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Abstract 

Sitosterolemia is a rare genetic lipid disorder, 
mainly characterized by the accumulation of 
dietary xenosterols in plasma and tissues. It is 
caused by inactivating mutations in either 
ABCG5 or ABCG8 subunits, a subfamily-G 
ATP-binding cassette (ABCG) transporters. 
ABCG5/G8 encodes a pair of ABC half 
transporters that form a heterodimer (G5G8). 
This heterodimeric ATP-binding cassette 
(ABC) sterol transporter, ABCG5/G8, is 
responsible for the hepatobiliary and 
transintestinal secretion of cholesterol and die-
tary plant sterols to the surface of hepatocytes 
and enterocytes, promoting the secretion of 
cholesterol and xenosterols into the bile and 
the intestinal lumen. In this way, ABCG5/G8 
function in the reverse cholesterol transport 
pathway and mediate the efflux of cholesterol 

and xenosterols to high-density lipoprotein 
and bile salt micelles, respectively. Here, we 
review the biological characteristics and func-
tion of ABCG5/G8, and how the mutations of 
ABCG5/G8 can cause sitosterolemia, a loss-
of-function disorder characterized by plant ste-
rol accumulation and premature atherosclero-
sis, among other features. 
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2.1 Introduction 

Sitosterolemia is a rare genetic recessive disease 
in which an individual is unable to excrete 
xenosterols. 

In 1974, Bhattacharyya and Conner first 
described a new syndrome, a lipid storage disor-
der, in two sisters who presented with tendon and 
tuberous xanthomas with normal plasma choles-
terol levels and elevated plasma levels of plant 
sterols (phytosterols), such as sitosterol, 
campesterol, and stigmasterol. The disease was 
named—sitosterolemia—after the most abundant 
dietary xenosterol, sitosterol. In fact, some think 
that perhaps a more appropriate name for the 
disease would be xenosterolemia (Maguire et al. 
2001). Anyway, this discovery initiated funda-
mental studies on how dietary sterols traffic and 
are eliminated by the body (Williams et al. 2021). 

It took another 26 years before the 
sitosterolemia locus was mapped to chromosome 
2p21 and the discovery that the genetic locus 
whose dysfunction leads to sitosterolemia 
encodes two genes, abcg5 and abcg8, whose 
proteins (ABCG5 and ABCG8) function as obli-
gate heterodimers (Berge et al. 2000; Lu et al. 
2001). 

ABCG5 and ABCG8 are expressed only in 
hepatocytes, gallbladder epithelium, and 
enterocytes and are responsible for excretion of 
sterols, with xenosterols preferred over choles-
terol (Patel et al. 2018). In fact, the naming of 
the disease has led to a bias: a vast range of other 
sterols, not just sitosterol, are accumulating in the 
body (Gregg et al. 1986). According to some 
researchers, a better name should be 
xenosterolemia. 

Several missense mutations on either genes are 
the causative gene defect that lead to loss of 
function of the ABCG5/G8 transporter, which is 
associated with lipid phenotypes (Miettinen 
1980; Salen et al. 1985; Berge et al. 2000; Lee 
et al. 2001; Lu et al. 2001; Brown and Yu 2010; 
Williams et al. 2021). Subsequent case reports 
established the recessive genetics of the disease 
and greatly expanded its potential clinical 
presentation. 

2.2 Sterol Transport 

All living cells depend on their ability to transfer 
molecules such as nutrients, hormones, 
metabolites, and across their membranes. Cell 
membrane is the natural barrier for intracellular 
constituents and the checkpoint of molecules and 
signals from the extracellular milieu. Lipids are 
the primary component of mammalian cell 
membranes, with cholesterol being a key compo-
nent. Cholesterol accounts for �40–50% of the 
total lipid content in the plasma membrane (Steck 
and Lange 2018). Cholesterol serves as the pre-
cursor molecule for steroid hormones that modu-
late gene regulation, for bile acids that enable for 
nutrient absorption, and for vitamin D which are 
vital for body health (Rezaei et al. 2023). 

Translocation of cholesterol molecules on 
biological membranes plays an essential role in 
maintaining cholesterol homeostasis. However, 
relatively little is known about the mechanisms 
that control the sterol shuttling across lipid-
bilayer membranes. Anyway, lipid-transport 
membrane proteins have been shown to be essen-
tial for the translocation of sterols and 
phospholipids to maintain lipid homeostasis, cel-
lular functions, and the structural integrity of 
mosaic lipid bilayers (Abumrad et al. 2000; 
Sharom 2011; López-Marqués et al. 2015). 

Cholesterol can be obtained by de novo cell 
biosynthesis or via dietary uptake in the intestine. 
In normal diets, the levels of cholesterol and 
non-cholesterol sterols from plants (xenosterols) 
or other dietary sources are usually equal. How-
ever, 50–60% of dietary cholesterol is absorbed, 
while xenosterols exhibit poor bioavailability, 
with <5% absorption (Salen et al. 1970). When 
more plant sterols are ingested, they compete with 
the bulk cholesterol for solubilization, thereby 
reducing dietary absorption of cholesterol and 
lowering plasma cholesterol. 

Elimination of excess cholesterol is vital for 
life. Abnormal elevations in plasma cholesterol 
contribute to hyperlipidemia, a critical factor 
leading to cardiovascular diseases and other met-
abolic disorders (Salen et al. 1970). However, not 
all imported cholesterol is metabolized in the



cells. In fact, few cells have this capacity. There-
fore, elimination of the excess amount of choles-
terol has to be cleared from cells and tissues via 
two metabolic pathways that are essential to 
maintain homeostasis: reverse cholesterol trans-
port through sterol acceptors in the circulation or 
direct cholesterol excretion through biliary and 
intestinal secretion (Vrins et al. 2012; Ouimet 
et al. 2019). Xenosterols have efficient biliary 
elimination (Salen et al. 1970). 
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In more advanced life forms, functions such as 
nutrient intake and the exchange of compounds 
between cellular organelles or tissues often take 
place against concentration gradients across cel-
lular membranes (Schumacher and Benndorf 
2017). It is therefore not surprising that in simple 
life forms like bacteria, almost 10% of the entire 
genome is dedicated to proteins that are involved 
in transport processes in the form of membrane-
bound or soluble proteins (Blattner et al. 1997). 
Transport processes against chemical gradients 
always require free energy which is derived 
from either by simultaneous use of an opposing 
electrochemical potential difference (secondary 
active transport) or a coupled enzymatic reaction 
exploiting the chemical energy of adenosine tri-
phosphate (ATP) hydrolysis (primary active 
transport) (Blattner et al. 1997; Schumacher and 
Benndorf 2017). This ATP-driven transport, 
which act through the activity of energy-
dependent unidirectional, membrane-bound, 
compound-efflux transporter proteins, comprise 
a large superfamily, the ABC (ATP-binding cas-
sette) transporters. 

2.3 ABC Transporters 

The ABC transporter superfamily comprises one 
of the largest families of evolutionarily conserved 
membrane proteins and is ubiquitously expressed 
in all domains of life, from nearly all prokaryotes 
to virtually all types of eukaryotic cells (Higgins 
1992; Dean et al. 2001a, b; Dean and Annilo 
2005; Locher 2016; Bilsing et al. 2023). ABC 
transporters are most abundantly expressed in 
organs with high metabolic rates and in endothe-
lial cells that isolate organs like the blood–brain 

barrier and blood–testis barrier (Schumacher and 
Benndorf 2017). 

These transporters are involved in a broad 
range of cellular processes, therein actively 
transporting a wide range of different substrates 
across the plasma membrane (Schumacher and 
Benndorf 2017). ABC transporters use the energy 
from ATP hydrolysis to drive the passage or 
flipping of various moieties across the bilayer 
membrane, from small inorganic and organic 
molecules to larger organic compounds 
(Schumacher and Benndorf 2017), including 
both hydrophilic and hydrophobic molecules 
such as sugars, peptides, drugs, phospholipids, 
and sterols (Dean and Allikmets 1995; Linton 
and Higgins 1998; Dean et al. 2001a, b; Hwang 
et al. 2016; Plummer et al. 2021). 

ABC transporters are divided into three 
subclasses, two groups of importers and one 
group of exporters, according to their functional 
and architectural characteristics (Schumacher and 
Benndorf 2017). ABC importers are predomi-
nantly found in prokaryotes where they manage 
the nutrient and ion intake (Ferreira and de S-
á-Nogueira 2010; Gisin et al. 2010); they only 
sparsely occur in eukaryotes. The vast majority of 
ABC transporters expressed in eukaryotes are 
ABC exporters, promoting functions such as 
secreting dietary substances and metabolites or 
even transport signaling molecules (Schumacher 
and Benndorf 2017). Also, ABC transporters are 
major sterol exporters responsible for both cho-
lesterol efflux from peripheral cells and the elimi-
nation of excess cholesterol and dietary sterols 
such as sitosterols (Borst and Elferink 2002; 
Xavier et al. 2019). 

There are currently 49 different genes known 
to encode ABC transporters in humans, which 
categorize subfamilies of ABC transporter 
proteins based on sequence similarity, sequence 
divergence and structural arrangement (Plummer 
et al. 2021; Huang and Ecker 2023). Since several 
of those genes are alternatively spliced during 
transcription, each of those 49 genes not only 
encode one single protein, but instead often a 
multiple of different ABC protein variants (Dean 
et al. 2001a, b). The subfamilies are named 
ABCA–ABCG. Five distinct families (A, B,



s

s

C, D, and G) display a wide array of substrate 
specificities and functionalities (Alam and Locher 
2023). Of all ABC transporters that have been 
described so far, the three members ABCB1, 
ABCC1, and ABCG2 are less organ specific 
(Zhang et al. 2015). 
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The first human ABC transporter described, 
P-glycoprotein (ABCB1) (170 kDa) was discov-
ered in 1976 by Juliano and Ling in Chinese 
hamster ovary (CHO) cells, selected for resistance 
to colchicine. These cells displayed pleiotropic 
cross-resistance to a wide range of amphiphilic 
drugs. Because the glycoprotein altered the mem-
brane permeability (P), it was called 
P-glycoprotein (P-gp, encoded by the MDR-1/ 
abcb1 gene) (Huang and Ecker 2023). ABCB1 
is the first mammalian member of the large family 
of ABC transporters present in prokaryote 
(Davidson et al. 2008) and eukaryotes, from 
plants (Theodoulou 2000) to humans (Gottesman 
and Ambudkar 2001). 

The division of ABC transportes in 
subfamilies is based mainly on similarity in gene 
structure, e.g., half vs. full transporters, and on 
sequence homology in the nucleotide-binding 
domains (NBDs) and transmembrane domains 
(TMD) (Schumacher and Benndorf 2017). 

ABC transporters are organized as two sym-
metric halves that are expressed either (a) a  
separate subunits (half-transporters) that assem-
ble as homodimers or heterodimers or (b) a  
monomers containing two nonidentical halves 
within a single polypeptide (full transporter) 
(Alam and Locher 2023). Each half comprises, 
at minimum, a NBD that is responsible for ATP 
binding and hydrolysis and a TMD that facilitates 
substrate export (away from the NBDs) or import 
(toward the NBDs) (Alam and Locher 2023). The 
human ABC transporters can be either full or 
half-transporters. In principle, full ABC trans-
porter transcripts, such as members in the A-
and C-subfamilies, comprise four domains within 
one polypeptide chain, namely 2 TMDs embed-
ded in the lipid bilayer, and 2 NBDs facing the 
cytoplasmatic space (Plummer et al. 2021; Huang 
and Ecker 2023). The motifs are arranged as 
N-TMD-NBD-TMD-NBD-C, whereas the half 
ones have only one TMD and one NBD 

(Plummer et al. 2021). Hence, the half-
transporters should form homodimers or 
heterodimers to perform their function (Huang 
and Ecker 2023). Among ABC transporter 
families, NBDs exhibit high sequence homology, 
with several canonical motifs. The transport func-
tion is generally believed to be driven by the NBD 
dimerization, in which ATP is bound and 
hydrolyzed. TMDs are structurally highly 
diverse, suggesting distinctive transport 
mechanisms for individual transporters (Ford 
and Beis 2019). 

2.4 Main Diseases Related to ABC 
Transporters 

Active in nearly all cells and tissues, ABC 
transporters play vital physiological roles ranging 
from lipid homeostasis to transport of diverse 
endogenous and exogenous compounds (Alam 
and Locher 2023). Several diseases result directly 
from dysfunction of these transporters, making 
them important targets for therapeutic interven-
tion. Therefore, human ABC transporters hold 
tremendous biomedical and pharmacological rel-
evance (Dean et al. 2001a, b; Borst and Elferink 
2002; Leonard et al. 2003). 

A major obstacle in cancer treatment is the 
development of cancer resistance to several struc-
turally dissimilar cytotoxic substances (Huang 
and Ecker 2023). This phenomenon is termed as 
multidrug resistance (MDR), which renders the 
cancer cells ineffective in accumulating drugs, 
preventing their death. ABCB1, ABCC1, and 
ABCG2 were frequently observed with enhanced 
overexpression in multiple cancer types (Zhang 
et al. 2015). In fact, ABCB1 transporter is the 
most studied ABC regarding chemotherapy 
against cancer (Hwang et al. 2016; Seelig and 
Li-Blatter 2023). Subsequent to the discovery of 
P-gp, studies of cancer cells revealed other 
phenotypes, which showed multidrug resistance 
related characteristics. These multidrug resistance 
related proteins (MRPs) were later classified as 
the ABCC subfamily (Cole et al. 1992). Simulta-
neously, a novel half transporter member of the 
ABC superfamily was identified from a resistant



breast cancer cell line (Doyle et al. 1998), hence 
named as breast cancer resistance protein 
(BCRP), encoded by the ABCG2 gene. Addition-
ally, other members of ABC transporter were 
reported to export at least one anticancer agent. 
For instance, ABCA2, ABCC2, ABCC3, 
ABCC4, ABCC5, ABCC6, and ABCC11 
(Hwang et al. 2016). Others, such as ABCB11, 
also known as Spgp (sister of P-glycoprotein) or 
BSEP (bile salt exporter protein), which is pre-
dominantly expressed in liver, has the capacity to 
confer resistance to cytotoxic substrates like taxol 
and vinblastine (Childs et al. 1995, 1998). 
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With at least 20 human ABC transporters 
being related to the transport of lipids or lipid-
like compounds, it is not surprising that some of 
these transporters have been linked to the patho-
genesis of atherosclerotic vascular diseases 
(Schumacher and Benndorf 2017). Moreover, 
ABC transporters have also been associated with 
vascular endothelial homeostasis and blood pres-
sure regulation, as well as platelet production and 
aggregation (Schumacher and Benndorf 2017). 

Dysfunction of ABCA1 can lead to Tangier’s 
disease (Alam and Locher 2023). ABCA2 dys-
function has been associated with intellectual and 
developmental deficiency, and also to amyloid 
homeostasis, thereby pointing to a potential role 
in Alzheimer’s disease (Alam and Locher 2023). 
Genetic variations in the ABCA3 gene, involved 
in phospholipid transport from the cytoplasm to 
the lumen of lamellar bodies, can cause pulmo-
nary surfactant metabolism dysfunction 3, a 
severe respiratory disorder (Alam and Locher 
2023). 

2.5 ABCG5/G8 Transporter 

ATP-binding cassette subfamily G (ABCG) sterol 
transporters maintain the homeostasis of endoge-
nous and exogenous sterol. A substantial part of 
exogenous sterols are undigestible phytosterols, 
which can lead to complications when 
accumulated. ABCG5/G8 is the main functioning 
protein to remove ingested plant sterols providing 

protection from their toxic effects, although the 
structural features behind substrate binding in 
ABCG5/G8 remain relatively poorly resolved. 

2.5.1 ABCG5/G8 Transporter Genes 

The ABCG subfamily comprises five genes 
encoding half-transporters. Both of the two 
genes abcg5 and abcg8 are located on chromo-
some 2p21, adjacent to each other in a head-to-
head fashion, on opposite strands, and are 
separated by only 374 base pairs (Berge et al. 
2000). 

Due to their proximity and opposite orienta-
tion, these two genes are regulated by a bidirec-
tional intergenic promotor, which contains 
binding sites for hepatocyte nuclear factor 4α, 
GATA 4/6 (Sumi et al. 2007), and a liver receptor 
homolog 1 (Freeman et al. 2004). In addition, 
agonists for either liver X receptor or farnesoid 
X receptor regulate ABCG5/G8 mRNA levels 
(Repa et al. 2002). 

Each ABC transporter (ABCG5/G8) 
comprises two nucleotide-binding composite 
sites, where the Walker A motif of one NBD is 
paired with the ABC signature motif of the other 
NBD. Therefore, one of the ATP-binding sites 
presents a degenerate motif, while the other 
presents a conserved motif, which is the only 
one able to support ATP hydrolysis. 

2.5.2 Characteristics 
of the ABCG5/G8 Transporter 
Structure 

The members of the G-subfamily are half 
transporters with only one NBD and one TMD. 
The ABCG transporters are also characteristic. 
They are the only human ABC transporters with 
their inverted domain topology that contain an 
N-terminal NBD followed by a C-terminal TMD 
(Alam and Locher 2023). 

G subfamily members must form homo- or 
heterodimers for functionality (Dean et al.



2001a, b). Although two transportes, ABCG1 and 
ABCG4, have been proposed to also function as 
heterodimers, most studies support the notion that 
both are homodimers (Cserepes et al. 2004; Hegyi 
and Homolya 2016). In contrast, ABCG5 and 
ABCG8 form obligate heterodimers (Lee et al. 
2001; Wang et al. 2006; Brown and Yu 2010). 
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Each gene ABCG5 and ABCG8 encodes a 
“half-transporter” protein that is nonfunctional 
in the monomeric state (Brown and Yu 2010). 
However, assembly of an ABCG5/G8 
heterodimer, driven by the adipocyte-derived hor-
mone leptin, leads to the formation of the fully 
functional transporter ABCG5/G8 (Brown and 
Yu 2010). 

Structural information of the ABCG5/G8 
heterodimer was revealed by X-ray crystallogra-
phy, establishing a new molecular framework 
toward a mechanistic understanding of ABC ste-
rol transporters (Graf et al. 2002, 2003). This 
structure contained an asymmetric unit with two 
heterodimers that interact through their TMDs 
with NBDs at opposite sides of the membrane. 
Without bound nucleotide or lipid substrate inside 
the transporter, the ABCG5/G8 structure exhibits 
an inward-facing conformation (Plummer et al. 
2021). Three helices from both ABCG5 and 
ABCG8, form a three-helix bundle, which 
bridges the TMD and NBD. 

In addition, a sterol-binding site was 
postulated at the membrane-transporter interface 
based on the crystal structure of ABCG5/G8 
(Farhat et al. 2022), solving the crystal structure 
of ABCG5/G8 in complex with cholesterol. The 
structure shows that an orthogonal cholesterol 
molecule fitting horizontally in front of A540, a 
conserved ABCG5 residue at this orthogonal 
sterol-binding site. 

2.5.3 Observations on ABCG5/G8 
Mutations 

Mutations present in some sitosterolemia patients 
impair heterodimer trafficking (Graf et al. 2004), 
suggesting that these mutations disrupt ABCG5/ 
G8 cellular localization rather than reducing 
ABCG5/G8 transport activity (Plummer et al. 
2021). However, this seems not to be a rule. The 

Ala540Phe mutant in ABCG5, a residue that 
putatively binds cholesterol, resulted in reduced 
biliary cholesterol transport (Lee et al. 2016). 

On the triple-helical bundle or the transmem-
brane polar relay, several residues have been 
shown to bear disease-causing missense 
mutations from patients with sitosterolemia or 
other lipid metabolic disorders. Notably, several 
disease-causing mutations are clustered in the 
membrane-spanning region or at the NBD–TMD 
interface. This suggests the roles of these struc-
tural motifs in regulating the ABCG5/G8 
function. 

ABCG5/G8 has also been studied through 
overexpression of either wild-type or mutant 
ABCG5/G8 in abcg5/abcg8 KO mice (Plummer 
et al. 2021). Mice lacking abcg5, abcg8, or both 
show increased plasma levels of sterols and 
reduction of sterol secretion into the bile. In con-
trast, overexpression of ABCG5/G8 showed the 
opposite effect, with reduced sterol absorption 
and increased biliary sterol levels (Yu et al. 
2002a, b). These effects are dependent on 
ABCG5/G8 expression levels. Moreover, using 
mdr2 KO mice, a lack of secretion was observed, 
suggesting that the function of ABCG5/G8 is 
dependent on a functional ABCB4 transporter 
(Plummer et al. 2021). 

Homodimers of either ABCG5 or ABCG8 are 
likely nonfunctional, evident from low ATPase 
activity relative to the native heterodimer (Wang 
et al. 2006), impaired trafficking (Graf et al. 
2003), and low biliary cholesterol transfer in KO 
mice (Graf et al. 2003; Zhang et al. 2006). Sur-
prisingly, abcg8 KO in mice results in continued 
expression of ABCG5 at the apical membrane 
and secretion of sitosterol into the bile, suggesting 
that the ABCG5 homodimer may be functional or 
that an alternative pathway of sterol secretion into 
the bile exists (Klett et al. 2004). 

2.5.4 Function and Regulation 
of ABCG5/G8 

Physiologically, ABCG5/G8 plays an essential 
role in controlling sterol homeostasis in our 
bodies.
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The ABCG5/G8 transporter is predominantly 
expressed on the apical surface of hepatocytes 
along the canalicular membranes of the bile 
ducts in the liver and on the brush-border 
membranes of enterocytes in the small intestines 
(Patel et al. 1998; Berge et al. 2000; Graf et al. 
2002, 2003; Yu et al. 2002a, b; Hirata et al. 2009; 
Brown and Yu 2010; Zein et al. 2019). 

ABCG5/G8 is the primary transporter and 
sterol-efflux pump that selectively exports excess 
cholesterol, noncholesterol sterols, and dietary 
plant sterols from hepatocytes into bile canaliculi 
and in the intestine back to the intestinal lumen 
(Lee et al. 2001, Wang et al. 2006; Rezaei et al. 
2023), by translocating sterols within the plasma 
membrane and in endosomes (Sano et al. 2014; 
Pandzic et al. 2017; Xavier et al. 2020). Expres-
sion level of ABCG5 and ABCG8 is further 
modulated by bile acid levels in both the liver 
(Dean et al. 2001a, b) and intestine (Kamisako 
et al. 2007). 

One proposed mechanistic mode for the sterol 
transfer to bile acid suggests that ABCG5/G8 
translocates sterol across the bilayer membrane, 
functioning as a liftase (Small 2003; Lee et al. 
2016). However, there is little experimental evi-
dence to support this hypothesis. 

Another model suggests that ABCG5/G8 
functions only as a sterol floppase, increasing 
the sterol concentration in the outer leaflet and 
allowing for extraction of sterol by the bile salt 
micelle (Kosters et al. 2006). This hypothesis is 
supported by the observation that the function of 
ABCG5/G8 depends on ABCB4, a phosphatidyl-
choline transporter, and sterol is potentially 
extracted from the outer leaflet via sterol-
phospholipid vesicles (Crawford et al. 1997). 
Multidrug-resistant protein 3 (MDR3), also 
known as ABCB4, is a phospholipid translocase 
embedded in the canalicular membrane. Although 
it actively flips inner leaflet phospholipids and 
sterols to the outer leaflet, there is evidence 
supporting its subsequent role in substrate secre-
tion toward the bile. Furthermore, MDR3 is found 
to be essential for the proper function of ABCG5/ 
G8, which believed to be caused by its involve-
ment in the formation of mixed micelles. 

Finally, ABCG5/G8 may directly transfer 
sterols to bile salt micelles following sterol flip-
ping across the plasma membrane (Plummer et al. 
2021). Spontaneous cholesterol flipping between 
leaflets is a common event in the plasma mem-
brane, capable of undertaking intermediate hori-
zontal orientation within the membrane core. It is 
thus possible that ABCG5/G8 catalyzes choles-
terol flipping from inner to outer leaflets, 
peripherally through its exterior surface. 

In addition, ABCG5/G8 exhibits cholesterol 
efflux activity in the presence of bile acid micelles 
(Vrins et al. 2007). Mixed micelles are very 
charged, small aggregates of phospholipids, cho-
lesterol and bile salts, and these micelles form the 
basis of currently known ABCG5/G8 acceptor 
particles. Accordingly, it has been suggested 
that mixed micelles of bile acids dock onto 
ABCG5/G8 to induce conformational changes 
and stimulate ATPase for the transport of choles-
terol (Johnson et al. 2010). Acceptor particles will 
then intake the exported lipids from ABCG5/G8. 

Differently from homodimeric ABCG1, the 
heterodimeric ABCG5/G8 carries out selective 
sterol excretion. ABCG5/G8 is unique in its capa-
bility of preferential efflux for dietary plant sterols 
over cholesterol, preventing the abnormal accu-
mulation of plant sterols in human body (Berge 
et al. 2000; Lee et al. 2001; Graf et al. 2003; Yang 
et al. 2004; Schumacher and Benndorf 2017). 
Intestinal ABCG5/G8 acts as a first-pass gate, 
pumping xenosterols back into the intestinal 
lumen, whereas liver ABCG5/G8 pumps 
xenosterols into the bile (Patel et al. 2018). 
There are numerous reports that ABCG5/G8 
exhibits a preference for the transport of 
noncholesterol sterols over cholesterol (Yu et al. 
2004; Plummer et al. 2021). The preference for 
noncholesterol sterols in either intestine- or liver-
localized abcg5/abcg8 KO mice was slightly 
reduced compared to whole-animal abcg5/abcg8 
KO models, suggesting that expression of 
ABCG5/G8 in both liver and intestine is required 
for full selectivity (Wang et al. 2015). The 
mechanisms that govern such substrate selectivity 
within this protein subfamily, however, remain 
elusive.
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2.6 Sitosterolemia 

This very rare autosomal recessive disorder is 
characterized by drastically elevated plasma and 
tissue levels of plant sterols (Schumacher and 
Benndorf 2017). As stated before, missense 
mutations in both genes, ABCG5 and ABCG8, 
are related to sitosterolemia (Berge et al. 2000; 
Hubacek et al. 2001; Lu et al. 2001). ABCG5/G8 
exhibits substrate specificity, particularly for 
plant sterols (e.g., sitosterol and campesterol) 
over cholesterol (Matsumura et al. 2007; Michaki 
et al. 2012). In fact, sitosterolemia patients exhibit 
increased absorption of numerous plant 
xenosterols, not just sitosterol (Morita and 
Imanaka 2012). 

The clinical presentation may include elevated 
low-density lipoprotein (LDL) cholesterol and 
tuberous tendon xanthomas. 
Hypercholesterolemia-induced premature athero-
sclerosis was particularly observed to affect male 
patients at a young age, leading to CVD-like 
angina pectoris, myocardial infarctions, and sud-
den cardiac death (Kwiterovich et al. 1981; 
Brown and Yu 2010). Hematologic 
manifestations (hemolytic anemia, 
macrothrombocytopenia, splenomegaly, and 
bleeding disorders) can result from the accumula-
tion of plant sterols in platelet membranes, pro-
ducing hypertrophic and hyperplasic 
dysfunctional platelets. Adrenal dysfunction, 
arthritis, elevated liver function tests, and cirrho-
sis (in rare cases hepatic failure) are other features 
(Shulman et al. 1976; Miettinen 1980; 
Kwiterovich et al. 1981; Lin et al. 1983; Salen 
et al. 1985; Beaty et al. 1986; Nguyen et al. 1990; 
Bhattacharyya et al. 1991; Rees et al. 2005; 
Mushtaq et al. 2007; Wang et al. 2014; 
Bazerbachi et al. 2016). Clinical studies in 
individuals with sitosterolemia revealed 
reductions in cholesterol synthesis, biliary choles-
terol secretion, plasma clearance, and fecal elimi-
nation of neutral sterols (Salen et al. 1989; 
Nguyen et al. 1990; Bhattacharyya et al. 1991; 
Cobb et al. 1997). Due to similar clinical 
presentations, sitosterolemia has been, in many 

cases, inaccurately diagnosed as familial hyper-
cholesterolemia or idiopathic liver cirrhosis. 

The ABCG5/G8 loss of function in animal 
models, as well as in humans, shows that accu-
mulation of xenosterols leads to dramatic 
phenotypes, such as macrothrombocytopenia 
and platelet dysfunction, liver disease, appear-
ance of gallstones, elevation of low-density lipo-
protein cholesterol levels and cholesterol 
accumulation with xanthoma formation and ath-
erosclerosis (Grass et al. 1995; Yu et al. 2002a, b, 
2005; Kajinami et al. 2004; Acalovschi et al. 
2006; Buch et al. 2007; Wang et al. 2007; Chen 
et al. 2008; Kuo et al. 2008; Katsika et al. 2010; 
Patel and Salen 2010; Srivastava et al. 2010; 
Renner et al. 2013; Von Kampen et al. 2013; 
Jiang et al. 2014). In mouse models (but not 
humans), infertility, immune dysfunction, and 
cardiomyopathy have been reported (McDaniel 
et al. 2013; Solca et al. 2013; Wilson et al. 
2013). This begs the question whether a lifetime 
of low-level exposure to dietary bioactive 
xenosterols, whose levels of entry and retention 
may be altered by polymorphisms in ABCG5 and 
ABCG8, may have biological consequences. 

Despite the absorptive phenotype and metabo-
lism of phytosterols to bile acids, the clinical 
management of these patients with low sterol 
diets and bile acid-binding resins resulted in mod-
est and inconsistent reductions in plasma 
phytosterols (Lin et al. 1983; Nguyen et al. 
1991). Treatment of sitosterolemia involves a 
diet that is low in plant lipids and the administra-
tion of the drug ezetimibe, which acts as an inhib-
itor of Niemann-Pick C1-like protein 
1 (NPC1L1), that functions in intestinal sterol 
absorption Morita et al. 2007). 

In conclusion, although sitosterolemia is a rare 
genetic disease, this disorder should be consid-
ered in the differential diagnosis, due to its early 
clinical manifestations and relatively difficult 
treatment. 
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