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Abstract. The personalization of services for users is one of the most crucial
objectives of digital platforms. This objective is accomplished by integrating
automated recommendation components into information systems. The increasing
computational power and storage capacity available today have opened up oppor-
tunities to deploy a combination of diverse approaches to enhance the accuracy of
the recommendation process. Compared to previous research, the distinguishing
feature of this study is the introduction of an approach that combines not only
computational aspects but also data types. In terms of computation, our approach
integrates both item-based and user-based recommendations. Regarding data type,
we utilize all three common data types, i.e., user ratings, user reviews, and user
interactions, to learn user preferences for recommendations. This comprehensive
combination has demonstrated its effectiveness through experiments.
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1 Introduction

Recommender systems play a vital role in enterprise information systems. These systems
enable users to easily access items thatmatch their interests, facilitating precise and time-
saving decision-making [1, 2]. With such benefits, recommendation components have
become essential to implementing information systems. Evidence of this can be seen
in the significant number of users on digital platforms who make purchases based on
recommender systems [3].

To successfully provide recommendations, recommender systems always strive for
effective approaches to predict user preferences. Collaborative filtering is one of the
most popular approaches for this task, comprising two primary classes: latent factor
models and neighbor models. Latent factor models concentrate on representing users
and items through latent factors, which enable precise prediction of user preferences
for items [4, 5]. However, interpreting the underlying meanings of these latent factors
can be challenging. In contrast, neighbor models offer greater interpretability [6–8].
Nowadays, the interpretability of a recommendation model is considered as significant
as its accuracy [8, 9].
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Neighbor models predict the preference of a user u for an item i by leveraging the
preferences for i observed from users who share similar preferences with u, known as
neighbor users. In addition to such neighbor-user models, this principle can also be
implemented into neighbor-item models. Neighbor-item models entail aggregating the
ratings of u for items that are similar to i, referred to as neighbor items. To improve the
accuracy of recommendations, many studies have focused on combining the preference
predictions from both neighbor-user and neighbor-itemmodels [10, 11]. This paper aims
to contribute to the advancement of combined neighbor models, as follows:

• Traditionally, neighbormodels rely onobservedpreferences to identify neighbor users
and neighbor items. However, beyond observed preferences, recommender systems
can also gather interactions and textual reviews from users [12, 13]. The distinctive
feature of this paper is the integration not only of the two computational aspects
(neighbor-item model and neighbor-user model) but also of all three popular user
profile types (user preferences, user reviews, and user interactions).

• However, the integrations mentioned above may lead to an increase in computa-
tional expenses. Hence, our objective is to put forth efficient solutions to address the
implementation challenges associated with our proposed approach.

2 Related Works
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Fig. 1. An description of a recommender system
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2.1 Recommendation Problem Statement

Recommendationmodels are trained based on item preferences observed by users. These
preferences typically consist of numeric ratings assigned by users to items (ru,i �= ∗
where u = 1 . . .m, i = 1 . . . n, m is the number of users, and n is the number of items).
The trained models help predict unknown ratings (ru,i = ∗ where u = 1 . . .m and
i = 1 . . . n). In Fig. 1, it is necessary to predict u2’s rating for i1, i2, and i3. The items
that receive the highest predicted ratings will be recommended to u2.

2.2 Recommendation Models

Collaborative filtering is one of the most popular approaches for rating predictions,
comprising two primary classes: latent factor models and neighbor models. In the latent
factor models, a set of latent factors is learned by optimizing an objective function.
Consequently, the rating that a user assigns to an item (r

∧

u,i) can be predicted by multi-

plying their respective vectors defined by the latent factors (−→z u u = 1 . . .m and
−→
h i

i = 1 . . . n) [12–14], as follows:

r̂u,i = −→z u · −→
h i (1)

The objective functions for learning latent factors are typically constructed based
on the principle of optimizing the difference between the observed rating values and
the predicted rating values. These objective functions, along with their optimization
processes, have demonstrated enhanced effectiveness when incorporating side data [12,
13, 15–17]. For instance, in the study [15], textual descriptions of items are utilized to
initialize the variables in the objective function optimization process. Additionally, [12]
incorporates user interactions for items to build an objective function for a multiple-step
decision-making process. In another study [17], the objective function is modified to
optimize the distances between predicted rating values and sentiment values expressed
in user textual reviews. Also utilizing reviews, [13] redefines the objective function by
incorporating twomeanings extracted from reviews: user satisfaction anduser experience
with items.

The neighbor models are acknowledged for their higher level of interpretability in
contrast to the latent factor models [6–8]. Specifically, when making predictions for the
rating of a user u on an item i, neighbor models proceed with the following steps [18,
19]:

• Step 1: Identify the group of users (Ui) who have provided ratings for i.
• Step 2: From the users inUi, establish the neighbor set (Tu,i) consisting of users who

possess the closest preferences to u.
• Step 3: Compute the average of the observed ratings assigned by the users v ∈ Tu,i

to i (rv,i), resulting in an estimation of u’s rating for i (r
∧

u,i), as follows:

r
∧

u,i = μu +
∑

v∈Tu,i
simu,v.(rv,i − μv)

∑
v∈Tu,i

|simu,v| (2)

where μu and μv denote the averages of the observed ratings of user u and user v,
respectively. Step 2 requires the similarity of preferences between user u and each user
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v in the set Ui, denoted by simu,v. Some typical methods for calculating similarity are
as follows. For Jaccard [20], the more items two users rate in common, the higher their
similarity. Going into the details of each rating value, PCC [21] is the cosine of two
vectors containing the shared ratings of the two users. MSD [22] uses the absolute
difference in shared ratings. [23] calculates the similarity of two users by combining
their consistent extreme behaviors and individual extreme behaviors.

In addition to considering observed ratings, observed reviews are also incorporated in
the computation of user preference similarity. For example, the authors in [24] calculate
the similarity between two users by averaging the distances between their review vectors,
which are obtained through a topic modeling technique. In [25], the similarity using
reviews is combined with the similarity using ratings. This integration of both rating-
based and review-based similarities enhances the accuracy of the similarity calculation.

The aforementioned predictive approaches can also be implemented using a
neighbor-item model, where the focus is on neighbor items instead of neighbor users.
Accordingly, a user’s preference for an item is calculated by aggregating the ratings
expressed by the user after experiencing the neighbor items. Several studies have
explored rating predictions by combining both the neighbor-user and neighbor-item
models. Specifically, [10] employed Singular Value Decomposition on the combined
matrix of user numeric ratings and item textual descriptions to derive user/item vectors
in the Bert space. Cosine similarity was then calculated for each pair of user/item vectors
in the Bert space. These similarity measures were subsequently employed to identify the
neighbor users and neighbor items within the combined model. Compared to [10], the
difference of [11] lies in the implementation of Singular Value Decomposition on each
user/item cluster. Subsequently, the transformed vector of each item/user is utilized to
calculate the cosine similarity with other users/items within the same cluster only. Both
approaches, [10] and [11], apply the unweighted averaging technique to combine the
rating predictions from both neighbor-user and neighbor-item models.

3 Motivation

In addition to ratings, a user’s characteristics can also be revealed through his/her inter-
actions in the system, such as clicking, purchasing, or viewing items. Compared to rating
data, this data can be collected easily and rapidly through software integrated into the
system. After interacting with and rating an item, users often write a review to express
their emotions and experiences related to the item. In this paper, we aim to combine not
just Two computational Aspects (neighbor-user model and neighbor-item model) but
also Three popular user Profile types (user preferences, user reviews, and user interac-
tions) to enhance neighbor-based recommendation processes. With that idea, we name
the proposed approach in this paper TATP.

In our recent research, we have introduced two latent factor models: SC1 [12], which
combines user interactions and ratings, andUI2R [13], which combines user reviews and
ratings. These models have demonstrated remarkable effectiveness in predicting ratings.
The integration of rating, interaction, and review data has facilitated the learning of latent
factor vectors for more accurate representations of users and items. Building upon this
finding, our goal is to leverage these vectors to improve the quality of neighbor users
and neighbor items in the TATP. The detailed process is illustrated in Sects. 4.1 and 4.2.
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These combinations increase the computational cost of TATP, which significantly
impacts the scalability of the system. To address this issue and make TATP more com-
prehensive, we have proposed an alternative version of TATP that aims to reduce com-
putational expenses. However, it is important to note that reducing computational costs
will inevitably lead to a trade-off with the accuracy of rating predictions. In Sect. 4.3,
we will provide a specific implementation of TATP.

4 Our Proposed Approach, TATP

4.1 Hybrid Model

Firstly, we employ our previous recommendation models, SC1 [12] and UI2R [13],
to derive user and item vectors. SC1 [12] is a latent factor model that integrates user
interaction data and rating data. In particular, SC1 captures the steps of a decision-making
process in the following manner:

• A user interacts with an item based on compatibility (t
∧

u,i) between the initial user

vector (−→a u u = 1 . . .m) and the initial item vector (
−→
b ii = 1 . . . n), as follows:

t̂u,i = −→a u · −→
b i (3)

• Following the interaction on the item, the user engageswith it, and ultimately provides
a rating (r

∧

u,i) by aligning the final user vector (−→z u u = 1 . . .m) with the final item

vector (
−→
h i i = 1..n), as follows:

r̂u,i = −→z u · −→
h i (4)

Using the collected interactions and ratings (tu,i �= ∗ and ru,i �= ∗with u =
1...m and i = 1...n), we can estimate both the initial and final user/item vectors. These
two optimizations are solved with the constraint that the initial user/item vectors act
as the starting values for the corresponding final user/item vectors in the Stochastic
Gradient Descent process, as follows:

min−→a u,
−→
b i

u = 1 . . .m
i = 1 . . . n

1

2
.

∑

{(u,i)|u=1...m∧i=1...n∧tu,i �=∗}

(
tu,i − t

∧

u,i
)2

⇔ min−→a u,
−→
b i

u = 1 . . .m
i = 1 . . . n

1

2
.

∑

{(u,i)|u=1...m∧i=1...n∧tu,i �=∗}

(
tu,i − −→a u.

−→
b i

)2

min−→z u,
−→
h i

u = 1 . . .m
i = 1 . . . n

1

2
.

∑

{(u,i)|u=1...m∧i=1...n∧ru,i �=∗}

(
ru,i − r

∧

u,i
)2
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⇔ min−→z u,
−→
h i

u = 1 . . .m
i = 1 . . . n

1

2
.

∑

{(u,i)|u=1...m∧i=1...n∧ru,i �=∗}

(
ru,i − −→z u.

−→
h i

)2

Subject to : �z(0)u = �au u = 1...m ∧ �h(0)
i = �bi i = 1...n (5)

In contrast to SC1, UI2R [13] is designed to combine textual reviews and numerical
ratings in a latent factor model. Each review is encoded into a vector using the Bert
model (−→v u,i �= ∗). The distinctive feature of this model lies in its consideration of
the Bert review vectors as the representation of contextual factors. These factors have
a direct influence on the user’s rating for the item (r

∧

u,i). This influence is incorporated

into the objective function to learn the user vectors (
−→
k u u = 1 . . .m) and item vectors

(−→y i i = 1 . . . n) in the following manner:

r̂u,i ≈ −→
k u.

−→y i

min−→
k u,

−→y i

u = 1 . . .m
i = 1 . . . n

1

2
.

∑

{(u,i)|u=1...m∧i=1...n∧ru,i �=∗}

(
ru,i − r

∧

u,i − −→
k u.

−→v u,i − −→y i.
−→v u,i

)2

⇔ min−→
k u,

−→y i

u = 1 . . .m
i = 1 . . . n

1

2
.

∑

{(u,i)|u=1...m∧i=1...n∧ru,i �=∗}

(
ru,i − r

∧

u,i − −→
k u.

−→v u,i − −→y i.
−→v u,i

)2

(6)

In the combined latent factor spaces, users and items are represented as specified vec-
tors. Therefore, it is straightforward to implement the cosine similarity to calculate the
similarity of two users (u and v)/two items (i and j):

sim(Rating&Interaction)
u,v = cosine

(−→z u,
−→z v

) =
−→z u.

−→z v

‖−→z u‖.‖−→z v‖

sim(Rating&Review)
u,v = cosine

(−→
k u,

−→
k v

)
=

−→
k u.

−→
k v

‖−→k u‖.‖−→k v‖

sim(Rating&Interaction)
i,j = cosine

(−→
h i,

−→
h j

)
=

−→
h i.

−→
h j

‖−→h i‖.‖−→h j‖

sim(Rating&Review)

i,j = cosine
(−→y i,

−→y j

)
=

−→y i.
−→y j

‖−→y i‖.‖−→y j‖
(7)
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Let the neighbor sets T
(Rating&Interaction)
u,i and T

(Rating&Review)

u,i respectively denote
the set of users who have provided ratings for an item i and have the highest simi-
larities (sim(Rating&Interaction)

u,v and sim(Rating&Review)
u,v ) with a user u. Now, the process of

predicting the rating of u for i in the neighbor-user model (r
∧(U_Rating&Interaction)
u,i and

r
∧(U_Rating&Review)

u,i ) would be as follows:

r
∧(U_Rating&Interaction)
u,i = μu +

∑
v∈T(Rating&Interaction)

u,i
sim(Rating&Interaction)

u,v .(rv,i − μv)

∑
v∈T(Rating&Interaction)

u,i
|sim(Rating&Interaction)

u,v |

r
∧(U_Rating&Review)

u,i = μu +
∑

v∈T(Rating&Review)
u,i

sim(Rating&Review)
u,v .

(
rv,i − μv

)

∑
T

(Rating&Review)
u,i

∣
∣
∣sim

(Rating&Review)
u,v

∣
∣
∣

(8)

Similarly, the prediction process in the neighbor-item model (r
∧(I_Rating&Interaction)
u,i

and r
∧(I_Rating&Review)

u,i ) is implemented as follows:

r
∧(I_Rating&Interaction)
u,i = μu +

∑
j∈W(Rating&Interaction)

i,u
sim(Rating&Interaction)

i,j .(ru,j − μu)

∑
j∈W(Rating&Interaction)

i,u
|sim(Rating&Interaction)

i,j |

r
∧(I_Rating&Review)

u,i = μu +
∑

j∈W(Rating&Review)
i,u

sim(Rating&Review)
i,j .

(
ru,j − μu

)

∑
j∈W(Rating&Review)

i,u

∣
∣
∣sim

(Rating&Review)
i,j

∣
∣
∣

(9)

where W
(Rating&Interaction)
i,u and W

(Rating&Review)

i,u represent the sets of items that have

been rated by user u and have the highest similarities (sim(Rating&Interaction)
i,j and

sim(Rating&Review)

i,j ) with i.
As mentioned in Sect. 3, we aim for a comprehensive hybrid approach to rating

predictions. The comprehensiveness lies in not only combining both user-based and
item-based implementations but also incorporating interaction, review, and rating data.
Therefore, we utilize the weighted average to achieve the final rating (r

∧

u,i), as follows:

r
∧

u,i = α.r
∧(U_Rating&Interaction)
u,i + β.r

∧(U_Rating&Review)
u,i + γ.r

∧(I_Rating&Interaction)
u,i + σ.r

∧(I_Rating&Review)

u,i

(10)

4.2 Weight Estimation

Many previous hybridmodels often assign equal weights to their individual models (α =
β = γ = σ in Eq. (10)). However, in reality, the individual models can have varying
levels of accuracy in different application domains. Therefore, setting equal weights may
not be the optimal choice. In this paper, the weights (α, β, γ , and σ ) are determined
through an estimation process using a subset of observed data called the validation set
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H. Specifically, we use Eq. (8, 9) to make predictions for each rating in the validation set,
and then aggregate them using Eq. (10). Optimizing the difference between the observed
ratings in the validation set (ru,i ∈ H) and their predictions (r

∧

u,i) helps determine α,
β, γ , and σ . Our advantage lies in the parallel optimization towards both the observed
rating and the inferred ratings from observed reviews (the rating r′u,i inferred from the
review of user u for item i, as proposed in [17]). This parallel optimization is particularly
effective in situationswhere there is an inconsistency between the reviews and the ratings
provided by the users. The detailed objective function forweight estimation is as follows:

min
α,β,γ,σ

1

2
.

∑

ru,i∈H

((
ru,i − r

∧

u,i
)2 + (

r′u,i − r
∧

u,i
)2

)
+ λ

2

(
α2 + β2 + γ 2 + σ 2

)

⇔ min
α,β,γ,σ

1

2
.

∑

ru,i∈H

⎛

⎜
⎜
⎜
⎜
⎝

(
ru,i − α.r

∧(U_Rating&Interaction)
u,i − β.r

∧(U_Rating&Review)
u,i

−γ.r
∧(I_Rating&Interaction)
u,i − σ.r

∧(I_Rating&Review)
u,i

)2

+
(
r

′
u,i − α.r

∧(U_Rating&Interaction)
u,i − β.r

∧(U_Rating&Review)
u,i

−γ.r
∧(I_Rating&Interaction)
u,i − σ.r

∧(I_Rating&Review)
u,i

)2

⎞

⎟
⎟
⎟
⎟
⎠

+ λ

2

(
α2 + β2 + γ 2 + σ 2)

(11)

The last part in Eq. (11) is a Tikhonov regularization to prevent overfitting with the
weight λ. Equation (11) can be solved as a bridge regression.

4.3 Efficient Implementation

In general, the implementation of a neighbor model consists of two stages: offline and
online.

• During the offline stage, the model computes the similarity between each pair of
users/items using a selected similarity metric.

• The online stage is performed based on the sets of neighbor users/items, which are
easily determined by the similarity scores calculated in the offline stage. Using these
neighbor sets, the model predicts the ratings of the active user for items that he/she
has not yet discovered.

However, in scenarios where the number of users/items is large, calculating pairwise
similarities for all user/itempairs in the offline stage becomes computationally infeasible.
One approach to address this issue is to cluster users/items, allowing for similarity
calculations only within each cluster [18, 19]. However, clustering users/items in the
sparse space of preferences often leads to suboptimal clustering results. This can result in
a significant decline in the performance of subsequent neighbor-based recommendations.
It is important to highlight that in the offline stage, we have successfully obtained user

vectors, i.e., −→z u and
−→
k u u = 1 . . .m, and item vectors, i.e.,

−→
h i and

−→y i i = 1 . . . n, in
a combined space of ratings, reviews, and interactions. We apply concatenation to these

vectors to create a unique vector for each itemanduser, i.e.,−→x u=concatenation(
−→z u,

−→
k u)

u = 1 . . .m and
−→
d i= concatenation(

−→
h i,

−→y i) i = 1 . . . n. This technique is commonly
used in previous research to integrate different representations of an object. Instead of
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clustering sparse preference vectors, we cluster the concatenated vectors, as follows:

Clustering �xu u = 1...m ; clustering �di i = 1...n

simu,v if u and v belong to the same cluster.

simi,j if i and j belong to the same cluster

(12)

5 Experiment

5.1 Experiment Setup

In the experiments, our method will be compared with the following approaches:

• [23]: Neighbor-User model relying solely on Ratings (NuRa)
• [24]: Neighbor-User model relying solely on Reviews (NuRe)
• [25]: Neighbor-User model combining Ratings and Reviews (NuRaRe)
• [11]: Neighbor-User and Neighbor-Item model relying solely on Ratings (NuNiRa)
• [10]: Neighbor-User and Neighbor-Item model combining Ratings and Reviews

(NuNiRaRe) where the item description is formed by aggregating reviews.
• Our proposed approach: Neighbor-User and Neighbor-Item model combining Rat-

ings, Reviews, and Interactions (TATP).

The parameters for the latent factor models SC1 and UI2R to learn user/item vectors
in TATP are set as follows:

• Learning rate is 0,003
• Regularization weight is 0,02
• The number of latent factors is 60

5.2 Dataset

To conduct the experiments, we selected three popular Amazon datasets containing both
ratings and reviews. Their details are presented in Table 1. The experimental datasets
are randomly divided into 65% for training and 25% for testing.

Table 1. The datasets.

# users # items # ratings and reviews

Video games 24,303 10,672 231,780

Clothing-Accessories 39,387 23,033 278,677

Gourmet food 14,681 8,713 151,254

Inspired by [12, 26, 27], we simulate user interaction data as follows. If a user
provides a rating for an item, it can be inferred that the user has interacted with the item.
This simulation does have a limitation, as it overlooks instances where users interact
with items but do not provide ratings. However, given the vast number of items available,
omitting these cases introduces negligible bias to the overall results.
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5.3 Measure

RMSE is utilized to assess the accuracy of recommendation models, as follows:

RMSE =
√∑

(u,i)∈T
(
r
∧

u,i − ru,i
)2

|T| (13)

where T is the test set.

5.4 Experimental Results

Figure 2 illustrates the RMSE results of the experimental approaches. It is evident
that the hybrid approaches, i.e., NuRaRe, NuNiRa, NuNiRaRe, and TATP, yield bet-
ter results compared to the individual approaches, i.e., NuRe and NuRa. Among the
hybrid approaches, our approach TATP outperforms the others. The reason for this is

The number of selected neighbors
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Fig. 2. The RMSE results when the number of selected neighbors increases from 15 to 40.
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that TATP utilizes more information and performs more comprehensive calculations
compared to the other approaches. Furthermore, leveraging both the observed ratings
and observed reviews to implement a bridge regression for learning the weights of the
individual models also proves to be highly effective. Due to the inherent sparsity of
the recommendation problem, combining more data and computations naturally leads
to significantly improved accuracy in the recommendation process. Although there is
a trade-off in terms of increased computational costs, the continual advancements in
computational power and storage capacity have made this trade-off more feasible and
acceptable.

Fixing the number of neighbors optimally for each approach on each experimental
dataset, we perform user/item clustering to enhance scalability as presented in Sect. 4.3.
Figure 3 shows that the clustering in our combined space (TATP + LatentVectorClus)
proves to be more effective compared to that in the preference space [18, 19] (TATP
+ PreferenceClus). This effect becomes more pronounced as the number of clusters
increases. Note that as the number of clusters increases, the number of users/items
within each cluster gradually decreases. This means that the number of pairs requiring
similarity calculations and the computational cost for neighbor determination decreases
as well. As a result, the system scalability is greatly enhanced.

Finally, we conducted RMSE measurements at the individual user level instead
of the overall system level. Consequently, for each approaches, we obtained 78,371
RMSE results corresponding to 78,371 users across all three experimental datasets.
These sample sets were then subjected to the statistical Wilcoxon signed-ranks test. The
advantage of the Wilcoxon signed-ranks test is that it does not require the sample sets to
adhere to a normal distribution. As depicted in Table 2, the statistical results demonstrate
that our approach TATP significantly outperform other methods in terms of statistical
significance, as all the obtained p-values are less than 0.05.

The number of clusters

Video games Gourmet food Clothing-Accessories
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Fig. 3. The RMSE results when the number of clusters increases from 40 to 100.
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Table 2. The results of the statistical Wilcoxon signed-ranks test.

TATP >> NuNiRaRe p-value =
0.0152

TATP >> NuNiRa
p-value = 0.0067

TATP >> NuRaRe
p-value = 0.0081

TATP >> NuRe
p-value = 0.0029

6 Conclusion and Future Work

In terms of computation, this paper combines both user and item aspects to effectively
utilize both neighbor users and neighbor items in predicting ratings. Regarding data,
this paper integrates three common types of user profiles, including user ratings, user
reviews, and user interactions, into the training process. The parameters of our hybrid
model are estimated using a bridge regression. The experimental results on various
datasets demonstrate that our approach performs better than both individual approaches
and other hybrid approaches.

The main drawback of our proposed approach is its substantial computational over-
head. This arises from the implementation of diverse individual approaches on vari-
ous user profile types. Although we have proposed a version to reduce computational
expenses, the reduction is not significant. Therefore, in the future, we aim to redesign the
proposed approach with parallel processing. This will facilitate successful deployment
on a distributed Hadoop.
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