the β-oxidation of VLCFA and 
branched fatty acids, in the synthesis of 
docosahexaenoic acid (DHA; C22:6 n-3) and 
plasmalogens, and in the synthesis of cholesterol 
(Wanders and Waterham 2006a; Kawaguchi and 
Morita 2016; Charles et al. 2020). Plasmalogens



have a major role in the regulation of inflamma-
tion, oxidative stress and cell death, and their 
involvement in aging and some age-related 
diseases is widely documented (Hossain et al. 
2020, 2023). The peroxisome is also involved in 
phagocytosis, cytokine production, degradation 
of eicosanoids, and regulation of the RedOx bal-
ance (Fransen et al. 2012; Lismont et al. 2015; Di  
Cara et al. 2019). 
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Using 7KC and 7β-OHC on different cell lines 
(158N murine oligodendrocytes, murine neuronal 
N2a cells, murine microglial BV-2 cells, and 
murine myoblasts C2C12 cells), we established 
an experimental approach to determine the effects 
of these oxysterols on the peroxisome by using 
several criteria. The effects on peroxisomal 
topography and morphology were addressed by 
transmission electron microscopy and fluores-
cence microscopy (conventional, apotome, con-
focal); for the latter approach, the peroxisomes 
were revealed by indirect immunofluorescence 
with an anti-Abcd3 antibody (Debbabi et al. 
2017a). The effects on the amount of peroxisome 
per cell were determined by flow cytometry (Nury 
et al. 2018; Ghzaiel et al. 2022a) by measuring the 
expression of the peroxisomal transporter Abcd3, 
which is a transporter of pristanic acid, dicarbox-
ylic acid, and bile acid intermediates, and which 
is also considered as a suitable marker of the 
number of peroxisomes per cell and/or of the 
peroxisomal mass (Gray et al. 2014; Tawbeh 
et al. 2021). The effects on peroxisomal function 
were addressed (1) on the one hand by measuring 
by RT-qPCR the expression of the genes of per-
oxisomal transporter (Abcd1, Abcd2, Abcd3) and 
enzymes (Acox1), peroxisomal multifunctional 
protein-2 (Mfp2) involved in peroxisomal 
β-oxidation (Wanders 2014) as well as in 
plasmalogens synthesis (dihydroxyacetone-
phosphate acyltransferase (DHAP-AT), alkyl-
DHAP synthase) (Wanders and Waterham 
2006b; Kanzawa et al. 2012; Honsho and Fujiki 
2023), and (2) on the other hand by quantifying 
by gas chromatography-mass spectrometry 
(GC-MS) the amount per cell of VLCFAs (C24: 
0; C24:1; C26:0, C26:1) metabolized in the per-
oxisome (Wanders and Waterham 2006a) as well 
as the rate of cellular plasmalogens, whose first 

two enzymes (DHAP-AT, alkyl-DHAP synthase) 
involved in their synthesis, are located in the 
peroxisomal membrane (Brites et al. 2004; Nury 
et al. 2018). These different approaches have also 
made it possible to identify several molecules 
(synthetic and natural, as well as oils often of 
Mediterranean origin) that attenuate the cytotox-
icity of 7KC and 7β-OHC while opposing quali-
tative, quantitative, and functional peroxisomal 
modifications (Debbabi et al. 2016, 2017b; 
Badreddine et al. 2017; Ghzaiel et al. 2022a). 
This attenuation of peroxisomal dysfunctions by 
different synthetic or natural molecules has given 
rise to the notion of pexotherapy. 

21.2 Evaluation of the Effects 
of 7-Ketocholesterol 
and 7β-Hydroxycholesterol 
on the Peroxisomal Status 

21.2.1 Effects of 7-Ketocholesterol 
and 7b-Hydroxycholesterol 
on the Peroxisomal 
Topography and Morphology 

In the experimental strategy developed to evalu-
ate the impact of molecules on the peroxisome, 
different microscopic techniques can be used. 
These techniques include transmission electron 
microscopy (TEM) and fluorescence microscopy 
[conventional fluorescence microscopy, 
structured fluorescence microscopy (apotome), 
and confocal microscopy]. 

The visualization of peroxisomes by TEM 
requires the use of diaminobenzidine (DAB) and 
hydrogen peroxide (H2O2). In this particular 
experimental condition, the peroxisomal catalase 
activity is revealed, and the peroxisomes, which 
are stained in black, are visualized (Trompier 
et al. 2014; Ghzaiel et al. 2022a). The livers of 
9- to 10-week-old C57 Black/6 male mice were 
used as a positive control for the detection of 
peroxisomes by TEM (Fig. 21.1a, b). Without 
DAB and H2O2, the peroxisomes are not 
detected. This experimental condition does not 
affect the detection of other cell components and 
permits the identification of all organelles. The
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Fig. 21.1 Visualization of 
peroxisome by transmission 
electron microscopy on 
mouse liver, nerve cells 
(158N oligodendrocytes, 
murine neuronal N2a cells), 
and murine C2C12 
myoblasts cultured with or 
without 7-ketocholesterol-
or 7β-hydroxycholesterol. 
White arrows point toward 
peroxisomes observed in 
different cell types. The 
livers of 9- to 10-week-old 
C57 Black/6 male mice 
were used as positive 
control for the detection of 
peroxisomes (Trompier 
et al. 2014; Nury et al. 
2018, 2020). (a, b) 
Peroxisome in mouse liver; 
(c, d) in 158N 
oligodendrocytes, some 
peroxisomes closely 
located to mitochondria 
were identified (d); (e, f) 
peroxisomes in N2a cells; 
comparatively to untreated 
cells (control) (e), the 
morphological aspects of 
peroxisomes were modified 
in 7KC (50 μM, 48 h)-
treated cells (f); in C2C12 
murine myoblasts round 
and regular peroxisomes 
were observed in the 
cytoplasm of untreated cells 
(control) (g, h); in 
7β-OHC-treated cells most 
of the peroxisomes were 
located in vacuoles (i, j) 
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visualization of peroxisomes by TEM gives infor-
mation on the morphological aspect and size of 
the peroxisomes, and also information on the 
peroxisomal topography: distribution in the cyto-
plasm, interaction with other organelles such as 
mitochondria and endoplasmic reticulum, locali-
zation or not in vacuoles (this latter aspect 
provides ultrastructural information on 
pexophagy) and oxiapoptophagy (Nury et al. 
2021b). On murine nerve cells (158N, BV-2, 
and N2a) or on murine myoblasts (C2C12) 
treated with 7KC or 7β-OHC, similar ultrastruc-
tural changes were observed at oxysterol 
concentrations inducing cell death 
(oxiapoptophagy on 158N, BV-2, and N2a cells; 
caspase-independent mode of cell death on 
C2C12 cells) (Nury et al. 2020) (Fig. 21.1c, j). 
In those conditions, comparatively to untreated 
cells (control), morphologically altered 
peroxisomes were often observed under treatment 
with 7KC or 7β-OHC (Nury et al. 2018) 
(Fig. 21.1e, f), and their cytoplasmic distribution 
was often modified such as in 7β-OHC-treated 
C2C12 cells: in these cells several peroxisomes 
were present in vacuoles (Ghzaiel et al. 2022a) 
(Fig. 21.1, g–j).
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Conventional fluorescence microscopy, 
realized on a right or inverted microscope, can 
also be used to reveal the peroxisomes detected 
by immunofluorescence with an antibody raised 
against the peroxisomal transporter Abcd3 or cat-
alase (Trompier et al. 2014) or other peroxisomal 
proteins (Acox1, Mfp2) (Baarine et al. 2009). 
This approach makes it possible to estimate the 
effect of molecules, such as oxysterols, on the 
topography of peroxisomes and their quantity 
per cell. However, this approach is approximative 
and needs to be completed either by observations 
in structured fluorescence microscopy (apotome) 
or in confocal microscopy, whose excellent reso-
lution in z-makes it possible to apprehend the 
peroxisomal distribution in different planes for 
further 3D reconstruction and reliable 
quantifications. These last two methods also 
make it possible to evaluate mitochondria and 
peroxisomes simultaneously under excellent 
conditions (Nury et al. 2018; Namsi et al. 2019). 
Data obtained on untreated (control) as well as on 

7KC- and 7β-OHC-treated C2C12 murine 
myoblasts by structured fluorescence microscopy 
(apotome), after mitochondria staining with Mito 
Tracker Red and detection of peroxisome with an 
antibody raised against Abcd3 and revealed with 
Alexa-488, are shown in Fig. 21.2: topographic 
modifications of peroxisomes and mitochondria 
are clearly observed. This approach with an 
apotome is also well appropriated to simulta-
neously evaluate the mitochondria and the 
peroxisomes in neurites (axones and dendrites) 
(Namsi et al. 2019). Thus, on differentiated N2a 
cells obtained under treatment with 
octadecaneuropeptide (ODN, 10-14 M), the 
peroxisomes and the mitochondria stained in 
green and red, respectively, can be observed in 
the neurites in structured fluorescence micros-
copy and when these two organelles were closely 
located a yellow fluorescence was observed 
(Fig. 21.2). By confocal microscopy, observation 
in the x-y plan can be coupled with observations 
along the z-axis, allowing a 3D reconstruction to 
precise the distribution of peroxisomes in the 
cells; this approach has been successfully used 
on 158N cells (Fig. 21.3). Since catalase is 
localized both in the cytoplasm and in the peroxi-
some, it is less used than Abcd3 (specifically 
present at the peroxisomal membrane level) to 
visualize the peroxisome (Baarine et al. 2009; 
Trompier et al. 2014). Data obtained on human 
neuronal cells (SK-N-BE) by confocal micros-
copy show a cytoplasmic distribution pattern of 
catalase which evocates the distribution of Abcd3 
(Fig. 21.3). TEM, structured fluorescence micros-
copy (apotome) and confocal microscopy are well 
adapted complementary methods to study the 
morphology of peroxisomes and their topography 
as well as their interaction with other organelles, 
especially mitochondria. 

21.2.2 Effects of 7-Ketocholesterol 
and 7b-Hydroxycholesterol 
on the Peroxisomal Mass 

The effects of 7KC and 7β-OHC, in a concentra-
tion range 12.5–50 μM, are rather well described 
on the endoplasmic reticulum, the lysosomes, and



the mitochondria (Nury et al. 2021a). Morpholog-
ical and functional alterations of these organelles 
were reported in the presence of these two 
oxysterols. On the other hand, the effects of 
these molecules on the peroxisome are still poorly 
known. To quantify the effects of 7KC and 
7 β-OHC on the peroxisomal mass, the 
peroxisomes were detected on different cell 
types by indirect immunofluorescence with a 

rabbit polyclonal antibody raised against Abcd3 
(Debbabi et al. 2017a). Quantification was 
performed by flow cytometry. Under these 
conditions, a decrease in peroxisomal mass was 
observed; this decrease was strongly counteracted 
in the presence of α-tocopherol (200–400 μM) 
whatever the cell type considered (Vejux et al. 
2020). Data shown are those obtained on C2C12 
murine myoblasts: untreated cells (control) and
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Fig. 21.2 Simultaneous visualization of peroxisomes and 
mitochondria by illumination microscopy (Apotome) on 
undifferentiated cells cultured with or without 
7-ketocholesterol- or 7β-hydroxycholesterol and on 
differentiated N2a cells: mitochondria were revealed by 
Mito Tracker Red and peroxisome by indirect immunoflu-
orescence with antibodies raised against Abcd3. The fluo-
rescence procedure was performed as follows on N2a cells 
as previously described (Debbabi et al. 2017a; Namsi et al. 
2019). After mitochondria staining with Mito Tracker 
Red, the peroxisomes were revealed with a rabbit poly-
clonal antibody raised against Abcd3 (Ref: 1152365; 
Pierce/Thermo Fisher Scientific) which was revealed 
with a goat anti-rabbit 488-Alexa antibody (Santa Cruz 
Biotechnology, Santa Cruz, USA). The nuclei were 
stained with Hoechst 33342 (2 μg/mL). Cells were 
mounted in Dako fluorescent medium. Cells were stored 
in the dark at +4 °C until examination with structured 

illumination microscopy (Apotome 3 imaging system, 
Zeiss, Jena, Germany). Green dots: peroxisomes; 
red dots: mitochondria. (a): undifferentiated N2a cells 
cultured with 7-ketocholesterol (7KC: 25–50 μM) for 
24 h or 7β-hydroxycholesterol (7β-OHC: 25–50 μM) for 
24 h; (b): differentiated N2a cells; N2a were previously 
cultured for 24 h in conventional culture medium; the cells 
were further cultured for 48 h in medium without FBS in 
the absence (control) or presence of octadecaneuropeptide 
(octadecaneuropeptide (ODN); 10-14 M) as previously 
described. Along the neurites, several mitochondria (red 
fluorescence) and peroxisomes (green fluorescence) were 
detected. Yellow spots (colocalization of mitochondria 
and peroxisomes) were also identified. Green arrows 
point toward peroxisomes; red arrows point toward 
mitochondria; yellow arrows point toward colocalized 
peroxisomes and mitochondria. The images were realized 
with ZEN imaging software (Zeiss)



cells cultured in the presence of 7β-OHC 
associated or not with α-tocopherol (Fig. 21.4). 
At the moment, α-tocopherol, which is known to 
strongly attenuate 7KC- and 7β-OHC-induced 
cell death on different cell types, also strongly 
attenuates the decrease in peroxisomal mass 
measured with the anti-Abcd3 antibody and 
revealed by a secondary antibody coupled to 
Alexa-488. Similar results were obtained with 
7KC. This observation led to the notion of 
pexotherapy, which can be defined as the ability 
of a natural or synthetic molecule to prevent 
quantitative and qualitative peroxisomal 
alterations (Ghzaiel et al. 2022a).
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Fig. 21.3 Simultaneous visualization of mitochondria 
and peroxisomes by confocal microscopy on N2a and 
SK-N-BE cells. The immunofluorescence procedure was 
performed on murine N2a and human SK-N-BE cells 
cultured on glass slides as previously described (Trompier 
et al. 2014; Debbabi et al. 2017a). The peroxisomes were 
revealed either with a rabbit polyclonal antibody raised 
against Abcd3 (Ref: 1152365; Pierce/Thermo Fisher Sci-
entific) or a rabbit polyclonal antibody raised against 

catalase (Ref: ab16771, Abcam, Paris, France) which 
were revealed with a goat anti-rabbit 488-Alexa antibody 
(Santa Cruz Biotechnology). The nuclei were stained with 
Hoechst 33342 (2 μg/mL). Cells were mounted in Dako 
fluorescent medium and stored in the dark at +4 °C until 
examination by confocal microscopy (Confocal Laser 
Scanning Microscope TCS SP8, Leica, Wetzlar, 
Germany). The images were realized with LASX (Leica) 

21.2.3 Effects of 7-Ketocholesterol 
and 7b-Hydroxycholesterol 
on the Peroxisomal Activity 

Concerning peroxisome function, peroxisomal 
damages (alteration of peroxisomal β-oxidation) 

can favor the accumulation of very-long chain 
fatty acids (VLCFA; C ≥ 22) (Savary et al. 
2012), which can contribute to amplifying cell 
dysfunctions (Nury et al. 2020). In C2C12 cells, 
the analysis of the effects of 7β-OHC (50 μM) 
associated or not with α-tocopherol (400 μM) on 
VLCFA levels supports cytotoxic effects of 
7β-OHC on peroxisomal activity and 
cytoprotective effects of α-tocopherol at the per-
oxisomal level. In untreated cells (control) and 
vehicle (EtOH: 0.1 and 0.5%)-treated cells, no 
significant differences were found; similar levels 
of VLCFA (C22:0, C24:0, C26:0) were found 
(Fig. 21.5a, b). The level of VLCFAs was deter-
mined by gas chromatography coupled with mass 
spectrometry (GC-MS). When C2C12 cells were 
exposed to 7β-OHC, a significant increase in 
VLCFAs was detected, and these latter were sig-
nificantly reduced when 7β-OHC was associated 
with α-tocopherol (Ghzaiel et al. 2021, 2022a) 
(Fig. 21.5a, b). However, enhanced elongase 
activity could also be involved in the increased
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Fig. 21.4 Effect of 7β-hydroxycholesterol on the level of 
the major peroxisomal membrane transporter (Abcd3) 
used to evaluate the peroxisomal mass. C2C12 cells were 
incubated for 24 h with or without 7β-OHC (50 μM) in the 

presence or absence of α-tocopherol (400 μM) (Ghzaiel 
et al. 2022a). The protective effect of α-tocopherol 
(400 μM) against 7β-OHC was analyzed by: (a) structured 
illumination microscopy (apotome); the nuclei were



Fig. 21.4 (continued) stained with Hoechst 33342 (2 μg/
mL); (b) flow cytometry (FCM). (c): the percentages of
C2C12 cells with reduced Abcd3 levels were determined
by FCM, and Abcd3 gene expression was quantified by
RT-qPCR; the data are presented as the mean ± SD of two
independent experiments performed in triplicate. A multi-
ple comparative analysis between the groups, taking into
account the interactions, was carried out using an ANOVA
test followed by a Tukey’s test. A p-value less than 0.05
was considered statistically significant. The statistically

significant differences between the groups, which are
indicated by different letters, take into account the vehicle
used. (a): comparison versus control; (b): comparison
versus ethanol (ETOH: 0.5%); (c): comparison versus
ETOH (0.1%); (d ): comparison versus α-tocopherol
(α-toco: 400 μM); (e): comparison versus 7β-OHC
(50 μM). No significant differences were observed
between the untreated (control) and vehicle-treated cells.
Ct cycle threshold

level of VLCFAs (Jakobsson et al. 2006; Kihara 
2012). At the moment, seven enzymes, ELOVL 
1–7 (Fatty Acid Elongases 1–7), localized in the 
endoplasmic reticulum, have been identified. 
ELOVL1 is considered to control VLCA synthe-
sis up to C26:0, and ELOVL1 is the most potent 
elongase for C24:0 and C26:0, however, 
depending on the cell type, similar elongase activ-
ity has been reported with ELOVL3 and 
ELOVL6. The data obtained support an increase 
in the elongase activity index which could corre-
spond to ELOVL1, 3, and 6 activity; ratio (C24:0/ 
C22:0), and ratio (C26:0/C22:0) under treatment 
with 7β-OHC; these different elongase activity 
indexes were also strongly attenuated when 
7β-OHC was associated with α-tocopherol 
(Ghzaiel et al. 2021) (Fig. 21.5d).
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21.2.4 Impact of 7KC 
and 7b-Hydroxycholesterol 
on the Expression 
of Peroxisomal Genes 
Associated with Peroxisomal 
Biogenesis, Peroxisomal 
b-Oxidation, and Plasmalogen 
Synthesis 

To address 7KC and 7β-OHC-mediated changes 
in peroxisomal gene expression, RT-qPCR was 
used not only to quantify the expression of the 
peroxisomal Abcd3 transporter gene but also to 
measure the expression of other peroxisomal 
genes such as those associated with peroxisomal 
biogenesis (Pex5, Pex13, Pex14), peroxisomal 
β-oxidation (Abcd1, Abcd2, Acox1, Mfp2, 

Thiolase A) (Wanders and Waterham 2006a), 
and the first two steps of plasmalogen synthesis 
(DHAP-AT, alkyl-DHAP synthase) (Brites et al. 
2004). Depending on the cell model used (murine 
nerve cells: 158N, N2a, and BV-2; murine 
myoblasts C2C12), the expression of some 
genes is either decreased or not modified under 
treatment with 7KC and 7β-OHC. Interestingly, 
when 7KC and/or 7β-OHC led to a reduction in 
peroxisomal gene expression, the addition of 
α-tocopherol always normalized this expression, 
demonstrating the potent cytoprotective effects of 
α-tocopherol against the peroxisomal toxicity 
induced by 7KC and 7β-OHC (Badreddine et al. 
2017; Nury et al. 2018; Ghzaiel et al. 2022a). 
These findings underscore the crucial role of 
α-tocopherol in preventing peroxisomal dysfunc-
tion caused by 7KC and 7β-OHC. 

21.3 Prevention of 7-
Ketocholesterol- and 
7β-Hydroxycholesterol-
Induced Peroxisomal Changes: 
Interest of Nutrients (ω3 Fatty 
Acids, Polyphenols) and Edible 
Oils (Argan and Olive Oils, 
Milk-Thistle (Sylibum 
Marianum) and Pistacia 
Lenticus Seed Oils) 

Among the nutrients that oppose the toxicity of 
7KC and 7β-OHC, α-tocopherol has shown effi-
cacy on many cell types of different species. This 
tocopherol, which is a major component of 
Vitamin E, is constituted of four tocopherols (α-,
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Fig. 21.5 Effect of 
7β-hydroxycholesterol with 
and without on very-long 
chain fatty acid (VLCFA) 
levels. C2C12 cells were 
incubated for 24 h with or 
without 7β-OHC (50 μM) 
in the presence or absence 
of α-tocopherol (400 μM). 
The level of VLCFA 
(C ≥ 22) was determined by 
GC-MS: C22:0 (a), C24: 
0 (b), C26:0 (c) (Ghzaiel 
et al. 2021). Data are the 
mean ± SD of two 
independent experiments. 
A multiple comparative 
analysis between the 
groups, taking into account 
the interactions, was carried 
out using an ANOVA test 
followed by a Tukey’s test. 
A p-value less than 0.05 
was considered statistically 
significant. The statistically 
significant differences 
between the groups, which 
are indicated by different 
letters, take into account the 
vehicle used. (a): 
comparison versus control; 
(b): comparison versus 
ethanol (ETOH: 0.5%); (c): 
comparison versus ETOH 
(0.1%); (d ): comparison 
versus α-tocopherol 
(α-toco: 400 μM); (e): 
comparison versus 7β-OHC 
(50 μM). No significant 
differences were observed 
between the untreated 
(control) and vehicle-
treated cells 
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β-, γ-, and δ-tocopherol) and four tocotrienols (α-, 
β-, γ-, and δ-tocotrienol) (Rimbach et al. 2002), is 
particularly opposed to topographical, morpho-
logical and functional changes in peroxisomes 
induced by these two oxysterols and can be con-
sidered as the leader in pexotherapy (Nury et al. 
2021a; Ghzaiel et al. 2022a).
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However, other nutrients (oleic acid, 
polyphenols) as well as several oils, mostly of 
Mediterranean origin (argan and olive oils, 
Milk-thistle, and Pistacia lentiscus seed oils), 
also strongly attenuate the toxicity of 7KC and 
7β-OHC as well as the associated peroxisomal 
modifications (Yammine et al. 2020; Rezig et al. 
2022).

• Thus, oleic acid (C18:1 n-9/C18:1 cis-9), also 
prevents 7KC-induced oxidative stress and 
cell death (such as oxiapoptophagy) on 
158N, N2a, and BV-2 cells. On BV-2 cells, 
oleic acid as well as α-and γ-tocopherol were 
able to prevent the decrease in Abcd3 protein 
levels, which allows the measurement of per-
oxisomal mass, and in mRNA levels of Abcd1 
and Abcd2, which encode for two transporters 
involved in peroxisomal β-oxidation (Debbabi 
et al. 2016). It is suggested that oleic acid 
could contribute to the inactivation of 7KC 
by esterification. Indeed, on U937 cells treated 
with 7KC-oleate, comparatively to 7KC, no 
cytotoxic effect was observed (Monier et al. 
2003). Similar observations were realized 
when C2C12 murine myoblasts were treated 
either with 7KC-oleate or 7β-OHC-oleate 
(Ghzaiel I., PhD Thesis, Univ. 
Bourgogne, 2022).

• Among polyphenols, known for their health 
benefits, quercetin (QCT), trans-resveratrol 
(RSV), and apigenin (API) also prevented per-
oxisomal dysfunction in 7KC-treated N2a 
cells (Yammine et al. 2020). These three 
polyphenols prevented the impact of 7KC by 
counteracting the decrease in ATP-binding 
cassette subfamily D member (Abcd3) at the 
protein and mRNA levels, as well as the 
decreased expression of genes associated 
with peroxisomal biogenesis (Pex13, Pex14) 
and peroxisomal β-oxidation (Abcd1, Acox1, 

Mfp2, Thiolase A). 7KC-induced decrease in 
Abcd1 and Mfp2, two proteins involved in 
peroxisomal β-oxidation, was also attenuated 
by RSV, QCT, and API.

• As Milk-thistle seed oil (MTSO) contains high 
amounts of α-tocopherol, oleic acid as well as 
low amounts of polyphenols (Meddeb et al. 
2017), this led us to evaluate its cytoprotective 
activities on 7KC- and 7β-OHC-treated cells. 
On 158N cells, MTSO opposes oxidative 
stress and cell death induced by 7KC and 
7β-OHC (Badreddine et al. 2020; Zarrouk 
et al. 2019). On C2C12 murine myoblasts, in 
the presence of 7β-OHC, comparatively, to 
untreated cells, important quantitative and 
qualitative peroxisomal modifications were 
identified: (a) a reduced number of 
peroxisomes with abnormal sizes and shapes, 
mainly localized in cytoplasmic vacuoles, 
were observed; (b) the peroxisomal mass was 
decreased as indicated by lower protein and 
mRNA levels of the peroxisomal Abcd3 trans-
porter; (c) lower mRNA level of Pex5 
involved in peroxisomal biogenesis as well as 
higher mRNA levels of Pex13 and Pex14, 
involved in peroxisomal biogenesis and/or 
pexophagy, was found; (d) lower levels of 
Acox1 and Mfp2 enzymes, implicated in per-
oxisomal β-oxidation, were detected; 
(e) higher levels of very-long chain fatty 
acids, which are substrates of peroxisomal 
β-oxidation, were found. These different cyto-
toxic effects were strongly attenuated by 
MTSO, in the same range of order as with 
α-tocopherol (Ghzaiel et al. 2022a). The 
cytoprotective results obtained with MTSO 
prompted us to evaluate the cytoprotective 
activities of other oils used in the 
Mediterranean diet.

• Olive oil also highly attenuates the toxicity of 
7KC (oxiapoptophagy, oxidative stress) on 
158N cells (Badreddine et al. 2017; Zarrouk 
et al. 2019).

• With argan oil (AO), important cytoprotective 
effects were also observed on 158N. Under 
treatment with 7KC, AO significantly 
attenuates loss of cell adhesion, cell growth
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inhibition, increased plasma membrane per-
meability, mitochondrial and lysosomal dys-
function, as well as oxiapoptophagy induction 
(Badreddine et al. 2017). Marked effects on 
the peroxisome were also observed: thus, 
argan oil significantly counteracts the 
decreased expression of Abcd1 and Abcd3 
observed under treatment with 7KC 
(Badreddine et al. 2017). Based on data 
obtained on BV-2 cells, it is suggested that 
Schottenol and Spinasterol, two major 
phytosterols of AO and cactus seed oil 
(El-Mostafa et al. 2014; El Kharrassi et al. 
2014), could protect cells from oxidative stress 
and of its harmful consequences for peroxi-
somal functions (Essadek et al. 2023).

• With Pistacia lenticus seed oil (PLSO), on 
C2C12 murine myoblasts, the cytotoxic 
effects of 7β-OHC were also strongly reduced 
(Ghzaiel et al. 2021). Thus, at the peroxisomal 
level, PLSO strongly attenuates (1) the topo-
graphical and morphological changes revealed 
by illumination microscopy (apotome) and 
TEM, (2) the decrease of peroxisomal mass 
revealed by lower levels of Abcd3 protein 
and mRNA measured by flow cytometry and 
RT-qPCR, and (3) the decrease of peroxisomal 
β-oxidation revealed by an intracellular accu-
mulation of C24:0 and C26:0 quantified by 
GC-MS. 

21.4 Conclusions 

Both 7KC and 7β-OHC modify the topography, 
mass, structure, and activity of peroxisomes on 
several cell types. However, the detrimental 
effects can be attenuated by several nutrients 
and Mediterranean oils. This has led to the devel-
opment of pexotherapy, where natural and syn-
thetic molecules, as well as specific oils, are used 
to prevent peroxisomal damage. The techniques 
that have been developed for studying peroxi-
somal status can be applied in both experimental 
and clinical contexts, providing a better under-
standing of peroxisomes, which are still poorly 

understood in both physiological and pathologi-
cal contexts. 
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